Please use this identifier to cite or link to this item: http://hdl.handle.net/1822/21167

Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeves, José-
dc.contributor.authorRibeiro, Jorge-
dc.contributor.authorPereira, Paulo A. A.-
dc.contributor.authorAlves, Victor-
dc.contributor.authorMachado, José Manuel-
dc.contributor.authorAbelha, António-
dc.contributor.authorNovais, Paulo-
dc.contributor.authorAnalide, César-
dc.contributor.authorSantos, Manuel-
dc.contributor.authorFernández-Delgado, Manuel-
dc.date.accessioned2012-12-04T18:43:26Z-
dc.date.available2012-12-04T18:43:26Z-
dc.date.issued2012-01-
dc.identifier.issn2192-6352-
dc.identifier.urihttp://hdl.handle.net/1822/21167-
dc.description.abstracthe analysis and development of a novel approach to asphalt pavement modeling, able to attend the need to predict failure according to technical and non- technical criteria in a highway, is a hard task, namely in terms of the huge amount of possible scenarios. Indeed, the current state-of-the-art for service-life prediction is at empiric and empiric-mechanistic levels, and do not provide any suitable answer even for one single failure criteria. Consequently, it is imperative to achieve qualified models and qualitative reasoning methods, in particular due to the need to have first-class environments at our disposal where defective information is at hand. In order to fulfill this goal, this paper presents a dynamic and formal model oriented to fulfill the task of making predictions for multi-failure criteria, in particular in scenarios with incomplete information; it is an intelligence tool that advances according to the Quality-of- Information of the extensions of the predicates that model the universe of discourse. On the other hand, it is also considered the Degree-of-Confidence factor, a parameter that measures one`s confidence on the list of characteristics presented by an asphalt pavement, set in terms of the attributes or variables that make the argument of the predicates referred to above.por
dc.description.sponsorshipThe authors would like to thank the Foundation of Science and Technology (FCT), Portugal, for financial support received under the contract UTAustin/CA/0012/2008.por
dc.language.isoengpor
dc.publisherSpringer por
dc.rightsrestrictedAccesspor
dc.subjectEvolutionary intelligencepor
dc.subjectExtended logic programmingpor
dc.subjectKnowledge representation and reasoningpor
dc.subjectQuality-of-informationpor
dc.subjectAn answer degree-of-confidencepor
dc.subjectAsphalt pavement modelingpor
dc.titleEvolutionary intelligence in asphalt pavement modeling and quality-of-informationpor
dc.typearticlepor
dc.peerreviewedyespor
dc.relation.publisherversionhttp://download.springer.com/static/pdf/344/art%253A10.1007%252Fs13748-011-0003-5.pdf?auth66=1354820151_02620f4f7471deb353c4becb6c4e3a6c&ext=.pdfpor
sdum.publicationstatuspublishedpor
oaire.citationStartPage119por
oaire.citationEndPage135por
oaire.citationIssue1por
oaire.citationTitleProgress in Artificial Intelligencepor
oaire.citationVolume1por
dc.identifier.doi10.1007/s13748-011-0003-5por
dc.subject.wosScience & Technologypor
sdum.journalProgress in Artificial Intelligencepor
Appears in Collections:DI/CCTC - Artigos (papers)

Files in This Item:
File Description SizeFormat 
01-Progress_AI_Flyer_310711.pdf
  Restricted access
1,71 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID