Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/46854

TitleInfluence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering
Author(s)Reys, L. L.
Silva, Simone Santos
Pirraco, Rogério P.
Marques, A. P.
Mano, J. F.
Silva, Tiago H.
Reis, R. L.
KeywordsDegree of deacetylation
Freeze-drying
Freezing temperature and Cartilage
Marine biomaterials
Scaffolds
Squid chitosan
Tissue engineering
β-chitin
beta-chitin
Freezing temperature
Cartilage
Issue dateAug-2017
PublisherElsevier
JournalEuropean Polymer Journal
CitationReys L. L., Silva S. S., Pirraco R. P., Marques A. P., Mano J. F., Silva T. H., Reis R. L. Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering, European Polymer Journal, Vol. 95, Issue C, pp. 232-240, doi:10.1016/j.eurpolymj.2017.08.017, 2017
Abstract(s)Chitosan-based porous structures have been significantly studied across the world as potential tissue engineering scaffolds. Despite the differences in chitosan produced from squid pens or crustacean shells, with the former being more reactive and easily available with a higher degree of deacetylation (DD), most of the studies report the use of crab or shrimp chitosan as they are readily available commercial sources. The aim of this work was to highlight the great potential of chitosan produced from squid pens for biomedical application. From freeze-dried scaffolds for soft tissue engineering, we investigated the influence of the DD of chitosan and the freezing temperature during processing on their performance. Chitosan was obtained by deacetylation of β-chitin previously isolated from endoskeleton of giant squid Dosidicus gigas (DD 91.2%) and compared with a commercially available batch obtained from crab shells (DD 76.6%). Chitosan solutions were frozen at â 80° C or â 196° C and further freeze-dried to obtain 3D porous structures (scaffolds). Scaffolds prepared at â 196° C have a compact structure with smaller pores, while those prepared at â 80° C showed a lamellar structure with larger pores. The compressive modulus varied from 0.7 up to 8.8 MPa. Both types of scaffolds were stable on PBS, including in the presence of lysozyme, up to 4 weeks. Furthermore, the squid chitosan scaffolds processed at â 80° C promoted ATDC5 chondrocyte-like cells adhesion and proliferation. The results suggest that the developed squid chitosan scaffolds might be further exploited for ap- plications in cartilage tissue engineering.
TypeArticle
URIhttp://hdl.handle.net/1822/46854
DOI10.1016/j.eurpolymj.2017.08.017
ISSN0014-3057
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0014305717307462
Peer-Reviewedyes
AccessEmbargoed access (2 Years)
Appears in Collections:3B’s - Artigos em revistas/Papers in scientific journals


Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID