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Abstract. Currently, interpretation of medical images is almost exclusively 
made by specialized physicians. Although, the next decades will most certainly 
be of change and computer-aided diagnosis systems will play an important role 
in the reading process. Assisted interpretation of medical images has become 
one of the major research subjects in medical imaging and diagnostic radiology. 
From a methodological point of view, the main attraction for the resolution of 
this kind of problem arises from the combination of the image reading made by 
the radiologists, with the results obtained from using Artificial Intelligence  
based applications that will contribute to the reduction and eventually the 
elimination of perception errors. This article describes how machine learning 
algorithms can help distinguish normal readings in brain Computed 
Tomography from all its variations. The goal is to have a system that is able to 
detect normal appearing structures, thus identifying normal studies, making the 
reading by the radiologist unnecessary for a large proportion of the brain 
Computed Tomography scans. 
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1   Introduction 

Not only the advent of new methodologies for problem solving but also the 
emergence of new information and communication technologies has strongly 
influenced our societies, including their health care systems. Due to such a fine-
tuning, Medical Informatics (MI) specialists are ever more involved in managing 
Information Systems (IS) in health care institutions, in particular of the hospital 
information ones. Indeed, the monitoring of hospital IS is a fundamental task that has 
to be followed when one intends to inform the physicians and the management on 
time, in order to provide a better care. 

On the other hand an appropriate design of educational programs in MI and an 
increasing number of well-trained MI specialists will help to pursue the goal of 
transforming and improving the delivery of health care through innovative use of 
information and communication technology. This evolution in technology used in the 



medical image practice, confront the radiology physicians with a new problem: the 
capacity to interpret a huge image workload. Indeed, the current workflow reading 
approaches are becoming inadequate for reviewing the 300 to 500 images of a routine 
Computed Tomography (CT) of the chest, abdomen, or pelvis, and even less for the 
1500 to 2000 images of a CT angiography or functional Magnetic Resonance (MR) 
study. In fact, image analysis and treatment methods present enormous development 
and an increasing utilization in the area of medical imaging. Given to the general 
interest and the impressive growth in Computer Aided Detection and Diagnosis 
(CADD), the application of Artificial Intelligence (AI) based techniques in the 
interpretation and diagnosis of medical image became a rapidly growing research 
field [1]. 

For this assessment Brain CT studies were chosen due to its importance in the 
overall imaging market. Indeed, specialists working in Oporto region, in the North of 
Portugal, showed that its population, of about 1,500,000 inhabitants, present a yearly 
average of 450,000 CT analysis, 198,000 (44%) of which were brain CT studies[2]. 
However, from a methodological point of view, the main attraction for the resolution 
of this kind of problem arises from the combination of the image analysis taken from 
the radiologists, with those obtained using AI based applications, that will contribute 
to the selection of the urgent studies and to aid the radiologists in their readings [2]. 

Currently, specialized physicians almost exclusively make interpretation of 
medical images. The next decades will most certainly be of change, and computer-
aided diagnosis systems, that have become one of the major research subjects in 
medical imaging and diagnostic radiology, will play an important role in the reading 
process. From a methodological point of view, the main attraction for the resolution 
of this kind of problems arises from the combination of the image reading made by 
the radiologists, with the results obtained from using AI based techniques that will 
contribute to the reduction and eventually the elimination of perception errors[3]. 
Undeniably, the machine learning procedures may distinguish normal studies from all 
its variations. Our goal is to have a system that is able to detect normal appearing 
structures, thus identifying normal studies, making the reading by the radiologist 
unnecessary for a large proportion of the brain CT scans. 

Therefore, it is necessary to effect a rigorous assessment in order to establish 
which, are the real clinical contributions of such systems in decision support. It is here 
that AI appears to open the way for computer supported diagnosis in medical 
imaging. Since histological images are complex and their differences are quite subtle, 
sub-symbolic systems (e.g. Artificial Neural Networks (ANNs), Genetic Algorithms 
and Evolutionary Programming, Particle Swarm Organization) should be used to 
overcome the drawbacks of pure symbolic systems. A methodology for brain CT 
feature extraction and automatic diagnostic generation is proposed. Preliminary 
results are presented and discussed in regard to the selected features and learning 
algorithms. 

Nowadays Computer Aided Detection (CAD) studies are mainly concerned with 
screening mammography and thoracic CT studies. Tao Chan et. al studied the effect 
of a CAD system on clinicians performance in detection of small Acute Intracranial 
Hemorrhage on CT concluding that there were significantly improvements in the 
performance of emergency physicians when they make the diagnosis with the support 
of CAD [4]. Timothy et. al proposed to assess the effect of CAD on the interpretation 



of screening mammograms in a community breast center. Their conclusions revealed 
that the use of CAD in the interpretation of screening mammograms can increase the 
detection of early-stage malignancies without undue effect on the recall rate or 
positive predictive value for biopsy [5]. Several commercial CAD products are 
starting to proliferate and their market is also beginning to develop. Shih-Ping Wang 
was able to get a US Patent for his CAD system that works over the probability 
likelihood and predicted values for mammography examinations, aiding the 
physicians in achieving a correct diagnostic. 

The reduction and eventually the elimination of perception errors can be achieved 
by using neural-network computers taught what is normal with all its variations. The 
computer should eventually be able to identify normal appearing structures making 
the reading by the radiologist unnecessary for a large proportion of images.  
 

2   Computer Aided Detection 

Automatic segmentation and machine learning are techniques that come from the 
computer graphics and AI field and are closely related with CAD [3]. Segmentation is 
used in feature extraction from the images and in many cases this results in excellent 
clinical information [4]-[5]. In this work, machine learning is concerned with the 
automatic extraction of information from data, using Knowledge Discovery and Data 
Mining (KDD) techniques, in our case from the study images. CAD systems should 
be able to return an adequate answer to the problem of automatic study reading 
(Fig.1). Here, we were inspired by the work of Kanazawa and Katsuragawa, and the 
studies follow a similar practical workflow [7]-[8].  

 

 

Fig. 1. Stages of CAD 

 
Concerning the studies analyses that where performed, the most relevant features 

from the images had to be determined, i.e., which aspects of these images, reveals or 
not the existence of a pathology. From an exhaustive analysis of our case set, we 
determined that the image’s histogram and some shape aspects were key features in 
determining the existence of pathology.  Thus it was decided to consider the 
histogram and a shape function as the most appropriate features. The case set was 
composed by 265 studies, where the complete DICOM study, the radiologist report 
and some additional clinical information (e.g., age, gender) was available. 

 



2.1   General Characteristics Vector 

 
Using the ImageJ framework [9] a plug-in was developed to extract a General 

Characteristics Vector (��� ������������) in a csv (comma separated values) format. The global 

General Characteristics Vector, ��� ����������	, is therefore, given by: 

 ��� ����������	 =  (SI, A, G, ��(��), ��(�), xxVar, yyVar, xyVar, D) 

 
where SI, A, G, fc(SH), SH, fs(S), S, xxVar, yyVar, xyVar, and D denote, 

respectively, the study identification, the patient age, the gender of the patient, the 
content function, the Study Histogram, the shape function, the Study images, the x 
variance, the y variance, the xy variance, and the diagnostic. The first parameter, 
identification of the study, is a value of reference that will identify the study. This 
dimension as well as the age and gender were extracted from the DICOM images 
meta-data.  

On the other hand, Hounsfield stated that the most relevant information of a CT 
belongs to the interval [-150;150], whose values are given in Hounsfield Units (HU). 
In a CT image each voxel corresponds to the x-ray linear attenuation coefficient 
measurement of the tissue in question. HU of x is given by: 

 
 

��� =  1000 × ( ! −  #$%)( #$% −  &'() 

 
 
where x denotes a given voxel, ìH20 denotes the linear attenuation coefficients of 

water and ìair denotes the linear attenuation coefficients of air, considered at a standard 
temperature and pressure [10]. 

The standards presented in Table I were chosen as they are universally available, 
and suited to the key application for which computed axial tomography was 
developed, i.e., imaging the internal anatomy of living creatures based on organized 
water structures and mostly living in air, e.g. humans [11]. 

 
Table 1.  Hounsfield values 

 

Tissue Interval 

Air & sponge (-∞;-430] 

Air [-100;-50] 

Water [-5;5] 

Fluid [10; 20] 

Muscle [10;40] 

Blood [38; 50] 

Grey Matter [38; 50] 

White Matter [38; 50] 

Bone [150; ∞) 



The function fc(SH) denotes the content function for the total study; for a single 
image, one has the function called fci(IH), where i denotes a single image of the 
study. fci(IH) is now given by: 

 

��)(*�) = +�#,-. , �#,$. , �#,/. , … , �#,1. 2 

 
where xHU denotes the total number of voxels, in image i, for each HU from -2000 

to 2000 and t denotes the total number of voxels in the image i. Therefore, fc(SH) will 
be given by: 
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where l denotes the last image of the study. Fig. 2 illustrates the resulting ��(��) 

from -2000 to 2000 HU.  
 

 

Fig. 2. Study Histogram 

 
After looking at Table 1 and Fig. 2 a threshold from -150 to 150 was performed, 

since it is where the relevant information for the study lies. This way, the final fc(SH) 
denotes the region 2. Region 1 corresponds to the ambient air and the sponge support 
for the patients head. On the other hand, since representing the fc(SH) for each HU 
leads to a huge amount of data, it was decided to sum up the number of pixels 
dividing the HU in intervals of five. This way we achieved 60 uniform intervals of 5 
HU, being represented by fc1(SH). 

From the shape function f(S) the values of xSkew, ySkew indicate the symmetry of 
the series, while the values of xKurt, yKurt, represent the kurtosis values in the two 
axes. The remaining parameters, xxVar, yyVar and xyVar, were added to the study and 
represent the variance in x, y and xy directions, respectively. Finally, and only in the 
case of the trainings set, the diagnostic value are needed. This parameter stands for a 
set of values that are given in the form:  

• Diagnostic = Ø or 

• Diagnostic = {Pathology 1, Pathology 2, …, Pathology n} 
where Ø denotes the empty set. With respect to the first evaluation or assessment, 

it was decided to consider that if D = Ø its value is set to 0 and is judged as non 
pathological. If the diagnostic is a non empty set, i.e., if D ≠ Ø, the value of D is set to 
1 and is taken as pathological. 



3   Methodology 

The first step for building a good methodology at the meta-level lead us to define a 
functional overall workflow of the problem solving process, where one is able to 
manage with all the variants (Fig. 3). 

The clinical practice is at the root of the process, once it is the target as well as the 
basis for obtaining good knowledge. Going a step further, we obtain the image studies 
of brain CT’s as well as the correspondent diagnostic for the training set. Afterward, 
ImageJ is used to extract the image features, i.e., content function and shape function. 

 

 

Fig. 3. Workflow Overview 

 
 
The Waikato Environment for Knowledge Analysis (WEKA) [12] is then used to 

perform the computational analysis of the supplied data, applying KDD techniques. 

The ��� ����������	 vector for WEKA is at that time imported, being therefore possible to 

observe the diverse attributes, distinctly enumerated. 



4   Assessment 

 

The ��� ����������	 vector was converted for different evaluation purposes, having different 

dimensions with different attributes, so that the best attribute set may be obtained. 

Indeed, after feeding WEKA with the first output ��� ���������� several parameters were 
removed, since they turn out to be irrelevant to the study (e.g., patient ID). Then, ��� ����������	  move  towards ��� ����������-,  which is given by: 

 ��� ����������- = ( A, G, �8-(��), ��(�), xxVar, yyVar, xyVar, D) 
 

On a second run, after importing the ��� ����������	, other parameters were removed, in 

addition to the patient ID. The gender was removed and the shape function fs(S) was 
modified. xKurt, yKurt and ySkew were deleted and a new shape function, fs1(S) was 
built. This move was considered since the turnover of keeping such parameters was 

unknown, and its real impact had to be evaluated. Subsequently, ��� ����������	  move 

towards    ��� ����������$, which is given by: 
 ��� ����������$ = ( A, �8-(��), �9-(�), xxVar, yyVar, xyVar, D) 
 
where fs1(S) is built by xSkew. 
Two more attempts were considered. Firstly, it was removed only the gender, then, 

the gender was kept in and it was removed the xKurt, yKurt and ySkew.  In this way 

we got ��� ����������/, ��� ����������:,  which are given by: 
 ��� ����������/ = ( A, �8-(� 牜), �9(�), xxVar, yyVar, xyVar, D) 
 ��� ����������: = ( A, G, �8-(��), �9-(�), xxVar, yyVar, xyVar, D) 
 
All the tasks referred to above were performed using only the tools provided by 

WEKA; however, little variations in the generation of the  ��� ����������	 were also tried to 

guarantee that all the possible scenarios would be covered. Firstly, the distribution of 
the intervals in the histogram was changed. One of the adjustments was to introduce 
the notion of weight to the histogram intervals. So, the intervals were multiplied by 
the sin function. This was made since most of the relevant information is in the 
middle of the histogram, and as Fig.4 shows, the sin function attributes more weight 
to its middle locations. 



 

Fig. 4. Sin() function 

 ��� ����������; is therefore given by: 
 ��� ����������; = ( A, G, sin (�8-(��)), �9(�), xxVar, yyVar, xyVar, D) 
 
Another assessment consisted in grouping the age of the patients into several 

groups, as it is depicted in Table 2. 
 
Table 2. Grouping by age. 
 

Description 
(Group) Age (years) 

Baby 0 – 2 

Child 2 – 6 

Infant 6 – 10 

Starter 10 – 14 

Juvenile 14 – 16 

Junior 16 – 18 

Young Adult 18 – 30 

Junior Adult 30 – 45 

Senior Adult 45 – 60 

Old Adult + 60 

 

The resulting  ��� ���������� , i.e., ��� ����������? is therefore given by: 
 ��� ����������? = ( �@A�BCD_A, G, �8-(��), �9(�), xxVar, yyVar, xyVar, D) 
 
 
Finally, the last interaction was to convert the diagnostic parameter in a non 0 or 1 

values, giving, instead, a probability of having pathology. This result in the last 

assessed ��� ���������� , leads to ��� ����������F, which takes the form: 
 ��� ����������F = ( �@A�BCDG, G, �8-(��), �9(�), xxVar, yyVar, xyVar, D-) 
 



5   Results 

According to the results so far obtained, it is feasible to conclude that grouping the 
age, giving different weights to the histogram intervals, and passing a non 0 or greater 
than 0 the values in the diagnostic, such changes are not so relevant as initially had 

been thought, i.e., the results for ��� ����������;, ��� ����������? and ��� ����������F do not get close to the 

other ��� ����������. Table III presents the attained results for some algorithms using quite a 

few of ��� ����������s, where the best algorithms are the Simple Logistic and the LMT 
(Logistic Model Trees), being the most stable one the VFI (Voting Feature Intervals 

classification algorithm), since it presents good results not only to the best ��� ����������, but 

also for the remaining ones. The best ��� ����������  has the following characteristics: 
 

• It is divided in sixty uniform intervals; 

• It presents a numerical value for age; 

• It presents a Boolean value for the Diagnostic; and 

• It comes without gender, xKurt, yKurt and ySkew as parameters. 
 
 

Table 3. Algorithm scores, false negatives and false positives. 
 

GCV ALGORITHM 
SCORE  

(%) 

FALSE 

POSITIVE 
(%) 

FALSE 

NEGATIVE 
(%) HIJ �����������K VFI 76.92 30.8 15.4 HIJ �����������K Random Committee 76.92 15.4 38.5 HIJ �����������L VFI 80,77 23,1 15,4 HIJ �����������L Simple Logistic 80,77 30,8 7,7 HIJ �����������L LMT 80,77 30,8 7,7 HIJ �����������M VFI 73,08 30,8 23,1 HIJ �����������N VFI 80,77 23,1 15,4 

 
 

Once the parameters for gender, xKurt, yKurt and ySkew are discharged, the results 
improved considerably. The same happens when the gender parameter is kept in ��� ����������:. On the other hand, removing the gender parameter and maintaining the other 
ones, did not score as high as in the previous dataset. 

Fig. 5 gives an idea of the form as the results are provided by WEKA. It is possible 
to distinguish between the false positives and negatives, and the results that are 
marked as pathological or non-pathological. 



 

Fig. 5 -  Expected Diagnostic vs Diagnostic 

It is interesting to notice that since the results are presented in terms of a 
percentage, the system not only suggests all diagnostic possibilities but also indicates 
a measure of accuracy for each suggestion. The final result is a system that provides 
the user with diagnostic suggestions for the selected brain CT. The prototype built for 
real-world assessment in a medical environment is WEB based. In Fig. 6 we can see a 
screen shot of the web page where the study is selected for automatic generation of 
diagnostics. In Fig. 7 we can see the generated diagnostics where the bars stand for 
the probability of each diagnostic. On the left screenshot we have two big bars 
standing for a big probability of the diagnostic “Atrophy” and “Stroke”. On the right 
screenshot of Fig. 7 all bars is very small, meaning that we are in the presence of a 
normal study, i.e. no pathology is identified. 

 



 
 

 

Fig. 6 – Diagnostic interface (study selection for diagnostic) 

 
 

Fig. 7 – Diagnostic interface (generated diagnostics) 

5   Conclusions 

The primary goal of the presented work was reached. We believe that the relevant 
parameters for the knowledge extraction were identified. The parameters which 
significantly influenced the studies, as are the xKurt, yKurt, gender, ySkew were also 
identified. 
From the analysis of the learning algorithms, we concluded that the algorithms that 
generated the best results, considering the presented dataset, were the Simple Logistic 
and the LMT fed by a vector without the parameters gender, xKurt, yKurt and ySkew, 
in which the rightness percentage was of 80,77 % and for false negatives was of 7,7 
%. However the steadiest algorithm was the VFI that kept a more steady behavior 



along all studies. It is imperative to refer that a higher number of studies could lead to 
better results. Though, due to some reluctance in providing medical imaging studies 
with its corresponding diagnostic report by the radiologists, this will always be a 
problem for future investigation.  
This work could certainly evolve to better results, since it has a great potential of 
development, based on a safe foundation. The learning process, provided with a 
bigger number of cases will have to be performed to allow a better assessment of the 
learning algorithms in the knowledge extraction necessary to identify the existence or 
not of pathology in examinations of brain CT. 
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