Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/42973

TítuloCreation of databases of ageing-related drugs and statistical analysis and applied machine learning for the prioritization of potential lifespan-extension drugs
Autor(es)Barardo, Diogo Gonçalves
Orientador(es)Magalhães, João Pedro
Casal, Margarida
Data2016
Resumo(s)Over the last few centuries, the success of modern medicine has consistently increased the average life expectancy of mankind. This extended longevity came a paradigm-shift: multimorbidity is now our top concern, instead of the immediate fatal diseases (e.g. infections) of the past. The aged populations currently observed in developed countries, are already having negative recursions in the social state ideal and are expected to spread to the rest of the world. The scientific solution to this predicament lies in developing anti-aging therapies. In the recent decades, the idea that aging is not a fixed biological process was challenged and thoroughly refuted. There are now more than a thousand different genes known to alter lifespan in model organisms, and simple lifestyle interventions like a caloric restriction diet prolong the lifespan of non-human primates. Unfortunately, the discoveries made so far are yet to be translated into meaningful human anti-aging therapies. In this work, we offer several scientific contributions to help mitigate the looming aging crisis. Our most prominent contribution is the creation of the DrugAge database (http://genomics.senescence.info/drugs/). This unparalleled resource systematically compiles information regarding drug lifespan assays that increased the lifespan of model organisms. DrugAge is free, manually curated and is composed of 1316 entries featuring 418 different compounds from studies across 27 model organisms. We used the information provided on DrugAge to: train an algorithm for the prediction of the anti-aging potential of new compounds; conduct the functional enrichment of DrugAge; compare DrugAge with the known anti-aging genes; show that gender does not influence the performance of anti-aging compounds in model organisms. A separate section is dedicated to applying drug repurposing to accelerate the discovery of antiaging drugs in humans. After matching a meta-repository of drug-gene interactions with the known anti-aging genes in model organisms, we found 16 drugs with significant potential to affect the aging process. Two drug combinations are suggested to be tried in model organisms.
Durante os últimos séculos, o sucesso da medicina moderna tem consistentemente aumentado a esperença média de vida da humanidade. Esta maior longevidade é acompanhado por uma mudança de paradigma: multimorbidade, causada pela acumulação de doenças relacionadas com o envelhecimento, é agora a nossa principal preocupação, ao invés das doenças fatais imediatas (por exemplo infeções) do passado. As populações envelhecidas presentemente observadas nos países desenvolvidos, já estão a ter repercussões negativas no ideal do estado social e é esperado que estas se alastrem para o resto do mundo. A solução científica para este problema assenta em desenvolver terapias anti-envelhecimento. Nas décadas recentes, o conceito de envelhecimento como um processo biológico fixado foi desafiado e indubitavelmente refutado. Atualmente, conhecem-se mais de um milhar de genes que modificam a longevidade em organismos modelo, e simples modificações no estilo de vida como uma dieta de restrição calórica prolongam a esperança de vida em primatas não-humanos. Infelizmente, as descobertas até hoje realizadas estão ainda para ser traduzidas em terapias antienvelhecimento com impacto em seres humanos. Neste trabalho nós oferecemos várias contribuções científicas para ajudar a mitigar a iminente crise da população envelhecida. A nossa contribuição mais proeminente é a criação da base de dados DrugAge (http://genomics.senescence.info/drugs/). Este recurso sem paralelo congila sistematicamente informação relativa a ensaios de envelhecimento de drogas que aumentaram a longevidade em organismos modelo. DrugAge é grátis, está curada manualmente e é composta por 1316 entradas representando 418 substâncias diferentes provenientes de estudos conduzidos em 27 organismos modelo. Usámos a informação presente na DrugAge para: treinar um algoritmo para estimar o potencial anti-envelhecimento de novos compostos; realizar o enriquecimento funcional de DrugAge; comparar DrugAge com os genes anti-envelhecimento conhecidos; revelar que género não influencia a performance the compostos anti-envelhecimento em organismos modelo. Um capítulo independente é dedicado a aplicar a reutilização de drogas para acelerar a descoberta de drogas anti-envelhecimento em humanos. Depois de fazer a correspondência entre um metarepositório de interações droga-gene e os genes anti-envelhecimento de organismos modelo, encontrámos 16 compostos com um considerável potencial para afetar o processo de envelhecimento. Duas combinações de drogas são sugeridas para serem testadas em organismos modelo.
TipomasterThesis
DescriçãoDissertação de mestrado em Biofísica e Bionanossistemas
URIhttp://hdl.handle.net/1822/42973
AcessoopenAccess
Aparece nas coleções:DBio - Dissertações de Mestrado/Master Theses
BUM - Dissertações de Mestrado

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Dissertação_Diogo Barardo.pdf3,99 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis