Please use this identifier to cite or link to this item:

TitleHuman mesenchymal stem cells growth and osteogenic differentiation on piezoelectric poly(vinylidene fluoride) microsphere substrates
Author(s)Almeida, R. Sobreiro
Tamaño-Machiavello, M. N.
Carvalho, E. O.
Cordón, L.
Doria, S.
Senent, L.
Correia, D. M.
Ribeiro, Clarisse
Lanceros-Méndez, S.
Sabater i Serra, R.
Gomez Ribelles, J. L.
Sempere, A.
KeywordsTissue engineering
Bone differentiation
Poly(vinylidene fluoride)
Issue date2017
PublisherMDPI Publishing
JournalInternational Journal of Molecular Sciences
CitationSobreiro-Almeida, R.; Tamaño-Machiavello, M. N.; Carvalho, E. O.; Cordón, L.; Doria, S.; Senent, L.; Correia, D. M.; Ribeiro, Clarisse; Lanceros-Méndez, S.; Sabater i Serra, R.; Gomez Ribelles, J. L.; Sempere, A., Human mesenchymal stem cells growth and osteogenic differentiation on piezoelectric poly(vinylidene fluoride) microsphere substrates. International Journal of Molecular Sciences, 18(11), 2391, 2017
Abstract(s)The aim of this work was to determine the influence of the biomaterial environment on human mesenchymal stem cell (hMSC) fate when cultured in supports with varying topography. Poly(vinylidene fluoride) (PVDF) culture supports were prepared with structures ranging between 2D and 3D, based on PVDF films on which PVDF microspheres were deposited with varying surface density. Maintenance of multipotentiality when cultured in expansion medium was studied by flow cytometry monitoring the expression of characteristic hMSCs markers, and revealed that cells were losing their characteristic surface markers on these supports. Cell morphology was assessed by scanning electron microscopy (SEM). Alkaline phosphatase activity was also assessed after seven days of culture on expansion medium. On the other hand, osteoblastic differentiation was monitored while culturing in osteogenic medium after cells reached confluence. Osteocalcin immunocytochemistry and alizarin red assays were performed. We show that flow cytometry is a suitable technique for the study of the differentiation of hMSC seeded onto biomaterials, giving a quantitative reliable analysis of hMSC-associated markers. We also show that electrosprayed piezoelectric poly(vinylidene fluoride) is a suitable support for tissue engineering purposes, as hMSCs can proliferate, be viable and undergo osteogenic differentiation when chemically stimulated.
Publisher version
AccessOpen access
Appears in Collections:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Files in This Item:
File Description SizeFormat 
document_47185_1.pdf2,07 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID