Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/21806

TitleEffect of hot-filament annealing in a hydrogen atmosphere on the electrical and structural properties of nb-doped TiO2 sputtered thin films
Author(s)Tavares, C. J.
Castro, Maria Freire Flores Vieira
Marins, Emílio Sérgio
Samantilleke, A. P.
Ferdov, S.
Rebouta, L.
Cerqueira, M. F.
Alpuim, P.
Xuriguera, E.
Rivière, J. P.
Eyidi, D.
Beaufort, Marie France
Mendes, A.
Benelmekki, M.
KeywordsTitanium dioxide
Hot-wire
TCO
Electrical properties
Nb doping
Reactive sputtering
Issue date2012
PublisherElsevier
JournalThin Solid Films
Abstract(s)In this work Nb-doped TiO2 thin films were deposited by d.c.-pulsed reactive magnetron sputtering at 500 °C from a composite target with weight fractions of 96% Ti and 4% Nb, using oxygen as reactive gas. In order to enhance the conductive properties, the as-deposited samples were treated in vacuum with atomic hydrogen at a substrate temperature of 500 °C. The atomic hydrogen flow was generated by a hot filament, inside a high-vacuum chemical vapour deposition reactor, at a temperature of 1750 °C. In order to optimise the hydrogen hot-wire treatments, the H2 pressure was varied between 1.3 and 67 Pa, the treatment time was monitored between 1 and 5 min and the hot-filament current was changed between 12 and 17 A. Dark conductivity was measured as a function of temperature and its value at room temperature was extrapolated and used to assess the effect of the hydrogen annealing on the charge transport properties. A two-order of magnitude increase in dark conductivity was typically observed for optimised hydrogen treatments (10 Pa), when varying the hydrogen pressure, resulting in a minimum resistivity of ~3×10−3 Ω cm at room temperature. The maximum amount of atomic H incorporation in oxygen vacancies was determined to be ~5.7 at.%. Carrier mobility and resistivity were also investigated using Hall effect measurements. Correlations between structural and electrical properties and the hydrogen treatment conditions are discussed. The purpose of these films is to provide a transparent and conductive front contact layer for a-Si based photovoltaics, with a refractive index that better matches that of single and tandem solar cell structures. This can be achieved by an appropriate incorporation of a very small amount of cationic doping (Nb5+) into the titanium dioxide lattice.
TypeArticle
URIhttp://hdl.handle.net/1822/21806
DOI10.1016/j.tsf.2011.10.031
ISSN0040-6090
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0040609011017718
Peer-Reviewedyes
AccessRestricted access (UMinho)
Appears in Collections:CDF - GRF - Artigos/Papers (with refereeing)

Files in This Item:
File Description SizeFormat 
2012-CT-TSF.pdf
  Restricted access
Documento principal1,56 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID