Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/44516

TitleElectrocatalytic performance and stability of nanostructured Fe–Ni pyrite-type diphosphide catalyst supported on carbon paper
Author(s)Costa, José Diogo
Lado, José Luis
Carbó-Argibay, Enrique
Paz, Elvira
Gallo, Juan
Cerqueira, M. F.
Rodríguez-Abreu, Carlos
Kovnir, Kirill
Kolen’ko, Yury V.
KeywordsElectrocatalytic
Nanostructures
Fe–Ni Pyrite
Carbon Paper
Issue date2016
PublisherACS Publications
JournalJournal of Physical Chemistry C
CitationCosta, J. D., Lado, J. L., Carbo-Argibay, E., Paz, E., Gallo, J., Cerqueira, M. F., . . . Kolen'ko, Y. V. (2016). Electrocatalytic Performance and Stability of Nanostructured Fe-Ni Pyrite-Type Diphosphide Catalyst Supported on Carbon Paper. Journal of Physical Chemistry C, 120(30), 16537-16544. doi: 10.1021/acs.jpcc.6b05783
Abstract(s)A simple and effective method to prepare an active and stable nanostructured working electrode for electrochemical water splitting is described. Specifically, mixed Fe–Ni diphosphide was prepared by sputtering a 200-nm-thick layer of Permalloy onto carbon paper gas diffusion layer followed by gas transport phosphorization reaction. The mass density of the resultant diphosphide phase was established to be 1.1 mg/cm2. Energy-dispersive X-ray microanalysis shows that the actual elemental composition of the resultant ternary electrocatalyst is approximately Fe0.2Ni0.8P2, while the powder X-ray diffraction analysis confirms that the electrocatalyst crystallizes in NiP2 cubic pyrite-like structure. As a cathode for hydrogen evolution reaction (HER) in acidic and alkaline electrolytes, this earth-abundant electrode has exchange current densities of 6.84103 and 3.16103 mA/cm2 and Tafel slopes of 55.3 and 72.2 mV/dec, respectively. As an anode for oxygen evolution reaction (OER) in alkaline electrolyte, the electrode shows an exchange current density of 2.88104 mA/cm2 and Tafel slope of 49.3 mV/dec. The observed high activity of the electrode correlates well with its electronic structure, which was assessed by density functional theory (DFT) calculations. The stability of Fe0.2Ni0.8P2 electrocatalyst in HER and OER was evaluated by means of accelerated degradation test and chronopotentiometry. The results of these experiments elucidate partial dissolution and entire chemical transformation of Fe0.2Ni0.8P2 as the main mechanisms of the electrode degradation during HER and OER, respectively. Overall, our findings could facilitate the composition-based design of active, stable, and durable phosphide electrodes for electrochemical water splitting.
TypeArticle
URIhttp://hdl.handle.net/1822/44516
DOI10.1021/acs.jpcc.6b05783
ISSN1932-7447
e-ISSN1932-7455
Publisher versionhttp://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b05783
Peer-Reviewedyes
AccessOpen access
Appears in Collections:CDF - CEP - Artigos/Papers (with refereeing)

Files in This Item:
File Description SizeFormat 
Electrocatalytic Performance and Stability of Nanostructured Fe-REpositoriUM.pdf1,65 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID