Please use this identifier to cite or link to this item:

TitleBacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters
Author(s)Francesko, Antonio
Fernandes, Margarida M.
Ivanova, Kristina
Amorim, Sara
Reis, R. L.
Pashkuleva, I.
Mendoza, Ernest
Pfeifer, Annett
Heinze, Thomas
Tzanov, Tzanko Kaloyanov
Layer-by-layer fabrication
Antibacterial surfaces
Biofilm inhibition
Issue date2016
JournalActa Biomaterialia
CitationFrancesko A., Fernandes M. M., Ivanova K., Amorim S., Reis R. L., Pashkuleva I., Mendoza E., Pfeifer A., Heinze T., Tzanov T. Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters, Acta Biomaterialia, Vol. 33, pp. 203-212, doi:10.1016/j.actbio.2016.01.020, 2016
Abstract(s)This work reports on the development of infection-preventive coatings on silicone urinary catheters that contain in their structure and release on demand antibacterial polycationic nanospheres. Polycationic aminocellulose conjugate was first sonochemically processed into nanospheres to improve its antibacterial potential compared to the bulk conjugate in solution (ACSol). Afterwards the processed aminocellulose nanospheres (ACNSs) were combined with the hyaluronic acid (HA) polyanion to build a layer-by-layer construct on silicone surfaces. Although the coating deposition was more effective when HA was coupled with ACSol than with ACNSs, the ACNSs-based coatings were thicker and displayed smoother surfaces due to the embedment of intact nanospheres. The antibacterial effect of the ACNSs multilayers was by 40 % higher compared to the ACSol coatings. This fact was further translated into more effective prevention of Pseudomonas aeruginosa biofilm formation. The coatings were stable in absence of bacteria, whereas their disassembling occurred gradually during incubation with Pseudomonas aeruginosa, and thus eradicate the biofilm upon release of antibacterial agents. Only 5 bilayers of HA/ACNSs were sufficient to prevent the biofilm formation, in contrast to the 10 bilayers of ACSol required to achieve the same effect. The antibiofilm efficiency of (HA/ACNSs)10 multilayer construct built on a Foley catheter was additionally validated under dynamic conditions using a model of catheterized bladder in which the biofilm was grown during seven days.
Publisher version
AccessOpen access
Appears in Collections:3B’s - Artigos em revistas/Papers in scientific journals

Files in This Item:
File Description SizeFormat 
18652-Francesko et al_Acta_2016_last.pdf2,18 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID