Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/29180

TítuloAbout Pascal’s tetrahedron with hypercomplex entries
Autor(es)Cruz, Carla
Falcão, M. I.
Malonek, H. R.
Palavras-chavePascal's tetrahedron
Clifford Analysis
EditoraAIP Publishing
RevistaAIP Conference Proceedings
Resumo(s)It is evident, that the properties of monogenic polynomials in $(n+1)-$real variables significantly depend on the generators $e_1, e_2, \dots, e_n$ of the underlying $2^n$-dimensional Clifford algebra $Cl_{0,n}$ over $\mathbb{R}$ and their interactions under multiplication. The case of $n=3$ is studied through the consideration of Pascal's tetrahedron with hypercomplex entries as special case of the general Pascal simplex for arbitrary $n$, which represents a useful geometric arrangement of all possible products. The different layers ${\mathcal{L}_k$ of Pascal's tetrahedron (or pyramid) are built by ordered symmetric products contained in the trinomial expansion of $(e_1+e_2+e_3)^k$, $k=0,1,\dots$.
Descrição"11th International Conference of Numerical Analysis and Applied Mathematics, 21 - 27 September 2013"
Versão da editorahttp://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4825539
Arbitragem científicayes
Aparece nas coleções:DMA - Livros de atas

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Cruz_Falcao_Malonek 2013Repositorio.pdf100,25 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis