Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/50528

Full metadata record
DC FieldValueLanguage
dc.contributor.authorSánchez, L.por
dc.contributor.authorAlfonso-Cendón, Javierpor
dc.contributor.authorOliveira, T.por
dc.contributor.authorOrdieres-Meré, Joaquín B.por
dc.contributor.authorCastejón Limas, Manuelpor
dc.contributor.authorNovais, Paulopor
dc.date.accessioned2018-02-15T13:48:28Z-
dc.date.available2018-02-15T13:48:28Z-
dc.date.issued2017-03-
dc.identifier.citationSánchez L., Alfonso-Cendón J., Oliveira T., Ordieres-Meré J., Castejón Limas M., Novais P., Information system for image classification based on frequency curve proximity, Information Systems, Elsevier Science, ISSN: 03064379, Vol. 64, pp12–21, 2017. http://dx.doi.org/10.1016/j.is.2016.08.001por
dc.identifier.issn0306-4379-
dc.identifier.urihttp://hdl.handle.net/1822/50528-
dc.description.abstractWith the size digital collections are currently reaching, retrieving the best match of a document from large collections by comparing hundreds of tags is a task that involves considerable algorithm complexity, even more so if the number of tags in the collection is not fixed. For these cases, similarity search appears to be the best retrieval method, but there is a lack of techniques suited for these conditions. This work presents a combination of machine learning algorithms put together to find the most similar object of a given one in a set of pre-processed objects based only on their metadata tags. The algorithm represents objects as character frequency curves and is capable of finding relationships between objects without an apparent association. It can also be parallelized using MapReduce strategies to perform the search. This method can be applied to a wide variety of documents with metadata tags. The case-study used in this work to demonstrate the similarity search technique is that of a collection of image objects in JavaScript Object Notation (JSON) containing metadata tags.por
dc.description.sponsorshipThis work has been done in the context of the project “ASASEC (Advisory System Against Sexual Exploitation of Children)” (HOME/2010/ISEC/AG/043) supported by the European Union with the program “Prevention and fight against crime”.por
dc.language.isoengpor
dc.publisherElsevierpor
dc.rightsopenAccesspor
dc.subjectInformation systempor
dc.subjectSimilarity searchpor
dc.subjectFrequent itemset miningpor
dc.subjectMetadatapor
dc.subjectImage classificationpor
dc.titleInformation system for image classification based on frequency curve proximitypor
dc.typearticlepor
dc.peerreviewedyespor
oaire.citationStartPage12por
oaire.citationEndPage21por
oaire.citationVolume64por
dc.identifier.doi10.1016/j.is.2016.08.001por
dc.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.description.publicationversioninfo:eu-repo/semantics/publishedVersionpor
dc.subject.wosScience & Technologypor
sdum.journalInformation Systemspor
Appears in Collections:CAlg - Artigos em revistas internacionais/Papers in international journals

Files in This Item:
File Description SizeFormat 
Information system for image classification based on frequency curve proximity.pdf1,48 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID