Please use this identifier to cite or link to this item:

TitleHybridized Plasmons in 2D Nano-slits: From Graphene to Anisotropic 2D Materials
Author(s)Gonçalves, Paulo André Dias
Xiao, Sanshui
Peres, N. M. R.
Mortensen, N. Asger
Two-dimensional materials
Graphene plasmons
Black phosphorus
Issue date5-Sep-2017
PublisherACS Publications
JournalACS Photonics
CitationGonçalves, P. A. D., Xiao, S., Peres, N. M. R., & Mortensen, N. A. (2017). Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials. ACS Photonics.
Abstract(s)Plasmon coupling and hybridization in complex nanostructures constitutes a fertile playground for controlling light at the nanoscale. Here, we present a semi-analytical model to describe the emergence of hybrid plasmon modes guided along 2D nano-slits. In particular, we find two new coupled plasmonic resonances arising from symmetric and antisymmetric hybridizations of the edge plasmons of the constituent half-sheets. These give rise to an antibonding and a bonding mode, lying above and below the energy of the bare edge plasmon. Our treatment is notably generic, being able to account for slits of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nano-slit along with the corresponding induced potential and electric field distributions. We also discuss the plasmonic spectrum of a 2D slit together with the one from its complementarity structure, that is, a ribbon. Finally, the case of a nano-slit made from an anisotropic 2D material is considered. Focusing on black phosphorus (which is highly anisotropic), we investigate the features of its plasmonic spectrum along the two main crystal axes. Our results offer insights into the interaction of plasmons in complex 2D nanostructures, thereby expanding the current toolkit of plasmonic resonances in 2D materials, and paving the way for the emergence of future compact devices based on atomically thin plasmonics.
Publisher version
Appears in Collections:CDF - CEP - Artigos/Papers (with refereeing)

Files in This Item:
File Description SizeFormat 
1708.01748.pdf7,52 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis