Utilize este identificador para referenciar este registo: http://hdl.handle.net/1822/11445

TítuloA data mining approach for jet grouting uniaxial compressive strength prediction
Autor(es)Tinoco, Joaquim Agostinho Barbosa
Correia, A. Gomes
Cortez, Paulo
Palavras-chaveGround improvement
Jet grouting
Uniaxial compressive strength
Artificial neural netwoks
Data mining
DataDez-2009
EditoraIEEE
CitaçãoTINOCO, Joaquim; CORREIA, António Gomes; CORTEZ, Paulo - A Data Mining approach for Jet Grouting Uniaxial Compressive Strength Prediction. In ABRAHAM, Ajith [et al.], ed. lit. – “Proceedings of World Congress on Nature and Biologically Inspired Computing (NABIC 2009), Coimbatore, India, 2009” [Em linha]. [S.l.] : IEEE, cop. 2009. [Consult. 25 Ag. 2010]. Disponível em: http://dx.doi.org/10.1109/NABIC.2009.5393401. ISBN 978-1-4244-5612-3.
Resumo(s)Jet Grouting (JG) is a Geotechnical Engineering technique that is characterized by a great versatility, being the best solution for several soil treatment improvement problems. However, JG lacks design rules and quality control. As the result, the main JG works are planned from empirical rules that are often too conservative. The development of rational models to simulate the effect of the different parameters involved in the JG process is of primary importance in order to satisfy the binomial safety-economy that is required in any engineering project. In this work, three data mining models, i.e. Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Functional Networks (FN), were adapted to predict the Uniaxial Compressive Strength (UCS) of JG laboratory formulations. A comparative study was held, by using a dataset used that was obtained from several studies previously accomplished in University of Minho. We show that the novel data-driven models are able to learn with high accuracy the complex relationships between the UCS of JG laboratory formulations and its contributing factors.
TipoconferencePaper
DescriçãoDuplicado com: http://hdl.handle.net/1822/10824
URIhttp://hdl.handle.net/1822/11445
ISBN978-1-4244-5612-3
Arbitragem científicayes
AcessorestrictedAccess
Aparece nas coleções:C-TAC - Comunicações a Conferências Internacionais
CAlg - Artigos em livros de atas/Papers in proceedings

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
NaBIC2009.pdfCD278,21 kBAdobe PDFVer/Abrir  Solicitar cópia ao autor!
A Data Mining Approach.pdfArtigo250,96 kBAdobe PDFVer/Abrir  Solicitar cópia ao autor!

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu Currículo DeGóis