Please use this identifier to cite or link to this item:

TitleA genotypic analysis of five P. aeruginosa strains after biofilm infection by phages targeting different cell surface receptors
Author(s)Pires, Diana P.
Dötsch, Andreas
Anderson, Erin M.
Hao, Youai
Khursigara, Cezar M.
Lam, J. S.
Sillankorva, Sanna
Azeredo, Joana
P. aeruginosa
Bacterial resistance
phage infection
Issue date2017
PublisherFrontiers Media
JournalFrontiers in Microbiology
CitationPires, Diana P.; Dötsch, Andreas; Anderson, Erin M.; Hao, Youai; Khursigara, Cezar M.; Lam, J. S.; Sillankorva, Sanna; Azeredo, Joana, A genotypic analysis of five P. aeruginosa strains after biofilm infection by phages targeting different cell surface receptors. Frontiers in Microbiology, 8(1229), 2017
Abstract(s)Antibiotic resistance constitutes one of the most serious threats to the global public health and urgently requires new and effective solutions. Bacteriophages are bacterial viruses increasingly recognized as being good alternatives to traditional antibiotic therapies. In this study, the efficacy of phages, targeting different cell receptors, against Pseudomonas aeruginosa PAO1 biofilm and planktonic cell cultures was evaluated over the course of 48h. Although significant reductions in the number of viable cells were achieved for both cases, the high level of adaptability of the bacteria in response to the selective pressure caused by phage treatment resulted in the emergence of phage-resistant variants. To further investigate the genetic makeup of phage-resistant variants isolated from biofilm infection experiments, some of these bacteria were selected for phenotypic and genotypic characterization. Whole genome sequencing was performed on five phage-resistant variants and all of them carried mutations affecting the galU gene as well as one of pil genes. The sequencing analysis further revealed that three of the P. aeruginosa PAO1 variants carry large deletions (> 200 kbp) in their genomes. Complementation of the galU mutants with wild-type galU in trans restored LPS expression on the bacterial cell surface of these bacterial strains and rendered the complemented strains to be sensitive to phages. This provides unequivocal evidence that inactivation of galU function was associated with resistance to the phages that uses LPS as primary receptors. Overall, this work demonstrates that P. aeruginosa biofilms can survive phage attack and develop phage-resistant variants exhibiting defective LPS production and loss of type IV pili that are well adapted to the biofilm mode of growth.
DescriptionThe Supplementary Material for this article can be found online at: 2017.01229/full#supplementary-material
Publisher version
AccessOpen access
Appears in Collections:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Files in This Item:
File Description SizeFormat 
document_46823_1.pdf2,11 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID