A CLASS OF STATIONARY NONLINEAR MAXWELL SYSTEMS

FERNANDO MIRANDA
Department of Mathematics/CMat, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
fmiranda@math.uminho.pt

JOSÉ-FRANCISCO RODRIGUES
CMAF/FCUL, University of Lisbon,
Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal
rodrigue@fc.ul.pt

LISA SANTOS
Department of Mathematics/CMat, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
lisa@math.uminho.pt

Electronic version of an article published as
Mathematical Models and Methods in Applied Sciences
Vol. 19, No. 10 (2009) 1883-1905
Doi: 10.1142/S0218202509003966
©World Scientic Publishing Company
http://www.worldscinet.com/m3as

We study a new class of electromagnetostatic problems in the variational framework of
the subspace of $W^{1,p}(\Omega)$ of vector functions with zero divergence and zero normal trace,
for $p > \frac{6}{5}$, in smooth, bounded and simply connected domains Ω of \mathbb{R}^3. We prove a
Poincaré-Friedrichs type inequality and we obtain the existence of steady-state solutions
for an electromagnetic induction heating problem and for a quasi-variational inequality
modelling a critical state generalized problem for type-II superconductors.

Keywords: Electromagnetostatic problems; variational methods; variational inequalities;
superconductivity models.

AMS Subject Classification: 35J50, 47J20, 78A30, 78M30

1. Introduction

Consider a nonlinear electromagnetic field in equilibrium in a bounded domain Ω of
\mathbb{R}^3. The electric and the magnetic fields, respectively e and h, satisfy the stationary
generalized Maxwell’s equations

$$ \nabla \times h = j, \quad \nabla \times e = f \quad \text{and} \quad \nabla \cdot h = 0 \quad \text{in} \quad \Omega, \quad (1.1) $$
where \(j \) denotes the total current density and \(f \) denotes an internal magnetic current. The magnetic field \(h \) is supposed to be divergence-free by assuming the usual relation with the magnetic induction field, \(b = \mu h \), where the magnetic permeability \(\mu \) is constant (see Ref. 18). In classical Faraday’s law \(f = 0 \) but, in theoretical physics, magnetic monopoles have been postulated by formal symmetry considerations (Bossavit\(^8\)) and by reported observations (Cabrera\(^10\)) so, for mathematical purposes, it may be interesting to consider \(f \neq 0 \).

Here we shall consider nonlinear extensions of the classical Ohm’s law in the form

\[
e = \rho j
\]

(1.2)

where the scalar resistivity \(\rho = \rho(\theta, h, \nabla \times h) \) can be taken as a highly nonlinear function of the temperature \(\theta \) and of the magnetic field \(h \).

In this work we are concerned with the natural boundary value problem associated with (1.1),

\[
h \cdot n = 0 \quad \text{and} \quad e \times n = g \quad \text{on} \; \Gamma = \partial \Omega,
\]

(1.3)

where \(n \) denotes the outward unitary normal vector to \(\Gamma \) and \(g \) is a tangential current field.

In order to take into account the thermal effects, in the nonisothermal stationary case, we have the equilibrium of energy

\[
\nabla \cdot q = j \cdot e,
\]

(1.4)

where the heat flux \(q = -k \nabla \theta \) is given in terms of a nonlinear thermal conductivity \(k = k(\theta)|\nabla \theta|^{q-2}, \; q > 1 \), (the case of a constant \(k > 0 \) corresponds to the usual linear Fourier law) and the right-hand side of (1.4) represents the Joule heating.

We are particularly interested in the case of a nonlinear resistivity in (1.2) also of power type, \(\rho = \nu(\theta)|\nabla \times h|^{p-2}, \; p > 1 \), when the equilibrium equations for \(h \) and \(\theta \) may be written, from (1.1), (1.2) and (1.4), in the form

\[
\nabla \times (\nu(\theta)|\nabla \times h|^{p-2}\nabla \times h) = f \quad \text{and} \quad \nabla \cdot h = 0 \quad \text{in} \; \Omega,
\]

(1.5)

\[
- \nabla \cdot (k(\theta)|\nabla \theta|^{q-2}\nabla \theta) = \nu(\theta)|\nabla \times h|^p \quad \text{in} \; \Omega.
\]

(1.6)

From the first equation of (1.5) the external field \(f \) must satisfy \(\nabla \cdot f = 0 \) and, if we associate the second boundary condition of (1.3), the given field \(g \) should be tangential on \(\Gamma \) and compatible with \(f \):

\[
\nabla_{\Gamma} \cdot g = f \cdot n \quad \text{on} \; \Gamma,
\]

(1.7)

where \(\nabla_{\Gamma} \cdot \) denotes the surface divergence. The presence of the external vector field \(f \), although unusual in classical Maxwell’s theory, has been considered in the mathematical literature (see, for instance, Yin\(^{30}\)) and, combined with the tangential current field on the boundary, it enlightens the compatibility condition (1.7) – see also Remark 2.2 below.
We observe that the system (1.5) has a mathematical structure similar to the usual p-Laplace equation. Indeed, it reduces to a scalar equation with the left-hand side structurally similar to the left-hand side of (1.6) in only two dimensions, when the domain $\Omega = \omega \times \mathbb{R}$ is a longitudinal media and the parallel field $h = (0, 0, h(x_1, x_2))$, for $(x_1, x_2) \in \omega$. In this case, the second equation in (1.3) reduces to a Neumann boundary condition on $\partial \omega$ for the third component h.

In the evolutionary situation, this scalar coupled 2D problem has been considered by several authors, for instance, with $p = q = 2$ and Dirichlet data, in Rodrigues28 or in Parietti-Rappaz26 for alternating currents. Also for unsteady cases with $p = q = 2$ the 3D “induction heating” problem has been considered, for instance, in Bossavit-Rodrigues9 or in Yin,31 and with phase changes in Bermudez et al5 or Manoranjan et al.22

A second example of a generalization of the constitutive law (1.2) arises in type-II superconductors and is known as an extension of the Bean critical-state model, in which the current density cannot exceed some given critical value $j > 0$.

When this critical threshold j may vary with the absolute value $|h|$ of the magnetic field, Prigozhin27 has remarked that this model admits a formulation in terms of a quasi-variational inequality. Here we shall consider the case

$$ e = \begin{cases} \nu_0 \nabla \times h |^{p-2} \nabla \times h & \text{if } |\nabla \times h| < j(|h|), \\ \nu_0 j^{p-2} + \lambda \nabla \times h & \text{if } |\nabla \times h| = j(|h|), \end{cases} \quad (1.8) $$

with the nondegeneracy parameter $\nu_0 > 0$, where ν_0 is a small given constant and $\lambda = \lambda(x) \geq 0$ can be regarded as a (unknown) Lagrange multiplier associated with the inequality constraint

$$ |\nabla \times h|(x) \leq j(|h|(x)) \text{ a.e. } x \in \Omega. \quad (1.9) $$

The support of λ lies in the superconductivity region

$$ S = \{ x \in \Omega : |\nabla \times h|(x) = j(|h|(x)) \}. $$

Multiplying the second equation of (1.1) by $v - h$ and integrating over Ω we obtain

$$ \int_\Omega \nabla \times e \cdot (v - h) = \int_\Omega f \cdot (v - h). $$
Integrating by parts and using (1.3) we get
\[\int \Omega \mathbf{e} \cdot \nabla \times (\mathbf{v} - \mathbf{h}) = \int \Omega \mathbf{f} \cdot (\mathbf{v} - \mathbf{h}) + \int \Gamma \mathbf{g} \cdot (\mathbf{v} - \mathbf{h}), \]
and by (1.8), we have
\[\int \Omega \mathbf{e} \cdot \nabla \times (\mathbf{v} - \mathbf{h}) = \int \Omega \nu_0 |\nabla \times \mathbf{h}|^p - 2 \nabla \times \mathbf{h} \cdot \nabla \times (\mathbf{v} - \mathbf{h}) + \int_S \lambda \nabla \times \mathbf{h} \cdot \nabla \times (\mathbf{v} - \mathbf{h}). \]
Choosing \(\mathbf{v} \) such that \(|\nabla \times \mathbf{v}| \leq j(|\mathbf{h}|)\), we have
\[\lambda \nabla \times \mathbf{h} \cdot \nabla \times \mathbf{v} \leq \lambda |\nabla \times \mathbf{h}| j(|\mathbf{h}|) = \lambda |\nabla \times \mathbf{h}|^2 \text{ in } S \]
and
\[\int \Omega \nu_0 |\nabla \times \mathbf{h}|^p - 2 \nabla \times \mathbf{h} \cdot \nabla \times (\mathbf{v} - \mathbf{h}) \geq \int \Omega \mathbf{f} \cdot (\mathbf{v} - \mathbf{h}) + \int \Gamma \mathbf{g} \cdot (\mathbf{v} - \mathbf{h}), \tag{1.10} \]
for any test function \(\mathbf{v} \) such that \(|\nabla \times \mathbf{v}| \leq j(|\mathbf{h}|)\).

This variational formulation for the analysis of critical state models for type-II superconductivity has stimulated the study of the power law model, since it has been shown to be the limit case \(p \to \infty \), first in the scalar case, Barrett-Prigozhin,3 and also in the case of a bounded simply-connected domain in \(\mathbb{R}^3 \) with null tangential component on the boundary, Yin et al.,32 both for the evolutionary problems.

In previous works of Yin and co-workers, instead of the natural boundary condition (1.3) for perfectly conductive (superconductive) walls (\(\mathbf{h} \) tangential to the boundary: \(\mathbf{h} \cdot \mathbf{n} = 0 \) on \(\Gamma \) only the case of perfectly permeable walls (\(\mathbf{h} \) normal to the boundary: \(\mathbf{h} \times \mathbf{n} = 0 \) on \(\Gamma \)) has been considered. In particular, Yin and co-workers32,33 obtained existence and some regularity results for this later evolutionary case for \(p > 2 \).

A main difficulty arises in extending the “main inequality of 3D vector analysis” (see Ref. 1 for \(p = 2 \)) to the nonlinear framework \(p \neq 2 \). So the variational framework for magnetostatic and electrostatic problems that has been developed for the linear problems in the hilbertian framework (see, for instance, Refs. 14, 11, 15 and 12) requires, to the nonlinear case, further extensions that go beyond the natural extension to the \(L^p \)-integrable functions that has been done for arbitrary Lipschitz domains in \(\mathbb{R}^3 \) (see Refs. 23 and 24).

In this first work, that is restricted to steady-state problems, we develop the variational approach to power law Maxwell models of the type (1.5) with homogeneous normal trace (1.3) in bounded simply connected domains of \(\mathbb{R}^3 \). In Section 2 we show a new Poincaré-Friedrichs inequality for \(p > \frac{6}{5} \), extending a well-known property for \(p = 2 \), for vector functions with curl in \(L^p(\Omega) \) and with null divergence and null normal trace.

In Section 3 we develop the well-posed variational theory in two applicable directions: a strongly continuous dependence result and the limit variational inequality problem with bounded curl when the power of the nonlinearity \(n \to \infty \). The stationary electromagnetic induction heating problem (1.5)-(1.6) is formulated and solved, in Section 4, as a coupled system for the cases \(p > \frac{6}{5} \) and \(q > \frac{5}{3} \).
Finally, in Section 5, we solve the quasi-variational inequality (1.9)-(1.10), by extending a continuous dependence result of Mosco type (see also Ref. 2) for convex sets of bounded curl and generalizing an existence result of Kunze-Rodrigues17 in the scalar case.

2. The variational approach

2.1. Weak formulation of the model problem

In this section we consider an abstract problem associated with (1.5), for a given temperature, with the boundary conditions (1.3),

\[\nabla \times (a(x, \nabla \times h)) = f \quad \text{in} \quad \Omega, \]
\[\nabla \cdot h = 0 \quad \text{in} \quad \Omega, \]
\[a(x, \nabla \times h) \times n = g \quad \text{on} \quad \Gamma, \]
\[h \cdot n = 0 \quad \text{on} \quad \Gamma, \]

(2.1a)

where \(a : \Omega \times \mathbb{R}^3 \to \mathbb{R}^3 \) is a Carathéodory function satisfying the structural conditions

\[a(x, u) \cdot u \geq a_\ast |u|^p, \]
\[|a(x, u)| \leq a^\ast |u|^{p-1}, \]
\[(a(x, u) - a(x, v)) \cdot (u - v) > 0, \quad \text{if} \quad u \neq v, \]

(2.2a)

for given constants \(a_\ast, a^\ast > 0 \), for all \(u, v \in \mathbb{R}^3 \) and a.e. \(x \in \Omega \).

The variational approach of this problem leads to introduce

\[W^p(\Omega) = \{ v \in W^{1,p}(\Omega) : \nabla \cdot v = 0, v \cdot n|_\Gamma = 0 \}, \quad 1 < p < \infty, \]

(2.3)

which is a closed subspace of \(W^{1,p}(\Omega) \). Here \(W^{1,p}(\Omega) = W^{1,p}(\Omega) \) denotes the usual Sobolev space, where the following Green-type formula

\[\int_\Omega \nabla \times \varphi \cdot \nabla \times v - \int_\Omega \nabla \cdot \nabla \times \varphi = \int_\Gamma v \times n \cdot \varphi \quad \forall \varphi \in W^{1,p'}(\Omega) \]

(2.4)

holds with \(v \times n|_\Gamma \in W^{-1,p'}(\Gamma) \) in the sense of traces (see Refs. 13 and 23).

From (2.1) we are then naturally lead to the weak formulation of the model problem: given \(f \in L^{p'}(\Omega) \) and \(g \in L^{p'}(\Gamma) \), find \(h \in W^p(\Omega) \) such that

\[\int_\Omega a(x, \nabla \times h) \cdot \nabla \varphi = \int_\Omega f \cdot \varphi + \int_\Gamma g \cdot \varphi \quad \forall \varphi \in W^p(\Omega). \]

(2.5)

2.2. The space \(W^p(\Omega) \)

In this section we characterize the space \(W^p(\Omega) \) and we prove an essential extension, for \(p > \frac{6}{5} \), of the Poincaré-Friedrichs inequality for the well-known case \(p = 2 \). The following assumption stands in the rest of this work:

\(\Omega \) is a bounded domain in \(\mathbb{R}^3 \), simply connected, with a \(C^2 \) boundary \(\Gamma \).
Here we also define the $W^{1,p}$-norm of v, as usually, by the sum of the L^p-norms of v and ∇v.

Theorem 2.1. In $W^p(\Omega)$, for Ω satisfying (2.6) and $p > \frac{6}{5}$, the semi-norm $\|\nabla \times \cdot\|_{L^p(\Omega)}$ is a norm, denoted by $\|\cdot\|_{W^p(\Omega)}$, equivalent to the $W^{1,p}$-norm.

First we introduce the functional spaces

$$ W^p(\nabla \cdot, \Omega) = \{ v \in L^p(\Omega) : \nabla \cdot v \in L^p(\Omega) \} $$

and

$$ W^p(\nabla \times, \Omega) = \{ v \in L^p(\Omega) : \nabla \times v \in L^p(\Omega) \}, $$

endowed with the graph norms, in particular

$$ \| v \|_{W^p(\nabla \times, \Omega)} = \| v \|_{L^p(\Omega)} + \| \nabla \times v \|_{L^p(\Omega)}.$$

$W^p_0(\nabla \cdot, \Omega)$ and $W^p_0(\nabla \times, \Omega)$ represent the closure of $\mathcal{D}(\Omega)^3$ in the spaces $W^p(\nabla \cdot, \Omega)$ and $W^p(\nabla \times, \Omega)$, respectively. All these spaces are separable reflexive Banach spaces when $1 < p < \infty$ and $D(\bar{\Omega})^3$ is dense in $W^p(\nabla \cdot, \Omega)$ and $W^p(\nabla \times, \Omega)$, where Green formulas, such as (2.4), hold, being the boundary integrals interpreted in the duality between $W^{\frac{3}{2},p}(\Gamma)$ and $W^{-\frac{3}{2},p}(\Gamma)$ (see, for instance, Refs. 13 and 23).

The following characterizations

$$ W^p_0(\nabla \cdot, \Omega) = \{ v \in W^p(\nabla \cdot, \Omega) : v \cdot n_{\Gamma} = 0 \} $$

and

$$ W^p_0(\nabla \times, \Omega) = \{ v \in W^p(\nabla \times, \Omega) : v \times n_{\Gamma} = 0 \} $$

are also well-known.

Lemma 2.1. With the same assumptions of the Theorem 2.1, in $W^p(\Omega)$ the norm

$$ \| \cdot \| = \| \cdot \|_{L^{p\cdot 2}(\Omega)} + \| \nabla \cdot \cdot \|_{L^p(\Omega)} $$

is equivalent to the $W^{1,p}$-norm. Here $p \vee 2 = \max\{p, 2\}$.

Proof. We prove first that

$$ W^p(\Omega) = L^2(\Omega) \cap W^p(\nabla \times, \Omega) \cap W^p_0(\nabla \cdot, 0, \Omega), $$

where $W^p_0(\nabla \cdot, 0, \Omega) = \{ v \in W^p_0(\nabla \cdot, \Omega) : \nabla \cdot v = 0 \}$.

Observing that for $p \geq \frac{6}{5}$ we have $W^{1,p}(\Omega) \hookrightarrow L^2(\Omega)$, we need to prove that a divergence-free function $v \in L^2(\Omega) \cap L^p(\Omega) = L^{2/p}(\Omega)$, having curl in $L^p(\Omega)$ and $v \cdot n_{\Gamma} = 0$, has gradient in $L^p(\Omega)$.

Considering

$$ V = \{ \xi \in H^1_0(\Omega) : \nabla \cdot \xi = 0 \}, $$
the homogeneous Dirichlet problem for

$$-\Delta \xi = \nabla \times (\nabla \times \xi) = \nabla \times v \quad \text{in } \Omega$$

(2.7)

has a unique solution $\xi \in V$. Indeed, in the Hilbert space V, the norms $\| \cdot \|_{H^1(\Omega)}$ and $\|\nabla \times \cdot\|_{L^2(\Omega)}$ are equivalent (see Ref. 13, p. 209) and, since $\nabla \times v \in L^p(\Omega)$ and $L^p(\Omega) \hookrightarrow H^{-1}(\Omega)$ if $p \geq \frac{6}{5}$, the existence of solution to the weak formulation of (2.7)

$$\int_{\Omega} \nabla \times \xi \cdot \nabla \varphi = \int_{\Omega} \nabla \times v \cdot \varphi \quad \forall \varphi \in V,$$

follows from standard results. By elliptic regularity we may conclude that $\xi \in H^{1,0}_0(\Omega) \cap W^{2,p}(\Omega)$ (see Ref. 16).

Let us consider the function $\psi = \nabla \times \xi - v$. By the properties of v and (2.7) this function is such that

$$\psi \in L^p(\Omega) \cap L^2(\Omega),$$

$$\nabla \cdot \psi = \nabla \cdot (\nabla \times \xi) - \nabla \cdot v = 0 \quad \text{in } \Omega,$$

$$\nabla \times \psi = \nabla \times (\nabla \times \xi) - \nabla \times v = 0 \quad \text{in } \Omega,$$

$$\psi \cdot n = (\nabla \times \xi) \cdot n - v \cdot n = 0 \quad \text{on } \Gamma,$$

this last equation being a consequence of $\xi = 0$ on Γ, which implies that $\nabla \times \xi_{\Gamma}$ is orthogonal to n, by applying Stokes theorem over Γ.

So, $\psi \in \mathbb{H}(\Omega) = \{ u \in L^2(\Omega) : \nabla \times u = 0, \nabla \cdot u = 0, u \cdot n_{\Gamma} = 0 \}$. As we have that $\dim \mathbb{H}(\Omega) = 0$ (see Ref. 13, p. 219), we conclude that $\psi = 0$, and so $v = \nabla \times \xi \in W^{1,p}(\Omega)$.

To prove the equivalence of the norms $\| \cdot \|_{W^{1,p}(\Omega)}$ and $\| \cdot \|_{L^p(\Omega)} + \|\nabla \times \cdot\|_{L^p(\Omega)}$ in $W^p(\Omega)$, it is enough to observe that this space is a Banach space with both norms and that the first norm is stronger than the second one.

For the proof of Theorem 2.1 we also need the following Lemma, which proof can be found in Lions-Magenes,\(^{21}\) p. 171.

Lemma 2.2 (Peetre). Let E_0, E_1 and E_2 be three Banach spaces and let

$$A_1 : E_0 \longrightarrow E_1 \quad \text{and} \quad A_2 : E_0 \longrightarrow E_2$$

be two linear continuous mappings with:

1. A_2 is a compact mapping;
2. there exists a constant $c > 0$ such that

$$\|v\|_{E_0} \leq c (\|A_1 v\|_{E_1} + \|A_2 v\|_{E_2}) \quad \forall v \in E_0.$$

(2.8)

Then:

1. $\ker A_1$ has finite dimension and $\text{Im} A_1$ is closed;
2. there exists a constant $C_0 > 0$ such that

$$\inf_{w \in \ker A_1} \|v + w\|_{E_0} \leq C_0 \|A_1 v\|_{E_1}.$$

Proof of Theorem 2.1: To see that the semi-norm $\|\nabla \times \cdot\|_{L^p(\Omega)}$ is a norm in $\mathbb{W}^p(\Omega)$ for $p > \frac{6}{5}$, we define the linear continuous operators

$$A_1 : \mathbb{W}^p(\Omega) \longrightarrow L^p(\Omega),$$

$$v \longmapsto \nabla \times v$$

and

$$A_2 : \mathbb{W}^p(\Omega) \longrightarrow L^2(\Omega) \cap L^p(\Omega),$$

$$v \longmapsto v$$

noting that A_2 is compact.

Since

$$\|v\| = \|A_1 v\|_{L^p(\Omega)} + \|A_2 v\|_{L^{p \vee 2}(\Omega)},$$

the inequality (2.8) is verified, so by Peetre lemma,

$$\exists C_0 > 0 \quad \inf_{u \in \ker A_1} \|u + v\| \leq C_0 \|A_1 v\|_{L^p(\Omega)},$$

(2.9)

Observing that $\ker A_1 \subseteq \mathbb{H}(\Omega) = 0$, the relation (2.9) is equivalent to

$$\exists C_0 > 0 \quad \|v\| \leq C_0 \|\nabla \times v\|_{L^p(\Omega)},$$

proving that the semi-norm $\|\nabla \times \cdot\|_{L^p(\Omega)}$ is a norm in $\mathbb{W}^p(\Omega)$, equivalent to the $W^{1,p}$-norm.

Corollary 2.1. Let Ω satisfy (2.6) and $p > \frac{6}{5}$. Given $h \in \mathbb{W}^p(\Omega)$, its trace, $h|_\Gamma \in W^{\frac{1}{p}, p}(\Gamma)$, is such that

$$\|h|_\Gamma\|_{W^{\frac{1}{p}, p}(\Gamma)} \leq C \|h\|_{\mathbb{W}^p(\Omega)}$$

(2.10)

for some $C = C(\Omega, p) > 0$.

Proof. This result is an immediate consequence of the continuity of the trace map from $W^{1,p}(\Omega)$ onto $W^{\frac{1}{p}, p}(\Gamma)$ and of the equivalence, in $\mathbb{W}^p(\Omega)$, between the $W^{1,p}$ and \mathbb{W}^p norms. □

2.3. Solution of the variational problem

We can now show the existence and uniqueness of solution of the variational formulation (2.5) of the problem (2.1).

Proposition 2.1. For Ω satisfying (2.6) and $p > \frac{6}{5}$, the problem (2.5) has a unique solution.
Proof. \(W^p(\Omega) \) is a separable reflexive Banach space. Considering the operator
\[A : W^p(\Omega) \rightarrow W^p(\Omega)', \]
such that
\[\langle Ah, \varphi \rangle = \int_{\Omega} a(x, \nabla \times h) \cdot \nabla \times \varphi \quad \forall h, \varphi \in W^p(\Omega), \]
the structural properties (2.2) allow us to conclude that \(A \) is a bounded, hemi-continuous, monotone and coercive operator.

Defining \(L \in W^p(\Omega)' \) such that
\[\langle L, \varphi \rangle = \int_{\Omega} f \cdot \varphi + \int_{\Gamma} g \cdot \varphi \quad \forall \varphi \in W^p(\Omega), \]
a well-known existence theorem to monotone operators (Ref. 20) guarantees the existence of solution in \(W^p(\Omega) \) to the problem \(Ah = L \). The uniqueness results directly from the strict monotonicity (2.2c) of the operator \(A \).

Remark 2.1. For the existence of solution of the strong boundary value problem (2.1) with given data \((f, g) \), as we observed in the introduction, it is necessary that \(f \) is divergence-free and \(g \) is tangential on \(\Gamma \). However the weak formulation (2.5) of the problem (2.1) has a unique solution with no restrictions on the data, that can be taken more generally as an element \(L \in W^p(\Omega)' \) in the right-hand side of (2.5). Usually, a solution of a weak problem is also solution of the strong one, as long as it has enough regularity. The situation here is different. In fact, the compatibility condition (1.7) is a necessary condition for the existence of solution of (2.1) (see Ref. 23, p. 143) but not for the existence of a weak solution.

Remark 2.2. Let us observe that, given \(f \in L^p' (\Omega) \), using the Helmholtz decomposition (see Ref. 29), we may write \(f = f_0 + \nabla \xi \), where \(f_0 \) is divergence-free and, given \(g \in L^p' (\Gamma) \), we may write \(g = g_T + g_N \), where \(g_T \) and \(g_N \) are, respectively, the tangential and the normal components of \(g \).

Since the set of test functions \(W^p(\Omega) \) only takes into account \(f_0 \) (the divergence-free component of \(f \)) and \(g_T \) (the tangential component of \(g \)), the problems (2.5) with data \((f, g) \) and \((f_0, g_T) \) are the same and both correspond to the weak formulation of problem (2.1) with data \((f_0, g_T) \).

Although, because of the structure of the test functions in the weak formulation of the problem, in order to go back to the strong formulation, we have to impose the compatibility condition (1.7). In fact, if \(h \) is a regular solution of (2.1) with data \((f, g) \), if we set \(a = a(x, \nabla \times h) \), integrating by parts, we have
\[\int_{\Omega} (\nabla \times a - f_0) \cdot \varphi + \int_{\Gamma} (a \times n - g_T) \cdot \varphi = 0 \quad \forall \varphi \in W^p(\Omega), \]
so, \(a \times n = g_T \) on \(\Gamma \). Noticing that the function \(\zeta = \nabla \times a - f_0 \) is divergence-free and, on the other hand, since \(a \times n_{|\Gamma} \) is tangential, we have, on \(\Gamma \)
\[\zeta \cdot n = (\nabla \times a \cdot n) - f_0 \cdot n = \nabla_{\Gamma} \cdot (a \times n) - f_0 \cdot n = \nabla_{\Gamma} \cdot g - f_0 \cdot n = 0, \]
as long as the compatibility condition (1.7) is satisfied. This implies that \(\zeta \) is zero and (2.1a) is satisfied.
3. Properties of the variational solution

3.1. A continuous dependence result

Consider sequences of functions $f_n \in L^{p'}(\Omega)$, $g_n \in L^{p'}(\Gamma)$ and a sequence of Carathéodory functions a_n satisfying, together with a, the properties (2.2) with the same a_* and a^*, where we replace (2.2c) by

$$(a(x, u) - a(x, v)) \cdot (u - v) \geq \begin{cases} a_*|u - v|^p, & p \geq 2, \\ a_*((|u| + |v|)^{p-2}|u - v|^2, & 1 < p < 2. \\
\end{cases} \tag{3.1}$$

Let, for each $n \in \mathbb{N}$, $h_n \in W^p(\Omega)$ be the solution of the problem

$$\int_{\Omega} a_n(x, \nabla \times h_n) \cdot \nabla \phi = \int_{\Omega} f_n \cdot \phi + \int_{\Gamma} g_n \cdot \phi \quad \forall \phi \in W^p(\Omega). \tag{3.2}$$

Theorem 3.1. If $f_n \rightharpoonup f$ in $L^{p'}(\Omega)$, $g_n \rightharpoonup g$ in $L^{p'}(\Gamma)$ and $a_n \rightharpoonup a$ a.e. in $\Omega \times \mathbb{R}^3$, then the sequence of the solutions of the problems (3.2), $\{h_n\}_n$, converges in $W^p(\Omega)$ to h, solution of the problem (2.5).

Proof. Replacing in (2.5) and (3.2) the test function ϕ by $h_n - h$ we have that

$$\int_{\Omega} (a_n(x, \nabla \times h_n) - a(x, \nabla \times h)) \cdot \nabla \times (h_n - h) = \int_{\Omega} (f_n - f) \cdot (h_n - h) + \int_{\Gamma} (g_n - g) \cdot (h_n - h)$$

and so h and h_n satisfy the relation

$$\int_{\Omega} (a_n(x, \nabla \times h_n) - a_n(x, \nabla \times h)) \cdot \nabla \times (h_n - h) + \int_{\Omega} (a_n(x, \nabla \times h) - a(x, \nabla \times h)) \cdot \nabla \times (h_n - h) = \int_{\Omega} (f_n - f) \cdot (h_n - h) + \int_{\Gamma} (g_n - g) \cdot (h_n - h). \tag{3.3}$$

Notice that, given $f \in L^{p'}(\Omega)$, $g \in L^{p'}(\Gamma)$ and $h \in W^p(\Omega)$ there are constants C_1 and C_2 such that

$$\int_{\Omega} f \cdot h \leq \|f\|_{L^{p'}(\Omega)} \|h\|_{L^p(\Omega)} \leq C_1 \|f\|_{L^{p'}(\Omega)} \|h\|_{W^p(\Omega)}$$

and

$$\int_{\Gamma} g \cdot h \leq \|g\|_{L^{p'}(\Gamma)} \|h\|_{L^p(\Gamma)} \leq C_2 \|g\|_{L^{p'}(\Gamma)} \|h\|_{W^p(\Omega)}.$$
Using the property (3.1), in the case \(p \geq 2 \), from the relation (3.3) we obtain
\[
a_* \left\| \nabla \times (h_n - h) \right\|_{L^p(\Omega)}^p \leq
\|a_n(x, \nabla \times h) - a(x, \nabla \times h)\|_{L^{p'}(\Omega)} \left\| \nabla \times (h_n - h) \right\|_{L^p(\Omega)} +
C_1 \|f_n - f\|_{L^{p'}(\Omega)} \|h_n - h\|_{W^{p}(\Omega)} + C_2 \|g_n - g\|_{L^{p'}(\Gamma)} \|h_n - h\|_{W^{p}(\Omega)}
\]
and so
\[
a_* \left\| \nabla \times (h_n - h) \right\|_{L^p(\Omega)}^{p-1} \leq
\|a_n(x, \nabla \times h) - a(x, \nabla \times h)\|_{L^{p'}(\Omega)} \left\| \nabla \times (h_n - h) \right\|_{L^p(\Omega)} +
C_1 \|f_n - f\|_{L^{p'}(\Omega)} \|h_n - h\|_{W^{p}(\Omega)} + C_2 \|g_n - g\|_{L^{p'}(\Gamma)} \|h_n - h\|_{W^{p}(\Omega)}.
\]
In the case \(\frac{6}{5} < p < 2 \) using the property (3.1), from (3.3) we obtain
\[
a_* \int_\Omega \left(|\nabla \times h_n| + |\nabla \times h| \right)^{p-2} |\nabla \times (h_n - h)|^2 \leq
\left\| a_n(x, \nabla \times h) - a(x, \nabla \times h) \right\|_{L^{p'}(\Omega)} \left\| \nabla \times (h_n - h) \right\|_{L^p(\Omega)} +
C_1 \|f_n - f\|_{L^{p'}(\Omega)} \|h_n - h\|_{W^{p}(\Omega)} + C_2 \|g_n - g\|_{L^{p'}(\Gamma)} \|h_n - h\|_{W^{p}(\Omega)}.
\]
Using a reverse Hölder inequality with \(0 < \frac{p}{2} < 1 \) and \(\frac{p}{p-2} < 0 \), we obtain
\[
a_* \int_\Omega \left(|\nabla \times h_n| + |\nabla \times h| \right)^{p-2} |\nabla \times (h_n - h)|^2 \geq
\left(2^{p-1} \left(\left\| \nabla \times h_n \right\|_{L^p(\Omega)}^{p} + \left\| \nabla \times h \right\|_{L^p(\Omega)}^{p} \right) \right)^{\frac{p}{p-2}} \left\| \nabla \times (h_n - h) \right\|_{L^p(\Omega)}^2.
\]
We have, from (2.2a), that for \(n \in \mathbb{N} \)
\[
a_* \left\| \nabla \times h_n \right\|_{L^p(\Omega)}^p = \int_\Omega a_*(\nabla \times h_n) |\nabla \times h_n| \leq \int_\Omega a_*(\nabla \times h_n) \cdot \nabla \times h_n =
\int_\Omega f_n \cdot h_n + \int_\Gamma g_n \cdot h_n \leq \left(C_1 \|f_n\|_{L^{p'}(\Omega)} + C_2 \|g_n\|_{L^{p'}(\Gamma)} \right) \left\| \nabla \times h_n \right\|_{L^p(\Omega)}.
\]
Using the convergences of \(f_n \) and \(g_n \) to \(f \) and \(g \) respectively, there exists a positive constant \(C \) such that
\[
a_* \left\| \nabla \times h_n \right\|_{L^p(\Omega)} \leq C.
\]
Going back to the inequality (3.6), this last estimate allow us to write
\[
a_* \int_\Omega \left(|\nabla \times h_n| + |\nabla \times h| \right)^{p-2} |\nabla \times (h_n - h)|^2 \geq C_3 \left\| \nabla \times (h_n - h) \right\|_{L^p(\Omega)}^2
\]
for some positive constant \(C_3 \) independent of \(n \).
Using this last inequality, from (3.5) we have
\[C_3 \| \nabla \times (h_n - h) \|_{L^p(\Omega)} \leq \]
\[\| a_n(x, \nabla \times h) - a(x, \nabla \times h) \|_{L^{p'}(\Omega)} + C_4 \| f_n - f \|_{L^{p'}(\Omega)} + C_2 \| g_n - g \|_{L^{p'}(\Gamma)}. \]
(3.7)

We can write both relations (3.4) and (3.7) in the following inequality
\[\| \nabla \times (h_n - h) \|_{L^{(p-1)/2}(\Omega)} \leq \]
\[C_4 \left(\| a_n(x, \nabla \times h) - a(x, \nabla \times h) \|_{L^{p'}(\Omega)} + \right. \]
\[\| f_n - f \|_{L^{p'}(\Omega)} + \| g_n - g \|_{L^{p'}(\Gamma)} \right). \]
(3.8)

valid for \(p > \frac{6}{5} \), where \(C_4 \) is a positive constant independent of \(n \).

Remark 3.1. If
\[a_n(x, u) = \nu_n(x)|u|^{p-2}u \quad \text{and} \quad a(x, u) = \nu(x)|u|^{p-2}u \]
from (3.8) we have a stronger result
\[\| h_n - h \|_{W^{n/2}(\Omega)'} \leq C_\delta \left(\| \nu_n - \nu \|_{L^{\infty}(\Omega)} + \| f_n - f \|_{L^{p'}(\Omega)} + \| g_n - g \|_{L^{p'}(\Gamma)} \right). \]

3.2. A limit problem when \(n \to \infty \)

In this section we assume that \(\frac{6}{5} < p < n, p' \) and \(n' \) are respectively the conjugate exponents of \(p \) and \(n \), \(f \in L^{p'}(\Omega) \) and \(g \in L^{p'}(\Gamma) \). For simplicity we denote
\[\nabla_p \times u = |\nabla \times u|^{p-2}\nabla \times u. \]
(3.9)

Since the operator \(A_n : W^n(\Omega) \to W^n(\Omega)' \) defined by
\[(A_n u, v) = \int_\Omega \nabla_n \times u \cdot \nabla v + \int_\Omega \delta(x, \nabla \times u) \cdot \nabla \times v, \]
where \(\delta(x, u) \) satisfying (2.2 a,b) and (3.1) with nonnegative constants \(\delta_* \) and \(\delta^* \) (in particular, we may have \(\delta_* = \delta^* = 0 \)), is bounded, hemicontinuous, strictly monotone and coercive, the problem
\[\int_\Omega \nabla_n \times h_n \cdot \nabla \varphi + \int_\Omega \delta(x, \nabla \times h_n) \cdot \nabla \times \varphi = \int_\Omega f \cdot \varphi + \int_\Gamma g \cdot \varphi \quad \forall \varphi \in W^n(\Omega), \]
(3.10)

has a unique solution \(h_n \).

We are going to characterize the limit of \(\{ h_n \}_n \), when \(n \to \infty \). If we take \(\varphi = h_n \) in (3.10) we obtain
\[\int_\Omega |\nabla \times h_n|^n + \int_\Omega \delta(x, \nabla \times h_n) \cdot \nabla \times h_n = \int_\Omega f \cdot h_n + \int_\Gamma g \cdot h_n \]
and so there exists a positive constant C_1, independent of n, such that

$$
\int_\Omega |\nabla \times h_n|^n + \delta^* \int_\Omega |\nabla \times h_n|^p \leq C_1 \left(\|f\|_{L^p'(\Omega)} \|h_n\|_{L^n(\Omega)} + \|g\|_{L^p'(\Gamma)} h_n \|_{W^{1,n}(\Gamma)} \right).
$$

Using the equivalence between the W_n and $W^{1,n}$ norms and the inequality of Corollary 2.1, we obtain the a priori estimate

$$
\|\nabla \times h_n\|_{L^n(\Omega)} \leq C_2, \quad C_2 = C_2 \left(\|f\|_{L^p'(\Omega)}, \|g\|_{L^p'(\Gamma)} \right).
$$

Defining the convex set $K_\infty = \{ v \in W^\infty(\Omega) : |\nabla \times v| \leq 1 \text{ a.e. in } \Omega \}$, where in (2.3), letting $p = \infty$, we obtain the definition of $W^\infty(\Omega)$, we consider the following variational inequality.

To find $h_\infty \in K_\infty$ such that

$$
\int_\Omega \delta(x, \nabla \times h_\infty) \cdot \nabla \times (\varphi - h_\infty) \geq \int_\Omega f \cdot (\varphi - h_\infty) + \int_\Gamma g \cdot (\varphi - h_\infty)
$$

\forall \varphi \in K_\infty.

Theorem 3.2. Assuming that the operator δ satisfies (2.2a,b), with nonnegative δ_* and δ^*, and (3.1), let h_n denote the solution of (3.10). Then we have, at least for subsequences,

$$
h_n \rightharpoonup h_\infty \text{ in } W^p(\Omega),
$$

where h_∞ is a solution of (3.13).

If $\delta_* > 0$, the whole sequence converges to the unique limit.

Proof. As the sequence $\{h_n\}_n$ is bounded in $W^p(\Omega)$, there exists a function h_∞ such that at least for a subsequence, still denoted by $\{h_n\}_n$, we have

$$
h_n \rightharpoonup h_\infty \text{ weakly in } W^p(\Omega).
$$

Due to the equivalence between the norm of $W^p(\Omega)$ and of $W^{1,p}(\Omega)$, we may say that

$$
\nabla \times h_n \rightharpoonup \nabla \times h_\infty \text{ in } L^p(\Omega),
$$

$$
h_n \rightarrow h_\infty \text{ in } L^p(\Omega).
$$

Given $p < q < n$ we have, using the estimate (3.12),

$$
\|\nabla \times h_n\|_{L^q(\Omega)} \leq |\Omega|^{\frac{n}{q} - \frac{n}{p}} \|\nabla \times h_n\|_{L^n(\Omega)} \leq |\Omega|^{\frac{n}{q} - \frac{n}{p}} C_2^\frac{1}{n}
$$

and so

$$
\|\nabla \times h_\infty\|_{L^q(\Omega)} \leq \liminf_n \|\nabla \times h_n\|_{L^n(\Omega)} \leq |\Omega|^{\frac{n}{q} - \frac{n}{p}} \quad \forall q > p.
$$

As $\nabla \times h_\infty \in L^\infty(\Omega)$ and $\|\nabla \times h_\infty\|_{L^\infty(\Omega)} \leq 1$, we have that h_∞ belongs to the convex set K_∞.

Choosing, in (3.10), $\varphi = v - h_n \in W^\infty(\Omega)$ as test function, by monotonicity we have
\[
\int_\Omega \nabla_n \times v \cdot \nabla \times (v - h_n) + \int_\Omega \delta(x, \nabla \times v) \cdot \nabla \times (v - h_n) \geq \int_\Omega f \cdot (v - h_n) + \int_\Gamma g \cdot (v - h_n)
\]
and imposing that $\|\nabla \times v\|_{L^\infty(\Omega)} < 1$, letting $n \to \infty$, we obtain that h_∞ satisfies
\[
\int_\Omega \delta(x, \nabla \times v) \cdot \nabla \times (v - h_\infty) \geq \int_\Omega f \cdot (v - h_\infty) + \int_\Gamma g \cdot (v - h_\infty),
\]
for any $v \in K_\infty$ such that $\|\nabla \times v\|_{L^\infty(\Omega)} < 1$ and, by density, also for any $v \in K_\infty$.
Choosing now, in (3.15), $v = \lambda \varphi + (1 - \lambda) h_\infty$, where $0 < \lambda \leq 1$ and $\varphi \in K_\infty$ is arbitrary, we easily see, after letting $\lambda \to 0$, that h_∞ satisfies (3.13).

Remark 3.2. Notice that the above argument holds even in the case where $\delta = 0$. In this degenerate case, we have shown the existence of $h^0_\infty \in K_\infty$ such that
\[
\int_\Omega f \cdot (\varphi - h^0_\infty) + \int_\Gamma g \cdot (\varphi - h^0_\infty) \leq 0 \quad \forall \varphi \in K_\infty.
\]

4. A stationary electromagnetic induction heating problem

4.1. Weak formulation of the coupled system

Considering the coupled problem (1.5)-(1.6) and using the notation (3.9) for the operator p-curl, and, similarly,
\[
\nabla_q \theta = |\nabla \theta|^{q-2} \nabla \theta,
\]
we introduce the weak formulation of the stationary electromagnetic induction heating problem.

To find $(h, \theta) \in W^p(\Omega) \times W^{1,r}_0(\Omega)$ (for a certain $r : 1 \vee (q - 1) \leq r \leq q$) such that
\[
\int_\Omega \nu(\theta) \nabla_p \times h \cdot \nabla \times \varphi = \int_\Omega f \cdot \varphi + \int_\Gamma g \cdot \varphi \quad \forall \varphi \in W^p(\Omega),
\]
\[
\int_\Omega k(\theta) \nabla_q \theta \cdot \nabla \xi = \int_\Omega \nu(\theta) |\nabla \times h|^p \xi \quad \forall \xi \in W^{1,\infty}_0(\Omega).
\]

For technical reasons we shall restrict ourselves to the case $p > \frac{6}{5}$ and $q > \frac{5}{3}$.
Here we assume that $\nu, k : \mathbb{R} \to \mathbb{R}$ are continuous functions such that
\[
0 < \nu_* \leq \nu(\theta) \leq \nu^* \quad \text{and} \quad 0 < k_* \leq k(\theta) \leq k^* \quad \forall \theta \in \mathbb{R}.
\]

Theorem 4.1. Letting $p > \frac{6}{5}$ and $q > \frac{5}{3}$, $\nu, k : \mathbb{R} \to \mathbb{R}$ satisfy (4.2) and $f \in L^p(\Omega)$ and $g \in L^p(\Gamma)$, the problem (4.1) has a solution with $r = q$ if $q > 3$ and $1 < r < \frac{5}{3}(q - 1)$ if $\frac{5}{3} \leq q \leq 3$.
To solve this problem, we consider a family of approximated problems by truncation.

Let us define the truncation operator as follows: given $M > 0$ and v a real function,

$$
\tau_M(v) = (v \wedge M) \vee (-M) = \begin{cases}
-M & \text{if } v \leq -M, \\
v & \text{if } -M < v < M, \\
M & \text{if } v \geq M.
\end{cases}
$$

For $M > 0$ consider the approximated problem of (4.1) which consists of finding $(h_M, \theta_M) \in W^p(\Omega) \times W^{1,q}_0(\Omega)$ such that

$$
\int_\Omega \nu(\theta_M) \nabla \times h_M : \nabla \times \varphi = \int_\Omega \mathbf{f} : \varphi + \int_{\Gamma} \mathbf{g} : \varphi \quad \forall \varphi \in W^p(\Omega), \quad (4.3a)
$$

$$
\int_\Omega k(\theta_M) \nabla \theta_M : \nabla \xi = \int_\Omega \tau_M(\nu(\theta_M) |\nabla \times h_M|^p) \xi \quad \forall \xi \in W^{1,q}_0(\Omega). \quad (4.3b)
$$

Proposition 4.1. For any $p > \frac{5}{3}$ and $q > 1$ the problem (4.3) has a solution.

Remark 4.1. In fact, the function $|\tau_M(\nu(\theta_M) |\nabla \times h_M|^p)|$ is a priori bounded by M, and a well-known classical global estimate for θ_M (see Ref. 16, Section 10.5, for instance) yields

$$
\|\theta_M\|_{L^\infty(\Omega)} \leq C M,
$$

where C is a positive constant depending only on Ω, q and k_*. So, for the existence result of Proposition 4.1, the upper bounds ν^* and k^* in the assumption (4.2) are not necessary.

Remark 4.2. More generally, we can consider a coupled problem for $(h, \theta) \in W^p(\Omega) \times W^{1,r}_0(\Omega)$ (where, as before, $1 \vee (q-1) \leq r \leq q$) of the form

$$
\int_\Omega a_p(x, \theta, h, \nabla \times h) : \nabla \times \varphi = \langle L, \varphi \rangle \quad \forall \varphi \in W^p(\Omega),
$$

$$
\int_\Omega b_q(x, \theta, h, \nabla \theta) : \nabla \xi = \int_\Omega (a_p(x, \theta, h, \nabla \times h) \cdot \nabla \times h) \xi \quad \forall \xi \in W^{1,\infty}_0(\Omega),
$$

for a general $L \in W^p(\Omega)^\ell$ and quasi-linear Carathéodory functions

$$
a_p, b_q : \Omega \times \mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow \mathbb{R}^3
$$

satisfying the structural conditions (2.2), respectively for $p > \frac{5}{3}$ and $q > \frac{5}{3}$, uniformly in the variables (x, θ, h).

Remark 4.3. The case $1 < q \leq \frac{5}{3}$ can still be considered in the framework of entropy solutions introduced by Bénilan et al. It consists in replacing (4.1b) by

$$
\int_\Omega k(\theta) \nabla \theta \cdot \nabla \tau_s(\theta - \xi) = \int_\Omega \nu(\theta) |\nabla \times h|^p \tau_s(\theta - \xi) \quad \forall \xi \in W^{1,\infty}_0(\Omega) \quad \forall s > 0,
$$

and the entropy solution is such that $\tau_s(\theta) \in W^{1,q}_0(\Omega)$, for every $s > 0$. A continuous dependence result for entropy solutions (see Ref. 19) and their truncates allows to extend the existence result to this case.
4.2. Existence of weak solutions

Proof of Proposition 4.1: The proof will be done using the Schauder fixed point theorem.

Given \(R > 0 \), we consider \(D_R = \{ \gamma \in L^q(\Omega) : \| \gamma \|_{L^q(\Omega)} \leq R \} \) and, fixing \(\gamma \in D_R \), we solve the auxiliary problem

\[
\int_{\Omega} \nu(\gamma) \nabla p \cdot \nabla \varphi = \int_{\Omega} f \cdot \varphi + \int_{\Gamma} g \cdot \varphi \quad \forall \varphi \in W^p(\Omega). \tag{4.4}
\]

This problem is exactly the problem (2.5), for which we proved the existence of unique solution in the Proposition 2.1. Calling the solution \(h(\gamma) \) and using it as test function in (4.4) and recalling (4.2), there exists \(C > 0 \), depending only on \(\nu_\ast, p, \Omega, f \) and \(g \), such that

\[
\| \nabla \times h(\gamma) \|_{L^p(\Omega)} \leq C. \tag{4.5}
\]

Observe that, using the continuous dependence result of Theorem 3.1, we have that the function \(S_1 : L^q(\Omega) \rightarrow W^p(\Omega) \) defined by \(S_1(\gamma) = h(\gamma) \) is continuous for the strong topologies.

Considering now \(\gamma \) and \(S_1(\gamma) = h(\gamma) \) fixed, we solve the problem

\[
\int_{\Omega} k(\gamma) \nabla \theta \cdot \nabla \xi = \int_{\Omega} \tau_M(\nu(\gamma)|\nabla \times h(\gamma)|^p) \xi \quad \forall \xi \in W^{1,q}_0(\Omega). \tag{4.6}
\]

This elliptic problem has a unique solution \(\theta(\gamma) = \theta(\gamma, h(\gamma)) \in W^{1,q}_0(\Omega) \) (see Ref. 20).

Using \(\theta(\gamma) \) as a test function in (4.6), we get

\[
k_s \int_{\Omega} |\nabla \theta(\gamma)|^q \leq \| \tau_M(\nu(\gamma)|\nabla \times h(\gamma)|^p) \|_{L^q(\Omega)} \| \theta(\gamma) \|_{L^q(\Omega)}
\]

and applying the Poincaré inequality,

\[
\| \theta(\gamma) \|_{W^{1,q}_0(\Omega)} \leq C_M, \tag{4.7}
\]

where \(C_M > 0 \) depends on \(M \) and \(\Omega \).

It is now easy to see that the function

\[
S_2 : L^q(\Omega) \rightarrow W^p(\Omega) \rightarrow W^{1,q}_0(\Omega), \quad \gamma \mapsto h(\gamma) \mapsto \theta(\gamma, h(\gamma))
\]

is continuous. Indeed if \(\{ \gamma_n \} \) is a sequence in \(L^q(\Omega) \) such that \(\gamma_n \xrightarrow{n} \gamma \), then by Theorem 3.1, \(|\nabla \times h(\gamma_n)|^p \xrightarrow{n} |\nabla \times h(\gamma)|^p \) in \(L^1(\Omega) \).

Arguing as in the proof of Theorem 3.1 for the Dirichlet problem (4.3b), which satisfies the structural assumption (3.1) with \(q > 1 \), as in Remark 3.1, we easily obtain the estimate

\[
\left\| \nabla \left(\theta(\gamma_n) - \theta(\gamma) \right) \right\|_{L^q(\Omega)}^{(q-1)/q_1} \leq C \| k(\gamma) - k(\gamma_n) \|_{L^\infty(\Omega)} + \| \tau_M(\nu(\gamma)|\nabla \times h(\gamma_n)|^p) - \tau_M(\nu(\gamma)|\nabla \times h(\gamma)|^p) \|_{L^q(\Omega)}, \tag{4.8}
\]

\[
\| \tau_M(\nu(\gamma)|\nabla \times h(\gamma)|^p) - \tau_M(\nu(\gamma)|\nabla \times h(\gamma)|^p) \|_{L^q(\Omega)}.
\]
A Class of Stationary Nonlinear Maxwell Systems

Theorem 4.1: For \(q > 3 \), by the Sobolev imbedding \(W^{1,q}_0(\Omega) \subset C^0(\overline{\Omega}) \), repeating the proof of the Proposition 4.1 with \((4.4) \) and \((4.6) \) without the truncation \(\tau_M \), we obtain the \textit{a priori} estimate \((4.5) \) and \((4.7) \) with a constant \(C^* \) depending only on \(\Omega \), on \(C \) of \((4.5) \) and on the constants \(k^* \) and \(\nu^* \) in \((4.2) \). Hence the same fixed point argument yields directly a solution \((h(\theta), \theta) \) to \((4.1) \).

Proof of Theorem 4.1: For \(q > 3 \), by the Sobolev imbedding \(W^{1,q}_0(\Omega) \subset C^0(\overline{\Omega}) \), repeating the proof of the Proposition 4.1 with \((4.4) \) and \((4.6) \) without the truncation \(\tau_M \), we obtain the \textit{a priori} estimate \((4.5) \) and \((4.7) \) with a constant \(C^* \) depending only on \(\Omega \), on \(C \) of \((4.5) \) and on the constants \(k^* \) and \(\nu^* \) in \((4.2) \). Hence the same fixed point argument yields directly a solution \((h(\theta), \theta) \) to \((4.1) \).

For \(\frac{5}{3} < q \leq 3 \), we consider solutions \((h_M, \theta_M) \) of \((4.3) \) and we note that

\[
\| \tau_M(\nu(\gamma)\nabla \times h_M)|p| \|_{L^1(\Omega)} \leq \| \nu(\gamma)\nabla \times h_M|p| \|_{L^1(\Omega)} \leq \nu^* \| \nabla \times h_M|p|_{L^p(\Omega)} \leq C^*,
\]

where \(C^* > 0 \) is a constant independent of \(M \).

By the estimates of Boccardo-Gallouët, we have for \(1 \leq r < \frac{3}{2}(q - 1) \) the \textit{a priori} estimate

\[
\| \theta_M \|_{W^{1,r}_0(\Omega)} \leq C_r,
\]

where \(C_r > 0 \) is a constant also independent of \(M \) but depending on \(C^* \) of \((4.9) \) and on the constants of \((4.2) \).

Then, by compactness, at least for a subsequence \(M \to \infty \) we may suppose

\[
\begin{align*}
\| h_M \|_{L^p(\Omega)} & \to h & \text{in } L^p(\Omega), \\
\nabla \times h_M & \to \nabla \times h & \text{in } L^p(\Omega)-\text{weak}, \\
\theta_M & \to \theta & \text{in } L^r(\Omega), \\
\nabla \theta_M & \to \nabla \theta & \text{in } L^r(\Omega)-\text{weak}.
\end{align*}
\]

and, using the assumption \((4.2) \), also

\[
\begin{align*}
\nu(\theta_M) & \to \nu(\theta) & \text{in } L^s(\Omega) & \quad \forall 1 < s < \infty, \\
\nu(\theta_M)\nabla_p \times h_M & \to \lambda & \text{in } L^{p'}(\Omega)-\text{weak},
\end{align*}
\]

since \(\| \nu(\theta_M)\nabla_p \times h_M \|_{L^{p'}(\Omega)} \leq \nu^* \| \nabla \times h_M \|^{p-1}_{L^p(\Omega)} \leq C'' \), where \(C'' \) does not depend on \(M \) by \((4.5) \).

From \((4.3a) \) and \((4.10g) \) we see that \(h \) solves \((4.1a) \) if we show

\[
\int_{\Omega} \lambda \cdot \nabla \varphi = \int_{\Omega} \nu(\theta) \nabla_p \times h \cdot \nabla \varphi \quad \forall \varphi \in W^p(\Omega),
\]

which can be done by an adaptation of Minty’s lemma (see Ref. 20). Indeed, on one hand, letting \(M \to \infty \) in \((4.3a) \), we obtain first

\[
\int_{\Omega} \lambda \cdot \nabla \varphi = \int_{\Omega} f \cdot \varphi + \int_{\Gamma} g \cdot \varphi \quad \forall \varphi \in W^p(\Omega)
\]
and, noting that \(h \in W^p(\Omega) \), also

\[
\lim_M \int_\Omega \nu(\theta_M) \nabla p \times h_M \cdot \nabla \times h_M = \lim_M \left(\int_\Omega f \cdot h_M + \int_\Gamma g \cdot h_M \right) = \int_\Omega f \cdot h + \int_\Gamma g \cdot h = \int_\Omega \lambda \cdot \nabla \times h. \quad (4.12)
\]

By monotonicity, we have

\[
\int_\Omega \nu(\theta_M) \nabla p \times h_M \cdot \nabla \times (h_M - v) - \int_\Omega \nu(\theta) \nabla p \times v \cdot \nabla \times (h_M - v) \geq \int_\Omega (\nu(\theta_M) - \nu(\theta)) \nabla p \times v \cdot \nabla \times (h_M - v)
\]

and, letting \(M \to \infty \), using \((4.12)\), we obtain

\[
\int_\Omega (\nu(\theta_M) - \nu(\theta)) \nabla p \times v \cdot \nabla \times (h_M - v) \geq 0 \quad \forall v \in W^p(\Omega). \quad (4.13)
\]

Choosing \(v = h - \alpha \phi \) with \(\phi \in W^p(\Omega) \), dividing by \(\alpha > 0 \) and letting \(\alpha \to 0 \), we obtain from \((4.13)\)

\[
\int_\Omega (\lambda - \nu(\theta)) \nabla p \times h \cdot \nabla \times \phi \geq 0 \quad \forall \phi \in W^p(\Omega),
\]

which implies \((4.11)\).

Taking \(\phi = h_M - h \) in \((4.1a)\) and \((4.3a)\) we obtain

\[
\int_\Omega \nu(\theta_M) \left(\nabla p \times h_M - \nabla p \times h \right) \cdot \nabla \times (h_M - h) = \int_\Omega (\nu(\theta) - \nu(\theta_M)) \nabla p \times h \cdot \nabla \times (h_M - h). \quad (4.14)
\]

By Lebesgue theorem and \((4.10f)\) we have \((\nu(\theta) - \nu(\theta_M)) \nabla p \times h \to 0 \) in \(L^p(\Omega) \), so the right-hand side of \((4.14)\) tends to zero. The assumptions \((4.2)\) imply that

\[
\nabla \times h_M \overset{\ast}{\rightarrow} \nabla \times h \quad \text{in} \quad L^p(\Omega),
\]

using, when \(p < 2 \), arguments similar to \((3.6)\). By \((4.10f)\), we have

\[
\nu(\theta_M) |\nabla \times h_M|^p \overset{\ast}{\rightarrow} \nu(\theta) |\nabla \times h|^p \quad \text{in} \quad L^1(\Omega)
\]

and, consequently, also

\[
\tau_M (\nu(\theta_M) |\nabla \times h_M|^p) \overset{\ast}{\rightarrow} \nu(\theta) |\nabla \times h|^p \quad \text{in} \quad L^1(\Omega).
\]

Finally, in order to show that \(\theta \) also solves \((4.1b)\) we apply Lemma 1 of Boccardo-Gallouët,\(^7\) which implies that \(\{\theta_M\}_M \) is compact in \(W_0^{1,r}(\Omega) \), for any \(1 \leq r < \frac{3}{2} (q - 1) \) and therefore we have

\[
k(\theta_M) \nabla q \theta_M \overset{\ast}{\rightarrow} k(\theta) \nabla q \theta \quad \text{in} \quad L^s(\Omega) \quad \forall 1 \leq s < \frac{3}{2}.
\]

\(\square \)
5. A stationary magnetization of a superconductor

5.1. The quasi-variational inequality

Similarly to the quasi-variational inequality (1.10) considered in the introduction, and substituting the operator p-curl by the more general operator a, we are lead to the following quasi-variational inequality,

$$
\begin{cases}
 h \in K_h = \{ v \in W^p(\Omega) : |\nabla \times v| \leq F(|h|) \text{ a.e. in } \Omega \} \\
 \int_{\Omega} a(x, \nabla \times h) \cdot \nabla \times (v - h) \geq \int_{\Omega} f \cdot (v - h) + \int_{\Gamma} g \cdot (v - h) \quad \forall \, v \in K_h,
\end{cases}
$$

(5.1)

where the operator a satisfies the assumptions (2.2).

Theorem 5.1. Suppose that $p > \frac{6}{5}$, $f \in L^{p'}(\Omega)$, $g \in L^{p'}(\Gamma)$ and $F : [0, \infty) \to \mathbb{R}$ is continuous and there exists $\nu > 0$ such that

$$
F(s) \geq \nu > 0 \quad \forall \, s \geq 0.
$$

(5.2)

If $\frac{6}{5} < p \leq 3$ suppose, in addition, that there exists positive constants c_0 and c_1 such that

$$
F(s) \leq c_0 + c_1 s^\alpha \quad \forall \, s \geq 0,
$$

(5.3)

where $\alpha \geq 0$ if $p = 3$ and $0 \leq \alpha \leq \frac{p}{3-p}$ if $\frac{6}{5} < p < 3$.

Then the quasi-variational inequality (5.1) has a solution.

5.2. A continuous dependence result

We consider first the following variational inequality, defined for a given nonnegative function $\varphi \in L^\infty(\Omega)$,

$$
\begin{cases}
 h \in K_{\varphi} = \{ v \in W^p(\Omega) : |\nabla \times v| \leq F(\varphi) \text{ a.e. in } \Omega \} \\
 \int_{\Omega} a(x, \nabla \times h) \cdot \nabla \times (v - h) \geq \int_{\Omega} f \cdot (v - h) + \int_{\Gamma} g \cdot (v - h) \quad \forall \, v \in K_{\varphi}.
\end{cases}
$$

(5.4)

Lemma 5.1. Suppose we have a sequence $\{\varphi_n\}_n$ in $L^\infty(\Omega)$ such that $\varphi_n \to \varphi$ in $L^\infty(\Omega)$. Let F satisfy the assumption (5.2) and the operator a verify (2.2). If h_n and h denote the solution of the variational inequality (5.4) for given φ_n and φ, respectively, then

$$
h_n \to h \quad \text{in } W^p(\Omega).
$$

(5.5)

Proof. We follow arguments similar to Ref. 2 by proving the Mosco convergence of the family of convex sets K_{φ_n} to K_{φ}.
Given a sequence \(\{v_n\} \) belonging to \(K_{\varphi_n} \), we need to prove that if \(v_n \rightharpoonup v \) in \(W^p(\Omega) \) then \(v \in K_{\varphi} \). It is enough to observe that, for \(v_n \) belonging to \(K_{\varphi_n} \) we have \(|\nabla \times v_n| \leq F(\varphi_n) \) and, since for any measurable \(\omega \subset \Omega \),

\[
\int_\omega |\nabla \times v| \leq \liminf_n \int_\omega |\nabla \times v_n| \leq \liminf_n \int_\omega F(\varphi_n) = \int_\omega F(\varphi),
\]

we get \(|\nabla \times v| \leq F(\varphi) \) a.e. in \(\Omega \).

Given \(v \in K_{\varphi} \) we need to construct a sequence \(v_n \in K_{\varphi_n} \) such that \(v_n \rightharpoonup v \) in \(W^p(\Omega) \). Defining \(\lambda_n = \frac{\|F(\varphi_n) - F(\varphi)\|_{L^\infty(\Omega)}}{\nu} \leq 1 + \frac{\|F(\varphi) - F(\varphi_n)\|_{L^\infty(\Omega)}}{F(\varphi)} \), we have \(\lambda_n \rightharpoonup_n 0 \). If we define \(v_n = \frac{1}{\mu_n} v \), for \(\mu_n = 1 + \frac{\lambda_n}{\nu} \) then \(v_n \in W^p(\Omega) \) and

\[
|\nabla \times v_n| = \frac{1}{\mu_n} |\nabla \times v| \leq \frac{1}{\mu_n} F(\varphi) \leq F(\varphi_n)
\]

since

\[
\mu_n = 1 + \frac{\|F(\varphi_n) - F(\varphi)\|_{L^\infty(\Omega)}}{\nu} \geq 1 + \frac{F(\varphi) - F(\varphi_n)}{F(\varphi) - F(\varphi_n)},
\]

which means that \(v_n \in K_{\varphi_n} \). Besides that

\[
\|v_n - v\|_{W^p(\Omega)}^p = \int_\Omega |\nabla \times (v_n - v)|^p = \int_\Omega \left(1 - \frac{1}{\mu_n}\right)^p |\nabla \times v|^p = \frac{\lambda_n}{\nu^p} \|v\|_{W^p(\Omega)}^p \rightharpoonup_n 0
\]

and so the Mosco convergence is proved. By a well-known result of Mosco (see Ref. 25), we have (5.5).

5.3. **Existence of solution of the quasi-variational inequality**

Proof of Theorem 5.1: Following Ref. 17, we use a fixed point argument to prove this theorem.

For a given \(\varphi \in C(\bar{\Omega}) \), we denote by \(h_{\varphi} \) the unique solution of the variational inequality (5.4) with convex \(K_{\varphi} \) and we define

\[
S : C(\bar{\Omega}) \rightarrow W^p(\Omega).
\]

\[\varphi \mapsto h_{\varphi}\]

The continuity of \(S \) is a consequence of Lemma 5.1.

For \(p > 3 \), since \(W^p(\Omega) \) is a subspace of \(W^{1,p}(\Omega) \) and this last space is compactly imbedded in \(C(\bar{\Omega}) \), we have

\[
\bar{S} : C(\bar{\Omega}) \rightarrow W^p(\Omega) \hookrightarrow C(\bar{\Omega}) \rightarrow C(\bar{\Omega})
\]

\[\varphi \mapsto h_{\varphi} \mapsto h_{\varphi} \mapsto |h_{\varphi}|\]

is a continuous and compact mapping.

Taking \(v = 0 \) in (5.4), we easily conclude that

\[
\|h_{\varphi}\|_{W^p(\Omega)} \leq C,
\]

(5.7)
where $C > 0$ is independent of the φ but depends on a^*, Ω, f and g. Therefore, there exists some $R > 0$, such that we have $\tilde{S} (C(\Omega)) \subseteq D_R$, for $D_R = \{ \varphi \in C(\Omega) : \| \varphi \|_{C(\Omega)} \leq R \}$. Applying the Schauder fixed point theorem, we get that \tilde{S} has a fixed point in D_R, which solves (5.1).

To prove the case $\frac{6}{5} < p \leq 3$, we apply Leray-Schauder principle (see e.g. Ref. 16, p. 280). We start noticing that, given $\varphi \in C(\Omega)$, the solution h_φ of (5.4) belongs to $W^{1,p}(\Omega)$.

Besides that, given $\psi \in C(\Omega)$ and for any $r > 3$ we have

$$\|h_\varphi - h_\psi\|_{W^r(\Omega)} = \int_\Omega |\nabla \times (h_\varphi - h_\psi)|^r \leq 2^{r-p-1} \int_\Omega (|F(\varphi)|^{r-p} + |F(\psi)|^{r-p}) |\nabla \times (h_\varphi - h_\psi)|^p.$$ (5.8)

So, using Lemma 5.1, the function \tilde{S}, defined as in (5.6), with $W^{1,p}(\Omega)$ replaced by $W^r(\Omega)$ is continuous and compact. To prove that \tilde{S} has a fixed point it is enough to prove that the set

$$A = \{ \varphi \in C(\Omega) : \varphi = \lambda \tilde{S}(\varphi) \text{ for some } \lambda \in [0,1] \}$$

is bounded independently of λ.

Given $\varphi \in A$, we have $\varphi = \lambda \tilde{S}(\varphi) = \lambda |h_\varphi|$, for some $\lambda \in [0,1]$. So

$$\|\varphi\|^r_{C(\Omega)} = \lambda^r \|h_\varphi\|^r_{C(\Omega)} \leq c \|h_\varphi\|_{W^r(\Omega)} = c \int_\Omega |\nabla \times h_\varphi|^r \leq c \int_\Omega |F(\varphi)|^r \leq c \int_\Omega (c_0 + c_1 |\varphi|^\alpha) = \tilde{c}_0 + \tilde{c}_1 |\lambda|^\alpha \int_\Omega |h_\varphi|^\alpha \leq \tilde{c}_0 + c_2 \|h_\varphi\|^\alpha_{W^{1,p}(\Omega)} \leq \tilde{c}_0 + c_3 \left(\int_\Omega |\nabla \times h_\varphi|^p \right)^{\alpha^p},$$

using the Sobolev inclusion $W^{1,p}(\Omega) \subset L^{\alpha^p}(\Omega)$, which is verified by the assumption (5.3) on α. The conclusion of the boundedness of A follows then directly from (5.7).

References

A Class of Stationary Nonlinear Maxwell Systems

