Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/23518

TítuloPhase transition of a heat equation with Robin's boundary conditions and exclusion process
Autor(es)Gonçalves, Patrícia
Franco, Tertuliano
Neumann, Adriana
Palavras-chaveSlowed exclusion
Phase transition
Heat equation
Robin's boundary conditions
Hydrodynamic limit
Data2015
EditoraAmerican Mathematical Society
CitaçãoFranco, T., Gonçalves, P., & Neumann, A. (2015). Phase transition of a heat equation with Robin’s boundary conditions and exclusion process. Transactions of the American Mathematical Society, 367(9), 6131-6158.
Resumo(s)For a heat equation with Robin's boundary conditions which depends on a parameter $\alpha>0$, we prove that its unique weak solution $\rho^\alpha$ converges, when $\alpha$ goes to zero or to infinity, to the unique weak solution of the heat equation with Neumann's boundary conditions or the heat equation with periodic boundary conditions, respectively. To this end, we use uniform bounds on a Sobolev norm of $\rho^\alpha$ obtained from the hydrodynamic limit of the symmetric slowed exclusion process, plus a careful analysis of boundary terms.
Tipoarticle
URIhttp://hdl.handle.net/1822/23518
ISSN0002-9947
Versão da editorahttp://www.ams.org/publications/journals/journalsframework/tran
Arbitragem científicayes
AcessoopenAccess
Aparece nas coleções:CMAT - Artigos com arbitragem/Papers with refereeing

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
FGN_revised_arxiv.pdfDocumento Principal194,63 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis