Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/21450

TitleAvaliação da estabilidade de taludes. Desempenho das redes neuronais versus máquinas de vectores de suporte
Other titlesSlope stability evaluation. Performance of neural networks versus support vector machines
Author(s)Martins, Francisco F.
Miranda, Tiago F. S.
KeywordsEstabilidade de taludes
Data Mining
Redes neuronais artificiais
Máquinas de vetores de suporte
Issue dateApr-2012
PublisherSpg
Abstract(s)Neste trabalho são comparados os desempenhos das Redes Neuronais Artificiais (RNA) com as Máquinas de Vetores de Suporte (MVS) na avaliação da estabilidade de taludes. Para isso foi gerada uma base de dados contendo os fatores de segurança (FS) calculados para 501 taludes homogéneos bem como as suas características geométricas e geotécnicas. Os fatores de segurança foram obtidos usando o método de Bishop modificado e o software SLOPE/W. Nas análises efetuadas foi usada a biblioteca RMiner no ambiente R para facilitar o uso deste nas tarefas de classificação e regressão. Para usar aquela tarefa as bases de dados foram ajustadas substituindo o fator de segurança dos taludes por “estável” quando FS é maior ou igual à unidade e “instável” quando FS é menor que 1. Constata-se que tanto as RNA como as MVS apresentam bons desempenhos nas tarefas de regressão e de classificação. No entanto, são as MVS que apresentam os melhores desempenhos nas duas tarefas.
This work compares the performances of the Artificial Neural Networks (ANN) with the Support Vector Machines (SVM) in the slope stability evaluation. For this purpose a database containing the factors of safety (FS) computed for 501 homogeneous slopes as well as their geometric and geotechnical characteristics was generated. The factors of safety were obtained using the modified Bishop method and the SLOPE/W software. The analyses were performed using the RMiner library in the R environment to facilitate its use in classification and regression tasks. In the classification task the data were adjusted by replacing the FS for “stable” when FS is greater or equal to 1 and “unstable” when FS is lower than 1. Both ANN and SVM presented good performances in regression and classification tasks. Nevertheless, the SVM had better performance in both tasks.
TypeConference paper
URIhttp://hdl.handle.net/1822/21450
Peer-Reviewedyes
AccessOpen access
Appears in Collections:C-TAC - Comunicações a Conferências Nacionais

Files in This Item:
File Description SizeFormat 
13CNG_ Martins&Miranda-artigo.pdf158,79 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID