Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/48545

TitleVapor–solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis
Author(s)Li, Wei
Gao, Xuefei
Xiong, Dehua
Xia, Fang
Liu, Jian
Song, Wei-Guo
Xu, Junyuan
Thalluri, Sitaramanjaneya Mouli
Cerqueira, M. F.
Fu, Xiuli
Liu, Lifeng
KeywordsCoP
Nanowires electrodes
water electrolysis
Vapor–solid synthesis
Issue dateJan-2017
PublisherRoyal Society of Chemistry
JournalChemical Science
CitationThe Royal Society of Chemistry: Chemical Science, 8, pp. 2952-2958 (2017)
Abstract(s)Electrochemical water splitting into hydrogen and oxygen is a promising technology for sustainable energy storage. The development of earth-abundant transition metal phosphides (TMPs) to catalyze the hydrogen evolution reaction (HER) and TMP-derived oxy-hydroxides to catalyze the oxygen evolution reaction (OER) has recently drawn considerable attention. However, most monolithically integrated metal phosphide electrodes are prepared by laborious multi-step methods and their operational stability at high current densities has been rarely studied. Herein, we report a novel vapor–solid synthesis of single-crystalline cobalt phosphide nanowires (CoP NWs) on a porous Co foam and demonstrate their use in overall water splitting. The CoP NWs grown on the entire surface of the porous Co foam ligaments have a large aspect ratio, and hence are able to provide a large catalytically accessible surface over a given geometrical area. Comprehensive investigation shows that under the OER conditions CoP NWs are progressively and conformally converted to CoOOH through electrochemical in situ oxidation/ dephosphorization; the latter serving as an active species to catalyze the OER. The in situ oxidized electrode shows exceptional electrocatalytic performance for the OER in 1.0 M KOH, delivering 100 mA cm-2 at an overpotential () of merely 300 mV and a small Tafel slope of 78 mV dec1 as well as excellent stability at various current densities. Meanwhile, the CoP NW electrode exhibits superior catalytic activity for the HER in the same electrolyte, affording 100 mA cm-2 at = 244 mV and showing outstanding stability. An alkaline electrolyzer composed of two symmetrical CoP NW electrodes can deliver 10 and 100 mA cm-2 at low cell voltages of 1.56 and 1.78 V, respectively. The CoP NW electrolyzer demonstrates exceptional long-term stability for overall water splitting, capable of working at 20 and 100 mA cm-2 for 1000 h without obvious degradation.
TypeArticle
URIhttp://hdl.handle.net/1822/48545
DOI10.1039/C6SC05167G
ISSN2041-6520 
Publisher versionhttp://pubs.rsc.org/-/content/articlehtml/2017/sc/c
Peer-Reviewedyes
AccessOpen access
Appears in Collections:CDF - CEP - Artigos/Papers (with refereeing)

Files in This Item:
File Description SizeFormat 
CoP-RepUM.pdf608,61 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID