Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/3909

Full metadata record
DC FieldValueLanguage
dc.contributor.authorFaria, Teresa-
dc.contributor.authorLiz, Eduardo-
dc.contributor.authorOliveira, José J.-
dc.contributor.authorTrofimchuk, Sergei-
dc.date.accessioned2006-01-13T12:30:31Z-
dc.date.available2006-01-13T12:30:31Z-
dc.date.issued2005-03-
dc.identifier.citation"Discrete and Continuous Dynamical Systems. Series A". ISSN 1078-0947. 12:3 (2005) 481-500.eng
dc.identifier.issn1078-0947eng
dc.identifier.issn1553-5231eng
dc.identifier.urihttp://hdl.handle.net/1822/3909-
dc.description.abstractFor a scalar delayed differential equation $\dot x(t)=f(t,x_t)$, we give sufficient conditions for the global attractivity of its zero solution. Some technical assumptions are imposed to insure boundedness of solutions and attractivity of non-oscillatory solutions. For controlling the behaviour of oscillatory solutions, we require a very general condition of Yorke type, together with a 3/2-condition. The results are particularly interesting when applied to scalar differential equations with delays which have served as models in populations dynamics, and can be written in the general form $\dot x(t)=(1+x(t))F(t,x_t)$. Applications to several models are presented, improving known results in the literature.eng
dc.description.sponsorshipFundo Europeu de Desenvolvimento Regional (FEDER) - project BFM2001-3884-C02-02.por
dc.description.sponsorshipSpain. MCT.por
dc.description.sponsorshipFondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) - project 1030992.por
dc.description.sponsorshipInternational project HP2003-0080.por
dc.description.sponsorshipFundação para a Ciência e a Tecnologia (FCT).por
dc.language.isoengeng
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)eng
dc.rightsrestrictedAccesseng
dc.subjectDelay population modeleng
dc.subjectGlobal attractivityeng
dc.subjectYorke conditioneng
dc.subject3/2-conditioneng
dc.subjectdelayed population modelpor
dc.titleOn a generalized yorke condition for scalar delayed population modelseng
dc.typearticlepor
dc.peerreviewedyeseng
dc.relation.publisherversionhttp://aimSciences.orgeng
sdum.number3eng
sdum.pagination481-500eng
sdum.publicationstatuspublishedeng
sdum.volume12eng
oaire.citationStartPage481por
oaire.citationEndPage500por
oaire.citationIssue3por
oaire.citationVolume12por
dc.subject.wosScience & Technologypor
sdum.journalDiscrete and Continuous Dynamical Systems. Series Apor
Appears in Collections:CMAT - Artigos em revistas com arbitragem / Papers in peer review journals

Files in This Item:
File Description SizeFormat 
pdfs.jsp.pdf
  Restricted access
258,26 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID