Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/47284

TitleOptical and structural analysis of solar selective absorbing coatings based on AlSiOx:W cermets
Author(s)Dias, D.
Rebouta, L.
Costa, P.
Al-Rjoub, A.
Benelmeki, M.
Tavares, C. J.
Barradas, N. P.
Alves, E.
Santilli, P.
Pischow, K.
KeywordsSolar selective absorber
AlSiOx:W cermet
Optical constants
Dielectric function modelling
Sputtering, solar thermal
AlSiO :W cermet x
Issue date1-Jul-2017
PublisherElsevier
JournalSolar Energy
Abstract(s)It is reported in this work the development and study of the optical and structural properties of a solar selective absorber cermet based on AlSiOx:W. A four-layer composite film structure, W/AlSiOx:W(HA)/AlSiOx:W(LA)/AlSiOx, was deposited on stainless steel substrates using the magnetron sputtering deposition method. Numerical calculations were performed to simulate the spectral properties of multilayer stacks with varying metal volume fraction cermets and film thickness. The chemical analysis was performed using X-ray photoelectron spectroscopy and the results show that in the high metal volume fraction cermet layer, AlSiOx:W(HA), about one third of W atoms are in the W-O oxidation state, another third in the Wx+ oxidation state and the last third in the W4+, W5+ and W6+ oxidation states. The X-ray diffractograms of AlSiOx:W layers show a broad peak indicating that both, W and AlSiOx, are amorphous. These results indicate that this film structure has a good spectral selective property that is suitable for solar thermal applications, with the coatings exhibiting a solar absorptance of 94-95.5% and emissivities of 8-9% (at 100 degrees C) and 10-14% (at 400 degrees C). The samples were subjected to a thermal annealing at 450 degrees C, in air, and 580 degrees C, in vacuum and showed very good oxidation resistance and thermal stability. Morphological characterizations were carried out using scanning electron microscopy and atomic force microscopy. Rutherford Backscattering experiments were also performed to analyze the tungsten depth profile.
TypeArticle
URIhttp://hdl.handle.net/1822/47284
DOI10.1016/j.solener.2017.04.055
ISSN0038-092X
Peer-Reviewedyes
AccessOpen access
Appears in Collections:CDF - GRF - Artigos/Papers (with refereeing)

Files in This Item:
File Description SizeFormat 
2017-Rebouta Solar Energy.pdf1,58 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID