Please use this identifier to cite or link to this item:

TitlePhotoluminescence from ultrathin Ge-rich multi-quantum wells observed up to room-temperature: experiments and modeling
Author(s)Wendav, T.
Fischer, I. A.
Virgilio, M.
Capellini, G.
Oliveira, F.
Cerqueira, M. F.
Benedetti, A.
Chiussi, S.
Zaumseil, P.
Schwartz, B.
Busch, K.
Schulze, J.
quantum wells
Issue date2016
PublisherAmerican Physical Society
JournalPhysical Review B
CitationPhysical Review B 94, pp. 245304 (2016)
Abstract(s)Employing a low-temperature growth-mode, we fabricated ultrathin Si1-xGex/Si multiple quantum well (QW) structures with a well thickness of less than 1.5 nm and a Ge concentration above 60 % directly on a Si substrate. We identified an unusual temperature-dependent blueshift of the photoluminescence (PL) and an exceptionally low thermal quenching. We find that this behavior is related to the relative intensities of the no-phonon (NP) peak and a phonon-assisted replica that are the main contributors to the total PL signal. In order to investigate these aspects in more detail, we developed a strategy to calculate the PL spectrum employing a self-consistent multi-valley effective mass model in combination with second-order perturbation theory. According to our investigation, we find that while the phonon-assisted feature decreases with temperature, the NP feature shows a strong increase in the recombination rate. Besides leading to the observed robustness against thermal quenching, this causes the observed blueshift of the total PL signal.
Publisher version
AccessOpen access
Appears in Collections:CDF - CEP - Artigos/Papers (with refereeing)

Files in This Item:
File Description SizeFormat 
Photoluminescence from ultrathin Ge-Torstein.pdf1,53 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID