Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/42337

TítuloOn a variational inequality for incompressible non-Newtonian thick flows
Autor(es)Miranda, Fernando
Rodrigues, José Francisco
Palavras-chaveNon-Newtonian flows
Thick fluids
Variational inequalities
EditoraAmerican Mathematical Society
RevistaContemporary Mathematics
Resumo(s)In this work we extend the results on the existence, uniqueness and continuous dependence of strong solutions to a class of variational inequalities for incompressible non-Newtonian flows under the constraint of a variable maximum admissible shear rate. These fluids correspond to a limit case of shear-thickening viscosity, also called thick fluids, in which the solutions belong to a time dependent convex set with bounded deformation rate tensors. We also prove the existence of stationary solutions, which are the unique asymptotic limit of evolutionary flows in the case of sufficiently large viscosity.
DescriçãoPublicado em "Recent advances in partial differential equations and applications". Contemporary mathematics series of the American Mathematical Society, vol. 666. ISBN 978-1-4704-1521-1
Versão da editorahttp://www.ams.org/books/conm/666/
Arbitragem científicayes
Aparece nas coleções:CMAT - Comunicações com arbitragem/Communications with refereeing

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
MirandaRodrigues2016RepositoriUM.pdf396,31 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis