Please use this identifier to cite or link to this item:

TitleAnti-angiogenic potential of VEGF blocker dendron-laden gellan gum hydrogels for tissue engineering applications
Author(s)Perugini, V.
Guildford, A.
Silva-Correia, Joana
Oliveira, J. M.
Meikle, S. T.
Reis, R. L.
Santin, M.
KeywordsAnti-angiogenic dendrons
IVD regeneration
Anti-angiogenesis peptide
Gellan gum
Tissue regeneration
Vascular endothelial growth factor
Issue date2017
JournalJournal of Tissue Engineering and Regenerative Medicine
CitationPerugini V., Guildford A., Silva-Correia J., Oliveira J. M., Meikle S. T., Reis R. L., Santin M. Anti-angiogenic Potential of VEGF Blocker Dendron-laden Gellan Gum Hydrogels for Tissue Engineering Applications, Journal of Tissue Engineering and Regenerative Medicine, doi:10.1002/term.2340, 2017.
Abstract(s)Damage of non-vascularised tissues such as cartilage and cornea can result in healing processes accompanied by a non-physiological angiogenesis. Peptidic aptamers have recently been reported to block the vascular endothelial growth factor (VEGF). However, the therapeutic applications of these aptamers is limited due to their short half-life in vivo. In this work, an enhanced stability and bioavailability of a known VEGF blocker aptamer sequence (WHLPFKC) was pursued through its tethering of molecular scaffolds based on hyperbranched peptides, the poly(É -lysine) dendrons, bearing three branching generations. The proposed design allowed simultaneous and orderly-spaced exposure of sixteen aptamers per dendrimer to the surrounding biological microenvironent, as well as a relatively hydrophobic core based on di-phenylalanine aiming to promote an hydrophobic interaction with the hydrophobic moieties of ionically-crosslinked metacrylated gellan gum (iGG-MA) hydrogels. The VEGF blocker dendrons were entrapped in iGG-MA hydrogels and their capacity to prevent endothelial cell sprouting was assessed qualitatively and quantitatively using 3D in vitro models and the in vivo chick chorioallantoic membrane (CAM) assay. The data demonstrate that at nanoscale concentrations, the dendronised structures were able to enhance control of the biological actvity of WHLPFKC at the material/tissue interface and hence the anti-angiogenic capacity of iGG-MA hydrogels not only preventing blood vessel invasion, but also inducing their regression at the tissue/iGG-MA interface. The in ovo study confirmed that iGG-MA functionalised with the dendron VEGF blockers do inhibit angiogenesis by controlling both size and ramifications of blood vessels in proximity of the implanted gel surface.
AccessOpen access
Appears in Collections:3B’s - Artigos em revistas/Papers in scientific journals

Files in This Item:
File Description SizeFormat 
18872-Perugini_et_al-2016-Journal_of_Tissue_Engineering_and_Regenerative_Medicine.pdf.pdf1,2 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID