Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/43597

Registo completo
Campo DCValorIdioma
dc.contributor.authorNeves, M. I.por
dc.contributor.authorWechsler, M. E.por
dc.contributor.authorGomes, Manuela E.por
dc.contributor.authorReis, R. L.por
dc.contributor.authorGranja, P. L.por
dc.contributor.authorPeppas, N. A.por
dc.date.accessioned2016-12-21T12:05:30Z-
dc.date.issued2017-
dc.date.submitted2016-09-
dc.identifier.citationNeves M. I., Wechsler M. E., Gomes M. E., Reis R. L., Granja P. L., Peppas N. A. Molecularly imprinted intelligent scaffolds for tissue engineering applications, Tissue Engineering: Part B, doi: 10.1089/ten.teb.2016.0202, 2017.por
dc.identifier.issn2152-4955por
dc.identifier.urihttps://hdl.handle.net/1822/43597-
dc.description.abstractThe development of molecularly imprinted polymers (MIPs) using biocompatible production methods enables the possibility to further exploit this technology for biomedical applications. Tissue engineering (TE) approaches use the knowledge of the wound healing process to design scaffolds capable of modulating cell behavior and promote tissue regeneration. Biomacromolecules bear great interest for TE, together with the established recognition of the extracellular matrix, as an important source of signals to cells, both promoting cellâ cell and cellâ matrix interactions during the healing process. This review focuses on exploring the potential of protein molecular imprinting to create bioactive scaffolds with molecular recognition for TE applications based on the most recent approaches in the field of molecular imprinting of macromolecules. Considerations regarding essential components of molecular imprinting technology will be addressed for TE purposes. Molecular imprinting of biocompatible hydrogels, namely based on natural polymers, is also reviewed here. Hydrogel scaffolds with molecular memory show great promise for regenerative therapies. The first molecular imprinting studies analyzing cell adhesion report promising results with potential applications for cell culture systems, or biomaterials for implantation with the capability for cell recruitment by selectively adsorbing desired molecules.por
dc.description.sponsorshipThe authors wish to thank Dr. Julia Vela-Ramirez, Ms. Heidi Culver, and Mr. John Clegg for important discussions and suggestions. This work was supported in part by the University of Texas-Portugal Collaborative Research Program, and the Grant UTAP-ICDT/CTM-BIO/0023/2014. M.E.W. is supported by a National Science Foundation Graduate Research Fellowship.por
dc.language.isoengpor
dc.publisherMary Ann Liebertpor
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/137422/PTpor
dc.rightsopenAccess-
dc.subjectintellengent scaffoldspor
dc.subjectMolecular imprintingpor
dc.subjectTissue engineeringpor
dc.subjectintelligent polymerspor
dc.titleMolecularly imprinted intelligent scaffolds for tissue engineering applicationspor
dc.typearticle-
dc.peerreviewedyespor
dc.commentshttp://3bs.uminho.pt/node/18836por
sdum.publicationstatusinfo:eu-repo/semantics/publishedVersionpor
oaire.citationStartPage27por
oaire.citationEndPage43por
oaire.citationIssue1por
oaire.citationTitleTissue Engineering Part Apor
oaire.citationVolume23por
dc.date.updated2016-12-14T15:01:14Z-
dc.identifier.doi10.1089/ten.teb.2016.0202por
dc.identifier.pmid27484808por
dc.subject.wosScience & Technologypor
sdum.journalTissue Engineering. Part Apor
Aparece nas coleções:3B’s - Artigos em revistas/Papers in scientific journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
18836-MarianaNeves_TE2016.pdf635,32 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID