Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/26041

TitleFinite volume maximum principle for hyperbolic scalar problems
Author(s)Clain, Stéphane
KeywordsFinite volume scheme
Maximum principle
High-order reconstruction
Positivity preserving
Issue date1-Oct-2013
PublisherSociety for Industrial and Applied Mathematics
JournalSIAM Journal on Numerical Analysis
Abstract(s)We present a new formalism to characterize high-order reconstruction algorithms used in finite volume methods. This formalism provides new tools to examine the properties of these methods. Included in this formalism is the notion of admissible reconstruction methods providing concrete statements regarding the satisfaction of the maximum principle and positivity preservation properties. We demonstrate that the traditional reconstruction limiting algorithms can be recast in our formalism, thus providing new proofs of the maximum principle.
TypeArticle
URIhttp://hdl.handle.net/1822/26041
DOI10.1137/110854278
ISSN1095-7170
Publisher versionhttp://epubs.siam.org/journal/sjnaam
Peer-Reviewedyes
AccessRestricted access (UMinho)
Appears in Collections:CMAT - Artigos em revistas com arbitragem / Papers in peer review journals

Files in This Item:
File Description SizeFormat 
SIAM.pdf
  Restricted access
477,03 kBAdobe PDFView/Open    Request a copy!

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID