Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/50090

TitleComparison of two discrimination indexes in the categorisation of continuous predictors in time-to-event studies
Author(s)Barrio, Irantzu
Rodríguez-Álvarez, María Xosé
Machado, Luís Meira
Esteban, Cristobal
Arostegui, Inmaculada
KeywordsCategorisation
Prediction models
Cutpoint
Cox model
Issue date2017
PublisherInstitut d'Estadística de Catalunya (Idescat)
JournalSORT
Abstract(s)The Cox proportional hazards model is the most widely used survival prediction model for analysing time-to-event data. To measure the discrimination ability of a survival model the concordance probability index is widely used. In this work we studied and compared the performance of two different estimators of the concordance probability when a continuous predictor variable is categorised in a Cox proportional hazards regression model. In particular, we compared the c-index and the concordance probability estimator. We evaluated the empirical performance of both estimators through simulations. To categorise the predictor variable we propose a methodology which considers the maximal discrimination attained for the categorical variable. We applied this methodology to a cohort of patients with chronic obstructive pulmonary disease, in particular, we categorised the predictor variable forced expiratory volume in one second in percentage.
TypeArticle
URIhttp://hdl.handle.net/1822/50090
DOI10.2436/20.8080.02.51
ISSN1696-2281
e-ISSN2013-8830
Publisher versionhttp://www.raco.cat/index.php/SORT/article/view/326049
Peer-Reviewedyes
AccessRestricted access (UMinho)
Appears in Collections:CMAT - Artigos em revistas com arbitragem / Papers in peer review journals

Files in This Item:
File Description SizeFormat 
2017 SORT.pdf
  Restricted access
288,83 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID