Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/26928

TítuloIn vivo biofunctional evaluation of hydrogels for disc regeneration
Autor(es)Reitmaier, Sandra
Kreja, Ludwika
Gruchenberg, Katharina
Kanter, Britta
Silva-Correia, Joana
Oliveira, Joaquim M.
Reis, R. L.
Perugini, V.
Santin, M.
Ignatius, Anita
Wilke, Hans-Joachim
In vivo
Intervertebral disc
Large animal model
RevistaEuropean Spine Journal
CitaçãoReitmaier S., Kreja L., Gruchenberg K., Kanter B., Silva-Correia J., Oliveira J. M., Reis R. L., Perugini V., Santin M., Ignatius A., Wilke H. - J. In vivo biofunctional evaluation of hydrogels for disc regeneration, European Spine Journal, doi:10.1007/s00586-013-2998-8, 2013
Resumo(s)Purpose Regenerative strategies aim to restore the original biofunctionality of the intervertebral disc. Different biomaterials are available, which might support disc regeneration. In the present study, the prospects of success of two hydrogels functionalized with anti-angiogenic peptides and seeded with bone marrow derived mononuclear cells (BMC), respectively, were investigated in an ovine nucleotomy model. Methods In a one-step procedure iliac crest aspirates were harvested and, subsequently, separated BMC were seeded on hydrogels and implanted into the ovine disc. For the cell-seeded approach a hyaluronic acid-based hydrogel was used. The anti-angiogenic potential of newly developed VEGF-blockers was investigated on ionically crosslinked metacrylated gellan gum hydrogels. Untreated discs served as nucleotomy controls. 24 adult merino sheep were used. After 6 weeks histological, after 12 weeks histological and biomechanical analyses were conducted. Results Biomechanical tests revealed no differences between any of the implanted and nucleotomized discs. All implanted discs significantly degenerated compared to intact discs. In contrast, there was no marked difference between implanted and nucleotomized discs. In tendency, albeit not significant, degeneration score and disc height index deteriorated for all but not for the cell-seeded hydrogels from 6 to 12 weeks. Cell-seeded hydrogels slightly decelerated degeneration. Conclusions None of the hydrogel configurations was able to regenerate biofunctionality of the intervertebral disc. This might presumably be caused by hydrogel extrusion. Great importance should be given to the development of annulus sealants, which effectively exploit the potential of (cell-seeded) hydrogels for biological disc regeneration and restoration of intervertebral disc functioning
Versão da editoraThe original publication is available at www.springerlink.com
Arbitragem científicayes
Aparece nas coleções:3B’s - Artigos em revistas/Papers in scientific journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
17710-Reitmaier et al_EurSpineJ_Eurospine Award.pdf485,38 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis