Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/29192

TitleGeneralized exponentials through Appell sets in $\mathbb{R}^{n+1}$ and Bessel functions
Author(s)Falcão, M. I.
Malonek, H. R.
KeywordsAppell sets
Bessel functions
Hypercomplex function theory
Issue date2007
PublisherAIP Publishing
JournalAIP Conference Proceedings
Abstract(s)In this paper we present applications of a special class of homogeneous monogenic polynomials constructed, in the framework of hypercomplex function theory, in order to be an Appell set of polynomials. In particular, we derive important properties of an associated exponential function from $\mathbb{R}^3$ to $\mathbb{R}^3$ and propose a generalization to $\mathbb{R}^{n+1}$.
TypeConference paper
DescriptionAIP conference proceedings, vol. 936
URIhttp://hdl.handle.net/1822/29192
ISBN978-0-7354-0447-2
DOI10.1063/1.2790257
ISSN0094-243X
Publisher versionhttp://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2790257
Peer-Reviewedyes
AccessOpen access
Appears in Collections:DMA - Livros de atas

Files in This Item:
File Description SizeFormat 
FalcaoMalonek2007Repositorio.pdf55,15 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID