Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/41423

TitleAutomated network resilience optimization using computational intelligence methods
Author(s)Pereira, Vítor Manuel Sá
Rocha, Miguel
Sousa, Pedro
Issue date2016
PublisherSpringer Verlag
JournalStudies in Computational Intelligence
CitationPereira, Vitor; Rocha, Miguel; Sousa, Pedro, Automated network resilience optimization using computational intelligence methods. In Paulo Novais, David Camacho, Cesar Analide, Amal El Fallah Seghrouchni, Costin Badica, Studies in Computational Intelligence, Vol. 616: Intelligent Distributed Computing IX, Springer International Publishing, 2016. ISBN: 978-3-319-25015-1, 485-495
Abstract(s)This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational intelligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two illustrative Traffic Engineering methods are described, allowing to attain routing configurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
TypeBook part
URIhttp://hdl.handle.net/1822/41423
ISBN978-3-319-25015-1
DOI10.1007/978-3-319-25017-5_46
ISSN1860-949X
Publisher versionhttp://link.springer.com/book/10.1007/978-3-319-25017-5
Peer-Reviewedyes
AccessRestricted access (UMinho)
Appears in Collections:CEB - Livros e Capítulos de Livros / Books and Book Chapters
CAlg - Livros e capítulos de livros/Books and book chapters

Files in This Item:
File Description SizeFormat 
document_24452_1.pdf
  Restricted access
295,29 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID