Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/42758

TítuloGlobal asymptotic stability of a general nonautonomous Cohen-Grossberg model with unbounded amplification functions
Autor(es)Oliveira, José J.
Palavras-chaveCohen-Grossberg neural networks
Unbounded time-varying coefficients
Unbounded distributed delays
Unbounded amplification functions
Global asymptotic stability
Data2016
EditoraSpringer Verlag
RevistaSpringer Proceedings in Mathematics and Statistics
Resumo(s)For a class of nonautonomous differential equations with infinite delay, we give sufficient conditions for the global asymptotic stability of an equilibrium point. This class is general enough to include, as particular cases, the most of famous neural network models such as Cohen-Grossberg, Hopfield, and bidirectional associative memory. It is relevant to notice that here we obtain global stability criteria without assuming bounded amplification functions. As illustrations, results are applied to several concrete models studied in some earlier publications and new global stability criteria are given.
TipoconferencePaper
DescriçãoSeries: Springer proceedings in mathematics & statistics. ISSN 2194-1009, vol. 162
URIhttp://hdl.handle.net/1822/42758
ISBN978-3-319-32142-4
DOI10.1007/978-3-319-32144-8_12
ISSN2194-1009
Versão da editorahttp://www.springer.com/series/10533
Arbitragem científicayes
AcessorestrictedAccess
Aparece nas coleções:CMAT - Livros e capítulos de livros/Books and book chapters

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
jj-manuscript.pdf176,87 kBAdobe PDFVer/Abrir  Solicitar cópia ao autor!

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis