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ABSTRACT 
 

Masonry walls consist of the main elements responsible for the global stability of masonry 

buildings when subjected to lateral loads such as wind and seismic forces. These elements 

are subjected to gravity forces, bending moments and shear forces due to the horizontal 

loading. The masonry beams above the openings are important structural elements 

promoting the coupling behaviour of the masonry piers enabling the transfer of forces 

between them. Besides, the consideration of these elements leads to higher stiffness of the 

building. The anisotropic behaviour added to bi-axial stress state generated by the 

combination of those efforts becomes the behaviour of masonry walls and beams very 

complex. Therefore, this research aims at better understanding the behaviour of masonry 

walls and beams subjected to in-plane loading and propose analytical methodology for their 

design. Based on the literature review, an extensive experimental program is planned, being 

composed by experimental tests for the characterization of mechanical behaviour of masonry 

and masonry materials, in-plane cyclic tests on masonry walls and tests on masonry beams 

under flexure and shear. Based on experimental results, calibration of numerical micro-model 

using software DIANA® is presented. Moreover, a parametric analysis of masonry walls and 

beams is performed in order to assess the influence of different boundary conditions, aspect 

ratios, loading and reinforcement arrangements that could not by studied in experimental 

program. Results indicates that masonry walls and beams are described by similar flexural 

and shear resisting mechanisms. Unreinforced walls and beams present a very brittle 

behaviour. On the other hand, the application of reinforcement increases the deformation 

capacity, controls the crack opening and allows a better distribution of stresses. Longitudinal 

reinforcements (vertical in case of walls and horizontal in case of beams) increase the 

flexural strength, even if they seem not to influence the shear behaviour. Transversal 

reinforcements (horizontal in case of walls and vertical in case of beams) increase the shear 

strength, even if they do not influence the flexural behaviour. Effectiveness of reinforcements 

on the increase of the resistance of masonry walls and beams is highly related to the failure 

mode of the element. Based on numerical and experimental results, a new analytical method 

is proposed for the design of masonry walls and beams subjected to in-plane loading. 

Comparison between the results provided by the proposed method with other design 

methods presented in literature and experimental results of several authors is presented. 
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RESUMO 
 

As paredes consistem no elemento estrutural responsável pela estabilidade global dos 

edifícios em alvenaria estrutural quando sujeitos a acções laterais como vento e sismos. 

Estes elementos estão sujeitos a forças verticais e adicionalmente a momentos flectores e 

esforços de corte devido as forças laterais. Um elemento estrutural secundário mas muito 

importante na interacção de paredes são as vigas sobre as aberturas. Este elemento 

permite a transferência de esforços entre os troços de parede e confere uma maior rigidez à 

estrutura. O comportamento anisotrópico da alvenaria aliado ao estado bi-axial de tensão 

provocado pela combinação dos esforços referidos torna o comportamento das paredes e 

vigas bastante complexo. Desta forma, este trabalho tem como principal objectivo a melhor 

compreensão do comportamento de paredes e vigas de alvenaria quando sujeitos a acções 

no plano e a proposição de um método de dimensionamento para estes elementos. Assim, 

com base na revisão bibliográfica relativa ao comportamento de paredes e vigas de 

alvenaria, tanto em termos numéricos quanto experimentais, é proposto um plano extenso 

de ensaios para a caracterização mecânica dos materiais, para o estudo do comportamento 

de paredes sob a acção combinada de forças verticais e horizontais cíclicas aplicadas no 

plano das paredes e, finalmente, para o estudo do comportamento de vigas de alvenaria 

sujeitos à flexão e ao corte. Com base nos resultados experimentais é feita a calibração de 

um micro-modelo numérico com o aplicativo DIANA®, utilizando como ferramenta básica o 

método dos elementos finitos (MEF). Além disso, uma análise paramétrica é realizada nas 

paredes e nas vigas para avaliar o efeito das condições de fronteira, da geometria, da 

relação altura/largura dos elementos e das percentagens de armadura transversal e 

longitudinal.  Os resultados indicam que o comportamento das paredes e vigas é descrito 

pelos mesmos mecanismos de resistência. Ambos os elementos apresentam um 

comportamento bastante frágil quando não são armados. Por outro lado, a utilização de 

armaduras aumenta a capacidade de deformação, controla a abertura de fissuras e permite 

uma melhor distribuição de tensões. As armaduras longitudinais (verticais no caso das 

paredes e horizontais no caso das vigas) aumentam a resistência à flexão dos elementos 

mas parecem não ter grande influência no comportamento ao corte. As armaduras 

transversais (horizontais no caso das paredes e verticais no caso das vigas) aumentam a 

resistência ao corte dos elementos não tendo grande influência no comportamento à flexão. 

A eficiência das armaduras no aumento de resistência das paredes e vigas está bastante 

relacionada com o modo de ruptura. Com base nos resultados numéricos e experimentais é 

proposto um método de dimensionamento de paredes e vigas sujeitos a acções no plano. A 

comparação dos resultados fornecidos pelo método proposto e por outros métodos de 

dimensionamento com resultados experimentais de diversos autores é apresentada.   
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1 INTRODUCTION 
 

1.1 Overview of masonry 
 

Masonry is one of the most antique structural systems in the world and began to be 

developed when the men made a simple pile of stone. There are several evidences of the 

masonry used by ancient civilizations (Taly, 2001) such as zigurats built by Sumerians and 

Babylonics with sun dried lumps of mud or clay, the pyramids of Egypt, Romans’ aqueducts, 

etc., see Figure 1.1. The availability of natural materials, solidity, durability and the simple 

and easy method of construction, by laying brick over brick joined with mortar, probably 

explain why the technique has been used since ancient cultures. 

 

(a) 
 

(b) 

Figure 1.1 – Ancient masonry: (a) ziggurat1 Dur-Untash built in 13th century B.C. and (b) Roman 

aqueduct2 in Carthage, Tunísia. 

 

                                                 
1 http://en.wikipedia.org/wiki/Image:Choghazanbil2.jpg acessed on May of 2008. 
2 http://en.wikipedia.org/wiki/Image:Aqueduc.jpg acessed on May of 2008. 



Chapter 1 - Introduction 38 

The masonry structures were understood only empirically by experienced masons 

who were responsible to transmit the empirical knowledge to other generations. The 

application of structural mechanics to the design and assessment of the strength and stability 

of masonry structures dates back to 17th century when the principles of static were applied to 

an investigation of the stability of arches and domes (Hendry, 2002). In spite some tests 

carried out in the beginning of 20th century masonry structures were designed using mainly 

empirical rules and with limited engineering principles. The sixteen storeys Monadnock 

Building in Chicago, in which the wall thickness at ground level is 1.80 m, is an example. It is 

believed that if this building was designed by the current standards and with the same 

materials, the wall thickness should be lower than 30 cm (Ramalho and Corrêa, 2003). 

 

 
Figure 1.2 – Monadnock Building in Chicago3. 

 

The result of scarce or even absence of rules, recommendations and design methods 

available for masonry and with the advance of other structural systems such as reinforced 

concrete and steel, masonry structures lost prestige and practically they are no longer used. 

The interest in masonry structures became evident again after 1950’s, when Paul Haller in 

Switzerland built apartment buildings of up to eighteen-storeys with wall thickness of only 

150 mm following his research work at the Swiss Federal Institute of Technology in Zurich 

(Haller, 1969 and Ramalho and Corrêa, 2003).  

The results of several investigations that have been carried out through recent 

decades led to the preparation of codes (BS 5628, 1992; Eurocode 6, 2005) pushing the 

design of masonry structures to a more competitive approach (Carvalho et al., 2001). 

Differently of other industries, civil construction does not allow serial production which 

hinders the organization and quality control of work. In general, limited qualifications of 

workers added to the acceptance of unfeasible periods of construction leads to a very flexible 

system with low level of quality. Therefore, the rationalization of construction system through 
                                                 

3 http://www.chicagoarchitecture.info acessed on May of 2008. 
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simplification of tasks, optimization of the execution processes and consequently 

improvement on quality control provide a better performance of the built environment 

(Rauber, 2005). The masonry technology encompasses this rationalization in several 

aspects such as reduction of moulds, reduction of specialities of labour, reduction in 

thickness of coatings due to the better quality of units. Besides it contributes to minimize the 

waste of materials due to the breakage of walls to install the hydraulics and other 

installations. 

One of the most important characteristic of the masonry structures is the simple 

method of construction. It can be considered as a precast structure since the building is 

assembled by separated pieces (concrete blocks, bricks, stone). Mortar can be the unique 

material that have to be produced or prepared (pre-mixed mortars) in the local of 

construction if precast slabs are used, promoting a clean work place. Besides, in masonry 

structures the phase of constructive process of infill frames is excluded. Thus, masonry walls 

act as structural element, they make the division of space, promote thermal and acoustic 

insulation, as well as fire and weather protection. The material is relatively cheap and 

durable, can provide infinite flexibility in plan form and can offer and attractive external 

appearance (Hendry, 1998). 

On the other hand, the interaction of architectural conception, structural design, 

electrical and hydraulic projects is essential (Carvalho et al., 2001). In masonry structures, 

attention should be given to the phase of design project regarding to the compatibility of all 

specialities generating a final draw rich of details. The main disadvantage of masonry 

structures is that unexpected changes in layout of walls during or after the construction such 

as holes to air-conditioning system are impossible.   

It is important that all professionals involved in project have a general knowledge 

about the masonry system, about its possibilities and restrictions. In terms of architectural 

aspects, the modulation is the basis of the dimensional co-ordination system used for the 

design of buildings in structural masonry. The architect, since the early stages of the design, 

should work on a mesh to modulate the building according to the dimensions of the structural 

components (Carvalho et al., 2001), see Figure 1.3.  
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Figure 1.3 - Mesh used in a modular planning of masonry (Carvalho et al., 2001). 

 

Other important point during the design is the definition of the walls layout, including 

the scheme to be used by positioning various load-bearing walls over the floor/roof slab 

which will be supported, see Figure 1.4 (Hendry, 1998). According to Taly (2001), proper 

layout is crucial to a successful masonry project. The author still affirms that the layout 

should be such that floor slabs can be economically installed avoiding too much distance 

between the walls.  

 

 

 

(a) (b) 

 
 

(c) (d) 

Figure 1.4 – Possible layouts of resistant walls: (a) cellular, (b) simple cross-wall structure, (c) double 

cross-wall system and (d) core-wall structure. 
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Finally, the work of all professionals involved in the project should be compatible and 

the project manager must control this process to avoid resolution of interferences during the 

construction. Thus, the final project should present the detail of the first and second courses 

of masonry walls, detail of the intersection of walls, detail of the lintels above and below 

openings, detail of the connection between walls and slabs, detail of the vertical and 

horizontal reinforcements, detail of movement joints and a detail of the correct position of the 

electrical, hydraulical and gas installations. The final result should be a structure that is 

capable of resisting design loads, functional for the intend occupancy and free of 

maintenance problems. 

In Portugal, masonry is being used almost exclusively as traditional infill material for 

reinforced concrete frames. Nevertheless, recently, modern engineered masonry is 

becoming increasingly popular as long as horizontally reinforced non-load bearing walls in 

large non-residential buildings (Lourenço, 2006). For example, three new stadiums in 

Portugal were built for the European Championship 2004 using masonry with bed joint 

reinforcement (Lourenço, 2004). Lack of knowledge about modern masonry technology and 

simple technology required by reinforced concrete are the main factors contributing to the 

reduced use of structural masonry in Portugal. Therefore, a major challenge that has to be 

faced by the Portuguese brick and block producers is the finding of an effective and attractive 

load bearing masonry system that is able to convince contractors and designers to use it in 

low and medium-rise buildings. The adoption of such a renewed building technology by 

contractors seems obvious due to the economical and technological advantages (Lourenço 

et al., 2006). In this context, some research projects have been carried out by University of 

Minho in conjunct with the industry to develop and disseminate the structural masonry into 

the Portuguese civil construction market.      

 

1.2 Objectives 
 

Masonry is an excellent material to resist compression stresses generated by gravity 

loads. However, masonry buildings should be also capable to resist lateral loads, which 

produce tensile and shear stresses. Wind and seismic actions are the main lateral loadings 

supported by masonry buildings. The main structural elements which resist these actions are 

the walls subjected to in-plane loadings connected by beams located over the openings. The 

use of steel reinforcement is one of the more reliable solutions for making masonry buildings 

adequately safe when subjected to seismic actions. In this way, prefabricated reinforcements 

are being highly applied aiming at improving on-site productivity.  
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Thus, the main objective of this research is the evaluation of the behaviour of 

masonry structural elements (walls and beams) reinforced with longitudinal and transversal 

prefabricated truss type bars under in-plane loading. The evaluation of the in-plane 

behaviour of masonry walls and beams aims at performing: (a) an experimental assessment 

of the influence of variables like longitudinal and transversal reinforcement ratios, level of 

pre-compression and distinct masonry bond patterns in order to propose a solution 

technologically more efficient; (b) validation of a numerical model and perform a parametric 

study in order to assess the influence of geometry and boundary conditions and additionally 

the presence of transversal and longitudinal reinforcements and variation of their ratio and 

filling of vertical joints (c) proposal of an analytical model for the design of masonry walls and 

beams. 

 

1.3 Research Significance 
 

Due to the poor performance of masonry under tensile stresses, the lateral actions 

are critical during the design of masonry buildings. On the other hand, shear walls are the 

main structural elements on masonry buildings responsible for resisting the lateral loads. 

Even if several researches has been performed on the unreinforced and reinforced masonry 

up to date, there are many doubts and lack of knowledge on several issues such the 

influence of the longitudinal and transversal reinforcement ratio on the lateral resistance of 

masonry walls. Besides, standards present design methods much simplified or empirical and 

in most cases underestimate the capacity of shear walls. Masonry beams connect the shear 

walls and provide a better distribution of the lateral forces through the wall panels reducing 

the efforts at the base of building. There are few works evaluating these elements and in 

general they are designed using the same methods applied in reinforced concrete beams. In 

addition, the use of prefabricated truss type bars for transversal and longitudinal directions is 

considered to be a challenge. The use of these bars can increase the productivity in 

construction of reinforced masonry buildings due to the facility of application.  

Thus, the major significance of the present thesis relies on the clarification of the in-

plane behaviour of reinforced masonry structures by achieving a better insight on the main 

parameters influencing their in-plane behaviour. The major outputs of the thesis is the 

experimental research, advance numerical simulation of reinforced masonry structures, 

relatively to which scarce information exists in literature, and in the proposal of an analytical 

model to assist the design of masonry walls and beams.  
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1.4 Methodology 
 

Firstly, an extensive literature review was carried out aiming to better understand the 

behaviour of shear walls and masonry beams and to gather the information related to past 

and recent experimental, numerical and design procedures on reinforced masonry walls and 

beams.  

The second phase encompasses the planning of the work of the thesis, including 

experimental, numerical and analytical analysis of masonry walls and beams. It was decided 

to analyse reinforced masonry walls that are suitable to be used on seismic areas. Besides, 

concrete blocks, cement mortar and prefabricated truss type reinforcements were adopted as 

the main materials of masonry. The experimental work is divided in three parts: (1) the 

experimental program I aims at performing the mechanical characterization and evaluation of 

mechanical behaviour of masonry and masonry materials. It includes the mechanical 

characterization of the concrete units, mortar, reinforcements and the masonry as composite 

material; (2) the experimental program II intends to evaluate the experimental behaviour of 

reinforced masonry walls under cyclic lateral loads, namely the failure modes, force-

displacement diagrams, lateral resistance, stiffness degradation and energy dissipation 

capacity. Ten shear walls were built with distinct reinforcement ratios, geometry of units, pre-

compression levels and masonry bond patterns; (3) in the experimental program III, twenty 

four masonry beams were tested under monotonic loading. Four and three load point 

configuration tests were considered to evaluate the flexure and shear in masonry beams. 

Furthermore, a numerical model was calibrated using the experimental results and a 

parametrical analysis was carried out to evaluate the influence of other variables in 

behaviour of shear walls and masonry beams not observed in experimental tests. A design 

model was proposed for the design of reinforced masonry walls and beams. An evaluation of 

its performance was carried out by comparing the experimental and analytical lateral 

resistance of reinforced masonry walls with design models available in literature. A database 

containing about 100 walls was built in order to validate the design model for masonry walls. 

Unfortunately, this procedure could not be applied in design methods of masonry beams due 

to the absence of results of experiments in literature. Finally, in order to exemplify the 

proposed design model, an example of elastic design of a masonry building is presented. 

Figure 1.5 presents a scheme of the methodology used in this research. 
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Literature 
review

Experimental program I:
Characterization of materials

Experimental program II:
Shear Walls

Experimental program III:
Masonry Beams

Numerical simulation:
Calibration of model

Parametrical study:
Shear Walls

Parametrical study:
Masonry Beams

Example of application

Conclusions

Development of a design method

 
Figure 1.5 – Flow chart of the methodology of the research. 

 

1.5 Outline of the thesis 
 

Thesis was divided in eight chapters: (1) introduction, (2) literature review, (3) 

experimental program I: characterization of materials, (4) experimental program II: shear 

walls, (5) experimental program III: masonry beams, (6) numerical simulation,  (7) new 

analytical method for design of masonry walls and beams subjected to in-plane loading and 

(8) conclusions and final remarks. 

Chapter 2 presents a literature review about shear walls and masonry beams. 

Resistant mechanisms and the variables that influence the behaviour of these elements are 

discussed. Some experimental works are reported mainly for shear walls. Besides, an 

overview of the numerical modelling of masonry is presented pointing out the main 

characteristics of micro- and macro-modelling approaches.  

Chapter 3 details the characterization of materials that are used in the construction of 

masonry walls and beams. In case of concrete units, some tests are carried out to evaluate 

the compressive strength normal and parallel to hollow cores, tensile strength, water 

absorption, dimensions and voids’ percentages. In case of mortar, some tests are carried out 

to evaluate the workability through the flow table, compressive and flexural strength. In case 

of reinforcements, direct tensile tests are carried out to obtain the yield strength and the 
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elastic modulus. Besides, some tests are carried out to evaluate the behaviour of masonry as 

a composite such as compressive strength parallel and perpendicular to bed joints, diagonal 

strength, flexural strength and initial shear strength.   

Chapter 4 describes the experimental program of shear walls. Details of the 

construction of specimens, layout of test, test procedures and instrumentation are explained. 

Results of test are presented in terms of failure modes and force vs. displacements 

diagrams. Seismic performance of the specimens is discussed based on the stiffness 

degradation, energy dissipation capacity, ductility and the bi-linear idealization of the 

experimental monotonic envelops.     

Chapter 5 describes the experimental program of masonry beams. Details of the 

specimens, layout of test, test procedures and instrumentation are explained. Results of test 

are presented in terms of failure modes and force vs. displacements diagrams and resistant 

mechanisms are discussed. 

Chapter 6 presents the numerical modelling of shear walls and masonry beams. 

Firstly, the calibration of the micro-model is presented based on experimental results of the 

tests in shear walls and masonry beams. Furthermore, a parametric study is carried out for 

shear walls and masonry beams in order to evaluate in detail the main factors influencing 

their in-plane behaviour. 

Chapter 7 presents a new analytical method based on experimental and numerical 

results for the design of masonry walls and beams. In case of shear walls a database with 

100 masonry walls collected from the literature review is used to validate the proposed 

method and compare its performance with analytical models available in literature. Besides, 

a Windows application is developed to design shear walls and masonry beams through the 

proposed model and also through the models selected from the literature. Besides, a 

masonry building is designed using the model proposed in this thesis to design the shear 

walls and masonry beams in order to exemplify its use. 

Chapter 8 presents a summary of the research with the main conclusions and some 

suggestions for further works.  
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2 LITERATURE REVIEW 

 

2.1 Introduction 
 

Structures are often subjected to lateral loads from wind or, in zones of moderate or 

high seismicity, from seismic actions, meaning that structural systems have to be designed to 

resist these types of loading. In masonry buildings walls are the main structural elements that 

assure the structural stability for in-plane loads and out-of-plane loads. Due to the cyclic 

random nature of the seismic and wind actions, any wall of a building can be subjected to in-

plane and out-of-plane loads, as shown in Figure 2.1. Masonry walls are the main elements 

that resist the in-plane loads and act in conjunction with beams over doors or windows 

connecting the masonry piers. The masonry walls are particularly vulnerable to out-of-plane 

loads and its adequate in-plane behaviour is only ensured if the walls resist the out-of-plane 

loading. Besides lateral loads, the walls are submitted to vertical loads since they constitute 

the main supports of slabs, vaults and domes, meaning that a complex stress state develops 

in masonry walls.  

 

          
Figure 2.1 – Behaviour of the walls due to cyclic random nature seismic action. 
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Unreinforced masonry is an excellent structural material when compressive stresses 

are preponderant. However, it is well known that the low tensile strength of masonry 

becomes it inadequate to be use when lateral forces reach high values. Therefore, the use of 

steel reinforcement appears to be a good solution to increase the tensile strength and, thus, 

to improve the mechanical behaviour of masonry under lateral loading.  

Although several investigations have been performed in the scope of unreinforced 

masonry, mainly due to the need of preserving historical constructions, its behaviour under 

lateral forces is not still completely clear. Masonry exhibits a complex structural behaviour 

since it is a composite material with anisotropic behaviour subjected to a tri-axial stress state 

(Drysdale et al., 1999). The complexity of the in-plane behaviour of masonry walls increases 

when the presence of steel reinforcement is considered. Besides the material properties of 

the components (units and mortar) and of the unit-mortar interface (tensile bond and shear 

behaviour), the interaction between masonry material and reinforcement has to be analyzed.  

The correct understanding of the in-plane behaviour and of the factors that influence 

the response of reinforced masonry walls based on experimental and numerical approaches 

remains an important research topic. The main focus of this thesis is the in-plane behaviour 

of reinforced masonry walls and masonry beams. Thus, a brief overview on the structural 

behaviour of resisting masonry structural elements to the in-plane lateral loading is presented 

in the next sections. 

 

2.2 Shear walls 
 

The walls subjected to in-plane loading are known as “shear walls” due to the 

predominance of the shear efforts. A shear wall acts as vertical cantilever or fixed end 

structural element and its stiffness depends basically on its aspect ratio defined as the 

relation between the height and length of the wall. As observed by several authors (Anthoine 

and Magonette, 1995; Schultz et al., 1998; Kikuchi et al., 2003), the aspect ratio has a great 

influence on the failure mode of the walls. For low aspect ratios shear failure predominates, 

whereas flexural behaviour governs the in-plane behaviour of slender walls. The failure mode 

of a particular shear wall also depends on the combination of applied loads, properties of the 

materials and as recently pointed out by Vasconcelos (2005) on the bond pattern. Besides, in 

reinforced masonry walls the details of the vertical and horizontal reinforcement also 

influence their in-plane behaviour. Figure 2.2 shows the distinct crack patterns associated to 

different stress states exhibited by shear walls.  
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Figure 2.2 – Typical cracking patterns of shear walls. 

 

Shear walls are subjected to flexure and shear efforts in conjunction with compressive 

stresses associated to the gravity loads. Its behaviour under flexure is well-defined and 

follows the same rules applied to concrete structures. However, in terms of shear, masonry 

walls exhibit a complex behaviour due to the presence of weakness planes along head and 

bed joints. Thus, there has been considerable research works focused on the analysis of 

shear behaviour of masonry walls (Abrams, 1986; Shing et al., 1989; Anthoine and 

Magonette, 1995; Tomaževič, 1999; Dhanasekar and Haider, 2004; Vasconcelos, 2005; 

Voon and Ingham, 2006). According to Tomaževič (1999), the axial load has a significant 

influence on the shear strength of masonry walls. If the axial load is within moderate values 

and depending on the aspect ratio the wall may fail by shear or flexure. In shear mode 

diagonal cracks develop at the unit-mortar interface or both at the unit-mortar interface and 

through units as result of a biaxial tension-compression stress state, which in unreinforced 

masonry generally mean the collapse. In flexural mode, horizontal cracks opens at the unit-

mortar interfaces as a result of the reduced tensile bond strength of masonry. This crack 

pattern represents only an intermediate and local failure mechanism since global failure of 

wall does not develop if it occurs. However, these cracks reduce the resisting cross section, 

leading to a concentration of compressive stresses and to the failure of the wall by toe 

crushing. 

 In case of unreinforced masonry, it is widely accepted that axial compression 

increases the shear strength according to a Coulomb failure criterion until a limit value, see 

Figure 2.3, being the failure mode mainly characterized by diagonal stair stepped cracks 

along unit-mortar interfaces. After this point, the increase on the axial compression leads 

only to a slight increase on the shear strength. Diagonal shear cracks can be followed by the 

reduction of the shear strength with the increase on the axial compressive stress (Drysdale 

et al., 1999). 
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Figure 2.3 – Behavior of unreinforced masonry under combined shear and normal stresses (Drysdale 

et al., 1999). 

 

Andreaus (1996) identified ten mechanisms of failure to masonry subjected to in-

plane loading defined by three failure criterions: Mohr-Coulomb (slipping), Saint-Venant 

(splitting) and Navier (spalling) as follow:  

 

1. Slipping of mortar joints 

 

This failure is predominantly observed in the mortar joints 

and corresponds to the practical range of compression 

found in shear walls up to about 2MPa. This mechanism 

may not constitute the ultimate failure. 

 

2. Slipping of bed joints. 

 

In case of low axial load the lateral loading may lead to 

shear failure by the horizontal sliding of the joints. This 

failure usually happens in upper storeys of buildings, 

where high seismic accelerations are associated to low 

axial loads. 

 

3. Splitting and slipping of bed joints. 

 

Failure was observed to take place along the bed joints 

and constitute the ultimate failure of the wall. 
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4. Splitting of bricks and slipping of mortar joints. 

 

Depending on the relative magnitudes of shear and 

compressive stresses, failure of the panels occurs by 

cracking and sliding along bed and/or head joints, or in a 

combined mechanism involving cracking in brick and 

joints. 

 

5. Splitting of bricks and head joints. 

 

This failure mode is a tension failure by tensile 

debonding between the mortar and the brick along the 

head joints and/or tensile failure of brick in some 

courses. 

 

6. Slipping of bed joints and splitting of head joints. 

 

This failure is very similar to the previous mechanism 

however the failure only happens along head joints 

because weaker mortar. 

 

7. Splitting of bed joints. 

 

Failure occurs or by compression parallel to bed 

joints or by tension perpendicular to bed joints. 

 

8. Slipping and splitting of mortar joints. 

 

A zig-zag pattern through the head and bed joints 

occurs because a combined slipping and splitting failure 

mechanism.  

 

9. Biaxial deformation. 

 

All failures in this range will propagate along the joint 

planes and the final failure will occur when a sufficient 

number of joints have failed to allow a collapse 

mechanism to form. 
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10. Middle plane spalling. 

 

This is a brittle failure that occurs in case of biaxial 

compression with very high compressive stresses with 

respect to shear stress. 

 

Another factor that have a strong influence on the structural behaviour of the masonry 

walls are the boundary conditions. In real buildings the walls are generally restrained in three 

or four sides: at upper and bottom edges by slabs/wood diaphragms and at lateral edges by 

perpendicular walls. Abrams (1986) and Modena et al. (2004) tested two-story reinforced 

masonry building systems in a real scale, which enabled to simulate the real connection 

between the structural elements. Nevertheless, these types of specimens are expensive and 

need special apparatus to be tested. Therefore, single walls, commonly cantilever or fixed 

end walls are the most common system for in-plane and out-of-plane testing. Lateral 

restraints can be simulated by flanged panels (Zhang et al., 2001; Yoshimura et al., 2003; 

Modena et al., 2004) as shown in Figure 2.4. However, the interaction between walls is still a 

subject not well understood. This type of specimen is particularly used when the main aim is 

the assessment of the influence of the level of connection between walls on the in-plane or 

on the out-of-plane behaviour.  

 

 
Figure 2.4 – Lateral restraints simulated by flanged walls. 

 

In the recent decades, several works have been carried out for the evaluation of the 

behaviour of unreinforced masonry walls since it is a constructive system existing in the most 

impressive monumental buildings and presently it is a constructive alternative of easy 

application, practical, fast to be built and economically competitive (Jingqian et al., 1986; 

Mahmoud et al., 1995; Zhuge et al., 1996; Bosiljkov et al., 2003; Steelman and Abrams, 

2007). However, serious damages in unreinforced masonry walls have been observed in 

some past earthquakes such as in the 1931 Hawke’s Bay in New Zealand, 1976 Friuli in 
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Italy, 1949 Olympia and 1965 Seattle-Tacoma earthquakes, see Figure 2.5. This led to the 

idea that unreinforced masonry walls behave in an inappropriate manner under seismic 

loading, being not allowed in zones with moderate to high seismic hazard. 

 

 
(a) 

 
(b) 

Figure 2.5 – Examples of damages caused by an earthquake in unreinforced masonry walls: (a) 1965 

Seattle-Tacoma (Noson et al., 1988) and (b) 1976 Friuli in Italy4. 

 

The brittle failure of unreinforced masonry shear walls, which is more remarkable with 

high axial loads, may be reduced by the use of steel reinforcement. According to several 

authors, the introduction of reinforcement in the masonry ensures the increase on the 

ductility due to redistribution of lateral loads, and provides better energy dissipation under 

seismic loading (Schultz et al., 1998; Yoshimura et al., 2003; Dhanasekar and Haider, 2004; 

Voon and Ingham, 2006). This is very important in areas with high seismicity. According to 

Tomaževič (1999), when diagonal cracking develops in an unreinforced masonry shear wall 

subjected to lateral loading a severe deterioration of the wall strength occurs and a brittle 

collapse takes place. The presence of the horizontal reinforcement prevents the separation 

of the wall’s cracked parts at shear failure and provides the load transfer between the edges 

of the cracks Schultz et al. (1998), see Figure 2.6a. 

After diagonal cracking and separation of the wall in two parts, the horizontal 

reinforcement is subjected to increasing tensile stresses and to tendency for pull-out from the 

joint. According to Voon and Ingham (2006), this resisting mechanism enables the 

redistribution of lateral loads improving the resistance and energy dissipation capacity of the 

wall when subjected to repeated reversal lateral loads. Therefore, the walls with bed joint 

reinforcement present smeared cracking in opposition to the localized shear crack of 

unreinforced masonry walls.  

                                                 
4http://www.gfz-potsdam.de/pb5/pb53/projekt/ems/guide/illustrations/illustrations.htm acessed in April 

of 2007. 
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Figure 2.6 – Resisting mechanisms of reinforced masonry walls: (a) horizontal reinforcement and (b) 

vertical reinforcement (Tomaževič, 1999). 

 

Yoshimura et al. (2003) observed that specimens with horizontal reinforcement 

present higher ductility and ultimate load in relation to unreinforced masonry. However, 

concerning the contribution of horizontal reinforcement for the improvement of the lateral 

strength there is no clear agreement. According to Shing et al. (1990b), the use of horizontal 

reinforcement exhibits a small influence both in ultimate and diagonal cracking load and only 

a high horizontal reinforcement ratio improves ductility and energy dissipation capacity of 

masonry walls. Similar results are pointed by Schultz et al. (1998) that stated that horizontal 

reinforcements have only a modest influence on ultimate shear stress and deformation 

capacity.  

The resisting mechanism developed in vertical reinforcements is quite different. The 

vertical reinforcement is particularly effective in case of flexural behavior governs the lateral 

response, increasing the flexural strength of masonry walls. Additionally it contributes to the 

shear resistance of masonry walls through the dowel action mechanism, see Figure 2.6b and 

Figure 2.7. Experimental tests performed by Tomaževič (1999) confirmed that the shear 

resistance of reinforced masonry walls can be more easily assessed as a sum of 

contributions of the masonry wall panel and vertical reinforcement.  
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Figure 2.7 – Dowel mechanism of vertical reinforcement at shear failure of a reinforced masonry wall 

(Tomaževič, 1999). 
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Dhanasekar and Haider (2004) studied the influence of the spacing ratio of vertical 

reinforcement. Authors concluded that shear walls with vertical reinforcement spaced 

uniformly exhibited good level of lateral strength and ductility. These specimens degraded 

gradually when compared with the walls with non-uniform distribution of vertical 

reinforcement and exhibited gradual reduction on the lateral strength with increasing spacing 

ratio of vertical reinforcement.  

On the other hand, as assessed in post-earthquake damage observations and 

through experimental results, only vertical steel reinforcement is not able of contributing to 

the shear resistance of masonry. Walls reinforced with vertical reinforcement fail in shear, 

despite their predicted flexural behaviour (Tomaževič, 1999).  

 

2.3 Masonry beams  
 

In masonry buildings the masonry beams are the structural elements responsible for 

the distribution of vertical loads over openings, see Figure 4.2. Combined with shear walls, 

masonry beams play a major role on the distribution of lateral actions in masonry buildings 

providing the coupling of masonry piers. They may be built by using other materials such as 

steel profiles and precast reinforced concrete elements. However, in these cases, special 

care should be taken to consider the composite behaviour of masonry and the other material. 

 

Beam

Shear wall

 
Figure 2.8 – Localization of masonry beams. 

 

In masonry walls and beams an interesting phenomenon can develop denominated 

“arch action”, corresponding to the direct transfer of the applied in-plane vertical load to the 

supports. When arching mechanism develops, a triangular part of the beam immediately 

above the opening could be removed without affecting the load capacity of the element. 

According to Taly (2001), the development of arching action depends on the mass of 
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masonry in each side of the opening providing adequate restraint to resist the horizontal 

thrust. If the adjacent masonry is found to be unable to resist these forces, tension ties are 

required to provide resistance to tensile stresses developed at the bottom edge. Taly (2001) 

considers that there is a great degree of uncertainty about which span to depth ratios leads 

to the development of arching action, however pointed out a maximum value of about 2.0. 

According to Haseltine and Moore (1981), the equivalent arch has a thickness of about 60% 

of the span length and an internal radius of about 0.25L, see Figure 2.9. This subject has 

been analyzed by some researchers in the analysis of composite masonry beams above 

openings in which a reinforced concrete beam is embedded at the lower edge (Wood, 1952; 

Stafford Smith and Riddington, 1977; Tomazela, 1995; Paes, 2008).  
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Figure 2.9 – Development of the arching effect. 

 

The span to depth ratio has also influence on the behaviour of masonry beams and in 

the corresponding design approach. According to several authors, the design of masonry 

beams can be performed using the ultimate strength design method used in reinforced 

concrete structures (Khalaf et al., 1983; Hendry, 1998; Drysdale et al., 1999; Taly, 2001). 

However, this method is not valid to deep beams. Deep beams are structural elements in 

which a significant amount of the load is transferred to the supports by compression struts 

connecting the load and the supports. The strain distribution is no longer considered linear 

and the shear deformations become significant when compared to pure flexure, being the 

strut-and-tie model recommended for the design, see Figure 2.10. European standard 

Eurocode 6 (2005) considers deep beams in case of span to depth ratio is lower than 2.0.  

 

 
Figure 2.10 – Deep beam behaviour (Drysdale, 1999). 
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According to Drysdale et al. (1999) for shallow masonry beams (span to depth ratio 

higher than 5 for simply supported beams) the fundamental assumptions considered in the 

analysis of reinforced concrete elements under flexure can be adopted: 

• Internal forces at any section of a member are in equilibrium with the effects of 

external loads; 

• Plane sections before bending remain plane after the bending; 

• After the cracking, the contribution of tension in the masonry is ignored; 

• Complete bond between steel and masonry is considered. 

Khalaf et al. (1983) tested a total of eight fully grouted concrete block masonry beams 

divided in two series: a series with span to depth ratio of about 9 and another series with 

span to depth ratio of about 6. In both series varying levels of tensile reinforcement were 

considered aiming at assessing the load-deflection behaviour and at obtaining the strength in 

flexure. Authors confirmed the assumption that plane sections remain plane during bending 

and obtained an ultimate compressive strain for masonry of about 0.003. 

Limón et al. (2000) tested ten brick masonry beams (span to depth ratio equal to 4.5) 

reinforced with truss type prefabricated bars through four point load configuration aiming at 

analysing the flexural behaviour of the masonry. Variables like the depth of the neutral axis, 

the quantity of reinforcement, the overlap of wires and the shear behaviour of masonry were 

considered in the analysis. Specimens exhibited an ultimate load up to 100% higher than the 

predicted values from flexural strength method. Authors assumed that the high value of the 

resistance was attributed to the lower reinforcement area considered in the calculations as 

the diagonal bars were not taken into account. Taking into account the area of diagonal bars 

Limón et al. (2000) obtained experimental resistances in some specimens close to 

theoretical values.  

In the calculation of flexural strength of masonry beams the compressive strength of 

masonry in the parallel direction to bed joints is needed, contrarily to masonry walls, whose 

calculation of the in-plane flexural strength needs the knowledge of the compressive strength 

of masonry in perpendicular direction to bed joints, see Figure 2.11.  

According to Eurocode 6 (2005) the compressive strength of masonry in the parallel 

direction to bed joints should be calculated by using the same equation adopted for the 

calculation of the compressive strength of masonry perpendicular to bed joints. For this, the 

normalized compressive strength of the masonry units obtained from experimental tests in 

the parallel direction to bed joints must be considered. Besides, for units of group 2 and 3 the 

value of the coefficient K used in the formula presented by Eurocode 6 (2005), related to the 

type of mortar and grouping of units, should be multiplied by 0.5. 

 



Chapter 2 – Literature review 58 

compressive stresses
perpendicular to bed joints

compressive stresses
pearallel to bed joints  

Figure 2.11 – Stress diagram along the length of shear walls and along the height of masonry beams.  

 

Chen et al. (2008) performed a parametric study of reinforced masonry sections 

under flexure and observed that compressive strength of masonry has a large influence on 

the resisting moment, whereas the tensile strength has only a marginal effect. Another 

aspect analyzed by some authors is the distribution of longitudinal reinforcements in masonry 

beams (Jang and Hart, 1995; Adell et al., 2008). Results showed that uniform distribution of 

reinforcement has advantages over concentrated reinforcements both at top and bottom 

layers, providing better shear resistance by dowel action, even if displacement ductility 

decreases. 

As in case of walls, shear resisting mechanisms in masonry beams appear to be very 

complex. Also in this case, the shear efforts are mostly due to lateral loads such as wind and 

earthquakes. Maximum shear stresses generally develop near the supports leading to 

diagonal cracking oriented approximately to 45º. From experimental tests several 

researchers concluded that lower shear strength was observed in masonry beams with the 

same geometry of reinforced concrete beams (Fereig, 1994; Li and Neis; 1986). Fereig 

(1994) observed this behaviour in masonry specimens with a/d < 2.0 (ratio of shear span and 

effective depth) and assigned to the “arch action”. Besides, Fereig (1994) did not observe 

significant increase in the shear strength by providing an increase of the longitudinal 

reinforcement ratio. According to Drysdale et al. (1999) stronger arches correspond to lower 

span to height ratios. The shear strength increases when the beams have rigid ties provided 

by the addition of high amount of tension reinforcements. The formation of a tied arch 

represents an ultimate resisting mechanism, which is considered to be particularly a 

dangerous mode of failure due to its brittleness. 

Based on a significant number of tests, Suter et al. (1984) proposed a shear strength 

design equation for masonry beams fully grouted without vertical reinforcement (stirrups). 

According to the design model, the shear strength is a function of the span to length ratio and 

of the longitudinal reinforcement ratio, ρ, see Figure 2.12.  
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Figure 2.12 – Shear strength of beams without shear reinforcement (Suter et al., 1984). 

 

As in reinforced concrete beams, vertical reinforcements in masonry beams, crossing 

diagonal cracks, control crack opening and crack propagation can be considered in masonry 

beams. Through experimental tests Fereig (1994) observed that vertical reinforcement 

prevents diagonal tension failure and allows the development of full flexural strength. 

Comparing to the experimental and numerical information available in literature 

related to masonry shear walls, there is much more reduced information on the behaviour of 

masonry beams. In general, design codes for masonry use the same assumptions available 

for reinforced concrete beams. However, considering that the common height of masonry 

beams is approximately 1600 mm (800 mm above the openings plus 800 mm under the 

opening of the other floor), the span of the beam should be at least 8000 mm in order to the 

span to depth ratio to comply with the requirement pointed out by Drysdale et al. (1999) in 

relation to the span to depth ratio of the beams (5.0) to be considered regular beams. Thus, 

more research is needed to better understanding the flexural and shear behaviour of 

masonry beams and the influence of the vertical and horizontal reinforcements on their shear 

and flexural strength. 

 

2.4 Design models 
 

Design of masonry structures subjected to in-plane loading encompasses two major 

resisting mechanisms: flexure and shear. According to Shing et al. (1990b) flexural strength 

and deformation can be accurately evaluated by means of the simple flexure theory used for 

reinforced concrete structural elements. However, shear resisting mechanisms are 
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considerably more complex. Design models consider that shear strength is the result of the 

contribution of resisting masonry and reinforcements. The calculation of the contribution of 

masonry to shear strength is complex to define since it depends on the biaxial behaviour of 

masonry, which is an anisotropic material. In relation to the contribution of reinforcements, 

the main difficulty is the definition of the percentage of transversal reinforcement that is really 

active since the shear stresses are not homogeneous through the section of masonry 

elements. Besides, longitudinal reinforcements are subjected to transversal efforts resulting 

on its bending, which is known as the dowel action mechanism. Thus, part of the shear 

capacity of the masonry elements can also be attributed to this mechanism. Still related with 

shear mechanism, the sliding between the joints is an interesting effect which is related to 

the interface unit-mortar. However, in case of shear walls, sliding normally can be neglect 

since its evaluation is important only when there is none pre-compression, according to 

Tomaževič (1999) and Shing et al. (1990a).  

This section aims at presenting some well known approaches for the calculation of 

shear and flexural strength of reinforced masonry walls and masonry beams.  

 

2.4.1 Shear walls 

2.4.1.1 Eurocode 6 (2005) 

 

According to Eurocode 6 (2005) the design of shear walls should be performed by 

considering different failure modes, namely failure in shear and in flexure. The evaluation of 

flexural strength of reinforced masonry walls shall be based on the following assumptions:    

• the reinforcement is subjected to the same variations in strain as the adjacent 

masonry; 

• the tensile strength of the masonry is taken to be zero; 

• the tensile strain of the reinforcement should be limited to 10%; 

• the maximum compressive strain of the masonry is chosen according to the material; 

• the maximum tensile strength in the reinforcement is chosen according to the 

material; 

• the stress-strain relationship of masonry is taken to be linear, parabolic, parabolic 

rectangular or rectangular (λ = 0,8x); 

• the stress-strain relationship of the reinforcement is defined according to Eurocode 2 

(2004); 
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• for cross-sections not fully in compression, the compressive strain should be taken 

not greater than εmu = -0,0035 for Group 1 units and εmu = -0,002 for Group 2, 3 and 4 

units. 

The flexural strength is obtained by defining the equilibrium of the section in terms of 

forces and bending moments (Eq. 2.1 and Eq. 2.2), taking into account the constitutive laws 

for masonry and reinforcements(Eq. 2.3 and Eq. 2.4) and the compatibility of strains (Eq. 

2.5), see Figure 2.13: 
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Where, N and MR are the axial force and moment applied to the section, Fm is the force 

resisted by masonry, εm is the strain of compressed masonry, fa is the compressive strength 

of masonry, Es is the elastic modulus of reinforcements, Asvi is the area of i- reinforcement, Fsi 

is the force resisted by the i- reinforcement, di is the depth of the i-reinforcement, εsi is the 

strian of the i- reinforcement, x is the position of neutral axis and bw and tw are the length and 

thickness of walls, respectively.  
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Figure 2.13 – Stress and strain distribution in the wall section assuming a rectangular stress-strain 

approach (Eurocode 6, 2005). 
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When shear failure mode is considered, Eurocode 6 (2005) proposes the calculation of 

the shear strength by taking into account the contribution of masonry and reinforcements 

through Eq. 2.6. 

 

21 RR VVV +=  

wwyhshwwv btMPafAtbfV )2(9.0 ≤+=  
Eq. 2.6

 

Where, VR1 and VR2 are the contribution of masonry and horizontal reinforcement 

respectively, Ash is the area of horizontal reinforcement, fyh is the yield strength of horizontal 

reinforcement.  

The contribution of masonry for shear strength follows the law of Mohr-Coulomb with 

the initial shear strength considered as the cohesion of masonry and the friction coefficient 

equal to 0.4, see Eq. 2.7. The upper limit of the characteristic shear strength is given by    

Eq. 2.8. This limitation accounts for a possible failure by shear of the units instead of the 

mortar joints. 

 

σ4.00 += vv ff  Eq. 2.7

bv ff 065.0≤  Eq. 2.8

 

Where, fv is the shear strength of the masonry, fv0 is the initial shear strength of masonry, σ is 

the normal stress and fb is the normalized compressive strength of the masonry unit.  

The contribution of reinforcements is considered to be the yield force of all horizontal 

reinforcements distributed along the height of the wall. This approach leads to high values of 

shear strength as, in fact, only part of the reinforcement contributes to the shear strength. 

However, Eurocode 6 (2005) defines a limit to the shear stress equal to 2.0 MPa, ensure low 

values of shear strength in case of high steel ratio.  

In case of unreinforced walls, Eurocode 6 (2005) considers that only the compressed 

length of the wall should be considered to contribute to the shear strength being the tension 

part neglected, see Eq. 4.17. 

 

wcv tlfV =  Eq. 2.9

 

Where, fv is the shear strength of interface unit-mortar and lc is the compressed length of the 

wall in flexure. The compressed part of the wall is calculated assuming a linear elastic 

distribution of the normal compressive stresses. 
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When the main reinforcement is placed in pockets, cores or cavities filled with concrete 

infill Eurocode 6 (2005) in informative Annex J suggest that the vertical reinforcement in 

conjunct to the infill material contributes to the shear strength and recommend that the value 

of fv shall be obtained by Eq. 2.10. 

 

vvf ρ5.1735.0 +=  Eq. 2.10

 

Where, ρv is the vertical reinforcement ratio. 

 

2.4.1.2 MSJC (2002) 

 

According to the Masonry Standard Joint Committee (MSJC, 2002) unreinforced 

masonry walls should be designed under flexure as an elastic material ensuring that the 

tensile stresses are lower than the tensile bond strength. In Table 2.1 a summary of the 

tensile bond strength to different masonry types and for distinct masonry mortars (Portland 

Cement-lime mortar (PCL), cement mortar and air-entrained Portland Cement-Lime mortar) 

is shown. 

For partially grouted masonry, allowable stresses shall be determined from linear 

interpolation between fully grouted hollow units and ungrouted units based on the amount of 

grouting. 

 
Table 2.1 – Flexural strength for clay and concrete masonry (MSJC, 2002). 

Mortar types 
PCL or cement 

mortar 
Masonry cement or 
air-entrained PCL Masonry Type 

M or S N M or S N 
Normal to bed joints     

Solid units 0.689 0.517 0.413 0.262 
Hollow units1     
Ungrouted 0.431 0.331 0.262 0.158 
Fully grouted 1.124 1.089 1.055 1.000 

Parallel to bed joints in running bond     
Solid units 1.379 1.033 0.827 0.517 
Hollow units     
Ungrouted 0.862 0.655 0.517 0.331 
Fully grouted 1.379 1.033 0.827 0.517 

Parallel to bed joints in stack bond 0 0 0 0 



Chapter 2 – Literature review 64 

For the shear strength of unreinforced masonry walls, MSJC (2002) recommends the 

values provided in Eq. 2.11 to Eq. 2.15.  

 

( )an fAV 8,3083,0=  Eq. 2.11

( )nAV 300083,0=  Eq. 2.12

( ) NAV n 45,056083,0 +=    running bond masonry not 
solidly grouted and for 
stack bond masonry with 
open end units and 
grouted solid. 

Eq. 2.13

( ) NAV n 45,090083,0 +=   running bond masonry 
grouted solid. 

Eq. 2.14

( )nAV 23083,0=                    stack bond other than 
open end units and 
grouted solid. 

Eq. 2.15

 

Where, An is the net area of the wall, fa is the compressive strength of masonry and N is the 

axial force of wall. 

Design of reinforced shear walls under flexure should be performed considering 

similar assumptions to those used in reinforced concrete structures according to MSJC 

(2002). The shear strength of masonry walls is considered to be the sum of the contribution 

of masonry and of the contribution of reinforcements similarly to Eurocode 6 (2005), see    

Eq. 2.16. 
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Eq. 2.16

 

Where, Mu and Vu are the maximum bending moment and shear force of the section, dv is the 

actual depth of the section of masonry wall and s is the spacing of reinforcement. 

 The maximum values for the shear strength need not to be greater than the values of         

Eq. 2.17 and Eq. 2.18. The maximum value of nominal shear strength is permitted to be 

calculated by linear interpolation between the presented limits for values of Mu/Vudv between 

0.25 and 1.00. 
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25.0≤
vu

u
dV

M
    ( )an fAV 6083.0≤  Eq. 2.17

00.1≥
vu

u
dV

M
    ( )an fAV 4083.0≤  Eq. 2.18

 

2.4.1.3 Tomaževič (1999) 

 

Tomaževič (1999) evaluates the flexural strength shear walls using the classical 

formulation presented in Eurocode 6 (2005) but with some simplifications: (a) the vertical 

reinforcements with the same area are assumed to be concentrated near the lateral edges of 

the wall leading to a symmetrical reinforcement distribution, see Figure 2.14; (b) the 

reinforcements, both in compression and tension are assumed to be yielded, meaning that 

both reinforcements carry the same forces.  
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Figure 2.14 – Stress and strain distribution in wall section (Tomaževič, 1999). 

 

Thus, the procedure to obtain the flexural resisting moment consists of considering in 

a first phase the equilibrium of forces (Eq. 2.19) from which it is possible to obtain the value 

of λ (Eq. 2.20) and in the second phase by the equilibrium of bending moments acting in the 

wall’s section through Eq. 2.21. 

 

21 ssm FFFN −+=   Eq. 2.19

21 ss FF =   waww tftb λσ =   
a

w
f
bσ

λ =  Eq. 2.20

( )1

2
21

2
dbfA

f
bt

M wyvsvi
a

ww
R −+








−=

σσ
 Eq. 2.21



Chapter 2 – Literature review 66 

For practical calculations, Tomaževič (1999) considers the shear strength of 

reinforced masonry walls as the sum of the contributions of masonry, vertical and horizontal 

reinforcement see Eq. 2.22: 

 

321 RRRsh VVVV ++=  

yvmsvyhsh
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wwsh ffAfA
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σ
 

Eq. 2.22

 

Where, ft is the tensile strength of the masonry, fm is the compressive strength of the mortar, 

b is the shear stress distribution factor and Φ is the horizontal reinforcement capacity 

reduction factor, Asv and Ash are the area of vertical and horizontal reinforcements 

respectively, fyv and fyh are the yield strength of vertical and horizontal reinforcements 

respectively.  

For the contribution of the masonry to shear resistance Tomaževič (1999) used the 

equation proposed by Turnšek and Čačovič (1971) assuming that the diagonal shear 

cracking develops when the maximum principal, corresponding to the combination of the 

vertical and horizontal loads, attains the tensile strength of masonry, see Figure 2.15.   

Therefore, the shear strength of unreinforced masonry is calculated considering it as an 

elastic, homogeneous and isotropic material, to which the elementary theory of elasticity, is 

valid, see Eq. 2.23.  
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Figure 2.15 – Principal stresses in wall when subjected to a combination of vertical and lateral Ioad. 
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According to Turnšek and Čačovič (1971) Eq. 2.22 is valid when the aspect ratio of 

the wall is larger than 1.5. This expression is also valid when aspect ratio is higher than 0.67, 

however in this case maximum eccentricity should be lower than d/6. In case of aspect ratios 

smaller than 0.67 the calculated value is larger than the actual one. Factor b is used to take 

into account the real parabolic stress distribution on rectangular sections in which the 

maximum shear stress is 50% higher than the average shear stress (b = 1.5), simply 

obtained by dividing the shear force by the area of cross section.  

Similarly to Eurocode 6 (2005) the contribution of the horizontal is calculated based 

on its yielding force even if experimental results indicated that in the case of masonry walls 

with bed joint reinforcement the tensile capacity of horizontal steel cannot be fully used due 

to the bond failure between mortar and steel. Thus, a reduction factor Φ is considered to the 

shear strength resisted by horizontal reinforcements. According to Tomaževič (1999) this 

value depends on the characteristics of masonry units and mortar, as well as on the 

conditions of anchoring the reinforcement. Due to the lack of experimental data, it is 

suggested that horizontal reinforcement capacity reduction factor Φ is considered to be equal 

to 0.3. Besides, the contribution of the vertical reinforcements due to the dowel action is also 

taken into account in the shear strength. 

Tomaževič (1999) still considers the possibility of masonry walls fail by sliding. 

According to the author, this type of failure occurs in walls with low compression forces, 

through horizontal cracking developing in wide extension of the wall. This failure mode can 

occur in the upper storeys of buildings, where vertical loading acting on the wall is low but 

horizontal loads from the seismic action are considerably high. In this case, Tomaževič 

(1999) also considers the influence of vertical reinforcement acting in bending, see Eq. 2.24. 

It is interesting to notice that the author does not consider the contribution of cohesion of 

masonry in sliding strength. 

 

yvmsvwsl ffAAV 026.1+= µσ  Eq. 2.24

 

Where, µ is the friction coefficient of the unit-mortar interface and Aw is the area of wall. 

 

2.4.1.4 Brunner and Shing (1996) 

 

Based on the finite element method using a combined smeared and discrete crack 

model approach, Shing et al. (1993) investigated the shear resisting mechanisms of 

reinforced fully grouted masonry shear walls and through a parametric study, calibrated with 
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experimental results, proposed a novel equation for the calculation of the shear resistance. 

According to the authors, the shear behaviour of masonry walls is characterized by diagonal 

tensile cracking, followed by toe crushing and the shear resistance of the shear walls is the 

combination of three major resisting mechanisms, see Figure 2.16.  
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Figure 2.16 – Resistance mechanisms of Brunner and Shing´s model. 

 

The first mechanism is the resistance developed at the compression toe of wall (Vc). 

This force is limited either by crushing of masonry due to the combination of compressive 

and shear stresses, or by sliding of the wall relatively to the foundation. As in case of 

Tomaževič’s approach, this model considers the masonry wall as an elastic, homogeneous 

and isotropic structural material. The basic equation describing the resistance developed at 

the compression toe of the wall (Vc) can be derived by taking into account the assumptions of 

principal stresses of the elementary theory of elasticity, see Eq. 2.25.  
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Eq. 2.25

 

Where, C1 is a factor to accounts for the percentage of the total wall area effective in resisting 

shear at the compression toe and C2 is a multiplier used to estimate the level of compressive 

stress at the compression toe. 

 The second shear resisting mechanism is related to the aggregate interlocking 

developed along the diagonal crack, to which forces Vi are associated, see Figure 2.16. From 

experimental results Shing et al. (1990a) observed that the shear resistance increased with 
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axial compression and vertical reinforcement ratio as these variables tend to avoid the 

opening of the diagonal cracking increasing the interlocking between both lips of the diagonal 

crack. The contribution of the aggregate interlocking resisting mechanism to shear resistance 

is defined through Eq. 2.26:  

 

( ) wwyvvi tbfCCV σρ += 43  Eq. 2.26

 

Where, C3 is the coefficient of friction along the crack and C4 accounts for the fact that not all 

of the vertical steel will have reached its tensile yield stress when the shear capacity is 

reached due to the different distance of the reinforcement to the neutral axis. 

The third shear resisting mechanism is attributed to the horizontal reinforcement acting 

in tension across the diagonal crack contributing to the shear lateral strength with the force 

Hs. Shing et al. (1990a) considers that the diagonal crack occurs at 45º, as is shown in 

Figure 2.17, meaning that the contribution of the reinforcement to the shear lateral strength 

depends on the height to length ratio. In fact, in case of walls with the height much higher 

than the length there will be some bars that will not contribute to the shear strength. The 

contribution of the horizontal reinforcement to the lateral strength is given by Eq. 2.27.  
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Figure 2.17 – Diagonal crack to distinct aspect ratios. 
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Where, C5 is a factor to account for that not all of the horizontal steel have reached its tensile 

yield stress when the shear capacity is reached, C6 represents the number of effective 

horizontal reinforcements, s is the vertical spacing of the horizontal steel, Ash is the area of 

the horizontal reinforcements and fyh is the yielding strength of the steel. The coefficient C6 

enables to consider that only horizontal bars located in a height equal to the distance 
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between the vertical reinforcements near the edges of the wall are effective for the resisting 

mechanism.  

Taking into account the contribution of the three main shear resisting mechanisms, 

the shear resistance of the reinforced masonry walls is obtained from Eq. 2.28. 

 

sic VVVV ++=  Eq. 2.28

 

 The coefficients appearing in Eq. 2.25 to Eq. 2.27 were obtained through a parametric 

study based on a finite element model validated from experimental results (Shing et al.1993), 

see Table 2.2.  

 
Table 2.2 – Values of the coefficients defining the contribution of each resisting shear mechanism 

Shing et al. (1993). 

C1 C2 C3 C4 C5 
0.040 4.500 0.250 0.667 0.750 

  

 Brunner and Shing (1996) presented a generalization of the methodology for the 

calculation of the shear strength of reinforced masonry walls for any aspect ratio and 

considering the interaction with the flexural design. Thus, the contribution regarding the 

shear resistance of the compressed toe, Vc, is calculated based on the stress-strain diagram 

obtained for masonry from experimental results carried out on specimens under uniaxial 

compression load, see Figure 2.18. It is assumed that a linear strain distribution along the 

section of the walls is valid and that the relation between strains and stresses in masonry is 

parabolic. 
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(b) 

Figure 2.18 – Design details; (a) Compressive stress vs. strain diagram of masonry under 

compression load; (b) distribution of normal strains and stresses along the length of the wall under a 

bending moment. 
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 The shear resistance at the compressed toe, Vc, is obtained by integrating the shear 

stresses along the effective area of the bottom toe, defined as the area under compression 

between the tip of the diagonal crack and the point corresponding to the maximum 

compressive stress and is given by Eq. 2.29. 
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1
1  Eq. 2.29

( )εσ fa =           ( )ξε f=  Eq. 2.30

 

Where, fa is the compressive strength of masonry, ξ is the local coordinate of the section with 

its origin at the neutral axis.  

 The integration bounds ξ1 and ξ2 are governed by the diagonal crack and the maximum 

masonry compressive strength see Figure 2.19. The bound ξ1 corresponds to the point 

defined by the intersection of the diagonal crack and the compressed part of the wall and ξ2 

is the coordinate of the point corresponding to the compressive strength. 
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Figure 2.19 – Integration bounds of the compressive stress diagram of masonry at the toe of wall. 

 

As aggregate interlock resistance (Vi) is derived from forces developed along the 

diagonal crack, the authors assume that it is derived from two sources: friction and cohesion. 

The friction force is equal to the vertical force acting on the crack, Fi, multiplied by the 

coefficient C3. The cohesive force acts at the relatively intact area at the tip of the diagonal 

crack, c0, multiplied by the area on which it acts, defined by the compressed area between 

the neutral axis and the tip of the diagonal crack, ξ1. As the compression force (Fi) depends 

on the compressive stress in masonry, the influence of vertical reinforcement in shear 

strength is implicit in the calculus of this compressive stress. 

Therefore, the contribution of the aggregate interlocking to the shear resistance is given 

by Eq. 2.31. 

 

13 ξwoii tcFCV +=  Eq. 2.31
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( ) ξξσ
ξ

dtF awi ∫=
1

0
*  Eq. 2.32

 

Where, co is the cohesion of masonry and the vertical compressive force. 

In case of the contribution of the horizontal reinforcement to the shear strength no 

modifications are necessary to generalize the method.  

Using the simple flexure theory and the equations proposed by Brunner and Shing 

(1996), the shear strength can be determined through an interactive procedure, see       

Figure 2.20. If the flexural strength governs the behaviour of the wall, the horizontal 

equilibrium never is satisfied since V is higher than Vapplied. With this approach, the strength of 

a wall panel can be predicted in case of shear or flexure mode predominates. 
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Figure 2.20 – Flow chart for determining shear strength (Brunner and Shing, 1996). 

 

2.4.2 Masonry beams 

2.4.2.1 Eurocode 6 (2005) 

 

The flexural strength of masonry beams can be calculated following the approach 

pointed out in section 2.4.1.1 for shear walls. The unique adaptation concerns the 
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compressive behaviour of masonry as the compressive strength in the parallel direction to 

bed joints should be used. In case of shear design, Eurocode 6 (2005) determines that the 

shear strength of masonry beams is given by the resistance of masonry added by the yield 

strength of transversal reinforcements, see Eq. 2.33. 

 

bdfV vR =1    and  yhshR fAV 9,02 =           Eq. 2.33

 

Where, fv is the shear strength of interface unit-mortar and b is the width of the beam, d is the 

depth of the beam, Ash is the area of horizontal reinforcement, fyh is the yield strength of 

horizontal reinforcement. 

The shear strength (VR1) near the support should be increased by a factor (Eq. 2.34), 

due to the arch effect. 

 

42
≤

x

d
α

 Eq. 2.34

 

Where, αx is the distance from the face of the support to the cross-section being considered. 

The maximum shear resistance is still limited by the compressive strength of masonry 

according to Eq. 2.35:  

 

bdfVV aRR //21 25,0≤+           Eq. 2.35

 

Where, fa// is the compressive strength of masonry in parallel direction to bed joints. 

 

2.4.2.2 MSJC (2002) 

 

For MSJC (2002), the shear and flexural design of masonry beams follows the same 

rules of the design of shear walls. However, compressive strength of masonry parallel to bed 

joints should be considered. 

 

2.4.2.3 Sorić (1994) 

 

Sorić (1994) proposed an analytical model describing the shear stress distribution in 

the first mortar bed joint of the masonry beam, Figure 2.21. The model is able to determine 
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the ultimate load at shear failure. It considers a linear distribution for the compressive 

stresses along the height of the beams and neglects the tensile strength of masonry. 
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Figure 2.21 – Masonry beam and stresses caused by external load at free body diagram (Sorić, 1994). 

 

Horizontal shear stresses at bed joints can be calculated through the equilibrium of 

horizontal forces on the cracked section of an infinitesimal length ds “cut out” from masonry 

beam, see Eq. 2.36. Based on the bending moment equilibrium equation, the tensile strength 

on the longitudinal reinforcement can be calculated by Eq. 2.37. 

 

0=− dsbdF hs τ  Eq. 2.36

z
MFs =  Eq. 2.37

 

Where, b is the thickness of the cross section of the masonry beam and z is the lever arm of 

the longitudinal reinforcement. 

 

By combining Eq. 2.36 and Eq. 2.37, the shear stresses along bed joints are 

calculated from Eq. 2.38. 
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1τ  

Eq. 2.38

 

Bending moment M is easy to calculate for any type of loading, but the distance z 

between internal forces Fs and Fm, as a function of s is not quite simple to determine. Author 
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presents 5 curves z = f(s): concave parabola (Eq. 2.39), straight line (Eq. 2.40), convex 

parabola (Eq. 2.41), curve in form of square root function (Eq. 2.42) and ellipse (Eq. 2.43).  
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Where, zm is the distance between internal forces in middle span of beam and a is the 

distance between support and first external load P/2. 

In case of a simply supported beam, in beam’s portion between support and external 

force, bending moment follows Eq. 2.44. Inserting Eq. 2.43 and Eq. 2.44 in Eq. 2.38 a 

function which describes the shear stresses distribution along mortar bed joint is obtained, 

see Eq. 2.45. 
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Coulmob’s function is a failure criterion which relates shear and normal stresses by  

Eq. 2.46.  

 

  σµτ −= cu  Eq. 2.46

 

Where, τu is the failure shear strength, c is the cohesion and µ is friction coefficient 

Normal stress in a bed joint can be calculated from equilibrium of vertical forces, see 

Figure 2.21 and Eq. 2.47. From equilibrium of bending moments about mid point and 

neglecting product of small values as dsdτv can obtain Eq. 2.48. 
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Eq. 2.48

 

Where, τv is the vertical shear stress and d1 is the distance from the bottom of beam to the 

respective bed joint. 

 Inserting Eq. 2.48 in Eq. 2.47 and differentiating τh related to s obtain the value of 

normal stress, see Eq. 2.49. According to failure criteria τh defined by Eq. 2.45 should be 

smaller than τu value in order to prevent shear failure. 
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2.5 Finite element method  
 

Numerical modelling based on Finite Element Method (FEM) provides a powerful tool 

to perform complex analysis of masonry structures and it can assist in practical design 

situations. FEM is very useful to study the static or dynamic behaviour of masonry structures 

in case of complex geometry. The major concern of numerical modelling is related to the 

material model to be adopted that represents the behaviour of masonry material with 

reasonable approach. 

Masonry is a composite material composed of units, mortar and unit-mortar 

interfaces. The complexity of the masonry material is essentially due to the behaviour of the 

unit-mortar interface and it is commonly the weakest link in which the major nonlinear 

phenomena are concentrated, namely the propagation of cracking. This is the main reason 

by which masonry behaves as an anisotropic material with distinct directional properties, 

making the numerical simulation of masonry assemblages rather complex. 

In recent decades, several studies have been carried out in the scope of structural 

mechanics aiming at providing theoretical and numerical tools for better understanding the 

complex behaviour of masonry structures. Two main approaches have been formulated for 
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the appropriate constitutive description of masonry material: macro-modelling and micro-

modelling, see Figure 2.22.  

 

 
                                   (a)                                        (b)                                         (c) 

Figure 2.22 - Modelling strategies for masonry structures: (a) detailed micro-modelling; 

(b) simplified micro-modelling; (c) macro-modelling (Lourenço, 1996). 

 

It is well known that both approaches provide satisfactory results. Macro-models are 

applicable when the dimensions of the analysed structure are sufficiently large so that the 

stresses across or along a macro length will be essentially uniform. Besides, the low 

computational cost supports its use on the analysis of large structures. On the other hand, 

micro-models are applicable in very specific problems where local failures should be 

analysed. 

In the macro-modelling approach the masonry is considered as a continuum material, 

where the two-phase masonry is represented by the constitutive equations of an equivalent 

homogeneous medium whose characteristics have to be obtained through homogenisation 

techniques (Gambarota and Lagomarsino, 1997; Lourenço and Rots, 2000; Asteris and 

Tzamtzis, 2003; El-Dakhakhni et al., 2006). One of the advantages of the macro-modelling 

approach is the possibility of building a continuous finite element mesh, which has 

considerable computational advantages when large wall panels are to be analyzed. 

Researches on macro-modelling of masonry seeking for improved techniques for material 

homogenization and for enhanced constitutive models that provides a satisfactory 

representation of the masonry behaviour. 

 The major difficulty of modelling masonry is the uncertainty or absence of reliable 

mechanical material data. This is particularly important, when it is intended to represent the 

orthotropic behaviour of masonry through a homogenised solution. Very reduced 

experimental information is available in literature on the orthotropic masonry mechanical 

properties due to the complexity of conducting some tests.  

In case of micro-modelling approach, the masonry material is considered as a 

discontinuous assembly of units connected by dry or mortar joints and taking into account 

appropriate constitutive laws. There are two types of micro-modelling: detailed and simplified. 

In detailed micro-modelling, continuum elements are adopted to represent units and mortar 
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and the unit-mortar interfaces are described by interface elements. In case of simplified 

micro-modelling, units are represented by continuum elements while mortar joints and 

unit/mortar interface are lumped in discontinuous elements.  

The great advantage of micro-modelling is the ability for the detection of all possible 

failure modes of masonry. As observed by Lourenço (1996), an accurate micro-model for 

masonry has to include the basic failure mechanisms that characterize the material: (a) 

tensile cracking at the joints; (b) sliding along the bed and head joints for low values of 

normal stress; (c) cracking of the masonry units in direct tension; (d) diagonal tensile 

cracking of masonry for combined normal and shear stresses; and (e) splitting of units in 

tension as a result of mortar dilatancy at high values of normal compressive stress.  

 

 
Figure 2.23 – Failure mechanisms of masonry: (a) tensile cracking at joints, (b) joint slipping, (c) 

tensile cracking of units (d) diagonal tensile cracking of masonry and (e) masonry crushing. (Lourenço, 

1996). 

 

Lourenço (1996) proposed an interface cap model with modern plasticity concepts, 

able to capture all masonry failure mechanisms. The model includes a tension cut-off model 

to capture Mode I failure, a Coulomb friction envelope to describe Mode II failure and a cap 

model for compressive failure, see Figure 2.24. This model concentrates all the damage in 

the relatively weak joints and, if necessary, in potential pure tensile cracks in the units placed 

vertically at the middle of each unit. According to the authors, the model is able to reproduce 

the complete failure patterns until total degradation without numerical difficulties.  
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Figure 2.24 – Proposed interface cap model (Lourenço and Rots, 1997). 

 

Another micro-modelling approach has been proposed by Sutcliffe et al. (2001), 

which considers that from a macroscopic point of view, masonry exhibits similar behaviour of 

rock joints or reinforced earth. Therefore, the authors proposed a model based on the lower 

bound theorem of classical plasticity. Authors consider a simplified micro-model where the 

units are assumed to be isotropic, homogeneous and obey to the Mohr-Coulomb failure 

condition, whereas joints are represented by a simplified interface cap model proposed by 

Lourenço (1996), as shown in Figure 2.25. In the context of linear programming and lower 

bound limit analysis, a linear approximation to the spherical cap model proposed by 

Lourenço (1996) is considered. A linear tension cut-off is considered as according to the 

authors it seems to be more realistic, given that the tensile failure the joint should be 

associated to zero shear strength. Authors presented numerical examples that suggest the 

proposed numerical procedure can be used successfully for limit analysis of unreinforced 

masonry structures for in-plane behaviour. 

 

 
Figure 2.25 – Simplified interface cap model (Sutcliffe et al., 2001). 

 

A linear compression cap model, similar to Sutcliffe et al. (2001), was proposed by 

Chaimoon and Attard (2007), which defined a criterion to obtain the intersection point 

between the Mohr-Coulomb yield surface and the compression cap. The angle γ 
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(supplementary angle of φ3 in Sutcliffe’s model) between the normal stress axis and the 

compression cap is given by Eq. 2.50. 

 

24
φπγ −=  Eq. 2.50

 

Where, φ is the mortar friction angle. 

The consideration of a linear compression cap model adopted by Sutcliffe et al. 

(2001) and Chaimoon and Attard (2007) seems to be an interesting simplification that can be 

applied in complex analysis of masonry structures.  

In spite of the complexity of the models presented previously any detailed analysis on 

the possible shear phenomenon of dilatancy has been pointed out. Pluijm (1999) observed 

an increasing of volume on specimens submitted to shear tests, following the inelastic 

shearing deformations. The increasing of volume is prevented by confining structural 

elements which leads to pressure build up. In the case of pressure-dependent strength, 

which is a well known characteristic of the dilatational materials, a significant strength 

increase may result from such confined boundary conditions. Thus, Van Zijl (2004) proposed 

an enhancement for the micro-model proposed by Lourenço (1996) by incorporating a 

variable dilatancy coefficient to reproduce experimental measurements of brick normal uplift 

during shearing along a brick-mortar interface, see Figure 2.26. The author defined the 

dilatancy angle according to Eq. 2.51. 

 

 
Figure 2.26 – Shear test for characterizing masonry joint behaviour. (Van Zijl., 2004). 
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Where, ψο is the dilatancy at zero normal confining stress and shear-slip, σu is confining 

compressive stress at which the dilatancy becomes zero, δ is the dilatancy shear-slip 

degradation coefficient and νp is the shear-slip. 

 According to the author, inappropriate modelling of shear dilatancy with the discrete 

approach can lead to large errors, see Figure 2.27. A dilatancy coefficient of zero reproduces 

the unconfined shear response, which represents the lower limit of the confined shear 

resistance, being in general conservative. 

 

 
Figure 2.27 – Sensitivity analysis of the influence of dilatancy on the shear force-drift response (Van 

Zijl, 2004). 

 

 Observing the researches about micro-modelling, it is easy to conclude that it enables 

the best insight into the behaviour of masonry structures if a detailed analysis is required. It 

enables that distinct failure modes can be captured, giving a better understanding of the 

several interactions that can occur at a local level (Chaimoon and Attard, 2007). However, 

according to Gambarotta and Lagomarsino (1997), it is extremely burdensome from a 

computational point of view and the calibration of the model parameters from experimental 

data is not straightforward. 

 

2.6 Summary and conclusions 
 

In this chapter a brief literature review was presented about the behaviour of masonry 

structures under lateral loading. The main resistant elements of a masonry building subjected 

to horizontal forces, shear walls and beams, are presented and their behaviours are 

described according to studies carried out by other researchers.  
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The behaviour of shear walls under flexure is well defined and can be accurately 

evaluated through the simple flexure theory based on the plane-section assumption. On the 

other hand, the behaviour of these elements under shear is very complex and it is influenced 

by several variables such as axial force, reinforcement ratios, aspect ratio and masonry bond 

pattern. Failure modes of shear walls can be preponderantly by flexure characterized by 

horizontal cracks on the base of wall generated by tensile stresses due to the uplift, or 

preponderantly by shear characterized by diagonal cracking. The use of reinforcements in 

shear walls improve their behaviour as flexure as shear providing a better ductility and 

energy dissipation. There are several works related to shear walls, however the complex 

behaviour of these elements added to the influence of a large amount of variables generate 

divergent conclusions of the researchers which become this subject extremely open to new 

works. 

In case of beams, there is little information in literature about their mechanical 

behaviour. It is admitted that masonry beams simply supported with span to depth ratio 

higher than 5 can be accurately evaluated through the simple flexure theory based on the 

plane-section assumption. And, masonry beams simply supported with span to depth ratio 

lower than 2 should be analysed through strut and tie models for deep beams. However, 

there is lack of information about the behaviour of beams with span to depth ratio in the 

range between 2 and 5.  

The different approaches used to simulate masonry structures through numerical 

modelling based on finite element method were presented. Macro- and micro modelling can 

be used to analyse masonry elements. In first case, the analysed element is represented by 

continuum elements with material properties that try to represent the material composite. On 

the other hand, micro-modelling considers units connecting by the vertical and horizontal 

joints which allow observing localized failures in masonry. However, the use of numerical 

modelling in practical design situations can be too costly.  

Finally, this chapter provided information about masonry structures subjected to 

lateral loading in order to introduce this thesis and insert it in the context of previous 

researches.      
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3 EXPERIMENTAL PROGRAM I:    
 CHARACTERIZATION OF MATERIALS 

 

3.1 Introduction 
 

Even as timber structures, masonry is the most antique construction material. It is 

present not only in most impressive historical constructions but also in custom architecture. 

Masonry is a composite material composed of units connected by mortar layers. Masonry 

behaves reasonably well under compressive loads however; its tensile strength is much 

reduced, leading to early cracking due to shear and tensile stresses. This is the main reason 

by which unreinforced masonry is not allowed in high seismic zones when new construction 

is needed. However, if reinforced masonry is used, a very good mechanical performance can 

be achieved (Manos et al., 2001; Schultz et al., 1998) and it can effectively be used as a 

reliable construction material. Even in low seismicity zones, unreinforced masonry appears to 

be a possible structural solution. This means that it is important to enhance the knowledge 

on the behaviour of unreinforced and reinforced masonry in order to contribute for 

achievement of reliable design methods that assist engineers on the professional design and 

stimulate its use by contractors. 

As aforementioned, this thesis aims at obtaining a better insight on the in-plane 

behaviour of key structural masonry elements of masonry buildings, namely masonry walls 

and beams. Masonry walls play a central role on the stability of masonry buildings subjected 

to vertical and horizontal loadings and masonry beams above or below openings connect the 

masonry piers resulting in much more stiffness to the global structure.  

The understanding of experimental results carried out on the masonry structural 

elements, the numerical simulation and the analytical modelling are key tasks for the 

improvement on the knowledge about the in-plane masonry behaviour. An accurate 



Chapter 3 – Experimental program I: characterization of materials 84 

experimental, numerical and analytical analysis is only possible if detailed information on the 

mechanical properties of masonry materials and masonry as a composite is known. 

This chapter represents the first phase of an enlarged experimental program on the 

characterization of masonry. It refers the characterization of masonry materials under tension 

and compression such as units and mortar, the shear behaviour of unit-mortar assemblages 

to shear loading and mechanical characterization of masonry as a composite under tensile, 

flexural and compressive loading. Besides, mechanical characterization of reinforcements 

applied in reinforced masonry elements is presented. 

 

3.2 Units 
 

Given the traditional use of concrete blocks for non-loadbearing walls such enclosure 

and partition walls in Portugal, it was decided to develop two new structural concrete 

masonry blocks in order to make the use of distinct masonry bond patterns possible and also 

to enable the introduction of horizontal and vertical reinforcements. Two (2C-units) and three 

cell (3C-units) concrete blocks were designed according to the shape and geometry 

indicated in Figure 3.1. The concrete units were produced in reduced scale (1:2) in order to 

comply with technical limitations at the structural laboratory of University of Minho to perform 

real scale tests on masonry walls. The idea of using frogged ends in 3C-units is the 

placement of vertical reinforcements in a continuous vertical joint in order to simplify the 

construction technology. The 2C-units has a geometry very similar to non structural concrete 

blocks existing in the Portuguese market and are a real possibility for the traditional masonry 

bond. 

 

 

(a) (b) 

Figure 3.1 – Concrete masonry units: (a) two cells and (b) three cells. 
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Physical properties such as dimensions and dimensional variability, percentage of 

vertical perforation and water absorption due to capillarity action were obtained to the 

concrete units according to EN 772-16 (2000), EN 772-2 (1998) and EN 772-11 (2000) 

respectively, see Table 2.1. In all tests 6 concrete units were used.  

In Eurocode 6 (2005), units are classified in four groups according to geometrical 

requirements such as percentage of voids and thickness of webs and shells. According to 

the classification proposed in Eurocode 6 (2005) both units belong to group 2.  

 

Table 3.1 – Physical properties of units. 

 
 
 

X 
(mm) 

Y 
(mm)

Z 
(mm) 

a 
(mm) 

b 
(mm)

Net area 
of blocks

(cm2) 

Area of 
voids 
(cm2) 

Percentage 
of 

voids 
(%) 

Coefficient of 
water 

absorption 
(g/(mm2s0,5)) 

Block 
(2C-units) 196 94 94 16 21 97.96 87.45 47 171.83 

Half block 
(2C-units) 96 94 94 17 12 47.81 41.81 47 246.72 

Block 
(3C-units) 201 100 93 16 14 110.14 93.92 46 228.29 

Half Block 
(3C-units) 101 100 93 16 - 57.20 46.10 45 226.67 

 

EN 772-11 (2000) specified the coefficient of water absorption due to capillarity after 

the immersion time of 10 minutes. In the tests the measurements were carried out in 

intermediate steps to evaluate the behaviour of absorption with time, see Figure 3.2 and 

Figure 3.3. Results indicated that the absorption is very high at the beginning of test and 

exhibited a progressive reduction with time reaching a stable value close to 10 minutes.  
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Figure 3.2 – Water absorption of the units: (a) blocks and (b) half blocks (2C-units) 
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Figure 3.3 – Water absorption of units: (a) blocks and (b) ½ blocks (3C-units). 

 

The 3C-units exhibited a coefficient of water absorption very similar comparing blocks 

and half bocks. In case of 2C-units half blocks presented a coefficient of water absorption 

higher than blocks. This higher value may be the result of a thinner shell in the half blocks. 

Because the small width, the half block is more sensitive to damages during the production 

process, mainly at the stage of removing the mould, see Figure 3.4. These regions of small 

damages have a higher amount of voids and consequently increase the coefficient of water 

absorption. 2C-units had low coefficient of water absorption when compared to 3C-units 

possibly to the thicker central web influencing the effect of capillarity. 

 

 
Figure 3.4 – Damages in half blocks of 2C-units. 

 

Mechanical properties of units are fundamental to the design of masonry walls and 

beams as well as to carry out numerical analysis. The mechanical properties of concrete 

units include the tensile strength, fbt, and compressive strength in the direction perpendicular, 

fb┴, and parallel, fb//, to the bed joints. The tensile strength of units was measured following 

the test setup used by Vasconcelos (2005) and Mohamad (2007). The tests were performed 
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in specimens cut from the shells of units, see Figure 3.5. According to Vasconcelos (2005), 

the adoption of a constant cross section for the specimens leads to uncertainty about the 

localization of the microcraks, which represents the usual supplementary difficulty for the 

control method of this type of tests. Thus, it was decided to introduce two lateral notches with 

a depth of 6mm at mid height of the specimen in order to localize the fracture surface. 

Twelve specimens of each type of unit were prepared. 

 

 

33
4

37

6

 

Figure 3.5 – Specimens used in direct tensile tests of units. 

 

The direct tensile were performed by using a CS7400S servo-controlled universal 

testing machine with fixed end plates. This equipment has a load cell connected to the 

vertical actuator with a maximum capacity of 22 kN, being particularly suitable to small 

specimens. Specimens were glued to the steel plates of the equipment and two LVDTs were 

used to measure the crack opening.  

There were practically no differences in the results of the 2C-units and 3C-units, 

which was expected since the both blocks were produced at same time, with the same 

concrete and were cured at the same environmental conditions. In most specimens the crack 

appeared in notched section, see Figure 3.6a. However, in few specimens the crack 

appeared in region with higher cross section close to the fixed end, see Figure 3.6b. This 

behaviour can be explained by the fact that the localization of the smaller cross section zone 

may be not compatible with the weakest zone of the material (Wittman. et al., 1994). 

It was very difficult to avoid the rotation of the specimens because their small size. 

This fact generated distinct behaviour between the LVDTs. Besides, in spite of the low 

velocity used in load application (0.08 µm/s) it was not possible to obtain the post-peak 

behaviour of the specimen. Only in three of the twenty four tested specimens it was possible 

to obtain the post-peak behaviour, see Figure 3.7.  
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(a) 

 
(b) 

Figure 3.6 – Fracture of the specimens in direct tensile test: (a) common fracture and (b) fracture in 

zone with higher cross section. 
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Figure 3.7 – Stress-displacement diagrams (σ vs. δ) of the specimens in tensile tests: (a) common 

behaviour and (b) specimen with post-peak. 

 

According to Eurocode 8 (2003), units used to build masonry structures in seismic 

areas should have a normalized compressive strength normal to bed joints not lower than 5 

MPa and a normalized compressive strength parallel to bed joints not lower than 2 MPa. 

Uniaxial compressive tests in the direction perpendicular to bed joint direction were carried 

out according to EN 772-1 (2000). Twelve concrete blocks and half blocks of 3C-units and 

2C-units were considered. Specimens were tested between two plates of steel with 50 mm of 

thickness to ensure a homogeneous distribution of vertical stresses and avoid flexural effects 

of the steel plate. Horizontal and vertical deformations of the specimens were measured 

using 4 and 2 LVDTs respectively, to evaluate elastic modulus and Poisson’s ratio of the 

units, see Figure 3.8. Tests were carried out under displacement control by means of a 

vertical LVDT connected to the actuator at a rate of 5 µm/s.   
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(a) 

 

(b) 

Figure 3.8 – Test setup of the compressive tests normal to bed joints: (a) blocks and (b) half blocks. 

 

Failure mode of all tested units, both in 3C-units and 2C-units was pyramidal-trunk, 

see Figure 3.9. In blocks and half blocks, the first cracks appeared vertically in corners of the 

units, see Figure 3.10. In case of 3C-units, some specimens were completely burst. As 

observed by Page and Kleeman (1991), this behaviour can be explained by the lateral 

restrictions caused by the steel plates at top and bottom of the specimen leading to friction 

forces. With the increase of the loading, in most cases the vertical cracks were connected by 

a horizontal crack in superior region of the unit as shown in Figure 3.11. This horizontal crack 

occurs because the superior part of the units slides over the pyramidal-trunk surface of 

rupture. In some specimens near to the collapse a vertical crack also appeared in central 

region of the unit. This failure mode is very similar to that pointed out by Mohamad (2007). 
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Figure 3.9 – Pyramidal-trunk failure mode of the units. 

 

 
Figure 3.10 – Vertical cracks in corners of units. 

 

 
Figure 3.11 – Horizontal cracks connecting vertical cracks. 

 

 It was not possible to obtain the entire stress-strain diagram due to some 

complications. The small size of the specimen difficult the evaluation of the deformations. 

Even using LVDTs with a precision of 0.50 mm, it was not possible to record accurate 

horizontal deformations to obtain accurate Poisson’s ratios. In addition, the fragile behaviour 
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of the units avoided the attainment of the post-peak behaviour of the units. The elastic 

modulus was calculated through a linear regression of the data up to 50% of the maximum 

load. 

 Units were also tested under compression in the direction parallel to bed joint. This 

test was carried out given that in case of the masonry beams, the compressive stresses in 

masonry develop in the parallel direction to the bed joints. Compressive tests in the parallel 

direction to bed joints were carried out in 6 specimens of blocks and half blocks of 3C-units 

and 2C-units. Specimens were tested in same conditions of those tested under compression 

normal to bed joints. Vertical deformations of the specimens were measured using 2 LVDTs 

to evaluate elastic modulus, see Figure 3.12. Tests were carried out under displacement 

control by means of a vertical LVDT connected to the actuator at a rate of 5 µm/s. Two steel 

plates supported by transversal cables were used to insure the safety in test because the 

fragile behaviour of the units. 

 

 
Figure 3.12 – Test setup of the compressive tests in direction parallel to bed joints.  

 

 2C-units and 3C-units presented distinct behaviours as the geometry of unit had 

significant influence. The behaviour of blocks of 2C-units can be divided in two phases. 

Firstly, unit exhibited compressive deformations due to the increasing of vertical loading. 

However, the distributed vertical load at the top and at the base of the unit created flexural 

efforts. The flexure in shells of unit was prevented by the presence of web, leading to tensile 

stresses in webs, see Figure 3.13. When tensile stresses in webs reached the tensile 

strength of the concrete, a crack appeared in this element. After this point, LVDTs began to 

register tensile strains in shells since there was no resistance of the web and flexure was 

predominant, see Figure 3.14.  
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(a) 

 
(b) 

 
(c) 

Figure 3.13 – Behaviour of blocks of 2C-units tested under compression parallel to bed joint before 

cracking of the web: (a) deformed state, (b) diagram of normal forces and (c) diagram of bending 

moments. 
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Figure 3.14 – Behaviour of 2C blocks under compression parallel to bed joints. 

 

It is perfectly clear the onset of the cracking of the web, which is identified by the 

discontinuity on the stress vs. strain diagram. This test can be seen as an indirect tensile test 

of the units if the tensile strength of the units is the tensile strength of the web of the units. 

With the assumption, the tensile strength of the units can be calculated by using Eq. 3.1: 
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Where, fbt// is the tensile strength of unit through the compressive test in the direction parallel 

to bed joints, hb is the height of the unit, tweb is the thickness of the web and N and M are the 

normal force and bending moment acting in web respectively. 

The value of fbt// measured in tested specimens was 3.21 MPa with a coefficient of 

variation equal to 35%. Tensile strength evaluated through the compressive test in the 

direction parallel to bed joints was only 2% higher than the value found in direct tensile test. 

Thus, the compressive test seems to be an alternative method of measuring the tensile 

strength of unit. It is easier to carry out and avoid problems like rotation of the specimen and 

debonding of the specimens to the plates. 

Half blocks of 2C-units were also tested under compression in the direction parallel to 

bed joints. The failure of these units developed by flexure-compression of the shells, see 

Figure 3.15. As in case of the blocks, a concentration of stress occurs at the corners. The 

failure occurred from the increasing damage in the shells in which tensile stresses 

developed. 
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Figure 3.15 – Behaviour of half blocks of 2C-units tested under compression in direction parallel to 

bed joints. 

 

 In case of 3C-units, two samples were prepared to the test: units with capping and 

without capping. Firstly, the use of capping had the objective to avoid the rupture of the 

frogged ends of blocks due to the concentration of stresses. However, it was decided to test 

units without capping since the concentration of stresses in bands of units really happen in a 

masonry structure built with this unit. Both specimens had a similar failure mode, although 

specimens with capping reached lower forces probably because the flexure.  

 Blocks of 3C-units also showed cracks in the webs as in case of 2C-units, see    

Figure 3.16. However, these cracks appeared only at the end of test probably caused by the 

instability of the shells of the unit. Half blocks of 3C-units also developed compressive strains 

during whole test and reached a higher strength than 2C-units, see Figure 3.17. Specimens 
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of 3C-units without capping had no flexure in webs or shells since the vertical loading was 

applied directly on the transversal shells. Possible flexure caused by the slenderness of the 

shells was resisted by the webs, which improved the behaviour of the 3C blocks. 
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Figure 3.16 – Behaviour of 3C-units tested under compression in direction parallel to bed joint. 
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Figure 3.17 – Behaviour of ½ blocks of 3C-units tested under compression parallel in direction parallel 

to bed joint. 

 

A summary of the results on the mechanical properties of concrete blocks under 

tension and compression is indicated in Table 2.2. All mechanical properties were calculated 

in relation to gross area of the specimens. In Table 2.2, fbt is the tensile strength of the 

units, η is the coefficient of normalization of the compressive strength, fbm┴ is the mean 

compressive strength normal to bed joints, fb┴ is the normalized strength of the units normal 

to bed joints, Ebm┴ is the average of elastic modulus of the units normal to bed joints, fbm// is 

the mean compressive strength of the units parallel to bed face and fb// is the normalized 

strength of the units parallel to bed face. According to EN 772-1 (2000) compressive strength 



Chapter 3 – Experimental program I: characterization of materials 95

should be normalized by factor η to design application. This normalization considers the air-

dry conditioning regime and the shape of the unit. 

 
Table 3.2 – Mechanical properties of units. 

 
 
 

fbt 
(MPa) η fbm┴ 

(MPa) 
fb┴ 

(MPa) 
Ebm┴ 

(GPa) 
fbm// 

(MPa) 
fb// 

(MPa) 

Block 
(2C-units) 0.99 9.38 

(19%) 9.29 8.80 
(66%) 

6.59 
(10%) 6.52 

Half block 
(2C-units) 

3.13 
(24%) 0.99 9.27 

(21%) 9.18 8.21 
(40%) 

6.39 
(14%) 6.33 

Block 
(3C-units) 0.97 12.13 

(22%) 11.77 9.57 
(40%) 

7.88 
(5%) 7.64 

Half Block 
(3C-units) 

3.19 
(21%) 0.97 10.33 

(19%) 10.02 9.44 
(47%) 

7.20 
(14%) 6.98 

 

3.3 Mortar 
 

Mortar is one of the components of the anisotropic masonry material. It is responsible 

for the stress uniform distribution, correction in irregularities of blocks and accommodation of 

deformations associated to thermal expansions and shrinkage. In spite of mortar has been 

often neglected in terms of structural analysis of masonry structures, it is well known that it 

influences the final behavior of the masonry such as compressive and bond strengths, and 

deformability (Edgell and Haseltine, 2005). In this research, mortar was used simultaneously 

used to lay the concrete masonry blocks and also as infill material of the hollow cells of the 

concrete blocks, where vertical reinforcement is added, in substitution of the traditional grout. 

According to Biggs (2005), in some regions of the United States contractors commonly 

substitute grout by mortar in reinforced masonry construction. This preference is justified as 

the use of mortar reduces installation costs in low-lift applications when the masonry is to be 

total or partially grouted and reduce the number of materials. This means that the mortar has 

to present a consistence that enables the laying of the concrete units and fills appropriately 

the reinforced hollow cells.  

Previous studies were carried out (Haach et al.; 2007) aiming at obtaining a mortar 

mix with an adequate consistence to use as embedding and infill material with a minimum 

compressive strength of 10 MPa. This value of compressive strength of mortar was chosen 

because it is recommended by Eurocode 8 (2003) in case of reinforced masonry structures 

in seismic areas. Thus, a general purpose mortar was adopted, being composed of cement 

and sand in the proportion of 1:3 (cement/sand) with water/cement ratio equal to 0.9. The 

cement used was CEM II/B-L 32.5N, according to EN 197-1 (2000). The sand had a fineness 
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modulus of 1.8 and a maximum diameter of 2.35mm, see Figure 3.18. Some physical 

properties of materials are indicated in Table 3.3.  

 

0.01 0.1 1 10
100

80

60

40

20

0

%
 re

ta
in

ed
 m

at
er

ia
l

mm

Figure 3.18 – Grading curve of sand. 

Table 3.3 – Properties of materials used in mortar.

Property Cement Sand 

Density (kg/m3) 3210 2640 
Unit mass (kg/m3) 1080 1450 

 

 

Workability of mortars plays an important role on the construction process of masonry 

structures. According to Sabbatini (1984), the workability may be considered one of the most 

important properties because it influences directly the bricklayer's work as it can facilitate or 

complicate the construction quality. It is important to stress that the quality of the 

workmanship can influence considerably the mechanical properties of masonry. The 

definition of workability is somewhat subjective as it depends on the person who evaluates 

the mortar. Panarese (1991) considers the workability as an assembly of several properties 

such as, consistence, plasticity and cohesion. Provided that plasticity and cohesion are 

properties of difficult determination, consistence is frequently used as the measure of the 

workability. Thus, fresh behaviour of applied mortar was evaluated by means of the value of 

consistence obtained through the flow table test according to EN 1015-3 (2002), see     

Figure 3.19. 

 

 
Figure 3.19 – Flow table test. 
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Mechanical behaviour of mortar was defined through compressive and flexural 

strength and elastic properties (elastic modulus and Poisson’s ratio). Compressive and 

flexural tests were carried out on prismatic specimens 40mmx40mmx160mm according to 

EN 1015-11(1999), see Figure 3.20a. The elastic properties were obtained from compressive 

tests carried out on cylinders with 50mm of diameter and 100mm of height (height to 

diameter ratio of 2) according to NBR 13279 (1995). The elastic modulus and Poisson’s ratio 

were calculated by averaging the measurements of strain-gauges attached to the specimen 

placed in the vertical and horizontal directions, see Figure 3.20b.  
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Figure 3.20 – Details of the experimental tests in mortar: (a) compressive and flexural test in prismatic 

specimens and (b) compressive tests in cylinder specimens. 

 

In addition, three LVDTs were also used in the tests of the cylinders to evaluate the 

complete stress-strain diagrams. In spite of LVDTs and strain-gauges had been used to 

measure vertical deformations, only results given by the strain gauges were considered for 

the calculation of the elastic modulus. As the LVDTs were placed between steel plates, the 

measurements included the accommodation of the interfaces between the specimen and the 

steel plates, leading to considerable higher deformations, see Figure 3.21.  
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Figure 3.21 – Comparison between the elastic modulus measured by LVDTs and strain-gauges. 
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Differences ranging between 12 and 30% were also pointed out by Vasconcelos 

(2005). An alternative scheme to measure the vertical displacements consists of the 

positioning of the LVDTs in the specimen by using special steel rings. A summary of the 

fresh and mechanical properties of mortar are indicated Table 3.4. The coefficient of variation 

obtained for the elastic modulus was in average of 14%. 

 
Table 3.4 – Mechanical and fresh properties of the mortar. 

Compressive 
cylinder strength 

(MPa) 

Compressive 
cubic strength 

(MPa) 

Flexural 
Strength 

(MPa) 

Elastic 
Modulus 

(GPa) 

Poisson's 
ratio 

Flow   
Table 
(mm) 

7.53 

(1%) 

11.81 

(1%) 

2.91 

(13%) 

9.02 

(14%) 

0.18 

(17%) 
180 

 

3.4 Interface unit-mortar 
 

Masonry is a composite material made by units embedded in mortar. Collapse of 

masonry structures may be occurs because the failure of units, mortar or interface of unit-

mortar. Interface behaviour can be basically defined by the properties normal and parallel to 

bed joint direction. In this study only the behaviour parallel to bed joints was characterized 

through initial shear test.  

 

3.4.1 Initial shear test 

 

Initial shear tests were carried out according to EN1052-3 (2002). Three distinct pre-

compression levels (σ) were applied in specimens (4 kN, 12 kN and 20 kN equivalent to  

0.22 MPa, 0.66 MPa and 1.10 MPa in case of 2C-units and 0.2 MPa, 0.6 MPa and 1.0 MPa 

in case of 3C-units). Six specimens were built for each pre-compression level, totalizing 18 

samples for each type of unit used in this study. Specimens were built with one unit of length 

and three courses with a 8mm joint, see Figure 3.22a. The pre-compression was applied 

through four steel cables forming a self equilibrated system, see Figure 3.22b. The mortar 

the specimens presented a flexural strength equal to 2.11 MPa and a compressive strength 

equal to 8.35 MPa. 

Rubber pieces were used at the extremities of the samples to avoid concentration of 

stresses. A set of LVDTs was used in both sides of specimens to analyse the behaviour of 

unit-mortar interface under shear stresses. Three LVDTs were used to evaluate horizontal 
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displacements of the joints: two LVDTs measuring horizontal displacements of each 

individual joint and one LVDT, indicating measuring the global horizontal displacement. 

Besides, two LVDTs were attached to the specimen to record the shear displacement of the 

joints. 

 

201 196

29
5

29
8

 
Steel Plate

Rubber

Steel Plate

Rubber

Fixed Free

Load

Pre-CompressionPre-Compression h1 v1

H

 
(a) (b) 

Figure 3.22 – Initial shear tests: (a) Geometry of specimens and (b) Test setup. 

 

According to EN 1052-3 (2002), test specimens should have one of four different 

types of failure. 

a) Shear failure in the unit/mortar bond area either on one or divided between two 

units face; 

b) Shear failure of the mortar; 

c) Shear failure of the unit; 

d) Crushing and/or splitting failure of the units. 

All tested specimens presented the failure at the unit-mortar bond area either on only 

one or divided between two units face. In some specimens, horizontal cracks on the units 

appeared at the end of test, after the slide of the central unit, see Figure 3.23. This behaviour 

can be caused by some expansion of the interface as observed by horizontal LVDTs.  

A summary of the shear strength properties obtained in shear tests, namely the initial 

cohesion, fvo (fvok is the characteristic value), and the coefficient of friction, µ (µk is the 

characteristic value), is shown in see Table 3.5. All properties were calculated in relation to 

gross area of the specimen. The cohesion is practically the double in case of 3C-units. ON 

the other hand, it is seen that the coefficient of friction is similar in both geometries of the 

concrete blocks, see Table 3.5 and Figure 3.24. The friction coefficient depends only on the 
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concrete-mortar surface contact. As the concrete and mortar was the same for both 

geometries of the blocks the friction coefficient was expected to be similar. The higher 

cohesion recorded in 3C-units can probably be attributed to the proximity of the internal webs 

leading to the union of the excess of mortar during the laying providing a better adherence 

between the courses. 

 

  
(a) (b) 

Figure 3.23 – Failure mode of shear tests: (a) sliding and (b) sliding with horizontal crack. 

 

Table 3.5 – Results of peak shear strength 

properties. 

Type       
of unit 

fvo     
(MPa) 

fvok    
(MPa) µ µk 

2C-units 0.21 0.17 0.49 0.39
3C-units 0.42 0.34 0.49 0.40
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Figure 3.24 – Shear stress vs. normal stress diagram. 

 

As observed by other authors (Vasconcelos, 2005; Abdou et al., 2006), after the peak 

the shear stress had a gradual decrease and stabilizes in a residual value, see Figure 3.25. 

The residual shear strength properties are presented in Table 3.6. In the Table fvo,res is the 

residual cohesion, fvok,res is the characteristic value of residual cohesion, αres is the residual 

coefficient of friction and αk,res is the characteristic value of the residual coefficient of friction. 

The relation between normal and shear stresses fit also reasonably well a linear function, 

see Figure 3.26. 
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Figure 3.25 – Shear-slipping diagrams: (a) 3C-units – σ = 1.00 MPa and (b) 2C-units – σ = 1.10 MPa. 

 

 
Table 3.6 – Results of residual values of 

initial-shear tests. 

Type       
of unit 

fvo,res   
(MPa) 

fvok,res  
(MPa) αres αk,res 

2C-units 0.14 0.12 0.32 0.25
3C-units 0.16 0.13 0.43 0.34
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Figure 3.26 – Residual shear stress vs. normal stress 

diagram. 

 

The cohesion reduced approximately 62% and 33% for specimens built with 3C-units 

and 2C-units respectively, meaning that if cohesion is neglected in design of masonry walls 

underestimated shear strength can be achieved. According to Abdou et al. (2006), the 

existence of this residual cohesion can be explained by the penetration of mortar into the 

holes, which avoids the separation of the blocks. Thus, this value can be used for evaluation 

of the shear sliding resistance of walls or piers submitted to seismic action failing along 

horizontal sliding joints (Calvi et al., 1996). The residual friction coefficient is 12% and 35% 

lower than peak friction coefficient in specimens built with 3C-units and 2C-units respectively. 

In this case the higher reduction occurs for 2C-Units. 

Mode II fracture energy was calculated according to Pluijm (1999), see Figure 3.27. A 

high variation was observed in results. However, it was clear that Gf
II depends of the normal 

stress applied on the mortar joints, see Table 3.7 and Figure 3.28. All properties were 
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calculated in relation to gross area of the specimen. From the linear fitting to the 

experimental results it is possible to conclude that the mode II fracture energy can be 

calculated from Eq. 3.3: 

 

σBAG II
f +=  Eq. 3.2
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Figure 3.27 – Mode II fracture energy. 

 

Specimens built with 3C-units exhibited higher values of mode II fracture energy than 

specimens built with 2C-units. This behavior is probably due to the higher penetration of 

mortar into the holes blocks in 3C-units. 

 

 
Table 3.7 – Results of mode II fracture 

energy obtained from initial-shear tests. 

Type       
of unit A B 

2C-units 0.02 0.30 
3C-units 0.19 0.13 
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Figure 3.28 – Variation of mode II fracture energy with 

normal stresses. 

 

The shear stiffness of the unit-mortar interface was also calculated from the shear 

stress vs. shear slipping. It seems not to be influenced by the normal stresses, see       

Figure 3.29. However, the scatter of the results was very high, which means that more tests 

should be carried out to evaluate this mechanical property. 
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Figure 3.29 – Relation between shear stiffness and normal stress. 

 

Horizontal deformation of the specimens was also observed during the test. All 

horizontal LVDTs exhibited similar behaviour at the beginning of the test and presented small 

values. With no symmetrical damages of the interface some rotations appeared in specimen 

and the horizontal displacements became quite different, see Figure 3.30.  

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 LVDT h1
 LVDT h2
 LVDT H

Horizontal displacement (mm)

S
tre

ss
 (M

P
a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.05 0.00 0.05 0.10 0.15 0.20

 LVDT h1
 LVDT h2
 LVDT H

Horizontal displacement (mm)

S
tre

ss
 (M

P
a)

(a) (b) 

Figure 3.30 – Horizontal behaviour of the specimens in initial shear tests: (a) 3C-units – σ = 0.20 MPa 

and (b) 2C-units – σ = 0.66 MPa. 

 

The relation between the horizontal displacement and vertical displacement define 

the tangent of the dilatancy angle (tan ψ). As after the beginning of damage there were some 

rotations, LVDT H was used to define the dilatancy. Half of the values recorded in LVDT H 

were considered since there were two joints in the measured distance. Thus, dilatancy was 

calculated as the tangent of the horizontal displacements vs. vertical displacements 

diagrams, see Figure 3.31. As observed by Pluijm (1999) and Vasconcelos (2005), dilatancy 
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decreases with the increasing of pre-compression, see Figure 3.32. Dilatancy seems to have 

a linear variation in relation to normal stress and can be given by Eq. 3.3. 

 

σψ BA +=tan  Eq. 3.3

 

The values of the variables A and B in the equation are defined in Table 3.8.  
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Figure 3.31 – Horizontal displacements vs. vertical displacements of the specimens in initial-shear 

tests: (a) 3C-units – σ = 0.20 MPa and (b) 2C-units – σ = 0.66 MPa. 

 

Specimens built with 3C-units had a high coefficient of correlation equal to 0.91. On 

the other hand, specimens built with 2C-units had a high scatter on the results. 

 

 
Table 3.8 – Results of dilatancy of initial 

shear tests. 

Type       
of unit A B 

2C-units 0.41 -0.19 
3C-units 0.52 -0.38 

 
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.2

0.3

0.4

0.5

0.6

tan ψ =0.4061-0.1894σ

R2=0.5970 (2C-units)

 Units 3C
 Units 2C

tan ψ =0.52-0.3833σ

R2=0.9125 (3C-units)

ta
n 

ψ

Normal stress (MPa)  
Figure 3.32 – Relation between dilatancy and normal 

stress. 
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3.5 Reinforcements 
 

Aiming at analysing the behaviour of reinforced masonry walls and beams, it was 

decided to use pre-fabricated truss type reinforcements both for bed joints and as vertical 

reinforcement, see Figure 3.33. This is a prefabricated reinforcement consisting of two 

parallel wires welded to a continuous zig-zag wire. 

 

 
Figure 3.33 – Pre-fabricated trussed type reinforcement. 

 

Reinforcements with 4mm and 5mm diameter and spacing between longitudinal bars 

of 80 mm and 50mm were used for the bed joints and vertical hollow cells of the units 

respectively. Reinforcements of two classes of strength were applied due to the usage of 

different productions. Three specimens were submitted to direct tensile tests, see         

Figure 3.34. The average value of the yield stress was of 580 MPa and 700 MPa (εy = 2.96 

‰ and εy = 3.57 ‰) and the elastic modulus was about 196 GPa, see Figure 3.34.  
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Figure 3.34 – Stress vs. strain diagram of the trussed reinforcements. 

 

Straight bars were also used in the construction of masonry beams at the bed joints, 

when the flexural failure was to be prevented. Straight bars with 6 mm of diameter were 

used. As in case of trussed type reinforcement, three specimens were submitted to direct 
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tensile tests, being the average value of the yield stress of 448 MPa (εy = 2.50 ‰) and the 

elastic modulus of about 179.3 GPa, see Figure 3.35. 
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Figure 3.35 – Stress vs. strain diagram of the straight reinforcement. 

 

3.6 Masonry 
 

Besides the characterization of the masonry materials and unit-mortar interfaces, 

experimental characterization was carried out to evaluate the composite behaviour of 

masonry. Uniaxial compressive tests were carried out in order to characterize the 

compressive behaviour of masonry in normal and parallel direction to the bed joints. 

Diagonal tests were also carried out to evaluate the shear and indirect tensile behaviour of 

masonry. Finally, flexural tests were performed in order to obtain the flexural strength of 

masonry with plane of failure parallel to bed joints. 

 

3.6.1 Compressive tests in direction normal to bed joints 

 

Six masonry wallets were built considering each geometry of the units in order to 

evaluate the compressive behaviour normal to bed joints according to EN 1052-1 (1999). 

The geometry of the specimens was defined according to the recommendations of the 

European standard, being composed of two units length and five courses height with an 

8mm horizontal joints, see Figure 3.36a. Six LVDTs were used to measure the deformations 

of the samples. Four LVDTs were attached to the specimen in order to measure the vertical 

strain and calculate the elastic modulus of the masonry assembles. Two additional LVDTs 

were used to measure the horizontal strains, see Figure 3.36b. The horizontal strains were 

measured in the middle of unit and in the vertical joint. The mortar used in the construction of 
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the specimen presented a flexural strength equal to 2.74 MPa and a compressive strength 

equal to 11.52 MPa. 
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Figure 3.36 – Specimens used in compressive tests normal to bed joints: (a) geometry and                

(b) instrumentation. 

 

The masonry built with the distinct geometry of the concrete blocks presented similar 

behaviour under compression, see  

Table 3.9. In the Table 3.9, fam┴ is the mean of compressive strength normal to bed 

joints, fak┴ is the characteristic value of compressive strength normal to bed joints, Eam┴ is the 

mean of elastic modulus normal to bed joints, νam┴ is the mean of Poisson’s ratio normal to 

bed face, εaym┴ is the mean of yield strain normal to bed joints and fak,Eurocode 6 (2005)┴ is the 

characteristic compressive strength normal to bed face of masonry measured according to 

Eurocode 6 (2005). All properties were calculated in relation to gross area of the specimen. 

The compressive strength calculated according to Eurocode 6 (2005) is given by Eq. 3.4. 

 
3.07.045.0 mbak fff =  Eq. 3.4

 

Where, fak is the characteristic value of compressive strength of masonry, fb is the normalized 

compressive strength of the units and fm is the compressive strength of the mortar. 

It is observed that the values calculated according to Eurocode 6 (2005) were 8.6% 

lower and 8.2% higher than the characteristic compressive strength obtained in 2C-units and 

3C-units respectively, meaning that good agreement was find between experimental values 

and those suggested by the European code. In spite of the compressive strength normal to 

bed joints of 3C-units was higher than the compressive strength of 2C-units, the compressive 

strength of the masonry normal to bed joints was very similar for both types of units. 
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Table 3.9 – Compressive strength of masonry normal to bed joints. 

Type of unit fam┴        
(MPa) 

fak┴       
(MPa) 

Eam┴     
(GPa) νam┴ εaym┴          

(‰) 

fak,Eurocode 6 

(2005)┴     
(MPa) 

2C-units 5.44 
(6%) 4.88 10.48 

(23%) 
0.47 

(53%) 
0.93 

(13%) 4.46 

3C-units 5.95 
(11%) 4.86 10.51 

(23%) 
0.55 

(37%) 
1.00 

(25%) 5.26 

 

Masonry panels presented a fragile behaviour with an explosive collapse in most of 

specimens, see Figure 3.37 and Figure 3.38. Cracking began in vertical joint at the middle of 

specimen due to tensile stresses in direction parallel to bed joints. The crack propagates and 

passes through the upper and lower units when tensile stresses reached the tensile strength 

of the concrete block. Mortar in horizontal joint of the top of specimen crushed and vertical 

cracks appeared in the upper and middle course units in following the vertical joints. The 

basic difference on the failure mode of specimens built with 3C-units and 2C-units seemed to 

be the gradual and higher cracking of the masonry built with filled vertical joints. 

 

  
(a) (b) 

Figure 3.37 – Cracking pattern on specimens built with 3C-units: (a) specimen 1 and (b) specimen 6. 
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(a) (b) 

Figure 3.38 – Cracking patterns on specimens built with 2C-units: specimen 2 and (b) specimen 4. 

 

LVDTs 5 and 6 were used to compare the horizontal deformation at the middle of unit 

and at the level of a vertical joint. No differences were observed between those 

deformations, confirming the homogeneous behaviour of the masonry specimens, see  

Figure 3.39. As expected, specimens built with 3C-units showed higher horizontal 

deformations and, consequently, a higher Poisson’s ratio since there was no contribution of 

the resistance of mortar in vertical joints. It should be noticed that the values of Poisson’s 

ratios and elastic modulus were very high. This behaviour may be attributed to a possible 

flexure of the steel plate on the top of specimens. This flexure generated a non-uniform 

distribution of stresses with higher compressive stresses in the center of specimens and 

lower stresses in edges where vertical strains were measured. 
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Figure 3.39 – Horizontal strains: (a) 3C-units and (b) 2C-units. 
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 The relation between stresses and strains suggested by Eurocode 2 (2004) to 

concrete was also applied to masonry under compression in the perpendicular direction to 

bed joints according to Eq. 3.5: 
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Where, σa  is the stress in masonry, εa is the strain in masonry and εay is the yield strain of 

masonry. 

From Figure 3.40, it is possible to observe that Eq. 3.5 describes also very well the 

experimental compressive strength of masonry.  
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Figure 3.40 – Experimental stress vs. strain diagrams and comparison with stress-strain function 

given by Eurocode 2 (2004): (a) 3C-units and (b) 2C-units. 

 

3.6.2 Compressive tests in direction parallel to bed joints 

 

As aforementioned the compressive tests parallel to bed face were also carried out in 

order to evaluate the compressive strength of masonry in parallel direction to bed joins since 

this mechanical property is needed for the design of masonry beams. Six masonry wallets 

were built with the two geometries of units. Specimens were built with two units of length and 

three courses height with an 8mm-joint, see Figure 3.a. Six LVDTs were used to measure 

the vertical and horizontal deformations. Four LVDTs were used to obtain the vertical strains 

and calculate the elastic modulus of the masonry and two LVDTs were used to evaluate the 

horizontal strains close of the top and bottom edges of masonry, see Figure 3.b. The mortar 
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used in the construction of the specimens presented a flexural strength equal to 2.74 MPa 

and a compressive strength equal to 11.52 MPa. 
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Figure 3.41 – Specimens used in compressive tests in the direction parallel to bed joints: (a) geometry 

and (b) instrumentation. 

 

A complete summary of the mechanical properties obtained in experimental tests 

carried out on the direction parallel to bed joints in given in Table 3.10. All properties were 

calculated in relation to gross area of the specimen. In the Table 3.10, fam// is the mean of 

compressive strength parallel to the direction of bed joints, fak// is the characteristic value of 

compressive strength parallel to the direction of bed joints, Eam// is the mean of elastic 

modulus parallel to the direction of bed joints, νam// is the mean of Poisson’s ratio parallel to 

the direction of bed joints, εaym// is the mean of yield strain parallel to the direction of bed 

joints and fak,Eurocode 6 (2005)// is the characteristic value of compressive strength parallel to the 

direction of bed joints according to Eurocode 6 (2005). In case of compression parallel to bed 

joints, Eurocode 6 (2005) suggests the same expression used to calculate the compressive 

strength in the normal direction to bed joints but considers the normalized compressive 

strength of the masonry unit obtained in experimental tests carried out on the direction 

parallel to bed joints. Besides, factor K should be also multiplied by 0.5, see Eq. 3.6:  

 

( )3.07.0
//// 45.05.0 mbak fff =  Eq. 3.6

 

Where, fb// is the normalized compressive strength of the units parallel to bed face. 

The results show that the compressive strength in the direction parallel to bed joints  

present lower values when compared to the compressive strength of masonry in the direction 

perpendicular to bed joints, mainly in case of absence of mortar in vertical joints, see     

Table 3.10. In case of compressive strength in the direction parallel to bed joints, the value of 
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the characteristic strength suggested by Eurocode 6 (2005) is on the safety side for both 

geometries of the concrete blocks.  
 

Table 3.10 – Mechanical properties regarding the compressive behaviour of masonry in the direction 

parallel to bed joints. 

Type of unit fam//        
(MPa) 

fak//       
(MPa) 

Eam//      
(GPa) νam// 

εaym//           
(‰) 

fak,Eurocode 6 

(2005)//     
(MPa) 

2C-units 3.41 
(14%) 2.62 7.31 

(11%) 
0.25 

(27%) 
1.61 

(34%) 1.74 

3C-units 2.78 
(16%) 2.05 2.50 

(29%) 
0.17 

(41%) 
11.26 
(28%) 1.94 

. 

In spite of low strength, the behaviour of specimens in the direction parallel to bed 

joints was very ductile with ultimate strains higher than 10 ‰. This is related to the failure 

mode that masonry presented in this direction. The failure mode can be divided in two 

phases, as in case of compressive tests parallel to bed joints of the concrete blocks, see 

Figure 3.42.  
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Figure 3.42 – Behaviour of masonry under compression in the direction parallel to bed joints:                                 

(a) 1st phase and (b) 2nd phase. 

 

In the first phase, units and mortar deform in direction of loading due to the 

compressive loading. On the other hand, compressive loading leads to the lateral 

deformation of the specimen, which results on the tension of webs of the concrete units up to 

the opening of tensile cracks when tensile strength of concrete of the units is reached. 

Tensile stresses also appeared in direction normal to bed joints leading to cracking at the 

unit-mortar interfaces along bed joints. After this, the second phase begins with the specimen 

divided in two parts under flexure generated by the eccentricity of loading in relation to shells 

of the units. After the failure of the webs, the flexure of the two separated parts of the 

specimen results in cracks at head joints. In some cases, the cracks at head joints propagate 

to units, see Figure 3.43 and Figure 3.44.     
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(a) (b) 

Figure 3.43 – Cracking patterns of specimens built with 3C-units: (a) specimen 5 and (b) specimen 6. 

 

      
(a) (b) 

Figure 3.44 – Cracking patterns of specimens built with 2C-units: (a) specimen 2 and (b) specimen 3. 

 

Specimens built with 2C-units and 3C-units exhibited differences on the complete 

compressive behaviour in the direction parallel to bed joints. Specimens with 2C-units 

presented a gradual loss of stiffness up to the maximum load, see Figure 3.45a. On the other 

hand, specimens built with 3C-units exhibited an increasing of stiffness in the post-peak 

regime. This behavior is related to the absence of mortar in head joints. It is practically 

impossible to ensure a total contact between the bands of the 3C-units during the laying of 

the blocks. Only one grain of sand in this region is sufficient to keep the surfaces separated 

by some millimetres. The increase on the stiffness and compressive strength is associated to 

the contact of dry joints and further crushing of the frogged ends, see Figure 3.45b. 
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Figure 3.45 – Stress vs. strain diagrams obtained in the direction normal to bed joints: (a) 2C-units 

and (b) 3C-units.  

 

3.6.3 Diagonal tests 

 

Diagonal tests were carried out according to ASTM E519-02 (2000). Six masonry 

wallets were built with the two geometries of the concrete blocks. Specimens were built with 

two and a half blocks of length and five courses height with a 8mm-joint aiming at achieving 

a square-geometry to the specimens, see Figure 3.46a. Four LVDTs were used to measure 

the deformations of the specimens. Two vertical LVDTs were used to measure the vertical 

strain and two LVDTs were attached to the specimens to measure the horizontal strains, see 

Figure 3.46b. The mortar used in the construction of the specimens presented a flexural 

strength equal to 2.68 MPa and a compressive strength equal to 11.09 MPa. 

This test allows the obtainment of the shear strength of the masonry through diagonal 

compressive loading, which induces an indirect tension with the same value. 
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Figure 3.46 – Specimens used in diagonal tests: (a) geometry and (b) instrumentation. 
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Indirect tension and shear strength are calculated by dividing the applied force by the 

transversal area of the diagonal section of the specimen, see Eq. 3.7.  

 

thb
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Eq. 3.7

 

Where, ft is the tensile strength of the masonry, fs is the shear strength of the masonry P is 

the applied force, b is the length of the specimen, h is the height of the specimen and t is the 

width of the specimen. 

The shear distortion is calculated based on the displacements measured by the 

LVDTs through Eq. 3.8. And, the shear elastic modulus of masonry, G, can be calculated 

from Eq. 3.9. 
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Eq. 3.9

 

Where, γ is the shear distortion of the masonry, ∆V and ∆H are the vertical and horizontal 

shortening respectively and l0 is the gage length. 

The mechanical properties characterizing the shear and indirect tensile behaviour of 

masonry are presented in Table 3.11. All properties were calculated in relation to gross area 

of the specimens. In the Table 3.11, fsm is the mean of shear strength of masonry, ftm is the 

mean of tensile strength of masonry, fsk is the characteristic value of shear strength of 

masonry and ftk is the characteristic value of tensile strength of masonry. 

 
Table 3.11 – Mechanical properties from diagonal tests. 

Type of unit fsm = ftm       
(MPa) 

fsk = ftk         
(MPa) 

G             
(GPa) 

2C-units 0.59 
(13%) 0.47 2.22 

(13%) 

3C-units 0.19 
(21%) 0.12 1.85 

(12%) 
 

It can be observed that specimens built with 3C-units and 2C-units presented distinct 

shear and tensile properties. The presence of mortar in head joints seems to influence 

considerably the shear and tensile strength leading to an increasing of strength around to 
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210%. The filling of vertical joints generated a better distribution of stresses since mortar 

increase the contact area of the units. On the other hand, the filling of the vertical joints 

affected in a lower extent the shear stiffness of masonry resulting in a shear modulus 20% 

higher than in case of masonry built with 3C-units.   
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Figure 3.47 – Cracking pattern on specimens built with 2C-units. 

 

The failure of wallets built with 2C-units was very brittle with the sudden cracking of 

specimens and the projection of the specimen from the testing apparatus, see Figure 3.47. 

Specimens built with 3C-units exhibited a more ductile behaviour. The cracking was visible 

and occurred suddenly as in case of specimens built with 2C-units. However, after maximum 

load was reached, the deformation increased for a load almost constant until the collapse, 

see Figure 3.48. In fact, the load dropped from the peak to a residual constant stress. The 

crack pattern is composed of a macro-crack following the unit-mortar interfaces indicating 

that the units have a tensile strength higher than the shear strength of the unit-mortar 

interface. The cracking became visible just at the moment of collapse. 
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Figure 3.48 – Cracking pattern on specimens built with 3C-units. 
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3.6.4 Flexural tests 

 

Flexural tests on masonry were carried out according to EN1052-2 (1999). Six 

masonry wallets were built with the two geometries of concrete blocks. Specimens had two 

units of length and seven courses height with an 8mm-joint, see Figure 3.49a. Three LVDTs 

were used to measure the vertical displacements, see Figure 3.49b. The mortar used in the 

construction of specimens presented a flexural strength equal to 2.50 MPa and a 

compressive strength equal to 10.15 MPa. 
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Figure 3.49 – Flexural tests: (a) Specimens and (b) Test setup. 

 

According to EN 1052-2 (1999) flexural strength is calculated following Eq. 3.10. This 

value corresponds to the tensile stress in the middle section of the specimen caused by the 

flexure. 

 

( )
2

21

2
3

bt
llPf x
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=  Eq. 3.10

 

Where, fx is the flexural strength, P is the maximum load applied, l1 is the spacing of the outer 

bearings, l2 is the spacing of the inner bearings, b is the length of specimen and t is the width 

of specimen.  
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The flexural stiffness of masonry can be calculated based on the moment vs. 

curvature diagram. From the displacements measured by the LVDTs it is possible to define 

the curvature in the zone of pure flexure, see Figure 3.50. The curvature is given by Eq. 3.11. 
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Figure 3.50 – Curvature through the displacements in flexural test. 
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Eq. 3.11

 

Where, δ1 is the displacement of the point corresponding to one third length of the specimen 

and δ2 is de displacement measured by LVDT1.  

LVDTs 2 and 3 were not positioned in the region with constant bending moment and 

null shear force. So, values of these displacements should be corrected in order to calculate 

the curvature. Thus, δ1 was calculated using the mean of displacements of LVDT2 and 

LVDT3 and using an equation of second order to represents the deformed shape of 

specimen, see Figure 3.51.  

 

1δ

30

2δLVDTδ

 

( ) CBxAxxf ++= 2  

( ) LVDTf δ=0 , ( ) 2150 δ=f , ( ) 0150' =f  

21 36.064.0 δδδ += LVDT  

12 LVDTδδ =      
2

32 LVDTLVDT
LVDT

δδ
δ

+
=  

Figure 3.51 – Correction of displacements in flexural test. 

 

The value of stiffness was transformed to the gross area to keep consistency with the 

other results, see Figure 3.52. It is observed that both types of specimens, built with 3C-units 

and 2C-units, presented negative curvatures at the beginning of the test. It means that 

displacements of the thirds were higher than displacements in the center of the panel. This 
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behaviour can be explained by the asymmetric deformation of the rubbers, used in supports 

to better distribute of the stresses, during the accommodation of the structure. 
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Figure 3.52 – Moment vs. curvature diagrams in flexural tests: (a) 3C-units and (b) 2C-units. 

 

The flexural mechanical properties of masonry are presented in Table 3.12, namely 

the mean, fxm, and the characteristic, fxk, flexural strength and the flexural stiffness, EI.  

 
Table 3.12 – Mechanical flexural properties.  

Type of 
unit 

fxm        
(MPa) 

fxk       
(MPa) 

EI           
(kNm2) 

2C-units 0.31 
(13%) 0.24 141.80 

(7%) 

3C-units 0.41 
(4%) 0.38 123.44 

(16%) 
 

It is seen that specimens built with 3C-units had a higher flexural strength and lower 

flexural stiffness than the masonry built with 2C-units. The proximity of the internal webs in 

3C-units promoted the union of the excess mortar during the laying, providing a better tensile 

bond strength at the unit-mortar interfaces. On the other hand, the filling of vertical joints in 

wallets built with 2C-units probably was the responsible by the higher stiffness. 

Comparing experimental results with value of flexure strength equal to 0.10 MPa 

suggested by Eurocode 6 (2005), it can be noticed that the standard underestimates the 

capacity of masonry under flexion.  
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3.7 Summary and conclusions 
 

In this chapter a detailed characterization of the mechanical behaviour of masonry 

components and masonry as a composite material was carried out. Two geometries were 

considered for the concrete blocks in order to vary the masonry pattern and to obtain 

different arrangement for the placement of vertical reinforcements on masonry. Tensile and 

compressive experimental tests were carried out in concrete blocks and flexural and 

compressive tests were considered to characterize the mortar. The compressive behaviour 

of masonry in the direction perpendicular and parallel to he bed joints was also characterized 

based on experimental tests. The shear and indirect tensile strength of masonry was 

obtained by diagonal tests and the flexural behaviour was analysed based on four point load 

configuration. Finally the shear behaviour of the unit-mortar interface was characterized from 

direct shear test of triplet specimens.  

From the experimental results the following remarks can be drawn: 

(a) Compressive behaviour of units was very similar, meaning that the geometry has 

no significant influence. Both concrete blocks behaved in a brittle manner under uniaxial 

compression, being impossible to record the post-peak behaviour.  

(b) The compressive strength of units in the parallel direction to the bed joints 

appears to be a good approximation for the achievement of the tensile strength of concrete 

units and can replace the direct tensile tests. 

(c) The shear strength of unit-mortar interface is higher in 3C-units, possibly due to 

connection of mortar of the internal webs, avoiding the separation of the blocks. The results 

showed that shear strength followed the Coulomb’s law with a linear relation between shear 

and normal stresses. Besides, it was observed that dilatancy depends on the normal 

stresses. 

(d) The compressive behaviour of masonry in the perpendicular direction to the bed 

joints built with the concrete units with distinct geometry appeared to be very brittle. 

Reasonable approach was finding between experimental compressive strength and the 

compressive strength calculated according to Eurocode 6 (2005). Besides, the compressive 

stress-strain diagram obtained for the normal direction to bed joints is well described by the 

law presented in Eurocode 2 (2004) for concrete structures.  

(e) The compressive behaviour of masonry in the parallel direction to the bed joints 

built with the concrete units with distinct geometry appeared to be more ductile. The 

geometry of the units influences the ductility of masonry under compression according to the 

direction of bed joints. The equation recommended by Eurocode 6 (2005) to calculate the 



Chapter 3 – Experimental program I: characterization of materials 121

compressive strength of masonry reveals a reasonable approximation but always on the 

safety side.  

(f) The shear and indirect tensile strength of masonry was measured through the 

diagonal compressive tests. Results revealed that the typology of vertical joints influences 

the shear and tensile strength of masonry. In case of filled vertical joints the shear and 

tensile strength presents clearly higher values than in case of unfilled vertical joints. 

However, when filled vertical joints (2C-units) are used the failure is more brittle than in case 

of masonry with unfilled vertical joints (3C-units), which in addition presented a residual 

strength. 

Finally, it should be stressed that the knowledge of the mechanical properties and the 

understanding of the behaviour of masonry and masonry materials is fundamental to analyse 

the experimental and numerical results of the masonry structural elements under in-plane 

loading, namely reinforced masonry walls and beams. The mechanical properties are also 

essential for the design of masonry walls and beams. 
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4 EXPERIMENTAL PROGRAM II:    
 SHEAR WALLS 

 

4.1 Introduction 
 

In masonry buildings, shear walls are the structural elements responsible for resisting 

the lateral loads due to wind and earthquakes. These elements are subjected to flexure and 

shear in conjunction with compression resulting from the gravity loads. Even if the behaviour 

of masonry walls under flexure is well defined and follows basically the same rules applied to 

concrete structures, in terms of shear, masonry walls exhibit a more complex behaviour due 

to the presence of weakness planes along head and bed joints. This means that a research 

effort has to be made to achieve a better insight on the shear behaviour of masonry walls. 

This is particularly important in case of reinforced masonry walls as great part of the past and 

recent investigation is dedicated to the evaluation of unreinforced masonry walls or more 

recently to strengthen masonry walls with FRPs (Benedetti and Steli, 2006; El Gawady et al., 

2006) aiming at improving the strengthening techniques of ancient masonry walls belonging 

to architectural heritage. The deficit of experimental investigation on reinforced masonry 

walls is essentially the result of scarce new construction in reinforced masonry, when 

compared to the reinforced concrete. 

The behaviour of masonry structures have been evaluated through different 

experimental approaches such as quasi-static monotonic or cyclic tests, dynamic shaking 

table tests and pseudo-dynamic tests. According to Gerardin and Negro (2000) the dynamic 

shaking table tests are the most realistic way of subjecting a structural model to any 

particular base motion (Carvalho, 1998; Juhásova et al., 2002; Henderson et al., 2003; 

Modena et al., 2004; Reneckis et al., 2004; Wight et al., 2004). These tests simulate the 

seismic action with more accuracy because the tested structure is subjected to real 

earthquake acceleration records. However, the unavailability of the equipment in most 
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laboratories and the difficulties in processing the results leads to the preference by other 

types of tests.  

An experimental approach that provides still realistic dynamic results consists of 

pseudo-dynamic tests. They are, in principle, simpler than shaking table tests. This test is a 

conjunction of a quasi-static test with a computational model that calibrates the load level to 

be considered in the dynamic analysis. The masonry structure is submitted to a real 

earthquake excitation at a relatively slow speed, which enables the observation of the 

damage evolution. The dynamic characteristics of the structure, equivalent mass and 

damping are numerically simulated on a computational model, whereas the characteristics of 

the restoring force are directly measured in the tested specimens. 

Still, the quasi-static monotonic/cyclic tests are the most common technique used to 

evaluate the behaviour of shear walls. They are simple, relatively economical and do not 

require special apparatus. Static tests are generally carried out in single elements or simple 

sub-assemblages. The test is performed by controlling the horizontal displacement due to the 

larger uncertainties in predicting the restoring forces in the nonlinear regime. According to 

Gerardin and Negro (2000) the main limitation of the static tests concerns the impossibility of 

simulating the inertial forces. Distinct lateral displacement histories may be used to simulate 

the seismic loads as shown in Figure 4.1. 
 

 
Figure 4.1 – Typical lateral displacement time histories used to simulate seismic loading (Tomaževič, 

1999). 

 

Tomaževič et al. (1996) investigated the influence of distinct displacement time 

histories on the in-plane behaviour of masonry walls by comparing the results obtained for 

each procedure in the same type of specimens. The results showed that in-plane behaviour 

depends on the displacement time history. Monotonic loading led to the highest lateral 
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resistance and displacement capacity. Masonry walls exhibited a more brittle behaviour 

under real earthquake and sinusoidal loading. Figure 4.2 shows the most common 

configuration for shear walls tested under static monotonic/cyclic loading conditions. 

Typically, the wall is submitted to combined in-plane horizontal and vertical loading, so that 

the weight of the upper storeys can be accounted for. According to Tomaževič (1999), in a 

real situation the axial compression load changes during earthquakes due to restraints that 

prevent the rotation of the wall at large displacements. However, due to the difficulty of 

simulating the real boundary conditions, the walls are basically tested with constant vertical 

load, within the usual limits found in a real building. 

 

Lateral Load

Axial Compression

Concrete Header Beam

Panel Wall

Concrete Footer Beam

 
Figure 4.2 - Typical test configuration of shear walls under static monotonic/cyclic lateral loading. 

 

Usually the vertical axial load is applied by means of vertical actuator whose reaction 

is often given by a steel frame. Keeping a constant value of the axial load during the whole 

test is a difficult task as the progress of the wall deformation changes the initial 

characteristics of the test arrangement. Some authors decided to use more than one vertical 

actuator in order to maintain the force practically constant in the full length of the wall 

(Vermeltfoort et al., 1993; Anthoine and Magonette, 1995; Kikuchi et al., 1999; Manos et al., 

2001; Kikuchi et al., 2003; Yoshimura et al., 2003), see Figure 4.3a. In other cases, 

horizontal load is applied at the mid-height of the wall, which is equivalent to the application 

of an in-plane bending moment at the top of the wall (Chai and Yaw,1999; Yoshimura et al., 

2003), see Figure 4.3b.  

This loading condition means that the wall does not behave as a cantilever wall since 

the top rotations are partially restrained. In both cases, the diagram of in-plane bending 

moment is modified, see Figure 4.4. If on one hand the use of the last test setup leads to the 

preponderance of the shear failure patterns, on the other hand it can lead to the increase on 

the complexity of the analysis of results as the restraint degree at the top of wall is unknown. 
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(a) 

(b) 

Figure 4.3 – Unusual test setup to shear-walls: (a) Yoshimura et al. (2003) (b) Chai and Yaw (1999). 
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Figure 4.4 – Different boundary conditions of shear walls: (a) cantilever (b) non-cantilever. 

 

This Chapter deals with the mechanical validation of reinforced masonry walls under 

cyclic in-plane lateral loading. The masonry walls tested correspond to different structural 

solutions as regards the masonry units, masonry bond pattern and positioning of the vertical 

and horizontal reinforcement, which can be used in the construction of reinforced masonry 

buildings in seismic zones. The major aim of the experimental research program is the 

mechanical validation of concrete block masonry walls and the evaluation of different 

variables like the masonry bond pattern, presence of vertical reinforcement, horizontal 

reinforcement ratio and vertical pre-compression on their the in-plane behaviour. 

The experimental approach followed in the experimental investigation relies on the 

static cyclic tests, given the laboratory facilities at University of Minho. Thus, the Chapter is 

basically divided into three main parts: (a) the presentation of the masonry walls solution and 

experimental setup; (b) analysis of results based on the experimental data (failure modes 

and force-displacement diagrams) and evaluation of the seismic performance and, finally; (c) 
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the comparison between the experimental results in terms of lateral resistance and the 

values of lateral strength obtained from analytical models available in the literature.  

 

4.2 Experimental Program 
 

As aforementioned, the present experimental program based on static cyclic test on 

masonry walls aims at validating their mechanical behaviour under cyclic horizontal loads, 

simulating in a simplified manner the seismic loading. The evaluation of the experimental 

behaviour is essential when new solutions of masonry walls for masonry construction are 

envisaged. In this work, the mechanical characterization of the seismic behaviour of 

reinforced masonry walls is based on static cyclic tests carried out on cantilever panels with 

geometry that enables them to be tested at the laboratory of the Structural Group of 

University of Minho. 

 

4.2.1 Masonry specimens 

 

Due to the limited facilities of the laboratory in terms of actuators capacity and space, 

reduced scale (1:2) concrete masonry units, specifically developed for the research project, 

were used in the tested masonry panels. Two masonry bond patterns were adopted for the 

masonry panels built with concrete units of different shape, namely the traditional running 

bond pattern (B1) and a masonry bond pattern characterized by the existence of continuous 

reinforced vertical joints (B2), see Figure 4.5.  
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Figure 4.5 - Geometry of in-plane masonry walls with distinct masonry bond patterns: (a) masonry 

walls built with 3-cell masonry units and (b) masonry walls built with 2-cell masonry units. 

 

Masonry bond pattern B1 corresponds to the traditional running masonry bond 

pattern (units were overlapped on consecutive courses). This bond patterns enables the 

positioning of the truss type vertical reinforcement in the frogged ends of the three cell 
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masonry units and in its internal hollow cell, see Figure 4.6a. In case of masonry walls built 

with two cell concrete blocks, the vertical reinforcement is positioned in one of the two hollow 

cells. In the second masonry bond pattern (B2), the vertical reinforcement is placed only in 

the vertical core defined by the frogged ends of the units in case of the three cell units are 

used, defining a continuous vertical joint, or in the typical vertical joints in case of masonry 

built with two cell blocks, see Figure 4.6b. The latter masonry bond pattern has advantages 

concerning the construction technology, as the masonry units can be laid after the placing of 

the reinforcement without any change on the traditional technology applied in the 

construction of unreinforced masonry walls. It is noted that the hollow cell, where the vertical 

reinforcement was positioned, should be completely filled at each course with the same 

mortar used to lay the masonry units, in order to avoid an additional material in the building 

construction. In both bond patterns the horizontal reinforcement is positioned in the bed 

joints. 

 

 
(a) 

 
(b) 

Figure 4.6 - Masonry bond patterns: (a) running bond pattern, B1 (b) bond pattern 

with continuous vertical joint, B2. 
 

Besides the different bond patterns other variables were analysed, namely the pre-

compression level and the vertical and horizontal reinforcement ratios, see Table 4.1. The 

specimens are denoted by Nx-y-Bi-z, where x indicates the vertical pre-compression force in 

kN, y indicates the geometry of units (3C and 2C for three and two hollow cell units 

respectively), i is the adopted masonry bond pattern and z is an optional distinct 

characteristic concerning the truss type horizontal reinforcement and its ratio (ρh). This 

optional characteristic is UM, for unreinforced masonry, SH, for only horizontal 

reinforcement, PA, for lower horizontal reinforcement, and MA, for higher horizontal 

reinforcement. Variation of the horizontal reinforcement ratio is achieved using different 

diameters for the longitudinal bars (φh) and by decreasing the vertical spacing, see Table 4.1. 

In reinforced specimens truss type vertical reinforcements with longitudinal bars with 
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diameter (φv) of 5mm were used, to which a certain reinforcement ratio (ρv) is associated. 

The disposition of the horizontal and reinforcements in bed joints and in the vertical internal 

cores of the concrete units or in the vertical continuous joints is presented in     Figure 4.7. 

 
Table 4.1 – Details of shear walls. 

Wall Bond 
pattern 

φv 
(mm) 

ρv 
(%) 

φh 
(mm) 

ρh 
(%) 

Reinf.  
type 

Dimensions 
(mm) 

Pre-
compression   

(MPa) 
N60-3C-B1-UM B1 - - - - - 1206 x 800 x 100 0,56 

N150-3C-B1 B1 5 0.098 4 0.094 R3 1206 x 800 x 100 1.30 

N150-3C-B2 B2 5 0.098 4 0.094 R3 1206 x 800 x 100 1.30 

N60-3C-B1 B1 5 0.098 4 0.094 R3 1206 x 800 x 100 0.56 

N60-3C-B2 B2 5 0.098 4 0.094 R3 1208 x 800 x 100 0.56 

N60-2C-B1 B1 5 0.106 4 0.093 R2 1116 x 808 x 94 0.56 

N60-2C-B2 B2 5 0.096 4 0.093 R1 1224 x 808 x 94 0.56 

N60-3C-B1-SH B1 - - 4 0.094 R5 1206 x 800 x 100 0.56 

N60-3C-B1-PA B1 5 0.098 3 0.053 R3 1206 x 800 x 100 0.56 

N60-3C-B1-MA B1 5 0.098 4 0.126 R4 1206 x 800 x 100 0.56 
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Figure 4.7 - Reinforcement of the in-plane masonry walls: (a) R1, (b) R2, (c) R3, (d) R4 and (e) R5. 

 

In order to obtain lateral responses governed predominantly by shear failure, a height 

to length ratio lower than 1.0 was considered. The masonry panels built with 3C-units had 

1206 mm length and 800 mm height resulting in a height to length ratio of 0.66. The masonry 
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panels built with 2C-units presented a height to length ratio of 0.66 in case of continuous 

vertical joint masonry bond pattern (B2 - 1224 mm length and 808 mm height) and a height 

to length ratio of 0.72 in case of running masonry bond pattern (B1 - 1116 mm length and 

808 mm height). A smaller length was used in the last wall to ensure a symmetrical 

distribution of the vertical reinforcements. Reinforced concrete beams were placed at bottom 

(280 mm x 280 mm x 1400 mm) and at the top (280 mm x 280 mm x 1200 mm) of the walls 

in order to anchor the vertical reinforcements and to ensure an uniform distribution of the 

applied vertical and horizontal loads.  

 

4.2.2 Construction of specimens 

 

The construction of the specimens did not offered special difficulties but particular 

care had to be taken in the construction of the concrete beams in order to distribute the 

reinforcement and anchorage of the vertical reinforcements of the walls. The construction of 

the specimens was carried out in three main steps:  

 

i. Construction of the bottom reinforced concrete beam, where the vertical 

reinforcements were anchored;  

ii. Construction of the wall by an experienced mason;  

iii. Construction of the top reinforced concrete beam.  

 

Due to the reduced height of the walls and in order to avoid overlapping of vertical 

reinforcements, continuous reinforcements were considered. This procedure led to several 

difficulties in the positioning of these reinforcements. Vertical reinforcement had to be 

anchored to the stirrups of the concrete bottom beam. Auxiliary timber parts had to be used 

to guide the reinforcement and the first course of concrete units was placed provisionally to 

help in the guidance, see Figure 4.8.  

 

  
Figure 4.8 – Construction of the bottom reinforced concrete beam. 
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The construction of the wall was made two or three days after casting of the 

reinforced concrete bottom beam. Firstly, a thin layer of mortar was laid on the base to level 

the first masonry course. Units were aligned and levelled in their respective position in the 

course. In case of walls built with 2C-units, all vertical joints were filled with mortar. Bed joints 

were built by placing mortar in all shells and webs of the concrete units. Even if this is not the 

procedure recommended by the supplier, mortar was laid in two layers, before and after the 

positioning of the horizontal reinforcements in order to ensure appropriate bond between 

reinforcements and masonry, see Figure 4.9. 

 

  
Figure 4.9 – Construction of the walls. 

 

After one week from the construction of the wall, vertical reinforcements were bent 

and the internal cores of the concrete units of the last course were filled with polyurethane 

foam to enable the casting of the reinforced concrete top beam without filling the concrete 

units, see Figure 4.10. After this, the timber mould of the reinforced concrete top beam was 

positioned with auxiliary timber columns supports and the reinforced concrete top beam was 

cast, see Figure 4.11. During the construction of the walls, three specimens of mortar (40 

mm x 40 mm x 160 mm) were cast aiming at controlling its quality through the compressive 

strength. The walls were cured in a laboratory environment (underground cave), with 

approximately relative air humidity of 80%. It should be stressed that the reduced scale of the 

masonry units required very small errors in the positioning of the vertical reinforcements due 

to the reduced internal core thickness. 

 

  
Figure 4.10 – Bending of the vertical bars and filling of the last course of wall with polyurethane foam. 
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Figure 4.11 – Construction of the reinforced concrete top beam. 

 

4.2.3 Test setup and procedures 

 

The static cyclic tests of the masonry walls were performed following the typical test 

setup shown in Figure 4.12 used for masonry walls under combined vertical and horizontal 

load (Vasconcelos, 2005).  In order to ensure proper curing of the specimens, the tests were 

carried out after 28 days from the construction. The mortar specimens were tested 

simultaneously to the walls. 
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Figure 4.12 - Test setup for in-plane cyclic horizontal load. 

 

The bottom reinforced concrete beam of the wall was fixed to a steel profile through 

eight steel bolts and two adjustable clamping angles to avoid uplift and slippage of the base. 

In turn, the steel profile was connected to the strong floor through steel rods. The axial load 

was applied by using a vertical actuator with vertical steel cables anchored at the strong 

floor. A stiff steel beam was used for the distribution of the vertical load and a set of steel 

rollers was placed to allow relative displacement of the wall with respect to the vertical 

actuator. A rubber layer was placed between the steel profile and the top of the concrete 

beam to enhance the distribution of stresses. The horizontal load was transferred to the wall 
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by means of two steel plates fixed at the top concrete beam by using an actuator with two 

hinges.  

The test procedure was divided in two phases. Firstly, a vertical load of 100kN, 

corresponding approximately to 15% of the compressive strength, was applied at a rate of 

0.25kN/s, in order to evaluate the elastic modulus of the wall. Afterwards, the wall was 

unloaded and reloaded up to a vertical stress equal to 1.30MPa or 0.56MPa depending on 

the selected level of pre-compression, which was kept constant during the test. The cyclic 

tests were carried out under displacement control at a rate of 70µm/s by means of an 

external LVDT connected to the horizontal actuator. The displacement-time history shown in 

Figure 4.13a was applied in the first test. This displacement-time history did not enable the 

record of intermediate damage state levels until the collapse of the wall. Thus, other 

displacement-time histories with lower displacement amplitude steps were performed as 

indicated in Figure 4.13b, c and d.  
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Figure 4.13 – Displacement-time histories: (a) N150-3C-B1, (b) N150-3C-B2 and N60-3C-B1, (c) N60-

3C-B1-UM and (d) others walls 
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4.2.4 Instrumentation 

 

The displacements of the wall under cyclic loading were measured by means of a set 

of LVDTs arranged according to what is indicated in Figure 4.14a. LVDTs 1, 2 and 3 

measured the lateral deformation of the wall. LVDTs 4 and 5 measured the slippage and 

uplift of the base of the wall respectively, and LVDTs 6 and 7 measured the rotation of the 

top concrete beam. LVDTs 8 and 9 recorded the diagonal crack openings of the wall 

indicating also possible rigid body movements along the diagonal cracks. The vertical LVDTs 

10, 11, 12 and 13 were fixed to both sides of the wall in order to obtain the elastic modulus of 

masonry during the first phase of the test as described previously and to evaluate the 

rotation of the wall during the application of the horizontal load. LVDTs 1, 2, 3, 4 and 5 were 

fixed to an external steel frame to ensure a fixed reference for measurements. In addition, 

strain-gauges were glued to the reinforcement at different locations, aiming at evaluating 

their contribution to the response of the wall, see Figure 4.14b. For specimens N150-3C-B1 

and N150-3C-B2, strain gauges were also glued in the top and bottom horizontal 

reinforcements at the same positions as the ones indicated in Figure 4.14b. 
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Figure 4.14 - Instrumentation of the in-plane walls: (a) positioning of LVDTs to measure the 

displacements of the walls: (b) strain-gauges for measurement of the deformation of reinforcements. 

 

4.3 Results 
 

Walls were tested after 28 days of age to ensure the complete curing of the mortar. 

Three specimens of the mortar used in the construction of each wall with 40mm x 40mm x 

160mm were taken during the construction of the walls to be tested under compression and 

flexure according to EN 1015-11 (1999) to obtain the compressive strength (fm) and flexural 
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strength (ffl). These values were intended to be used for controlling the quality of the mortar 

production. A high variability was observed in these results and none of the mortar 

specimens reached the expected strength of 10 MPa, see Table 4.2. One reason for this was 

possibly the different method used for manufacturing the mortar in construction of masonry 

walls regarding the one that was used in the study of its characterization. Due to the high 

volumes of mortar produced during the construction of the walls, different equipment was 

needed to make the mixture leading to the difficulty of ensuring the same properties of the 

material. 

The elastic modulus of the walls (Ea, exp) tested under combined load was also obtained 

based on the displacements measured by the vertical LVDTs (LVDTs 10, 11, 12 and 13) 

attached to central part of the wall in the first phase of loading, see Table 4.2. This result was 

important to control the quality of masonry material and to enable appropriate comparison of 

results among the different walls.  

 

Table 4.2 – Summary of mortar characterization and elastic modulus of the shear walls. 

Wall fm 
(MPa) 

ffl 
(MPa)

Ea, exp
(GPa)

N60-3C-B1-UM 3.58 1.21 5.10 

N60-3C-B1-SH 5.16 1.55 9.79 

N60-3C-B1 3.82 1.27 7.10 

N60-3C-B2 7.11 1.87 8.00 

N150-3C-B1 8.62 2.75 7.90 

N150-3C-B2 7.72 2.63 8.10 

N60-3C-B1-MA 4.82 1.49 13.93

N60-3C-B1-PA 5.16 1.53 9.30 

N60-2C-B1 4.82 1.49 10.19

N60-2C-B2 8.84 2.25 7.40 

 

This elastic modulus refers to the wall and not to the masonry material since in most 

specimens there were vertical reinforcements. The influence of reinforcements can be 

assessed by considering the elastic homogenization of the cross section based on the 

equilibrium of forces by Eq. 4.1 to Eq. 4.3 and on compatibility of deformations by Eq. 4.4.  

 

sa FFN +=      Eq. 4.1

ssaaww AAA σσσ +=  Eq. 4.2
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sssaaawww AEAEAE εεε +=  Eq. 4.3

wsa εεε ==      &     wa AA ≅  Eq. 4.4

 

Where, N is the compression force, Fa is the internal force which acts in masonry, Fs is the 

internal force which act in reinforcement, σa is the stress in masonry, σs is the stress in 

reinforcement, σw is the stress in wall, Αa is the area of masonry, Αs is the area of 

reinforcement, Αw is the area of wall, Εa is the elastic modulus of masonry, Εs is the elastic 

modulus of reinforcement, Εw is the elastic modulus of wall, εm is the strain in masonry, εs  is 

the strain in reinforcement and εw  is the strain in wall. 

From Eq. 4.5, it is observed that the increase on the stiffness of the walls due to the 

presence of reinforcements is very small (≈ 20 MPa) and can be negligible since the area of 

masonry is much higher than the area of reinforcement.  

 

w

s
saw A

A
EEE +=  Eq. 4.5

 

From the results displayed in Table 4.2 concerning elastic modulus of the walls, it is 

seen that the masonry walls had very similar elastic modulus with the exception of 

specimens N60-3C-B1-UM and N60-3C-B1-MA, which present a very low and very high 

value respectively. This result indicates that specimen N60-3C-B1-UM probably has a lower 

compressive strength when compared to the other walls. On the other hand, specimen N60-

3C-B1-MA probably had the highest compressive strength compared with the other walls, 

based on the results of the compressive strength of mortar. These results should be taken in 

account in the analysis of the masonry walls. 

 

4.3.1 Failure modes 

 

In general, the masonry walls exhibit a mixed shear-flexure failure mode. The 

behaviour of the walls can be characterized by three critical phases corresponding to the 

opening of flexural cracking, opening of diagonal cracking and crushing of the bottom 

corners. Figure 4.15 illustrates the walls cracking patterns at the end of testing for all 

specimens.  
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Figure 4.15 – Cracking patterns of masonry walls (thick lines indicate the plane of sliding). 
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Horizontal flexural cracks appeared at the first or second courses from the bottom, 

due to increasing tensile stresses resulting from the flexure of the wall. This damage 

basically depends on the tensile bond strength of the unit-mortar interface and its progress is 

detected by the vertical LVDTs positioned in the walls and the strain-gauge attached to the 

central vertical reinforcement at the bottom of the walls, which showed inversion of sign, see 

Figure 4.16. As the lateral displacement increased, the length of the horizontal cracks tended 

to increase leading to the shift of the neutral axis and thus to the reduction of the effective 

resistant shear length. At this stage, strains of the vertical reinforcement increased 

significantly, demonstrating its effective role in the bearing of the tensile stresses due to 

flexure by avoiding the uplift of the base of wall. 
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Figure 4.16 – Evaluation of the flexural behaviour of the wall specimen N150-3C-B1 through: 

(a) Vertical displacement measured by LVDT positioned in the middle of wall (LVDT 11) and (b) 

vertical strains measured in the central vertical reinforcement (Ext 5). 

 

With the increase of the imposed lateral displacements, diagonal cracks developed 

mostly in mortar joints and could be clearly detected by the diagonal LVDTs, see Figure 4.17. 

The opening of the diagonal cracks and the development of horizontal tensile stresses was 

followed by increasing strains detected on the strain gauges attached at mid length of the 

horizontal reinforcement in the central region of the wall, see Figure 4.18. The additional 

strain gauges located in horizontal reinforcement at the top and bottom of specimens N150-

3C-B1 and N150-3C-B2 measured no significant strains, meaning that only negligible strains 

developed in these bars. The diagonal crack width increased for successive imposed lateral 

displacements and the wall tended to separate itself in two parts. After the opening of 

diagonal crack, the stress transfer between both parts of the wall occurs mainly at the bottom 

corners and is improved by the horizontal and vertical reinforcements. 
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Figure 4.17 – Diagonal displacements in specimen N60-3C-B1: (a) LVDT 8 and (b) LVDT 9. 
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Figure 4.18 – Strains in horizontal reinforcements: (a) specimen N150-3C-B1 and (b) specimen N60-

3C-B2. 

 

The concentration of compressive stresses at the base of the wall promoted the toe 

crushing in all specimens. This failure mode is in part captured by the vertical displacements 

measured at the central region of the wall, as shown in Figure 4.19. In case of specimens 

N150-B1 and N150-B2, to which a higher level of vertical compression was applied, this 

damage was more remarkable and led to a sudden collapse of the walls. In the other 

specimens, toe crushing was followed by a slight sliding of the upper part of the wall over 

horizontal and/or diagonal cracks as indicated in Figure 4.20, where horizontal displacement 

measured by LVDT 3 placed at the basis of the wall is shown.  
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Figure 4.19 – Crushing of the units at the bottom corners of specimen N60-3C-B1-MA: (a) LVDT 10 

and (b) LVDT 11. 
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Figure 4.20 – Displacement measured in LVDT 3 (a) N60-3C-B1-UM and (b) N60-3C-B1-PA. 

 

As explained before, in spite of the laboratory mortar production being controlled, a 

low compressive strength of mortar used in the construction of wall N60-3C-B1 was 

obtained. This possibly led also to the reduction on the unit-mortar interface adherence, 

which could be the reason for the detachment of the mortar at the bed joint located near the 

basis of the wall, see Figure 4.21a. According to Mohamad (2007) the low compressive 

strength of mortar can be related to a high porosity due to physical phenomenon of 

exudation. In all specimens, the high compression at the base led to buckling of the vertical 

reinforcements, see Figure 4.21b. In spite of the higher confinement of the vertical 

reinforcements in specimen N60-2C-B1, the buckling of vertical reinforcements is attributed 

to the higher aspect ratio, which increased the flexural effects, increasing also the 
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compressive stresses at the base of wall, similarly to what was pointed out by Kikuchi et al. 

(2003). 

 

 
(a) 

 
(b) 

Figure 4.21 – Characterization of damage: (a) crushing of the mortar in horizontal joint and               

(b) buckling of vertical reinforcement. 

 

In general, the vertical reinforcement of wall did not reach the yield stress, essentially 

due to the premature toe crushing. In case of horizontal reinforcement, the yield stress was 

reached only in specimens N60-3C-B1-MA, N60-3C-B1-PA, N150-3C-B2 and N60-2C-B1 

during the post-peak regime, leading to the breakage of the welding between longitudinal 

and diagonal bars, or to the breakage of longitudinal bars. Strain gauges located in horizontal 

reinforcement revealed some peak values after the walls have reached the maximum load, 

which was possibly due to imminent rupture of the bar, see Figure 4.22. It should be stressed 

that yielding occurs only after peak load and is associated to the increase of lateral 

displacements. 
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Figure 4.22 – Strains in horizontal reinforcement of specimen N60-3C-B1-PA. 

 

Horizontal reinforcement had a significant effect on cracking, which can be clearly 

observed by comparing the crack pattern of unreinforced wall (N60-3C-B1-UM) and wall 
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reinforced at bed joints (N60-3C-B1-SH). In specimen N60-3C-B1-SH, diagonal cracks could 

not be observed as the horizontal reinforcements prevented their opening. This is also 

confirmed by the increasing strains measured in the strain gauge attached to the horizontal 

reinforcement located at the middle of the wall, see Figure 4.23. 
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Figure 4.23 – Strains in horizontal reinforcement of specimen N60-3C-B1-SH: (a) longitudinal bar (Ext 

7) and (b) diagonal bar (Ext 8). 

 

However, the horizontal reinforcement of wall N60-3C-B1-SH shows the lowest stress 

level with respect to the yielding strength (about 25%). This is due to the predominant crack 

pattern developed in this wall, composed by a single horizontal flexural crack located at first 

course from the bottom, over which some level of sliding develops at the end of the test. This 

behaviour is confirmed by comparing rotation (θi) of the wall measured by vertical LVDTs 

attached to the wall (LVDTs 10, 11, 12 and 13) and the top global rotation calculated 

according to Eq. A.1, Eq. 4.7 respectively: 
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Where, δ is the displacement measured by the respective LVDT, l1 is the distance between 

the vertical LVDTs attached to the wall and l2 is the length of wall.  

From Figure 4.24 it is observed that the internal rotation (θi) of the wall is negligible 

when compared with the global rotation (θt), which reveals the absence of internal cracking in 
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the wall. The sliding of the wall occurs after the crushing of the concrete units at the bottom 

toes due to the high compressive stresses. It should be noticed that the wide horizontal crack 

occurred due the absence of vertical reinforcement, which in the other walls prevented the 

progression of the horizontal flexural cracks. 
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Figure 4.24 – Rotations of specimen N60-3C-B1-SH: (a) top of the wall (LVDTs 6 and 7) and           

(b) internal rotation of the wall (LVDTs 10, 11, 12 and 13). 

 

Therefore, the contribution of the horizontal reinforcement to the global lateral 

response of the walls is low, which is also confirmed by the maximum efficiency of the 

horizontal reinforcement indicated in Figure 4.25.  
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Figure 4.25 – Efficiency of horizontal reinforcement: (a) percentage of the horizontal lateral load 

resisted by the horizontal reinforcements and (b) percentage of the yielding force (Hsy) resisted by the 

horizontal reinforcements. 
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Here, the efficiency of the horizontal reinforcement in the global lateral response of 

the wall was calculated through two ratios: the ratio between the force carried out by the 

reinforcement, Hs, and the maximum lateral force of the wall, Hmax, and the ratio between the 

force carried out by the reinforcement, Hs, and the yield force of the reinforcements, Hsy. The 

force in the reinforcement is calculated based on the strains measured in the strain gauges. 

It is observed that apart from walls N60-3C-B1 and N60-3C-B1-MA, whose reinforcements 

exhibited an efficiency of about 23%, all other walls present efficiency lower than 13%. 

After the wall reaches the maximum horizontal load, the strains in horizontal 

reinforcements continue to increase at the same rate. For specimens that exhibited sliding 

after crushing, strains in horizontal reinforcements gradually decrease during post-peak, see 

Figure 4.26. 
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Figure 4.26 – Efficiency of horizontal reinforcement: (a) N150-3C-B2 and (b) N60-2C-B2. 

 

4.3.2 Force vs. Displacement diagrams 

 

Force vs. displacement diagrams provides the global behaviour of the masonry walls. 

Thus, in this section a general discussion about the behaviour of the tested masonry walls 

will be presented based on the analysis of hysteresis diagrams. 

Apart from the unreinforced specimens and the walls built with 2C-units, all the 

remaining tested masonry walls exhibited a symmetrical force vs. displacement diagram with 

respect to positive and negative displacements. Unreinforced specimens showed a decrease 

in lateral stiffness due to the premature flexural cracking for positive displacements, as noted 

in Figure 4.27a. In case of masonry walls built with 2C-units, the asymmetry of the hysteresis 

diagrams is attributed to cracks developed before the beginning of the test and that were 

located at the interface between the masonry walls and the concrete beams due to the 
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unlevelling of the concrete beam. These small cracks opened when the ties used to attach 

the base of the wall to the reaction slab were tensioned and were the reason for which the 

masonry walls reached lower lateral resistance in one of the directions.  

Specimens N60-3C-B1-UM and N60-3C-B1-SH exhibited a very similar behaviour, 

see Figure 4.27. Unreinforced wall showed a lower lateral stiffness, which seems to be 

associated to the low compressive strength of the mortar, as already aforementioned. The 

sliding mechanism of specimen N60-3C-B1-SH in the end of the test led to a higher ultimate 

deformation and high energy dissipation. 
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Figure 4.27 – Force vs. displacement diagrams: (a) N60-3C-B1-UM and (b) N60-3C-B1-SH.  

 

Specimens with vertical and horizontal reinforcements showed an increase in lateral 

strength and in deformation capacity, see Figure 4.28. It is observed that masonry bond 

patterns (B1 and B2) influences only in a minor extent the behaviour of concrete block 

masonry walls. Specimens N60-3C-B1 and N60-3C-B2 exhibited a similar behaviour, even if 

a lower lateral strength is achieved by N60-3C-B1 due to weaker mortar used. In case of 

walls submitted to higher level of pre-compression, no significant differences between 

masonry bond patterns are detected. An interesting result revealed by the force vs. 

displacement diagrams consists of the higher lateral stiffness of walls with masonry bond 

pattern B2, in spite of the presence of a continuum vertical joint along the height of the wall. 

The walls with a higher axial load showed an enhanced lateral strength and stiffness, 

similarly to pointed out by other researchers (Shing et al., 1989; Zhuge et al., 1996, 

Vasconcelos, 2005), see Figure 4.28 (c) and (d). Cracking developed for higher values of 

lateral load in these walls, when compared to the other specimens. This behaviour was also 

observed by Voon and Ingham (2006), and can be explained by the higher principal tensile 

stresses needed to originate the collapse of the walls. The higher compressive principal 
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stresses lead also to the increase of the loads corresponding to flexural and diagonal 

cracking. However, walls with high pre-compression exhibited a more brittle behaviour with 

low energy dissipation and deformation capacity. 
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Figure 4.28 – Force vs. displacement diagrams: (a) N60-3C-B1, (b) N60-3C-B2, (c) N150-3C-B1,     

(d) N150-3C-B2, (e) N60-3C-B1-MA and (f) N60-3C-B1-PA.  
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As observed by Shing et al. (1989) an Schultz et al. (1998), the influence of the 

amount of horizontal reinforcement on the lateral response of the concrete block masonry 

walls appears to be inconsistent, see Figure 4.28 (a), (e) and (f). The wall with the smaller 

amount of horizontal reinforcement (N60-3C-B1) presented higher lateral strength than the 

specimen with the intermediate amount of horizontal reinforcement (N60-3C-B1), even if the 

wall with the maximum horizontal reinforcement ratio presents clearly a higher lateral 

strength. Thus, it is not possible to state clearly that an increase in the horizontal 

reinforcement ratio ensures an increase on lateral strength of the walls. However, it is clear 

that the amount of horizontal reinforcement can significantly improve the post-cracked 

hysteretic behaviour. The higher horizontal reinforcement ratio used in specimen N60-3C-B1-

MA together with the low spacing resulted in a gradual degradation of lateral strength and 

stiffness after the peak load was reached, as well as on a higher deformation capacity. 

According to Voon and Ingham (2006), reduced lower spacing of horizontal reinforcement 

enables the distribution of stresses throughout the wall diagonals after the initiation of the 

shear cracking. The diagonal crack localization gives place to a more distributed diagonal 

cracking resulting on higher energy dissipation and on a more ductile behaviour. 

As aforementioned, the specimens built with 2C-units showed a non-symmetrical 

force vs. displacement diagrams due to previous cracks developed at the basis of walls 

during the connection of the concrete beam to the reaction slab. However, this previous and 

much localized damage influenced only one direction of loading. In spite of the wall with 

masonry bond pattern B1 having a lower aspect ratio (lower length), it exhibited higher lateral 

strength than specimens with masonry bond pattern B2, see Figure 4.29. This behaviour is 

the result of the filling of one of the two hollow cells of the 2C-units with mortar when vertical 

reinforcement is considered. In this case, the masonry is partially filled with mortar meaning 

that the ratio of filling is considerably higher than the filling ratio of the 3C-units. This 

difference leads to higher differences between both masonry bond patterns (N60-2C-B1 and 

N60-2C-B2) in terms of lateral strength, energy dissipation and ultimate deformation 

capacity. Comparing specimens N60-2C-B2 and N60-3C-B2, a very similar behaviour can be 

observed in terms of lateral strength and deformation capacity even if specimens built with 

2C-units had lower thickness and all vertical joints filled. As the mechanical properties of 2C-

units and 3C-units were very close, the filling of vertical joints maybe improves the lateral 

behaviour of walls. However, more tests should be carried out in order to clarify this issue.    
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Figure 4.29 – Force vs. displacement diagrams: (a) N60-2C-B1 and (b) N60-2C-B2. 

 

4.3.3 Cyclic response of masonry walls 

 

Stiffness degradation and energy dissipation are important parameters within the 

scope of modelling the cyclic response of masonry walls, as well as of the evaluation of their 

seismic performance. Unless rocking mechanism prevails in the response of walls submitted 

to in-plane cyclic loading, it is usual that stiffness degradation occurs during reversed cyclic 

load. As horizontal forces are distributed among the walls based on their stiffness, it is 

important to predict the stiffness degradation at the ultimate limit state. Since the degree of 

stiffness degradation is dependent on the damage of the wall, secant stiffness (Ks,i) of each 

cycle was calculated aiming at evaluating the evolution of damage during loading. The 

secant stiffness at each loading cycle Ks,i was calculated according to Eq. 4.8. Figure 4.30a 

exemplifies the calculation of the secant stiffness. The capacity of the walls to dissipate 

energy is also an important parameter in the analysis of their cyclic response. This capacity 

was evaluated through the coefficient of equivalent viscous damping (ξ), calculated as the 

ratio between the dissipated energy (Ediss) and the total energy transferred to the system 

during the loading process and designated by input potential energy (Einp), see  Figure 4.30b.  
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Where, Hmax,j and dHmax,i are the maximum load and the maximum displacement at i cycle 

respectively.  
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Figure 4.30 – Calculation of the parameters for the evaluation of the in-plane performance: (a) secant 

stiffness and (b) dissipated and input potential energy.  

 

According to Figure 4.31, where the evolution of the stiffness degradation is shown, it 

is observed that all walls exhibit decreasing secant stiffness as the lateral displacement 

increases, following a power function.  
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Figure 4.31 – Degradation of stiffness: (a) positive part of diagram and (b) negative part of diagram.  

 

Up to 40 % of the lateral displacement corresponding to the lateral maximum load, it 

is possible to recognize some differences among the walls. Walls submitted to the highest 

level of pre-compression and the unreinforced masonry wall presents the lowest stiffness 

degradation. On the other hand, the walls with horizontal reinforcement, particularly N60-3C-

B1-MA and N60-3C-B1-SH, presented the highest stiffness degradation, which, in the latter 

case, is associated to a sliding failure mechanism. Tomaževič (1999) also pointed out that 
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stiffness degradation of masonry walls under in-plane cyclic loading follows a power function 

according to Eq. 4.9: 
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 The stiffness degradation index is defined as the ratio between the secant stiffness in 

each cycle Ks,i to the elastic stiffness, Ke, as a function of two parameters of degradation α 

and β and of the relation between the maximum displacements at each cycle, dHmax, i , and 

maximum displacement corresponding to the peak lateral load, dHmax. A simpler definition is 

possible if the secant stiffness degradation index is calculated as the ratio between the 

secant stiffness at each cycle, Ks,i, and the secant stiffness corresponding to the maximum 

lateral load, Ks, as only one damage parameter is needed for adjustment, γ: 
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The parameter γ was obtained by regression analysis of experimental curves and in 

general ranged from 0.41 (N60-3C-B1-UM) to 0.56 (N60-3C-B1-SH), except for specimen 

N150-3C-B1 and specimens built with 2C-units, where the value of approximately 0.30 

indicates low stiffness degradation.     

Apart from the specimens with the highest pre-compression level, which practically 

did not dissipate energy in the first cycles, the other masonry walls exhibited a very similar 

behaviour in terms of energy dissipation, as observed in Figure 4.32 and Figure 4.33. The 

coefficient of equivalent viscous damping (ξ) ranged from 40 % to 50 % up to the ultimate 

load. It should be stressed that a moderate increase of energy dissipation occurs after a 

displacement of about 50% of the lateral peak load displacement, indicating that moderate 

damage occurs before peak load is reached. It is immediately after the ultimate load that 

energy dissipation increases considerably. In particular, specimens N60-3C-B1-SH and N60-

3C-B1-PA presented a sudden increase of the viscous damping, ξ, which is associated to the 

high dissipation of energy due to the tendency of wall N60-3C-B1-SH to slide along the 

horizontal crack and due to the yielding of the horizontal reinforcement in wall N60-3C-B1-

PA. 

 



Chapter 4 – Experimental program II: shear walls 151

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
0

30

60

90

120

150

180

210

240

270
 Negative displacements
 Positive displacements

 Einp
 Ediss

En
er

gy
 (k

N
m

m
)

dmax, i (mm)

(a) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
0

50

100

150

200

250

300

350

400

450

 Positive displacements
 Negative displacements

 Einp
 Ediss

En
er

gy
 (k

N
m

m
)

dmax, i (mm)

(b) 

Figure 4.32 – Input and dissipated energy: (a) N60-3C-B1-SH and (b) N150-3C-B1. 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2
 N150-3C-B1
 N150-3C-B2

 N60-3C-B1-MA
 N60-3C-B1-PA
 N60-2C-B1
 N60-2C-B2

 N60-3C-B1-UM
 N60-3C-B1-SH
 N60-3C-B1
 N60-3C-B2

ξ

dmax, i/dHmax

(a) 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2
 N150-3C-B1
 N150-3C-B2

 N60-3C-B1-MA
 N60-3C-B1-PA
 N60-2C-B1
 N60-2C-B2

 N60-3C-B1-UM
 N60-3C-B1-SH
 N60-3C-B1
 N60-3C-B2

ξ

dmax, i/dHmax

(b) 

Figure 4.33 – Coefficient of equivalent viscous damping (ξ): (a) positive part of diagram and 

(b) negative part of diagram. 

 

4.3.4 Evaluation of the seismic performance of masonry walls 

 

Earthquakes are responsible for cyclic horizontal actions, often leading to large 

bending and shear stresses in structural walls, which exceed the elastic range of masonry 

materials. In addition to strength, structures subjected to seismic actions should exhibit 

proper deformation capacity and energy dissipation so that brittle failure is avoided. 

In terms of damage evolution and deformation state the behaviour of shear walls is 

composed by four limit states corresponding to the flexural cracking identified by the point 

(Hfc, dfc), diagonal cracking associated to the point (Hdc, dfc), ultimate load corresponding to 

point (Hmax, dHmax) and maximum displacement identified by the point (Hdmax, dmax), as shown 
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in Figure 4.34. Table 4.3 presents a summary of the values of the lateral load and 

corresponding lateral displacement identifying the four distinct limit states. 
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Figure 4.34 – The four limit states identified in the Force vs. Displacement experimental envelop. 

 
Table 4.3 – Summary of the lateral loads and corresponding lateral displacements identifying the 

distinct deformation limit states. 

Wall (+/-) Hfc 
(kN)

dfc 
(mm)

Hdc 
(kN) 

ddc 
(mm)

Hmax 
(kN)

dHmax 
(mm)

Hdmax 
(kN) 

dmax 
(mm) 

+ 15.33 0.48 32.76 1.97 35.88 2.78 25.71 4.58 
N60-3C-B1-UM 

- 20.33 0.56 30.20 1.24 33.63 2.78 25.19 4.47 

+ 18.93 0.20 35.40 0.90 38.61 2.48 24.75 5.71 
N60-3C-B1-SH 

- 17.56 0.21 33.13 0.99 35.09 3.68 18.95 6.12 

+ 14,78 0,22 43,8 1.52 52,73 3.36 22.44 6.03 
N60-3C-B1 

- 15.66 0.34 38.42 1.52 52.75 3.60 20.35 6.17 

+ 22.95 0.32 38.21 0.80 62.09 3.84 22.61 7.61 
N60-3C-B2 

- 24.82 0.32 36.97 0.80 65.18 4.40 57.62 4.62 

+ 36.59 0.64 67.86 1.28 92.98 4.24 58.76 5.27 
N150-3C-B1 

- 38.57 0.56 80.98 1.60 93.22 3.12 42.68 6.42 

+ 45.07 0.48 88.96 1.92 93.80 3.04 47.67 6.69 
N150-3C-B2 

- 52.81 0.64 85.35 2.08 93.28 3.04 49.23 5.36 

+ 34.85 0.32 55.48 1.20 78.36 6.24 33.07 9.35 
N60-3C-B1-MA 

- 29.21 0.40 44.68 1.20 74.59 6.16 42.12 9.20 

+ 22.47 0.42 50.73 1.92 70.22 5.04 40.17 7.70 
N60-3C-B1-PA 

- 20.05 0.34 48.26 2.08 66.92 6.72 23.67 8.11 

+ - - 35.65 2.59 63.09 7.52 30.65 10.38 
N60-2C-B1 

- 34.37 1.13 51.71 2.67 73.98 5.84 40.02 9.74 

+ 24.19 0.48 55.09 1.86 63.18 3.92 34.66 5.97 
N60-2C-B2 

- - - 47.99 3.74 55.05 4.88 42.75 7.04 
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Flexural cracking loads were defined based on strains measured by strain gauges 

attached to vertical reinforcement and on rotations of the top of the walls obtained by means 

of the vertical displacements measured in LVDTs placed at the top concrete beam (LVDTs 6 

and LVDT 7). Diagonal cracking loads were defined based on strains measured by strain 

gauges attached to horizontal reinforcements and on the measurements of diagonal 

displacements (LVDTs 8 and 9). 

From the analysis of results, it seems that vertical reinforcement and mechanical 

properties of mortar influences the value of the flexural cracking load, even if they are not 

very significant. In fact, it is observed that the flexural cracking load of specimens N60-3C-B1 

and N60-3C-B2 is clearly different and is higher in the latter specimen, which is attributed to 

the lower strength of the mortar to compressive and flexural loading used in construction of 

wall N60-3C-B1. In spite of not having available results on tensile bond strength of the unit-

mortar interface, it is believed that lower compressive and flexural strength of mortar are 

associated to lower mechanical resistance of the unit-mortar interface. On the other hand, 

the presence of vertical reinforcement appears also to have some influence in the response, 

since by comparing the values of the flexural cracking load in walls N60-3C-B1-SH and N60-

3C-B1-PA, it is observed that the specimen with vertical reinforcement presents higher 

values since the compressive and flexural strength of mortar are similar. It should be 

stressed that the difference found among the specimens N60-3C-B1, N60-3C-B1-MA and 

N60-3C-B1-PA is attributed to the differences on the mechanical properties of mortar, see 

also Table 4.2, where the compressive and flexural strength of mortar are shown together 

with the elastic modulus of masonry. 

As expected, the flexural cracking load is higher for higher pre-compression level. In 

case of masonry with 2C-units, it is clear that the flexural crack load is higher for masonry 

bond pattern B1, which is the result of the filling vertical reinforced hollow cell with mortar, 

leading to higher resisting area.  

The diagonal cracking load appears to be positively influenced by the presence of 

vertical reinforcement. Reinforced specimens at vertical joints present considerable higher 

diagonal cracking load, when compared to unreinforced specimen or to specimen reinforced 

only at bed joints. However, it should be noticed that no significant differences were detected 

among specimen with different ratio of horizontal reinforcement, similarly to what has been 

pointed out by other authors (Shing et al., 1989; Schultz et al., 1998; Voon and Ingham, 

2006). On average the values of the diagonal cracking load obtained in walls built with 2C-

units presented higher values. This behaviour is possibly due to the presence of vertical 

joints, allowing a better distribution of stresses and a higher shear resistance, as already 

seen in the results of diagonal compressive tests (Chapter 3). In terms of displacement, the 

values were inconsistent and no relation could be attained among the walls. Parameters like 
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the combination of vertical and horizontal reinforcement and pre-compression level 

presented high influence on the lateral strength of the walls. By comparing the lateral 

strength obtained in the specimens with different horizontal reinforcement ratio, it can be 

concluded that its contribution is not consistent and the increase on the lateral load should be 

attributed essentially to the vertical reinforcement and to its contribution to the predominant 

flexural resistance of the walls. However, it is clear that the horizontal reinforcement enables 

a better distribution of cracks and a higher deformation capacity. 

In order to simplify the analysis and design, many authors consider the definition of 

idealized curves of the monotonic envelop to experimental force vs. displacement hysteresis 

by taking into account the energy equivalence criterion between the experimental envelop 

and the idealized diagram. Tomaževič (1999) presented two multilinear idealizations for the 

Force vs. Displacement diagrams, namely a bilinear and a trilinear relationship, as shown in 

Figure 4.35. The bilinear idealization seems to be the most common approach used for the 

evaluation of the in-plane seismic performance in terms of nonlinear deformability (Bosiljkov 

et al., 2005; Vasconcelos, 2005; Wu, 2004; Magenes and Calvi, 1997), and it was selected in 

this study.  
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Figure 4.35 – Multilinear idealization of the force vs. displacement diagrams suggested byTomaževič 

(1999): (a) Trilinear idealization and (b) Bilinear idealization. 

 

Firstly, the elastic stiffness, Ke, was calculated by dividing the load corresponding to 

the first crack (Hcr) by the corresponding displacement (dcr). The ultimate load (Hu) was 

calculated considering that the bilinear idealization encompasses the same energy of 

deformation as real envelope curve according to Eq. 4.11.  
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Where, Aenv is the area under the experimental envelop diagram. 

The elastic displacement (de) results from the ratio between the ultimate load, Hu, and 

the elastic stiffness, Ke. The ultimate displacement, du, and the ultimate drift, θu, was defined 

as the displacement measured in the post peak regime corresponding to a lateral load equal 

to 80% of the maximum experimental load, Hmáx. Through the bilinear idealization of the 

force-displacement diagram it is possible to define the ductility of the wall which is an 

essential property of structures subjected to cyclic loads, see Eq. 4.12. The characteristic 

parameters defining the bilinear diagram for the tested walls are indicated in Table 4.4. 
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Table 4.4 – Summary of results of bilinear idealization of masonry walls. 

Wall (+/-) Hcr 
(kN) 

dcr 
(mm) 

Ke 
(kN/mm)

Ke, theo 
(kN/mm)

Hu 
(kN) 

Hu / 
Hmax

de 
(mm) 

du 
(mm) θu µ 

+ 15.33 0.48 31.94 31.28 0.87 0.98 4.47 0.56 4.56
N60-3C-B1-UM 

- 20.33 0.56 36.62 
170.16 

31.78 0.94 0.87 4.45 0.56 5.13

+ 18.93 0.20 95.47 33.53 0.87 0.35 4.12 0.52 11.73
N60-3C-B1-SH 

- 17.56 0.21 82.29 
326.63 

30.06 0.86 0.37 4.23 0.53 11.58

+ 14.78 0.22 66.85 41.34 0.78 0.62 4.16 0.52 6.73
N60-3C-B1 

- 15.66 0.34 45.50 
236.88 

43.16 0.82 0.95 5.29 0.66 5.58

+ 22.95 0.32 71.72 46.30 0.75 0.65 4.77 0.60 7.39
N60-3C-B2 

- 24.82 0.32 77.56 
267.70 

55.76 0.86 0.72 4.80 0.60 6.68

+ 36.59 0.64 57.17 86.19 0.93 1.51 5.13 0.64 3.40
N150-3C-B1 

- 38.57 0.56 68.88 
263.57 

73.04 0.78 1.06 4.36 0.55 4.11

+ 45.07 0.48 93.90 78.49 0.84 0.84 4.82 0.60 5.77
N150-3C-B2 

- 52.81 0.64 82.52 
267.70 

83.34 0.89 1.01 4.58 0.57 4.53

+ 34.85 0.32 108.91 63.93 0.82 0.59 7.11 0.89 12.11
N60-3C-B1-MA 

- 29.21 0.40 73.03 
464.76 

61.99 0.83 0.85 8.31 1.04 9.79

+ 22.47 0.42 53.72 60.08 0.86 1.12 7.18 0.90 6.42
N60-3C-B1-PA 

- 20.05 0.34 59.23 
310.28 

54.46 0.81 0.92 7.11 0.89 7.73

+ - - - - - - - - - 
N60-2C-B1 

- 34.37 1.13 30.38 
272.52 

59.07 0.80 1.94 7.64 0.96 3.93

+ 24.19 0.48 50.66 53.91 0.85 1.06 4.84 0.61 4.55
N60-2C-B2 

- - - - 
234.09 

- - - - - - 
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It is seen that the average value of Hu/Hmax is 0.84, which is slightly lower than the 

value of 0.9 given by Tomaževič (1999). It means that during the seismic analysis the 

horizontal capacity of the walls should be reduced of 16% if the bilinear idealization is 

adopted. It should be stressed that at this stage the ultimate resistance, Hu, does not 

represent the design, but the idealized maximum experimental value. By comparing the 

values of ductility among the walls it is observed that reinforcement clearly increases the 

ductility of the walls, for low to moderate pre-compression values. For the walls subjected to 

the highest level of pre-compression (N150-B1 and N150-B2), the ductility found was similar 

to the ductility recorded in the unreinforced wall with low pre-compression value. The 

increase in the brittleness of the walls with increasing normal stress has been also reported 

by Shing et al. (1989). The concentration of compressive stresses at the bottom corners 

leads to the toe crushing, which is followed by buckling of the vertical reinforcement, avoiding 

the development of tensile stresses in the reinforcement and leading to the lower contribution 

to the global response of the walls.  

An interesting result regarding the masonry bond pattern was the higher stiffness and 

ductility of masonry specimens built with masonry bond pattern B2. This result appears to 

confirm the adequate mechanical performance of the continuous vertical masonry joint under 

in-plane cyclic loading, which demonstrates that the proposed simpler construction 

technology can be an effective alternative solution for reinforced masonry walls. 

Complementary to the ductility, a comparison between the experimental and the 

theoretical elastic stiffness (Ke, theo) calculated based on the theory of elasticity according to 

Eq. 4.13 was performed. 
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Where, k’ related the boundary conditions of the wall (for fixed end walls it is equal to 0.83 

and for cantilever walls it is equal to 3.33), G is the shear modulus, E is the elastic modulus 

of the wall, Aw is the shear area and h and l are respectively the height and the length of wall. 

The elastic modulus used in these calculations was the one obtained in the experimental 

tests, see Table 4.2, and the shear modulus was calculated considering ν = 0.15.  

In fact, the stiffness of structural masonry walls is an important parameter as it is 

related to the period of the structure and it controls the distribution of the seismic forces in 

the linear regime. From the results it is observed that the elastic theory gives an important 

overestimation of the lateral stiffness of the walls, see Table 4.4, which is in accordance to 
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the results pointed out by Bosiljkov et al. (2005). The difference found is likely to be related to 

the strong anisotropic behaviour of masonry. 

 

4.4 Experimental vs. Theoretical results 

4.4.1 Cracking loads 

 

When the experimental analysis of masonry shear walls is performed, different 

cracking stages can be identified up to the achievement of the peak load, namely flexural 

and shear cracking. These limit states can be important for the serviceable evaluation of the 

masonry walls but in general are not associated to the collapse of the reinforced masonry 

walls as pre-compression and the vertical reinforcement ensure the equilibrium of the wall. 

As pointed out by Magenes and Calvi (1997), the shear cracking can mean the collapse of 

the walls when the shear effects are predominant. This has been achieved for example in 

irregular and unreinforced masonry walls, which exhibited a very brittle behaviour under in-

plane cyclic loading (Vasconcelos, 2005). 

Flexural cracking develops mainly horizontally at the unit-mortar interface from the 

vertical edges of the wall. The flexural cracking load (Hfc) is essentially related to the tensile 

strength of the masonry and in particular to tensile bond strength of the unit-mortar interface. 

The horizontal load corresponding to flexural cracking can be obtained considering the 

elastic behaviour of the wall and taking into account the contribution of the tensioned 

masonry, see Figure 4.36, through the definition of the equilibrium equations. 
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Figure 4.36 – Stress distribution along the section of the wall to calculate the flexural cracking load. 

 

The neutral axis can be derived from the equilibrium of forces, the compatibility of 

strains and considering that the bottom stress reaches the flexural strength of masonry, see 

Eq. 4.14. The flexural cracking load is obtained by taking the equilibrium of bending moment 

in the section, see Eq. 4.15. 
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Eq. 4.15

 

Where, ffl is the flexural strength of masonry, Es is the elastic modulus of the reinforcement,  

Em is the elastic modulus of the masonry, Fs is the force resisted by reinforcement and σ is 

the average normal stress. 

A comparison between the theoretical and experimental flexural cracking is presented 

in Figure 4.37. It is observed that in some cases the theoretical value presented higher 

values than the experimental ones, which is the result of low tensile bond strength of unit-

mortar as already mentioned previously. It is noted that the theoretical values were 

calculated based on the results obtained in flexural tests of masonry (Chapter 3), in which 

the specimens were built with a mortar with a higher compressive strength.  
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Figure 4.37 – Comparison between theoretical and experimental values of flexural cracking load. 

 

The major difference of about 35% was recorded in walls N60-3C-B1-UM and N60-

3C-B1, which were built with the weakest mortar, as previously discussed. The higher 

theoretical values found in specimens N60-3C-B2 and N60-3C-B1-MA is related to the 

improved mechanical properties exhibited by these walls and, thus, to the expected higher 

flexural strength of masonry. In case of wall N60-2C-B1, the difference is associated to the 

higher effective area due to the filling of the vertical hollow cell, where the reinforcements 

were positioned leading to higher flexural strength. Note that this was not considered in the 

calculations as the experimental flexural strength on filled two cell concrete masonry is not 

available. 
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Diagonal cracking can be estimated through the principal tensile stresses that 

develop in walls subjected to a combination of vertical and lateral Ioad (Tomaževič, 1999). 

These cracks appear as a result of the maximum principal stress being achieved by the 

tensile strength of masonry. Tomaževič (1999) considers that the opening of diagonal 

cracking consists of an ultimate state in case of unreinforced masonry, when shear mode 

predominates. However, in some cases an extra resistance can be achieved after diagonal 

cracking up to attainment of the maximum lateral force.  

Considering the masonry wall as an elastic, homogeneous and isotropic material, the 

basic equation for the evaluation of the diagonal cracking force of masonry walls can be 

derived from the definition of the principal stresses and taking into account that diagonal 

cracking occurs when the tensile stress attains the tensile strength of masonry, see Eq. 4.16.  
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Where, ft is the tensile strength of masonry.  

The determination of the experimental diagonal cracking is very difficult from visual 

observation. Hence, in this study the diagonal cracking load was defined from the 

deformation of the horizontal reinforcement at mid height of the wall. It is clear that a sudden 

increase on the deformations means the activation of these bars indicating a crack, as 

discussed in section 4.3.1. The comparison between the experimental and theoretical 

diagonal cracking forces reveals that there are some differences between predicted and 

experimental values of diagonal cracking load, see Figure 4.38.  
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Figure 4.38 – Comparison between theoretical and experimental values of diagonal cracking. 
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These differences are probably because normal stresses are not uniform. The 

application of horizontal load generates a diagonal strut which concentrates the stress flow 

from the top to the bottom of wall. Thus, normal stresses are not uniformly distributed, in 

opposition to the hypothesis of Eq. 4.16.  

 

4.4.2 Lateral resistance 

 

In this section a comparison between the lateral resistance obtained in static cyclic 

tests and the lateral strength given by different analytical simplified models is performed. The 

analytical models used for the comparison have been described in detail in Chapter 2. 

Therefore, only the general procedures and main results are discussed here. The application 

of the analytical models takes into account the material properties obtained in Chapter 3. 

 

4.4.2.1 Eurocode 6 (2005) 

 

The design model proposed by Eurocode 6 (2005) was applied to all masonry walls 

submitted to combined vertical and horizontal cyclic loading. The values of the flexural and 

shear strength calculated according to the European standard are summarized in Table 4.5 

and a direct comparison with experimental results is shown in Figure 4.39.  

 
Table 4.5 – Theoretical values of maximum force according to Eurocode 6 (2005). 

 
Wall 

 
Hf 

(kN) 
VR1 
(kN) 

VR2 
(kN) 

V 
(kN) 

N60-3C-B1-UM 38.47 17.23 - 17.23 
N60-3C-B1-SH 38.47 17.23 39.36 56.59 

N60-3C-B1 67.00 83.48 39.36 122.84 
N60-3C-B2 67.13 83.57 39.36 122.92 

N150-3C-B1 88.82 92.27 39.36 131.62 
N150-3C-B2 89.02 92.42 39.36 131.78 

N60-3C-B1-MA 67.00 83.48 52.48 135.96 
N60-3C-B1-PA 67.00 83.48 22.14 105.63 

N60-2C-B1 57.26 51.16 39.36 90.52 
N60-2C-B2 64.39 55.77 39.36 95.13 
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Figure 4.39 – Comparison between theoretical and experimental values of Eurocode 6 (2005): (a) 

Flexure and shear strength and (b) parcels of shear strength. 

 

It is observed that apart from the unreinforced masonry wall, which presented the 

shear strength limited by the compressive strength of the unit (Eq. 2.14), the flexural failure 

ruled the lateral behaviour of the masonry walls. The maximum forces obtained in 

experimental tests were very similar to theoretical values calculated based on the flexural 

model proposed by Eurocode 6 (2005), see Figure 4.39a. On the other hand, it is seen that 

in general the theoretical shear resistance presented considerable high values. 

It should be referred that Eurocode 6 (2005) suggests applying a Coulomb type 

formula to calculate the shear strength irrespectively to the failure mode, which appears to be 

rather limitative. As already mentioned by other authors (Tomaževič, 1999; Shing et al., 

1993; Mann and Muller, 1982), the shear resistance mechanism is very complex and 

different failure modes may develop depending on distinct factors, namely the vertical pre-

compression and height to length ratios. In fact, the shear strength calculated by Eurocode 6 

(2005) complies reasonably well with diagonal cracking through unit-mortar interface, where 

the sliding mechanism along the stair stepped cracks prevails. However, it is not appropriate 

to describe the diagonal cracking through masonry joints and masonry units, whose onset is 

due to the achievement of the tensile strength of the masonry material. Thus, the values of 

shear strength calculated according to Eurocode 6 (2005) may be not representative if the 

failure mode is different from the stair stepped diagonal cracking. 

A comment should also be made concerning the formula presented by Eurocode 6 

(2005) to calculate the resisting shear load by considering only the compressed part of the 

unreinforced wall instead of the total value of the length of the walls, see Eq. 4.17  
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wcv tlfV =  Eq. 4.17

 

Where, fv is the shear strength of unit-mortar interface and lc is the compressed length of the 

wall in flexure.  

This appears to be reasonable since the tensioned part of the section of the wall does 

not influence the sliding effect. On the other hand, in case of reinforced masonry the strength 

considers two parcels: one related to the masonry resistance and other related to the 

reinforcement resistance. In case of the masonry resistance parcel, the whole length of the 

wall is considered to the calculus of shear strength. This leads to high values of shear 

strength resisted by masonry, see Figure 4.39b. Another issue in the calculation of the shear 

strength of reinforced masonry walls concerns the contribution of the horizontal 

reinforcements. In fact, the same amount of force is considered irrespectively of the aspect 

ratio, which appears not to be reasonable for high height to length ratios, as part of the 

horizontal reinforcements does not cross the diagonal cracking and thus are not effective. 

This procedure leads to the overestimation of the shear strength of reinforced masonry walls.  

 

4.4.2.2 MSJC (2002) 

 

The design model proposed by MSJC (2002) was applied to tested masonry walls 

considering the materials properties obtained by experimental program I – Characterization 

of materials. Theoretical results exhibited a good approximation to the experimental values, 

see Table 4.6 and Figure 4.40a. However, all specimens failed by flexure according to MSJC 

(2002). 

None design shear strength reached the limit ( )an fA6083.0  which has the objective 

of controlling the level of stresses in compressed diagonal. Other interesting consideration of 

MSJC (2002) is that it does not consider the full capacity of horizontal reinforcements in 

shear strength of the shear walls as Eurocode 6 (2005). Observing the strength parcels 

separately in Figure 4.40b, it can be noted that reinforcements are responsible for only about 

30% of the shear strength of wall. This consideration is taken due to the fact that the shear 

stresses are not constant in the height of wall and not all reinforcement will yield in the shear 

failure.   
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Table 4.6 – Theoretical values of maximum force according to MSJC (2002). 

 
Wall 

 
Hf 

(kN) 
VR1 
(kN) 

VR2 
(kN) 

V 
(kN) 

N60-3C-B1-UM 38.47 65.61 - 65.61 
N60-3C-B1-SH 38.47 60.11 21.87 81.97 

N60-3C-B1 67.00 60.23 21.87 81.97 
N60-3C-B2 67.13 80.86 21.87 82.09 

N150-3C-B1 88.82 80.98 21.87 102.72 
N150-3C-B2 89.02 80.98 21.87 102.84 

N60-3C-B1-MA 67.00 60.11 29.16 89.26 
N60-3C-B1-PA 67.00 60.11 12.30 72.41 

N60-2C-B1 57.26 51.88 21.87 73.75 
N60-2C-B2 64.39 56.50 21.87 78.37 
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Figure 4.40 – Comparison between theoretical and experimental values of MSJC (2002): (a) Flexure 

and shear strength and (b) parcels of shear strength. 

 

4.4.2.3 Tomaževič (1999) 

 

In spite of the height to length ratio of the tested walls being lower than 1.0, it was 

decided to apply the formulation suggested by Tomaževič (1999), where the shear strength 

of unreinforced masonry is given by the equation pointed out by Turnšek and Čačovič 

(1971). Flexure strength is presented according to Eurocode 6 (2005) since Tomaževič 

(1999) presented only a simplification of this formulation according to geometrical conditions 

of his tested specimens. The summary of the flexural, shear and sliding shear forces are 

summarized in Table 4.7. 



Chapter 4 – Experimental program II: shear walls 164 

Table 4.7 – Theoretical values of maximum force according to Tomaževič (1999). 

 
Wall 

 
Hf 

(kN) 
VR1 
(kN) 

VR2 
(kN) 

VR3 
(kN) 

Vsh 
(kN) 

Vsl 
(kN) 

N60-3C-B1-UM 38.47 30.26 - - 30.26 32.83 
N60-3C-B1-SH 38.47 30.26 13.12 - 43.38 32.83 

N60-3C-B1 67.00 30.26 13.12 5.65 49.03 38.48 
N60-3C-B2 67.13 30.29 13.12 7.71 51.12 40.54 

N150-3C-B1 88.82 42.80 13.12 8.49 64.41 85.42 
N150-3C-B2 89.02 42.84 13.12 8.03 64.00 84.96 

N60-3C-B1-MA 67.00 30.26 17.49 6.35 54.10 39.18 
N60-3C-B1-PA 67.00 30.26 7.38 6.57 44.21 39.40 

N60-2C-B1 57.26 57.77 13.12 6.35 77.24 35.48 
N60-2C-B2 64.39 63.20 13.12 8.60 84.91 40.20 

 

From the results it is seen that the experimental lateral strength is very near the 

predicted flexural strength. Apart from the specimen N60-3C-B1, specimens presented 

experimental results always higher than theoretical flexural strength, see Figure 4.41a. 

Besides, it can be observed that in general the sliding lateral strength presents very low 

values, even if the dowel action of vertical reinforcements is considered. 
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Figure 4.41 – Comparison between theoretical and experimental values of Tomaževič (1999): (a) 

Flexure and shear strength and (b) distinct contributions to the shear strength. 

 

Analyzing the contribution of masonry and reinforcements on the lateral strength of 

the walls, it is observed that masonry is responsible for the higher contribution, with a value 

not lower than 70 % of resistance in all cases, see Figure 4.41b. On the other hand, dowel 

action was practically negligible since it is responsible only for 10% of the shear strength. 
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The contribution of vertical reinforcement in dowel action is directly related to the 

compressive strength of mortar. In case of this study, mortar had low compressive strength in 

almost all walls as discussed above. 

 

4.4.2.4 Brunner and Shing (1996) 

 

By applying the model of Brunner and Shing (1996) for the tested walls, it is seen that 

apart from specimen N60-3C-B1-MA the shear strength is always higher than the 

experimental lateral strength. Besides, the shear strength is always higher than the flexural 

strength, which is in general very near the flexural strength, see Table 4.8 and Figure 4.42a. 

This means that the flexural mode predominates in the response of the walls. According to 

the Brunner and Shing (1996), when flexural mode is predominant, the equilibrium of the 

horizontal forces is not achieved, being the shear strength always higher than the flexural 

strength. Thus, the iterative method proposed was not used. The values of shear strength 

are calculated from the equilibrated state of the wall, where the horizontal force is equal to Hf. 

Observing the strength contributions separately in Figure 4.42b, it can be noticed that 

reinforcements were responsible for a small part of the shear strength of wall, which is the 

result of only the central horizontal reinforcement being considered in the calculations since 

the other reinforcement bars did not respect the anchorage length determined by Brunner 

and Shing’s model. In case of specimen N60-3C-B1-MA, none reinforcement presented 

sufficient anchorage length. 

 
Table 4.8 – Theoretical values of shear strength according to Brunner and Shing (1996). 

 
Wall 

 
Hf 

(kN) 
Hc 

(kN) 
Hi 

(kN) 
Hs 

(kN) 
V 

(kN) 

N60-3C-B1-UM 38.47 50.25 - - 50.25 
N60-3C-B1-SH 38.47 50.25 - 10.93 61.18 

N60-3C-B1 67.00 72.34 - 10.93 83.27 
N60-3C-B2 67.13 72.37 - 10.93 83.30 

N150-3C-B1 88.82 116.53 - 10.93 128.24 
N150-3C-B2 89.02 117.65 - 10.93 129.24 

N60-3C-B1-MA 67.00 72.34 - - 72.34 
N60-3C-B1-PA 67.00 72.34 - 6.15 78.49 

N60-2C-B1 57.26 63.97 - 10.93 74.90 
N60-2C-B2 64.39 69.00 - 10.93 79.93 
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Figure 4.42 – Comparison between theoretical model of Brunner and Shing (1996) and experimental 

values: (a) Flexure and shear strength and (b) contributions for the shear strength. 

 

4.5 Summary and conclusions 
 

In order to evaluate the in-plane cyclic behaviour of reinforced concrete block 

masonry walls, an experimental campaign was carried out. Different variables in the 

experimental analysis were considered, namely the pre-compression level, horizontal 

reinforcement ratio and masonry bond pattern. Besides the detailed discussion on the failure 

modes and force-displacement diagrams, an evaluation of the cyclic performance based on 

ductility obtained from the bilinear idealization of the experimental envelops was presented. 

Finally a comparison between the experimental lateral resistance and the resistance 

calculated from different approaches was provided. 

From the global analysis of results the following conclusion can be drawn: 

(a) the global analysis of the results of the cyclic in-plane tests on concrete block 

masonry walls allows concluding that the combination of vertical and horizontal 

reinforcement leads to an improvement on its in-plane cyclic performance. Specimens 

reinforced simultaneously with vertical and horizontal trussed-bars exhibited an increase on 

both lateral strength and deformation capacity, with respect to unreinforced masonry walls, 

even if the efficiency of horizontal reinforcement is low; 

(b) The influence of the percentage of horizontal reinforcement in lateral strength 

appeared to be not clear. The wall with a smaller amount of horizontal reinforcement (N60-

3C-B1-PA) presented higher lateral strength than specimen with the intermediate amount of 

horizontal reinforcement (N60-3C-B1). Additionally, it was possible to observe that the 

increase of the bed joint reinforcement and the reduction of the vertical spacing in specimen 
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N60-3C-B1-MA resulted in cracking more distributed, higher strength, gradual stiffness 

degradation and significant increase on the ductility factor.  

(c) concerning the vertical pre-compression, an increase on the lateral strength and a 

reduction on the lateral deformation with an increase on the brittleness, given by a decrease 

on the lateral deformation and dissipation of energy, were found in the wall specimens 

submitted to the highest level of normal stresses.  

(d) with respect to the masonry bond pattern, it was seen that no significant 

differences in the mechanical behaviour were observed for the two adopted bond patterns, 

even if the non-staggered (reinforced) vertical joint appeared to result in a slight increase on 

the lateral strength. This means that the best masonry bond pattern in terms of construction 

technology of reinforced masonry walls, i.e. non-staggered bond pattern, presents similar 

mechanical performance to traditional running masonry bond pattern. 

(e) from the analytical study of the lateral resistance based on distinct approaches, it 

was seen that a reasonable agreement between the flexural theoretical resistance with the 

experimental results was achieved, confirming the predominant flexural resisting mechanism 

governing the in-plane behaviour of the reinforced masonry walls. 
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5  EXPERIMENTAL PROGRAM III:    
                                   MASONRY BEAM TESTS 

 

5.1 Introduction  
 

Masonry beams together with shear walls integrate the resistant system of a masonry 

building responsible to bear the lateral loads. Shear walls are the main components in this 

structural system, even if masonry beams are the elements that ensure the connection of 

panels and the distribution of stresses through the masonry piers. 

According to Drysdale et al. (1999) the design of multi-storey buildings considering 

simple cantilever shear walls assures ductile response and good energy dissipation. The 

consideration of masonry beams renders the design too complex. Due to the low span to 

depth ratio of coupling beams, it is difficult to satisfy the demand of ductility. Therefore, 

Drysdale et al. (1999) suggest the separation of the beams from adjacent walls by movement 

joints. However, this procedure is rather severe and underestimates the lateral resistance of 

the structure. The consideration of the coupling beams results in lower flexural efforts at the 

base of the building than the real capacity of the masonry walls. 

Masonry beams are subjected to shear and flexure efforts and according to several 

authors, the design of masonry beams can be performed using the ultimate strength design 

method similar to what is used in reinforced concrete beams (Khalaf et al., 1983; Hendry, 

1998; Drysdale et al., 1999; Taly, 2001). Nevertheless, the presence of holes in units and the 

anisotropy of masonry, generated mainly by mortar joints, which are planes of weakness, 

make the behaviour of masonry beams more complex.  

There has been very few works analyzing the behaviour of masonry beams until now. 

It should be stressed that additional research effort should be given to these masonry 

structural elements, given the much reduced information available in the literature. Therefore, 

a large experimental program was developed aiming at improving the understanding on the 
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behaviour of masonry beams under flexure and shear, for which three and four point load 

bending tests were considered. The simplicity on the arrangement of these test setups and 

on the interpretation of results represents important advantages. Horizontal and vertical 

prefabricated reinforcements were used in bed joints and vertical cores of units, respectively, 

to evaluate their influence on behaviour of the masonry beams. 

 

5.2 Experimental Program 
  

The experimental program was carried out at Laboratory of Structures of University of 

Minho (LEST) aiming at evaluating the flexural and shear behaviour of reinforced masonry 

beams through a three and four point load bending test configuration. Twenty four masonry 

beams were built with different geometry of units and distinct horizontal reinforcement 

distribution.  

 

5.2.1 Masonry specimens 

 

Masonry beams were built with three and two hollow cell concrete blocks (3C-units 

and 2C-units, respectively), 4 courses in height and 7 or 4 blocks in length of horizontal 

joints. Masonry beams were built with dry vertical joints when 3C-units were used. Common 

mortar filled vertical joints with 8mm thickness were considered in case of 2C-units. Shape 

and geometry of masonry beams are shown in Figure 5.1. The distinct geometries 

considered in the tests were chosen based on the expected flexure or shear failure mode in 

specimens with 7 or 4 blocks of length respectively. Trussed type reinforcements with yield 

strength of 700 MPa were used in the construction of the beams. 
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Figure 5.1 - Geometry of masonry beams: (a) masonry beams built with 3C-units and (b) masonry 

beams built with 2C-units (dimensions in mm). 
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A summary of the typologies of the masonry beams is indicated in Figure 5.2.  

Fourteen specimens were tested to evaluate the flexural behaviour. Here, F denotes flexure, 

2C and 3C relates the type of unit, D5 and D3 denotes the diameter of bed joint 

reinforcement (φh), and UM means unreinforced masonry. In order to avoid shear failure at 

the supports, two vertical reinforcements of 5mm of diameter were introduced at the vertical 

cores of the concrete blocks between the supports and the load application points, see 

Figure 5.2 and Table 5.1. Two vertical reinforcements were added at mid–span (specimens 

indicated with M) in order to assess its contribution to improve the flexural behaviour of the 

beams such as the increase on the flexural strength and the prevention of vertical splitting 

stresses developed at the upper compressive region due to high compressive stresses. The 

letters C and D indicates if horizontal reinforcement was only placed at the first course or 

distributed in the three layers of the beam respectively. Bed joint reinforcement ratio, ρh, was 

the main parameter analysed from the results obtained in the tests. 

 

Other specimens

 
(a) 

Other specimens

 
(b) 

Figure 5.2 - Location of the vertical reinforcements in four point load configuration: (a) masonry 

beams built with 3C-units and (b) masonry beams built with 2C-units. 

 

Ten masonry beams were built to evaluate the shear behaviour. Here, S denotes 

shear, 2C and 3C indicates the type of unit, UM means unreinforced masonry, SH means 

that the masonry beam has only horizontal reinforcements and S1, S2 and S3 indicates 

different vertical reinforcement ratios. In order to avoid the failure by flexure, traditional steel 

bars (ρh=0.70%) were positioned in a layer of mortar at the base of the beam. Besides, in all 

reinforced specimens bed joint reinforcements were added at all courses. Table 5.1 shows 

the location and distribution of vertical shear reinforcements with a diameter of longitudinal 

bars (φv) equal to 4mm corresponding to different reinforcement ratios. It should be referred 

that the position of the vertical reinforcements was to certain extent defined by the geometry 

of the concrete units, mainly as concerns the vertical perforation. Also in the three point load 

tests horizontal and vertical reinforcement ratios were the main parameters under analysis.  
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Table 5.1 – Experimental details of masonry beams. 

Beam Øh (mm) ρh (%) Øv (mm) ρv (%) Dimensions (mm) 
F-3C-UM - - 5 0.112 1407x404x100 

F-3C-D5-C 5 0.097 5 0.112 1407x404x100 

F-3C-D5-D 5 0.292 5 0.112 1407x404x100 

F-3C-D5-D-M 5 0.292 5 0.167 1407x404x100 

F-3C-D3-C 3 0.035 5 0.112 1407x404x100 

F-3C-D3-D 3 0.105 5 0.112 1407x404x100 

F-3C-D3-D-M 3 0.105 5 0.167 1407x404x100 

F-2C-UM - - 5 0.118 1420x408x94 

F-2C-D5-C 5 0.102 5 0.118 1420x408x94 

F-2C-D5-D 5 0.307 5 0.118 1420x408x94 

F-2C-D5-D-M 5 0.307 5 0.177 1420x408x94 

F-2C-D3-C 3 0.037 5 0.118 1420x408x94 

F-2C-D3-D 3 0.111 5 0.118 1420x408x94 

F-2C-D3-D-M 3 0.111 5 0.177 1420x408x94 

S-3C-UM - 0.292 - - 804x404x100 

S-3C-SH 5 0.292 4 0.094 804x404x100 

S-3C-S1 5 0.292 4 0.125 804x404x100 

S-3C-S2 5 0.292 4 0.219 804x404x100 

S-3C-S3 5 - - - 804x404x100 

S-2C-UM - 0.307 - - 808x408x94 

S-2C-SH 5 0.307 4 0.066 808x408x94 

S-2C-S1 5 0.307 4 0.132 808x408x94 

S-2C-S2 5 0.307 4 0.199 808x408x94 

S-2C-S3 5 0.292 - - 808x408x94 

 

  

S-2C-S3

 

   
Figure 5.3 – Location of vertical reinforcements in masonry beams with 4 blocks of length. 
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5.2.2 Test setup and procedures 

 

The static monotonic tests of the masonry beams were performed following two 

typical test setups (three and four point load configurations) recommended by EN846-9 

(2000), as shown in Figure 5.4.  

 

1224
 

(a) 

600
 

(b) 

Figure 5.4 – Test setup of masonry beams: (a) four point load test and (b) three point load test 

(dimensions in mm). 

 

Masonry panels were laid on top of two metallic roller supports with 100 mm x 100 

mm in order to avoid stress concentration. One of the supports was fixed to a steel profile 

anchored to the reaction slab, see Figure 5.5a. The other support was placed above a roller 

positioned in the direction of the beam to avoid possible torsional stresses. Two Teflon 

sheets with a layer of grease between them were placed below the steel roller allowing free 

motion and avoiding possible axial stresses in masonry beam, see Figure 5.5b. 

 

 
(a) 

 
(b) 

Figure 5.5 – Details of the boundary conditions of masonry beams: (a) fixed support and (b) free 

support. 
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Half-rollers were placed at the load application points to avoid axial efforts and a steel 

beam was used to uniformly distribute the vertical load, as shown in Figure 5.6, which was 

applied by using a spherical hinge. The monotonic tests were carried out under displacement 

control at a rate of 5 µm/s by means an external LVDT connected to the actuator.  

 

 
Figure 5.6 – Load configuration for the four point load bending test  

 

During the construction of the beams, three specimens of mortar (40 mm x 40 mm x 

160 mm) were cast aiming at controlling its quality through the compressive and flexural 

strength, see Table 5.2. The masonry beams were cured at laboratory environmental 

conditions with relative air humidity of approximately 80%. In order to ensure proper curing of 

the specimens, the tests were carried out after 28 days from the construction. The mortar 

specimens were tested in the same day of the masonry beams. As can be observed from the 

results on mortars, no significant variations were obtained for the compressive and flexural 

strength, meaning that reasonable quality control on the production of the mortar was 

achieved.  

 
Table 5.2 – Average strength of mortars for masonry beam tests. 

Beam 
Flexural  
Strength 

(MPa) 

Compressive
Strength 

(MPa) 
F-3C-UM 1.85 6.79 

F-3C-D5-C 1.85 6.79 

F-3C-D5-D 2.15 8.09 

F-3C-D5-D-M 2.15 8.09 

F-3C-D3-C 1.92 7.32 

F-3C-D3-D 2.15 8.09 

F-3C-D3-D-M 2.18 8.54 

F-2C-UM 1.65 5.66 

F-2C-D5-C 1.89 7.15 

F-2C-D5-D 1.92 7.32 

F-2C-D5-D-M 2.18 8.54 

F-2C-D3-C 1.65 5.66 
 

Beam 
Flexural  
Strength 

(MPa) 

Compressive
Strength 

(MPa) 
F-2C-D3-D 1.89 7.15 

F-2C-D3-D-M 1.92 7.32 

S-3C-UM 1.98 7.56 

S-3C-SH 1.98 7.56 

S-3C-S1 1.75 6.39 

S-3C-S2 1.98 7.56 

S-3C-S3 1.75 6.39 

S-2C-UM 1.94 7.18 

S-2C-SH 1.98 7.56 

S-2C-S1 1.94 6.39 

S-2C-S2 1.94 7.18 

S-2C-S3 1.94 7.18 
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5.2.3 Instrumentation 

 

The displacements of the masonry beams were measured by means of a set of 

LVDTs, whose localization is indicated in Figure 5.7. LVDTs 1, 2 and 3 measured the 

deflections of the beams, whereas LVDTs 4, 5 and 6 intended to measure the slippage of the 

horizontal joints. The possible opening of vertical flexural crack at vertical joints at mid-span 

of the beams was detected by LVDT 7. Besides, strain-gauges were glued to reinforcements 

to evaluate their contribution to the beam response. In four point load bending tests strain-

gauges were glued to the horizontal reinforcements at the mid-span of the beam according to 

the configuration indicated in Figure 5.8a to measure the maximum tensile elongations. In 

shear tests strain gauges were glued to horizontal reinforcements in the first course and due 

to the symmetry of the beams, at the mid height of the vertical reinforcements, see Figure 

5.8b. Due to the limitation of the acquisition channels, in specimens with vertical 

reinforcements in the central region of the beam, it was decided not to apply strain gauges in 

the horizontal reinforcements at the second course.  

 

204408204 408
LVDT 1

LVDT 5LVDT 4

LVDT 6

LVDT 2 LVDT 3

LVDT 7
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150 150150150
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(a) (b) 

Figure 5.7 – Instrumentation of the masonry beams: (a) four point load tests and (b) three point load 

tests (dimensions in mm). 

 

Bottom bar

Middle bar

Upper bar

 
(a) 

Bottom bar

Middle bar

Upper bar

Vertical
bars  

(b) 
Figure 5.8 – Instrumentation of the reinforcements with strain gauges: (a) four point load tests and 

(b) three point load tests (dimensions in mm). 
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5.3 Results 
 

In spite of the care taken with the free support to avoid axial stresses in masonry 

beam, the results obtained point out that the free support exhibited non-negligible stiffness 

during the tests. However, experimental tests carried out in masonry beams provided some 

indicators about their flexure and shear behaviour. The analysis of the results will be 

presented in terms of failure modes and force–displacements diagrams.  

 

5.3.1 Failure modes  

5.3.1.1 Four point load tests 

 

In spite of the presence of vertical reinforcements next to the supports, some beams 

failed by shear (F-3C-D5-D, F-3C-D5-D-M, F-2C-D5-D and F-2C-D5-D-M) and some 

specimens exhibited a mixed failure mode (F-3C-D5-C and F-2C-D5-C), see Figure 5.9. 

However, flexure was the failure mode of the majority of the masonry beams (F-3C-UM, F-

2C-UM, F-3C-D3-C, F-2C-D3-C, F-3C-D3-D, F-3C-D3-D-M, F-2C-D3-D and F-2C-D3-D-M), 

see Figure 5.10.  

 
F-3C-D5-C

 

F-2C-D5-C

 
F-3C-D5-D

 

F-2C-D5-D

 
F-3C-D5-D-M

 

F-2C-D5-D-M

 
Figure 5.9 – Cracking patterns in four point load tests of masonry beams which presented a shear or 

a mixed shear-flexure failure. 
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Figure 5.10 - Cracking patterns in four point load tests of masonry beams which presented a flexure 

failure. 

 

In four point load test, the central region of the beam is under pure flexure without 

influence of shear stresses. As the vertical load increases, tensile stresses at the bottom 

region of the masonry beams increases leading to the attainment of the flexural strength of 

masonry, resulting in the opening of flexural cracks at the vertical joint in the central region of 

the beam. The opening of this crack could be detected through the results of LVDT 7, which 

was located at the bottom of the beams, see Figure 5.11. Results showed that flexural crack 

closed during the post-peak regime in specimens that failed by shear, whereas in specimens 

failing by flexure this crack remained opened until the end of the test.  

In case of unreinforced masonry (F-2C-UM and F-3C-UM), the flexural crack pattern 

is characterized by a stepped crack along the height of the beam resulting from the sudden 

propagation of the vertical crack developed at the bottom central region of the beam. 

However, the resisting mechanism of the masonry beams with or without filled vertical joints 

was quite different. In case of 2C-units and filled vertical joints, the opening of the flexural 

crack results from the achievement of the tensile strength of the central vertical unit-mortar 

interface at the first course. Its propagation up to the top region results from the combination 
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of the attainment of the tensile and shear strength of the unit-mortar interfaces. In masonry 

beams built with 3C-units the propagation of the stair stepped flexural crack is essentially 

due to the achievement of the shear strength of the unit-mortar interface, since the dry 

vertical joints have no tensile strengths. With the increase of the applied vertical load, vertical 

joints of the second course exhibit a tendency for opening, which was prevented by the shear 

stresses on the horizontal unit-mortar interface until the attainment of the corresponding 

shear strength and by tensile stresses on the unit below the mortar joint. the attainment of 

the corresponding tensile strength The flexural cracking patterns follows almost exclusively 

the unit-mortar interfaces due to their low resistance, when compared to the tensile strength 

of the concrete units, see Figure 5.12. 
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Figure 5.11 – Results of the LVDT 7 in four point loads tests (opening of flexural cracks): (a) 3C-units 

and (b) 2C-units. 
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Figure 5.12 – Resistance mechanisms of unreinforced masonry beams under flexure: (a) F-2C-UM 

and (b) F-3C-UM. 

 

In case of reinforced specimens, after the opening of the vertical joints in the first 

course, bed joint horizontal reinforcement contributes considerably to the increase of the 

shear strength of the mortar-unit interfaces through the development of tensile strains and 
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thus to the increase of the compressive stresses at the top of the beam. The yielding of these 

reinforcements is particularly visible in specimens where only a horizontal reinforcement of 

3mm diameter is placed at the first course (F-3C-D3-C and F-2C-D3-C), see Figure 5.13. It is 

observed that horizontal bars exhibited a decrease on strains near failure of the beam, see 

Figure 5.14, which can be attributed to the unloading of the steel bars after its breakage. The 

strain-gauges of specimen F-2C-D3-C were probably damaged since the strains measured 

were very low, in spite of the effective breaking of the bars. 

 

  
Figure 5.13 – Failure of horizontal reinforcement in four point load tests. 
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Figure 5.14 – Strains measured in horizontal reinforcements: (a) masonry beam F-3C-D3-C and      

(b) masonry beam F-2C-D3-C. 

 

Specimens with horizontal reinforcements, F-3C-D3-D, F-3C-D3-D-M, F-2C-D3-D and 

F-2C-D3-D-M, distributed along the height of the beams exhibited also a typical flexural 

cracking with the same cracking pattern. Apart from specimen F-3C-D3-D-M, whose 

horizontal reinforcement broke at first and second courses, all of the abovementioned 

specimens exhibited breakage of horizontal reinforcements only at the first course.       

Figure 5.15 shows the vertical load versus the evolution of strains recorded in strain gauges 

attached to the horizontal reinforcements on the abovementioned specimens. It is observed 

that in general the horizontal reinforcements placed at first and second courses present 

tensile strains, whereas the reinforcement of the third course exhibit compressive strains, as 
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expected. Similarly to specimen F-2C-D3-C, the strain-gauges of specimen F-2C-D3-D were 

probably damaged at the beginning of test since the strains measured were very low in spite 

of the breaking of the bars. The introduction of vertical reinforcements at mid-span of the 

beams increased their flexural strength due to the filling of cells with mortar, which generated 

a reduction of strains in reinforcements of the first course at mid-span, see Figure 5.15c. The 

positioning of these reinforcements induced also a change on the cracking pattern, moving 

the flexural failure for the third part of the beam. 

 

0

5

10

15

20

25

30

35

40

-1000 0 1000 2000 3000 4000 5000 6000 7000

 1st course
 2nd course
 3rd course

 

Strain x10-6 (mm/mm)

Lo
ad

 (k
N

)

0

5

10

15

20

25

30

35

40

-1000 0 1000 2000 3000 4000 5000 6000 7000

 1st course
 2nd course
 3rd course

Strain x10-6 (mm/mm)

Lo
ad

 (k
N

)

(a) (b) 

0

5

10

15

20

25

30

35

40

-1000 0 1000 2000 3000 4000 5000 6000 7000

 1st course
 3rd course

 

Strain x10-6 (mm/mm)

Lo
ad

 (k
N

)

0

5

10

15

20

25

30

35

40

-1000 0 1000 2000 3000 4000 5000 6000 7000

 1st course
 3rd course

Strain x10-6 (mm/mm)

Lo
ad

 (k
N

)

(c) (d) 

Figure 5.15 – Strains measured in horizontal reinforcements: (a) F-3C-D3-D, (b) F-2C-D3-D, (c) F-3C-

D3-D-M and (d) F-2C-D3-D-M. 

 

In specimens reinforced only at the first course (F-3C-D5-C and F-2C-D5-C), shear 

failure developed associated to diagonal cracking between the point load and the support, 

even in the presence of vertical reinforcements near the support. The shear cracking pattern 

develops together the flexural vertical cracks opened at the bottom vertical joint of the central 

region of the beam. The level of tensile strains developed in the first course’s reinforcements 
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shows that they yield in masonry beams built with 3C-units and dry vertical joints, which 

confirm its mixed failure mode, see Figure 5.16. 

It should be referred that the tensile strains developed in the reinforcements of beams 

built with the 3C-units present almost always higher values than the tensile strains of 

reinforcements in beams built with 2C-units, meaning that the 3C-units lead to higher 

ductility. After the opening of diagonal crack, the vertical reinforcements that connect both 

edges of the crack ensure the distribution of stresses through the crack. However, it was 

observed that the contribution of vertical reinforcements located near the support was 

reduced due to the debonding of vertical joint in case of specimens built with 3C-units, see 

Figure 5.17. 

 

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

 Longitudinal 1
 Longitudinal 2
 Diagonal

 

Strain x10-6 (mm/mm)

Lo
ad

 (k
N

)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

 Longitudinal 1
 Longitudinal 2
 Diagonal

Strain x10-6 (mm/mm)

Lo
ad

 (k
N

)

(a) (b) 

Figure 5.16 – Strains measured in horizontal reinforcements: (a) F-3C-D5-C and (b) F-2C-D5-C. 

 

  
(a) (b) 

Figure 5.17 – Debonding of vertical joint in specimens built with 3C-units: (a) F-3C-D5-C and           

(b) F-3C-D5-D. 

 

Specimens with 5mm horizontal reinforcements distributed in all mortar layers failed 

clearly by shear with the opening of a main diagonal crack between the support and the load 
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application point. The strains measured in the horizontal reinforcements distributed along the 

height of the specimen, shown in Figure 5.18, indicates that, as expected, the reinforcement 

at the first course exhibit the maximum tensile strains for all the specimens.  
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Figure 5.18 – Strains in horizontal reinforcements: (a) F-3C-D5-D, (b) F-2C-D5-D, (c) F-3C-D5-D-M 

and (d) F-2C-D5-D-M. 

 

In beams with 3C-units the reinforcement positioned at the third course is clearly in 

compression, whereas in beams with 2C-units the strains are almost zero, meaning that the 

neutral axis should be at the third course. The decreasing of the strains after the maximum 

load indicates that total capacity of horizontal reinforcements was not used, confirming the 

shear failure of the masonry beams. The addition of the central vertical reinforcements 

seems to improve the resistance of the beam with 3C-units, even if no significant changes 

occur in the maximum tensile strain, which means that in relative terms the reinforcement 

present lower strains, as observed in specimens F-3C-D3-D-M and F-2C-D3-D-M. This is 

also true in specimens built with 2C-units, which exhibit also a slight reduction on the 
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resistance. The opening of the diagonal crack could be clearly observed through the LVDT 6 

positioned near the support measuring the relative displacement between the third and 

second courses, see Figure 5.19. It is clear that the higher horizontal sliding occurs in 

specimens where diagonal cracking occurs. In case of specimen F-3C-D5-D-M the low level 

of sliding is related to localization of the diagonal crack in the opposite side, which was not 

instrumented. Otherwise LVDT 4 exhibited negligible results. 
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Figure 5.19 – Results of the LVDT 6 of beams measuring the opening of diagonal cracks: (a) 3C-units 

and (b) 2C-units. 

 

The failure by shear diagonal cracking was also characterized by sliding of the units 

at the border vertical edges over the bed joint. This behaviour was more remarkable in 

specimens with horizontal reinforcement distributed along the height of the beams due to the 

higher ultimate load and thus to higher shear stresses. The sliding at the unit-mortar interface 

is attributed to the achievement of the shear strength of the unit-mortar interface due to shear 

stresses in the perpendicular direction to the cross section of the beams due to the symmetry 

of shear in the cross section and on the perpendicular plan. 

The presence of reinforcements distributed along the height of the specimens 

represents an increase on the resistance of the beam, resulting in a higher resisting moment 

and, thus, to higher stresses at the upper compressive zone of the beam. This high 

compressive stresses induces that formation of splitting vertical cracks at the webs of the 

concrete units according to what is shown in see Figure 5.20. This type of cracking was 

already detected in the compressive tests carried out on masonry wallets in the direction 

parallel to bed joints. In fact, note that the compressive stresses in the upper region of the 

beam develop in the direction parallel to the bed joints.  
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Figure 5.20 – Cracks in webs of blocks due to the high compressive stresses. 

 

The presence of reinforcements in all bed joints also reduced the depth of the neutral 

axis meaning that the vertical crack at mid-span reached the third course of the beams. Even 

if LVDT 5 has been positioned at mid-span of beams to record possible slippage between 

fourth and third courses; it really measured a combined displacement resulting from the 

opening of vertical crack and the slippage at the upper unit-mortar interface, see Figure 5.21. 

The vertical reinforcements added at the central region of the beam reduce the slippage at 

the upper bed joint. As can be seen in Figure 5.10, no debonding of the upper unit-mortar 

interface developed when the vertical reinforcements are placed in the masonry beams. 
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Figure 5.21 – Results of the LVDT 5 in four point load tests: (a) 3C-units and (b) 2C-units. 

 

The high compression in upper region of the beam led to the splitting of the upper 

course due to the low tensile strength of the interface unit-mortar. This behaviour is 

particularly evident when flexural response is predominant, which is associated to high 

compressive stresses developed in upper region of the beam. The separation of concrete 

units was also visible in compressive tests in parallel direction to the bed joints carried out on 

masonry wallets (Chapter 3). The use of vertical reinforcements at the mid-span of the 
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panels results in a good control of the cracking. It avoids or at least, reduces tensile cracking 

at the unit-mortar interface. These bars exhibit higher strains in specimens built with 3C-units 

as the masonry presents lower compressive strength parallel to bed joints and higher 

ductility, see Figure 5.22. On the other hand, it is clear that the strains are higher in 

reinforcements with 3mm longitudinal diameter, which is associated to the predominant 

flexural cracking, conversely to the specimens with 5mm longitudinal diameter that presents 

a mixed flexural-shear or shear failure.  
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Figure 5.22 – Strains measured at the central vertical reinforcements in four point load tests. 

 

5.3.1.2 Three point load tests 

 

Apart from specimen S-2C-SH, which failed by crushing of the unit located under  

load application point due to a concentration of stresses, all masonry beams tested under 

three point load configuration presented a shear failure mode. Specimen   S-2C-SH, which 

was the first to be tested, presented crushing of the unit under the load application point due 

to stress concentration resulting from the low length of the steel plate placed under the 

vertical actuator, see Figure 5.23. Higher length of the steel plate, and thus more compatible 

local compressive stress with strength of the concrete units, was used in the following tests 

avoiding such local cracking patterns. However, the crushing seemed to occur near the real 

capacity of the beam since diagonal cracks have been already developed. 

It should be stressed that due to the geometry of the specimens and to the horizontal 

ordinary steel bars placed at the base of the beam no flexural cracking occurred. This is also 

confirmed by the negligible strains measured in the horizontal truss type reinforcements at 

the mid-span of specimens as indicated in § 5.2.1 (Figure 5.8b). In this test configuration the 

load path through the beam is composed by two compressed struts connecting the load 

application point and the supports. The cracking pattern composed by diagonal cracking is a 
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consequence of the stress distribution along the compressed struts. Figure 5.24 shows the 

crack patterns of specimens tested through the three point loading configuration. 

 

 
Figure 5.23 – Crushing of the concrete block under the load application point in specimen S-2C-SH. 
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Figure 5.24 – Crack patterns of masonry beams tested according to the three point load configuration. 
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It is clear that both vertical and horizontal reinforcements had influence on the 

features of the shear crack patterns. For both types of concrete units, the shear crack 

developed in unreinforced masonry beams is mainly localized along the vertical and 

horizontal unit-mortar interfaces. When horizontal reinforcements are placed at the bed 

joints, the shear crack is more distributed and develops mainly through concrete units. The 

horizontal reinforcements lead to the increase on the shear strength of the masonry joints 

and thus to the increase on shear stresses resulting on cracking of the concrete units. The 

horizontal reinforcements provide a better distribution of shear stresses reducing the 

masonry anisotropy, leading to a much more homogeneous material. Besides, the horizontal 

reinforcements improve the shear response of the masonry beams by avoiding the brittle 

failure due to the dowel action. This effect is particularly visible in specimen S-2C-S2, where 

the localized shear crack is able to attain a considerable opening, see Figure 5.25a. In case 

of reinforced specimens the higher vertical load applied to the beam represents an increase 

on the compressive stresses on the struts and consequently on the compressive stresses at 

the upper region of the beams in the parallel direction to the bed joints, resulting in the 

complete splitting of the concrete units of the third course, see Figure 5.25b. 

 

 
(a) 

 
(b) 

Figure 5.25 – Damage states on the masonry beams: (a) thick localized shear crack and dowel action 

effect of the horizontal reinforcements through diagonal crack (S-2C-S2) and (b) splitting of blocks at 

the upper course (S-3C-SH). 

 

After the opening of the diagonal crack, significant strains are measured in vertical 

reinforcements as they connect the two edges of the crack and sustain the shear stresses, 

see Figure 5.26. The presence of vertical reinforcements reduced the horizontal debonding 

and consequent slippage in mortar joints due to the dowel action effect. In general, vertical 

reinforcements exhibited very low values of deformation, which can be explained by the 

premature failure associated to the crushing of units due to the high compressive stresses in 

the strut connecting the support and the load application point. From the diagrams shown in 

Figure 5.26 it is clear that the location of vertical bars has a fundamental influence on their 

contribution to the resisting mechanism to shear stresses.  
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Figure 5.26 – Strains in vertical reinforcements of the masonry beams: (a) S-3C-S1, (b) S-3C-S2, (c) 

S-3C-S3, (d) S-2C-S1, (e) S-2C-S2 and (f) S-2C-S3. 

 

Reinforcements located out of the diagonal shear band exhibit very low strains, 

whereas as abovementioned the vertical reinforcements crossing the diagonal crack present 
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increasing strains after diagonal cracking. An exception should be pointed out to the 

specimen S-2C-S3, where the negligible strains measured are related to the opening of the 

diagonal crack at the opposite side, which is not instrumented with strain gauges. Besides, 

the distribution of stirrups seemed to have a remarkable influence on the shear crack pattern. 

This is clear if a comparison between the shear crack bands is made between specimen S-

2C-S1 and specimen S-2C-S2. Note that in specimen S-2C-S2, two steel truss type bars 

bound the localized shear crack, meaning that the contribution for the crack distribution is 

negligible, leading to the failure for a lower external load than the one obtained in specimen 

S-2C-S1. On the other hand, the vertical reinforcement placed in specimen S-2C-S1 seems 

to be effective on the crack distribution as it crosses the diagonal shear band. It should be 

stressed that a more distributed cracking is achieved by decreasing the spacing of vertical 

reinforcements, which is the case of specimens S-2C-S3 and S-3C-S3.  

Similarly to what happened in the four bending tests, the high compressive stresses 

in upper region of beams generated cracks in webs of the blocks as observed in 

characterization tests of masonry wallets tested under compression parallel to bed joints. 

Besides, the sliding of horizontal blocks over the horizontal joints in the extremities of beams 

also occurred due to the high shear stresses in mortar joint. 

 

5.3.2 Force vs. displacement diagrams and crack limits 

5.3.2.1  Four point load tests 

 

The force-displacement diagrams exhibiting the global behavior of the tested beams 

are shown from Figure 5.27 to Figure 5.29.  
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Figure 5.27 – Force–displacement diagrams of the masonry beams: (a) F-3C-UM and (b) F-2C-UM. 
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Figure 5.28 – Force-displacements diagrams of the masonry beams: (a) F-3C-D3-C, (b) F-2C-D3-C, 

(c) F-3C-D3-D, (d) F-2C-D3-D, (e) F-3C-D3-D-M and (f) F-2C-D3-D-M. 
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Figure 5.29 – Force-displacement diagrams of the masonry beams: (a) F-3C-D5-C, (b) F-2C-D5-C, (c) 

F-3C-D5-D, (d) F-2C-D5-D, (e) F-3C-D5-D-M and (f) F-2C-D5-D-M. 

 

Figure 5.30 shows a summary of the force-displacement diagrams of all specimens. 

In general, three phases characterizes the force-displacement diagrams of masonry beams. 
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There is an initial elastic behaviour corresponding to a high initial stiffness with very small 

vertical deflections. The second stage is characterized by the opening of flexural cracks at 

the unit-mortar interface located at mid-span, which is associated to an abrupt decrease on 

stiffness and to an increase on the load up to the achievement of the maximum strength of 

the beam. The decrease on the stiffness is particularly evident on specimens behaving in 

flexure. The detection of the opening of flexural cracks can be confirmed by the horizontal 

displacements measured by LVDT 7, as shown previously. 
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Figure 5.30 – Force-displacement diagrams of the masonry beams in four point loads tests: (a) 3C-

units and (b) 2C-units. 

 

On the other hand, diagonal cracking is only identified by the relative displacements 

measured at the unit-mortar interface near the supports (LVDTs 4, 5 and 6). The stiffness at 

the second stage depends on the horizontal reinforcement ratio and on the presence of 

vertical reinforcements at the mid-span, being increasing for increasing horizontal 

reinforcement ratio and with the placement of vertical reinforcement at mid-span. After 

flexural cracking, load transfer from the masonry to the horizontal reinforcements occurs, 

being the resisting mechanism composed by the tensile strength of the reinforcements and 

compressive strength of masonry. The third stage is characterized by the softening of the 

masonry beams associated to the reduction on the shear resistance with increasing 

displacements. The failure of beams can occur by yielding of reinforcement, crushing of the 

masonry in the upper compressed part or by diagonal cracking. Table 5.3 shows the cracking 

and maximum loads found in the four point loads tests. Unreinforced masonry beams 

present very low flexural strength and very brittle behaviour, even if slighter higher strength 

was obtained in beams with filled vertical joints and 2C-units. After flexural cracking at the 

bottom course, a sudden stair stepped crack follows up to the compressed edge of the 
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beams leading to the abrupt failure. It is observed that the introduction of horizontal 

reinforcement, the increase on its ratio and its distribution along height assumes a central 

role on the increase of the strength and ductility of the masonry beams. Considerable higher 

resistance of reinforced beams at bed joints was obtained in comparison with unreinforced 

masonry beams. Besides, it is clear that higher is the horizontal reinforcement ratio higher is 

the strength of beams. 

 
Table 5.3 – Cracking and maximum loads in four point load tests. 

Beam 
Flexural
Cracking

Load 
(kN) 

Diagonal
Cracking

Load 
(kN) 

Maximum
Load 
(kN) 

F-3C-UM 4.05 - 4.05 

F-3C-D3-C 3.84 - 23.32 

F-3C-D3-D 4.43 - 33.19 

F-3C-D3-D-M 8.69 - 33.30 

F-3C-D5-C 4.80 15.70 44.90 

F-3C-D5-D 5.15 23.05 45.04 

F-3C-D5-D-M 7.60 18.18 59.31 

F-2C-UM 5.10 - 5.90 

F-2C-D3-C 8.93 18.87 24.09 

F-2C-D3-D 7.52 24.41 37.73 

F-2C-D3-D-M 10.06 21.88 37.38 

F-2C-D5-C 7.43 24.78 45.54 

F-2C-D5-D 3.48 41.72 61.24 

F-2C-D5-D-M 7.82 22.29 56.10 

 

Specimens predominantly governed by flexure presents considerable higher ductility 

than the specimens where diagonal shear cracking takes the central role on the behaviour of 

the beams, with higher deflection corresponding to the maximum resistance, considerable 

higher ultimate deflection and smoother post-peak branch. It should be stressed that 

masonry beams built with 3C-units are remarkably more ductile than masonry beams built 

with 2C-units and filled vertical joints. This appears to be related with the compression in the 

direction parallel to the bed joints, which is much more ductile for masonry built with 3C- units 

and dry vertical joints, as already mentioned in Chapter 3. 

Results showed that vertical reinforcements placed at mid-span increased the force 

corresponding to the flexural cracking, which is associated to the mortar filling of the vertical 

internal cores of the 3C-units, resulting on the increase of the tensile strength of unit-mortar 

interface in first course at mid span of the beam. However, by analysing the diagonal crack 
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force, the presence of vertical reinforcements at mid span appears to anticipate the diagonal 

cracking of the beams, which can be associated to the increasing level of compressive 

stresses at upper region of beams leading to an increase of compressive stresses on 

diagonal struts between the load application point and supports.  

In case of maximum load of tested masonry beams, by comparing the experimental 

and flexural and shear theoretical values obtained in masonry beams which failed by flexure  

calculated according to Eurocode 6 (2005), it is clear an increase of the experimental 

strength due to the axial stress in the beams provided by the semi-rigid support, see       

Table 5.4. 

 
Table 5.4 – Comparison between experimental and theoretical loads according to Eurocode 6 (2005) 

for masonry beams of four point load configuration which failed by flexure. 

Beam 
Exp. 
 Load 
(kN) 

Theo. 
Load 

Flexure
(kN) 

Theo. 
Load 
Shear 
(kN) 

F-3C-D3-C 23.32 13.37 41.28 

F-3C-D3-D 33.19 17.98 41.28 

F-3C-D3-D-M 33.30 17.98 41.28 

F-2C-D3-C 24.09 13.56 49.68 

F-2C-D3-D 37.73 19.62 49.68 

F-2C-D3-D-M 37.38 19.62 49.68 

 

5.3.2.2 Three point load tests 

 

As expected, shear was the prevailing effect in specimens tested under three point 

load configuration, being the failure mode governed by diagonal cracking. As no flexural 

cracking develops, the behaviour is composed by two phases, namely the linear elastic 

behaviour before diagonal cracking and nonlinear behaviour after diagonal cracking 

composed by a small stretch of pre-peak nonlinearity and the post-peak descending branch, 

see Figure 5.31 and Figure 5.32. Figure 5.33 shows a summary of the force-displacement 

diagrams of all specimens and Table 5.5 shows the cracking and maximum loads for three 

point load tests. 
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Figure 5.31 – Force-displacements diagrams of the masonry beams: (a) S-3C-UM, (b) S-2C-UM, (c) 

S-3C-SH, (d) S-2C-SH, (e) S-3C-S1 and (f) S-2C-S1 
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Figure 5.32 – Force–displacements diagrams of the masonry beams: (a) S-3C-S2, (b) S-2C-S2, (c) S-

3C-S3 and (d) S-2C-S3. 
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Figure 5.33 – Force-displacement diagrams of the masonry beams of three points loading tests: (a) 

3C-units and (b) 2C-units. 

 



Chapter 5 – Experimental program III: masonry beams 197

Table 5.5 – Cracking and maximum loads in tests of masonry beams for three point loads 

configuration. 

Beam 
Diagonal
Cracking

Load 
(kN) 

Maximum
Load 
(kN) 

S-3C-UM 39.80 66.80 

S-3C-SH 83.20 86.68 

S-3C-S1 86.80 102.91 

S-3C-S2 80.00 110.89 

S-3C-S3 80.57 101.43 

S-2C-UM 49.90 62.11 

S-2C-SH 70.00 100.34 

S-2C-S1 75.00 127.61 

S-2C-S2 102.75 102.75 

S-2C-S3 149.60 188.96 

 

Masonry beams exhibited high initial stiffness, being the maximum load attained for 

very low deflection of the beams. For unreinforced beams built with 3C-units and 2C-units no 

significant differences were detected in the overall shear behaviour. The maximum strength 

of beams built with 3C-units is only about 7.5% higher than the strength obtained for beams 

with 2C-units, being the ultimate deformation approximately the same. It is clear that the 

presence of reinforcements improved the shear behaviour of beams, increasing the strength 

and deformation capacity, and, as observed in four point load tests, delaying the diagonal 

cracking. Horizontal reinforcements influence positively the shear behaviour by enhancing 

the crack distribution, as already mentioned previously, and by increasing the strength of the 

beams. Note that the presence of horizontal reinforcements seems also to lead to an 

improvement of the ultimate deformation capacity for beams with 3C-units, in spite of no 

conclusions can be pointed out concerning the beam with 2C-units due to the local crushing 

failure (S-2C-SH). The increase on the global strength results from the improvement of the 

shear strength of the bed joints as well as from the dowel action effect, which allow additional 

load transfer between the edges of the shear crack. This effect has been already mentioned 

for vertical reinforcements in masonry walls subjected to lateral loading. Besides the 

horizontal reinforcements, vertical reinforcements also contribute for global shear strength by 

connecting both edges of the shear crack through the development of tensile stresses. An 

increase on the shear strength of the beams with 3C-units of about 18.7%, 27.9% and of 

17% in specimens S-3C-S1, S-3C-S2 and S-3C-S3 was obtained in relation to the specimen 

with horizontal reinforcement. For beams built with 2C-units increases of 27.2%, 2.4% and of 

88.3% were observed in specimens S-2C-S1, S-2C-S2 and S-2C-S3 in relation to the 
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specimen reinforced in bed joints. Note that the vertical reinforcements in specimen S-2C-S2 

are out of the diagonal cracking, appearing that only a slight increase on the strength was 

obtained. 

It should be noticed that apart from specimen S-2C-S2, in the other two beams built 

with 2C-units the increase on the shear strength due to the addition of vertical reinforcements 

is considerably higher than in specimens built with 3C-units. In case of beams with 3C-units, 

the vertical reinforcements are placed in the internal cell of the concrete units and at the 

frogged ends, where mortar with appropriate plasticity was applied in order to obtain the 

adequate bond between reinforcements and masonry. In case of beams with 2C-units, the 

vertical reinforcements are placed in one of the 2C-units being completely filled with mortar. 

This means that the addition of vertical reinforcements in beams with 2C-units represents a 

considerable increase on the effective cross section of the beams. For the configuration of 

uniformly distributed vertical reinforcements (S-2C-S3) the hollow vertical cells are reinforced 

and completely filled with mortar resulting in much higher shear strength. This means that 

part of the increase on the shear strength is due to the increase on the effective cross 

section.  

 Besides, it should be stressed that the shear capacity of masonry beams depends 

fundamentally on the position and distribution of vertical reinforcements (stirrups). In 

specimens built with 3C-units the first two reinforcement ratios increased the shear capacity. 

However, specimen S-3C-S3 exhibited a reduction of maximum load. This behaviour 

appears to be related to an increase on the compressive stresses at the struts and thus to 

the premature crushing of the units in the neighbourhood of the supports. On the other hand, 

the lower value of the shear strength obtained in specimen S-2C-S2 is attributed to the 

inadequate positioning of the vertical reinforcements out of the diagonal cracking, leading to 

its minor contribution to the shear strength. Though, this behaviour was not observed in 

specimen S-2C-S3 because it was fully filled with mortar, increasing the shear strength in 

region between the load application and supports.  

 

5.4 Summary and conclusions 
 

This chapter dealt with an extensive experimental program aiming at assessing the 

mechanical behaviour of masonry beams reinforced with truss type bars positioned at the 

bed joints and at the vertical cores of the units. Two load configurations were adopted, 

namely four and three point loads. Geometry of the units and horizontal and vertical 

reinforcement ratios were the main variables analyzed in the experimental study. 
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Results point out that bed joint reinforcement improved the flexure behaviour of 

masonry beams by increasing the capacity of these elements of resist tensile stresses, and 

the deformation capacity and by providing a better distribution of cracks leading to the delay 

the opening of diagonal cracking. Shear strength was also increased by the presence of 

horizontal reinforcement since they promote the connection of both edges of the shear crack 

allowing the stress transfer between them. Besides, horizontal reinforcement also contributed 

to shear strength and ductility through the dowel action mechanism.  

Vertical reinforcements increased the shear strength of the masonry beams. 

However, it was observed that more than the reinforcement ratio, the location and distribution 

of vertical reinforcements take a central role on the shear behaviour of masonry. The 

distribution of the vertical reinforcements must cross the diagonal cracking for their positive 

contribution is considered effective for the increase on the shear strength. The correct 

localization of the vertical reinforcements avoids the localization of the diagonal cracking and 

improves the cracking distribution.  

The increase on the effective cross section by the mortar filling of the hollow cell 

concrete units leads to the significant improvement on the shear strength of the masonry 

beams. This behaviour is mainly associated to the significant increase on the compressive 

strength of the masonry in the parallel direction to the bed joints.  
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6 NUMERICAL SIMULATION 

 

6.1 Introduction 
 

Masonry elements subjected to in-plane loading exhibit a complex structural 

behaviour mainly due to the anisotropic nature of masonry material. The prediction of the in-

plane behaviour of masonry elements by means of complex numerical methods has been 

playing a central role in the research effort in the scope of masonry structures (Lourenço, 

1996, Sutcliffe et al., 2001, Van Zijl., 2004). It is assumed that experimental analysis is 

important to understand the behaviour of masonry structures providing the mechanical data 

for the validation of numerical models, after which more complex analysis like parametric 

studies can be performed. However, often experimental programs have high costs and a limit 

number of specimens are tested reducing the analysis of the number of variables that can be 

evaluated.  

Two possible numerical approaches for masonry structures based on macro-

modelling and micro-modelling has been presented in Chapter 2. Micro-modelling is suitable 

for a detailed analysis of small masonry structures, where is it important to describe the local 

resisting mechanisms. On the other hand, macro-modelling allows an evaluation of large size 

masonry structures, where the global behaviour is the real concern. Both numerical 

approaches can be useful on the understanding of the behaviour of masonry elements 

subjected to in-plane loading. 

The numerical approach selected in this work is the micro-modelling due to the need 

of identifying the real failure mechanisms governing the in-plane cyclic behaviour of 

reinforced concrete block masonry walls and the flexural and shear behaviour of masonry 

beams. The micro-model was appropriately calibrated from the experimental results of the 

tested shear walls and masonry beams, taking into account some material parameters 

obtained in Chapter 3 and other parameters available in literature. After an initial comparison 

between experimental and numerical results of shear walls and masonry beams, a detailed 
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parametric study was carried in order to obtain a better insight on the influence of selected 

parameters like the filling of vertical joints, variation of pre-compression (in case of walls) and 

variation of the vertical and horizontal reinforcement ratios on the in-plane behaviour of the 

masonry structural elements. Besides, numerical models provide important information for 

the development of the design model of masonry walls and masonry beams.  

 

6.2 Details of numerical modelling  
 

As aforementioned the numerical simulation of masonry walls and beams under in-

plane loading was carried out based on the micro-modelling approach by using the software 

DIANA®. The simplified micro-modelling approach, which represents the masonry as units 

connected by interface elements, was selected as the main aim is to clarify the resisting 

mechanisms of shear walls and masonry beams under in-plane loading. In a first phase, the 

numerical model was defined based on the geometry, boundary and loading conditions of 

specimens tested during experimental campaign. It should be mentioned that in case of 

shear walls monotonic loading was considered instead of the cyclic loading due to the 

compatibility of the interface elements. Newton-Raphson iteration procedure was used with a 

displacement control and an energetic convergence criterion with a tolerance of 10-3. 

 

6.2.1 Mesh 

 

Mesh was composed by continuum elements representing the units separated by 

interface elements with zero-thickness representing the joints. Besides head and bed joints, 

potential vertical cracks were also modelled at the middle of units following the suggestion of 

Lourenço (1996). In case of units, eight-node isoparametric plane-stress elements with 

Gauss integration scheme were used in the model, whereas bi-dimensional interface 

elements with quadratic interpolation were used to represent the unit-mortar interfaces, see 

Figure 6.1.  

In case of masonry beams, in spite of the special care taken to avoid friction forces at 

free support, results indicated some level of stiffness at this support (Chapter 5). Thus, a 

one-node translation spring (SP1TR) was introduced in numerical modelling to represent the 

semi-rigidity of that boundary condition. The stiffness of the spring was calibrated according 

to experimental results. 

 

 



Chapter 6 – Numerical simulation 203

  
Element CQ16M – DIANA® Element CQ16M - DIANA® 

(a) (b) 

Figure 6.1 – Elements used in numerical modelling; (a) Units and mortar joints; (b) unit-mortar 

interfaces 

 

Units were modelled with equivalent solid blocks to the actual hollow cell concrete 

blocks. In order to become the numerical model representative all properties of materials 

were defined by considering the gross area of the units. For shear walls, units were modelled 

with two elements, which mean that each half of unit was modelled by one continuum 

element. For masonry beams, units were modelled by 8 x 4 elements, which mean that each 

half of unit was modelled by 4 x 4 continuum elements, see Figure 6.2. The level of 

refinement of masonry beams was higher in order to obtain a representative mesh. 
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Figure 6.2 – Example of applied meshes: (a) shear walls and (b) masonry beams. 
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The upper concrete beam was also considered in the model as in the shear wall tests 

the horizontal load was applied at mid height of the upper beam. Bottom concrete beam was 

not modelled since it aims only at anchoring the vertical reinforcements. In case of masonry 

beams, steel plates used at supports and at points of load application were also simulated in 

order to avoid the concentration of stresses. 

Reinforcements were modelled through embedded bars adding stiffness to the finite 

element model. Reinforcement strains were computed from the displacement field of the 

master elements due to the assumption of perfect bond between the reinforcement and the 

surrounding material. 

 

6.2.2 Material Properties 

 

The material mechanical properties adopted in numerical modelling were obtained 

through the characterization tests carried out at laboratory and described in Chapter 3. Some 

properties that were not possible to be measured at laboratory were calibrated by fitting the 

numerical to the experimental results. The different materials used to model the different 

structures (masonry beams and walls) in order to suitably represent the experimental 

behaviour are shown in Table 6.1.  

 
Table 6.1 – Summary of materials used in modelled structures. 

Type Unit Nº 
Materials Description 

3C 7 
Units, horizontal joint, vertical joint, potential crack, trussed bars,
concrete of upper beam and interface between upper beam and
shear wall Shear 

wall 
2C 9 

Units, horizontal joint, vertical joint, potential crack, trussed bars,
mortared units, horizontal joints of mortared units, concrete of upper 
beam and interface between upper beam and shear wall 

3C 8 
Units, horizontal joint, vertical joint, potential crack, trussed bars, 
spring, steel plates and interface between steel plates and masonry
beam 

Beam F 

2C 10 
Units, horizontal joint, vertical joint, potential crack, trussed bars,
mortared units, horizontal joints of mortared units, spring, steel plates 
and interface between steel plates and masonry beam  

3C 9 
Units, horizontal joint, vertical joint, potential crack, trussed bars,
straight bars, spring, steel plates and interface between steel plates
and masonry beam 

Beam S 

2C 11 

Units, horizontal joint, vertical joint, potential crack, trussed bars,
straight bars, mortared units, horizontal joints of mortared units, 
spring, steel plates and interface between steel plates and masonry
beam 
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6.2.2.1 Units  

 

The behaviour of the concrete masonry units was represented by a total strain crack 

model based on a fixed stress-strain concept. The material model describes the tensile and 

compressive behaviour of a material with one stress-strain relationship in a coordinate 

system that remains fixed upon crack initiation. An exponential function characterizing the 

constitutive behaviour of concrete units under tensile loading was adopted, see Figure 6.3a. 

The results of the mode I fracture energy, Gf
I, of concrete block units obtained by Mohamad 

(2007) were used for the definition of the exponential model due to the lack of experimental 

complete tensile stress-strain diagrams of the concrete units used in this research. The 

compressive fracture energy, Gc, obtained by Mohamad (2007) was also used in order to 

define the parabolic function for the characterization of the constitutive behaviour in 

compression, see Figure 6.3b. The shear behavior during cracking was described via a 

shear retention model defined by a constant, see Figure 6.3c. 

 

 
(a) 

 
(b) (c) 

Figure 6.3 – Constitutive model adopted for concrete units in: (a) tension, (b) compression and          

(c) shear (DIANA®). 

 

In case of masonry structural elements built with 2C-units, when the masonry bond 

pattern B1 is adopted, the holes with vertical reinforcement were totally filled with mortar. In 

numerical modelling these elements had to be represented with different mechanical 

properties. Therefore, to take into account the mortar filling of the two hollow cell concrete 

units its strength and stiffness was considered to be the double, even if no experimental 

values on the mechanical properties were available. The summary of the mechanical 

properties of 2C- and 3C-units, namely the tensile, ft, and compressive strength, fc, elastic 

modulus, E, Poisson’s ratio, υ, the tensile and compressive fracture energies Gf
I and Gc, and 

the shear retention constant, β, is indicated in Table 6.2. The filled 2C-units are denoted by 

2C*. 
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Table 6.2 – Mechanical properties of units used in numerical modelling. 

Units E 
(GPa) ν fbt 

(MPa)
Gf

I 
(N/mm) 

fb 
(MPa)

Gc 
(N/mm) β  

3C 9.57  3.19 12.13

2C 8.80  
0.20 

3.13 
0.06 

9.38 
10.00 0.01 

2C* 20.00 0.20 3.13 1.00 18.80 10.00 0.01 

 

6.2.2.2 Interface elements 

 

The plane stress interface cap model with modern plasticity concepts, capable of 

capturing all masonry failure mechanisms proposed by Lourenço and Rots (1997) and 

enhanced by Van Zijl (2004) was used for modelling the unit-mortar interfaces. It is based on 

multi-surface plasticity, comprising a Coulomb friction model combined with a tension cut-off 

and an elliptical compression cap, see Figure 6.4. This interface material model, also known 

as the ‘Composite Interface model’, is appropriate to simulate tensile fracture, frictional slip 

as well as crushing along material interfaces, for example at the mortar joints.  

 

 
Figure 6.4 – Proposed interface cap model. (Lourenço and Rots, 1997). 

 

The mechanical properties used for the definition of the yield functions in tension, 

compression and shear of the unit-mortar interfaces are summarized in Table 6.3 for 

horizontal joints and in Table 6.4 for vertical joints. The shear slipping is described by a 

Coulomb friction yield function. The definition of this function is made through the knowledge 

of the cohesion, c, friction coefficient, µ, the dilatancy coefficient, tanψ, and the shear fracture 

energy, Gf
II. In order to capture adhesion softening and friction softening the residual friction 

coefficient, µres.should be known. In the model, the dilatancy is considered to be dependent 

on the normal confining stress and on the shear slipping. Thus, for the correct definition of 

the dilatancy, the confining normal stress at which the dilatancy becomes zero, σu, and the 

dilatancy shear slip degradation coefficient, δ, need to be obtained by experimental analysis. 
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The yield function with exponential softening for the tension cut-off requires the knowledge of 

the tensile strength and the mode I fracture energy, Gf
I. The yield function for the 

compression cap, composed of a parabolic hardening rule and a parabolic/exponential 

softening branch, need the knowledge of the compressive strength, fc, compressive fracture 

energy, Gc, and the parameter Css to take into account the which control the contribution of 

shear stress to failure.  

 
Table 6.3 – Mechanical properties of horizontal unit-mortar interfaces.  

Units kn 
(N/mm3) 

ks 
(N/mm3) 

ft 
(MPa) 

Gf
I 

(N/mm) 
fa 

(MPa)
Gc 

(N/mm) Css  c  
(MPa) µ tanψ Gf

II 
(N/mm) µres σu 

(MPa) δ 

3C 0.33 5.95 0.42 0.52 0.43 1.35 1.64

2C 
20 48 

0.25 
0.017 

5.44 
5.00 5.3

0.35 
0.49

0.41
2.0 

0.32 2.14 1.33

2C* 40 96 0.50 0.034 10.88 5.00 5.3 0.70 0.49 0.41 2.0 0.32 2.14 1.33

 

Table 6.4 – Mechanical properties of vertical joints used in numerical modelling. 

Units kn 
(N/mm3) 

ks 
(N/mm3) 

ft 
(MPa) 

Gf
I 

(N/mm) 
fa 

(MPa)
Gc 

(N/mm) Css  c  
(MPa) µ tanψ Gf

II 
(N/mm) µres σu 

(MPa) δ 

3C 2 2 0 0 2.78 5.00 5.3 0 0.65 0 2.0 0 0 0 

2C 20 48 0.25 0.034 3.41 5.00 5.3 0.35 0.49 0.41 2.0 0.32 2.14 1.33

 

For the horizontal joints, apart from the fracture energies and the normal stiffness, all 

mechanical properties of the interface elements were obtained from experimental testing, on 

unit-mortar assemblages under shear and compression (Chapter 3). Even if some direct 

tensile tests have been carried out aiming at measuring the normal stiffness, kn, of unit-

mortar interfaces, the large scatter found led to the need of considering the values pointed 

out by Vasconcelos et al. (2008). The tensile strength of masonry joints was taken as the 

value corresponding to 80% of the flexural strength of masonry as suggested by Pluijm 

(1999), see Figure 6.5. The fracture energy under tension and compression were obtained 

by fitting the numerical to experimental results of the cyclic tests of masonry shear walls.  

 

-

+

fflf t

M M

 
Figure 6.5 – Non-linear stress distribution (solid line) due to bending and the fictitious elastic 

distribution (dashed line) at the maximum load level. 
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The shear fracture energy, Gf
II, and shear stiffness, ks, was evaluated through initial 

shear tests on unreinforced assemblages (triplet specimens, Chapter 3). This value has to be 

updated to take into account the influence of the vertical reinforcements. From the numerical 

simulation of the lateral behaviour of masonry shear walls, it was observed that vertical 

reinforcements provide an increase on the shear fracture energy. Thus, different shear 

fracture energies were considered to reinforced masonry walls (Gf
II = 2.0 N/mm) and 

unreinforced masonry walls (Gf
II = 0.1 N/mm). The parameter Css, which controls the 

contribution of shear stress to compression failure was not considered to be 9.0 as 

suggested by Lourenço and Rots (1997) given that residual compression moves into the 

tension cut-off, see Table 6.3. According to what was mentioned for 2C-units, also for 

horizontal joints of two cell concrete block masonry with bond pattern B1 (2C*), the 

mechanical properties were doubled see Table 6.3.  

The mechanical properties adopted for filled vertical joints were the same as the ones 

considered to horizontal joints in case of masonry walls built with 2C-units (2C*), with the 

exception of the compressive strength, to which the parallel direction to bed joints was 

considered. In case of walls built with 3C-units, dry vertical dry-joints characterize the bond 

patterns B1 and B2. Hence, the tensile strength and fracture energy has to be taken equal to 

zero and the normal stiffness was very low, only to take into account the influence of the 

mortar at the bed joints. The stiffness of the vertical joints influences the numerical response 

only in compression. The normal stiffness was calibrated based on the numerical simulation 

of he masonry beams as it appears to influence at great extent the compressed region of the 

beam under flexure. In case of shear walls, the vertical joints are mainly subjected to tensile 

stresses. The shear behaviour of vertical joints of walls built with 3C-units was described by 

the Mohr-Coulomb model with a null cohesion and the friction coefficient corresponding to 

the dry contact between two surfaces of concrete (µ = 0.65).  

Potential cracks in the middle of units were modelled through interface elements with 

a discrete cracking model, see Table 6.5. The constitutive law for discrete cracking in 

DIANA® is based on a total deformation theory, which expresses the tractions as a function 

of the total relative displacements. An exponential softening behaviour was adopted to the 

tensile behaviour of the potential crack. 

 
Table 6.5 – Mechanical properties of potential cracks of concrete units. 

Units kn 
(N/mm3)

ks 
(N/mm3) 

ft 
(MPa)

Gf
I 

(N/mm) 
3C 3.19 

2C 
106 106 

3.13 
0.06 
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According to Lourenço and Rots (1997), it is clear that cracks in units need to be 

modelled. The authors observed that the lack of potential cracks into the concrete units 

resulted in an overestimation of the collapse load and a much stiffer response than the one 

observed in experimental tests.  

 

6.2.2.3 Elastic Elements  

 

Isotropic elasticity was adopted for the upper concrete beam of shear walls and for 

the steel plates above the supports and under the load application points of masonry beams 

in order to avoid stress concentration. These elements have no influence on the mechanical 

behaviour of the masonry structural elements under analysis. These elements were 

connected to the masonry through elastic interface elements with infinite stiffness to simulate 

perfect bond connection between these two elements according to what has been observed 

in experiments. 

 
Table 6.6 – Material properties for elastic elements. 

 E (GPa) ν 

Upper beam 30 0.20

Steel plates 210 0.30

 

6.2.2.4 Reinforcements 

 

An elasto-plastic behaviour was adopted to the reinforcements through Von Mises 

model. Besides, a ‘free length’ (thickness of the joints) had to be considered to take into 

account the crossing of the interface elements, see Figure 6.6.  

 

 
Figure 6.6 – Reinforcement stiffness at the interface (DIANA®). 
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Vertical reinforcements crossing structural interfaces have displacement and traction 

components in the same directions as the interface elements: one normal component and 

one or two shear components. Thus, the definition of a ‘free length’ is needed to determine 

the stiffness of the interface crossed by the reinforcement based on Eq. 6.1: 

 

fr

s
n l

E
k =         and       

fr

s
ts l

E
kk

2
==    Eq. 6.1

 

Where, kn and ks are normal and shear components of the stiffness of the interface, lfr is the 

free length and Es is the elastic modulus of the reinforcement.  

 

The considerable increase on the stiffness of interface elements resulting from the 

crossing of reinforcements leads to an ill-conditioned stiffness matrix. Besides, the 

introduction of reinforcements in the numerical model increases the number of iterations until 

the achievement of the convergence and consequently the computational effort.  

 

6.2.2.5 Spring 

 

A spring element was used to represent the partial rigidity of the support of the 

masonry beam, which was supposed to be completely free. This element was used only to 

calibrate the numerical model and represent the experimental conditions. In parametrical 

study this spring was not considered. A stiffness of 400 N/mm was taken from the numerical 

fitting to the experimental results. 

 

6.3 Numerical vs. Experimental results 
 

The first step of the numerical analysis comprises the calibration of the numerical 

model defined for the masonry shear walls and masonry beams, which is achieved from the 

comparison between experimental and numerical results. This enables to use a reliable 

model for the envisaged parametric study and allows obtaining a better insight of the analysis 

of the experimental results. From numerical simulation it is also possible to correctly 

understand some issues that experimental analysis becomes difficult like the correct stress 

distribution along the walls and beams.  
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6.3.1 Shear walls 

 

As aforementioned, the outcome of numerical modelling of masonry shear walls 

consists of a numerical monotonic envelop of the experimental results as only monotonic 

loading was considered. By comparing the maximum lateral resistance obtained in numerical 

modelling, HNum, with the experimental lateral resistance, HExp, it is observed that very good 

approach was achieved, see Table 6.7. A maximum difference on the lateral resistance of 

6% was found for specimens built with 3C-units and of 10% for specimens built with 2C-

units. 

 
Table 6.7 – Comparison between experimental and numerical lateral resistance of shear walls. 

Wall (+/-) HExp  
(kN) 

HNum 
(kN) 

HNum / HExp
 (%) 

+ 35.88 0.98 
N60-3C-B1-UM 

- 33.63 
35.28 

1.05 

+ 38.61 0.94 
N60-3C-B1-SH 

- 35.09 
36.11 

1.03 

+ 52.73 1.00 
N60-3C-B1 

- 52.75 
52.72 

1.00 

+ 62.09 1.04 
N60-3C-B2 

- 65.18 
64.29 

0.99 

+ 92.98 0.93 
N150-3C-B1 

- 93.22 
86.49 

0.93 
 

Wall (+/-) HExp  
(kN) 

HNum 
(kN) 

HNum / HExp
 (%) 

+ 93.80 0.96 
N150-3C-B2 

- 93.28 
90.47 

0.97 

+ 78.36 0.81 
N60-3C-B1-MA 

- 74.59 
63.13 

0.85 

+ 70.22 0.88 
N60-3C-B1-PA 

- 66.92 
61.95 

0.93 

+ 63.09 0.94 
N60-2C-B1 

- 73.98 
59.52 

0.80 

+ 63.18 0.98 
N60-2C-B2 

- 55.05 
62.30 

1.13 
 

 

The comparison between the cyclic force-displacement diagrams obtained in 

experimental tests with the numerical monotonic envelop reveals that a reasonable 

agreement was attained between both approaches in the pre-peak regime in terms of 

stiffness, pre-peak nonlinear behaviour and lateral resistance, see Figure 6.7 to Figure 6.9. 

In post-peak behaviour of masonry walls is well represented in unreinforced specimens and 

in the walls submitted to the highest level of pre-compression but clearly, divergences in the 

remaining walls. The difference in the elastic stiffness found in specimens N60-2C-B1 and 

N60-2C-B2 is attributed to the previous damage of the walls observed before testing as 

already mentioned in Chapter 4. 
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Figure 6.7 – Comparison between numerical and experimental results (Force vs. displacement 

diagrams): (a) IP-N60-3C-B1, (b) IP-N60-3C-B2, (c) IP-N150-3C-B1, (d) IP-N150-3C-B2, (e) IP-N60-

3C-B1-MA and (f) IP-N60-3C-B1-PA.  
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Figure 6.8 – Comparison between numerical and experimental results (Force vs. displacement 

diagrams): (a) N60-3C-B1-UM, (b) N60-3C-B1-SH.  
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Figure 6.9 – Comparison between numerical and experimental results (Force vs. displacement 

diagrams: (a) N60-2C-B1 and (b) N60-2C-B2.  

 

In terms of failure mode, numerical modelling agrees reasonably well with the 

experimental results in spite of the monotonic loading considered in numerical modelling. In 

fact, it is very well known that it is possible that the cyclic horizontal loading can lead to 

increasing damage accumulation. As shown Figure 6.10a for the unreinforced masonry walls 

numerical results represented the three main crack patterns developed during experimental 

behavior of the walls, namely flexural cracking, diagonal cracking and crushing at the bottom 

of the wall. In the experimental test, after the diagonal crack and crushing at the bottom 

corner occurred, the upper part of the walls slide over the diagonal crack.  

In numerical modeling it was possible to observe some penetrations of the elements 

in the compressed corner during the sliding. In case of the specimen reinforced at the bed 
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joints (N60-SH) the horizontal reinforcement controlled the diagonal cracking and only the 

flexural crack developed similarly to the experimental results, see Figure 6.10b.  

 

(a) (b) 

Figure 6.10 – Deformed mesh with the map of principal stresses at the maximum load: (a) N60-3C-

B1-UM and (b) N60-3C-B1-SH.  

 

In case of specimens where vertical and horizontal reinforcements were combined, 

diagonal cracks were more distributed and flexural crack was controlled by the vertical 

reinforcement according to the experimental results. However, in the numerical modelling 

higher damage at the tensile bottom corner of the reinforced walls developed relatively to the 

experimental crack patterns, see Figure 6.11. Specimens with high pre-compression 

exhibited almost no cracking as in the experimental tests. 

 

(a) 
 

(b) 

Figure 6.11 – Deformed mesh with the map of principal stresses at maximum load: (a) N60-3C-B1-PA 

and (b) N150-3C-B2.  

 

Numerical strains at the reinforcements approach reasonably well the experimental 

results. Horizontal reinforcements exhibited almost no strains until the diagonal cracking. In 

this first stage of loading, small compressive strains could be observed in these bars. After 
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diagonal cracking, the activation of the horizontal reinforcements is revealed by a clear 

discontinuity on the strain diagram, see Figure 6.12.  
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Figure 6.12 – Strains of the horizontal reinforcement at mid-height of the wall in numerical modelling: 

(a) N60-3C-B1-PA and (b) N60-2C-B2.  

 

In numerical modeling vertical reinforcements behave in a similar manner when 

compared to experimental results, see Figure 6.13. It is noted that the lower strains obtained 

in the numerical analysis can be attributed to the permanent plastic deformations 

accumulated during cyclic loading. However, the comparison between experimental results 

reveals that the numerical strains approach reasonably well the envelope of the cyclic 

results. 
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Figure 6.13 – Strains of the vertical reinforcement in numerical modelling: (a) N60-3C-B1-PA and (b) 

N150-3C-B1.  
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In general the results of numerical modelling showed a reasonable agreement with 

experimental results, meaning that it represents satisfactorily well the lateral in-plane 

behaviour of masonry walls. This indicated that the numerical model is adequate to proceed 

with the parametric study with accuracy. 

 

6.3.2 Masonry beams 

 

As can be observed in Table 6.7, the numerical modelling of masonry beams provide 

reasonable results as concerns the ultimate load for the majority of the masonry beams with 

the difference between experimental and numerical ultimate load lower than 15%.  

 
Table 6.8 – Comparison between experimental and numerical results concerning the ultimate load. 

Beam HExp  
(kN) 

HNum 
(kN) 

HNum / HExp
 (%) 

F-3C-UM 4.05 5.48 1.35 

F-3C-D3-C 23.32 24.90 1.07 

F-3C-D3-D 33.19 29.70 0.89 

F-3C-D3-D-M 33.30 32.75 0.98 

F-3C-D5-C 44.90 37.56 0.84 

F-3C-D5-D 45.04 47.66 1.06 

F-3C-D5-D-M 59.31 51.01 0.86 

S-3C-UM 66.80 48.72 0.73 

S-3C-SH 86.68 60.70 0.70 

S-3C-S1 102.91 94.14 0.91 

S-3C-S2 110.89 97.08 0.88 

S-3C-S3 101.43 105.80 1.04 
 

Beam HExp  
(kN) 

HNum  
(kN) 

HNum / HExp
 (%) 

F-2C-UM 5.90 8.68 1.47 

F-2C-D3-C 24.09 25.14 1.04 

F-2C-D3-D 37.73 28.79 0.76 

F-2C-D3-D-M 37.38 34.59 0.93 

F-2C-D5-C 45.54 40.78 0.90 

F-2C-D5-D 61.24 50.05 0.82 

F-2C-D5-D-M 56.10 57.20 1.02 

S-2C-UM 62.11 59.20 0.95 

S-2C-SH 100.34 77.72 0.77 

S-2C-S1 127.61 115.60 0.91 

S-2C-S2 102.75 125.20 1.22 

S-2C-S3 188.96 192.20 1.02 
 

 

Higher differences are obtained for unreinforced specimens (F-3C-UM, F-2C-UM). It 

is observed that the cohesion of the horizontal joints governed the behaviour of these 

specimens. The value of cohesion considered in numerical modelling was obtained in triplet 

specimens, where the production of mortar was more controlled. Besides, the mortar of 

specimens F-3C-UM and F-2C-UM presented a low compressive strength, which can be an 

indicative of lower cohesion, leading to a decrease on the ultimate strength of unreinforced 

masonry beams. It is possible that the influence of cohesion is not so important in case of 

specimens with a combination of horizontal and vertical reinforcements.  



Chapter 6 – Numerical simulation 217

The experimental and numerical load-displacement diagrams for both load 

configurations and for masonry beams built with 3C- and 2C-units is displayed from      

Figure 6.14 to Figure 6.19. Apart from the unreinforced masonry beams, the specimens 

under the four point load configuration and that exhibit a typical flexural behaviour presents 

reasonable agreement of the pre-peak regime. Worse agreement between experimental and 

numerical response was observed in specimens governed by shear failure patterns (F-3C-

D5-D-M and F-2C-D5-D-M). In case of shear specimens (three point load configuration), 

there is a very good agreement of numerical and experimental total load-displacement 

diagram for specimens with shear reinforcements. The specimen with horizontal 

reinforcement S-2C-SH exhibited the worst agreement both in terms of ultimate load and pre-

peak regime, see Figure 6.18, due to the local crushing failure under the load application 

point. 
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Figure 6.14 – Comparison between numerical and experimental results (Force vs. displacement 

diagrams): (a) F-3C-UM, (b) F-2C-UM, (c) ) F-3C-D3-C and (d) ) F-2C-D3-C.  
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Figure 6.15 – Comparison between numerical and experimental results (Force vs. displacement 

diagrams): (a) F-3C-D3-D, (b) F-2C-D3-D, (c) F-3C-D3-D-M, (d) F-2C-D3-D-M, (e) F-3C-D5-C and (f) 

F-2C-D5-C. 
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Figure 6.16 – Comparison between numerical and experimental results (Force vs. displacement 

diagrams): (a) F-3C-D5-D, (b) F-2C-D5-D, (c) F-3C-D5-D-M and (d) F-2C-D5-D-M.   
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Figure 6.17 – Comparison between numerical and experimental results (Force vs. displacement 

diagrams): (a) S-3C-UM and (b) S-2C-UM. 
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Figure 6.18 – Comparison between numerical and experimental results (Force vs. displacement 

diagrams): (a) S-3C-SH, (b) S-2C-SH, (c) S-3C-S1, (d) S-2C-S1, (e) S-3C-S2 and (e) S-2C-S2.   

 



Chapter 6 – Numerical simulation 221

0 3 6 9 12 15
0

20

40

60

80

100

120

140

160

180

200

S-3C-S3

 Experimental
 Numerical

 
Lo

ad
 (k

N
)

Displacement (mm)

(a) 

0 3 6 9 12 15 18 21
0

20

40

60

80

100

120

140

160

180

200

S-2C-S3

 Experimental
 Numerical

 

Lo
ad

 (k
N

)

Displacement (mm)

(b) 

Figure 6.19 – Comparison between numerical and experimental results (Force vs. displacement 

diagrams): (a) S-3C-S3 and (b) S-2C-S3.   

 

Numerical and experimental results were very similar in terms of cracking patterns 

and failure modes. Unreinforced beams (F-3C-UM and F-2C-UM) exhibited only one non-

symmetrical stair stepped crack located at the mid-span of the beam, see Figure 6.20a. In 

the calibration of the numerical model it was observed that this non-symmetrical failure mode 

is influenced by cohesion of the horizontal joints as explained before. If the value of cohesion 

is slightly higher, cracks developed through a symmetrical pattern from the vertical joints at 

the bottom edge in the middle of beam up to the points of load application. In case of 

reinforced specimens, flexural stair stepped cracks growing from the vertical joints at mid-

span of the masonry beams up to the upper edge of the beams were also observed in 

numerical model similarly to the crack pattern developed in experimental specimens, see 

Figure 6.20b. Diagonal cracks near the supports were also observed in the numerical model 

in specimens with high longitudinal reinforcement ratio. Besides, it is observed the 

development of horizontal cracks from the vertical edges of the beams due to shear sliding, 

similarly to what was seen during the experimental tests, which confirm the good agreement 

between experimental and numerical results, see Figure 6.20c.  

The influence of vertical reinforcements positioned at the middle of the beams could 

be clearly assessed in numerical model. When the compression stresses increase on the 

upper course of the beam, the units exhibit the trend to separate from the horizontal joint, 

which is avoided by the presence of vertical reinforcements. These elements contribute also 

for the prevention of the horizontal cracks at the horizontal joints. It should be stresses that 

strains measured in experimental tests were reasonably well described by the ones obtained 

in numerical modelling, see Figure 6.21. However, these specimens exhibited a lower 

stiffness in force vs. displacements diagram in comparison to experimental results. This fact 
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occurred probably because the introduction of vertical reinforcements may be change some 

material properties related to the compressive behaviour of masonry parallel to bed joints 

such as elastic stiffness of joints, energy of fracture.  

 

(a) (b) 

 
(c) 

Figure 6.20 – Deformed mesh with the map of the principal stresses at the maximum load: (a) F-3C-

UM, (b) F-2C-D3-C and (c) F-3C-D5-D.  
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Figure 6.21 – Strains of the vertical reinforcements located in the mid-span of beams: (a) F-3C-D3-D-

M and (b) F-3C-D5-D-M.  

 

In terms of strains of longitudinal reinforcements, the numerical model represents 

very well the results experimentally observed, see Figure 6.22, which appears to confirm the 

effectiveness of the numerical model. 
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Figure 6.22 – Strains of the horizontal reinforcements: (a) F-3C-D5-C and (b) F-3C-D5-D.  

 

As already mentioned (Chapter 5), in case of beams of type S there were basically 

two types of failure modes: diagonal cracking and crushing of the diagonal strut connecting 

the load application point and the supports see Figure 6.23. Numerical model represented 

both cases, however, in case of diagonal cracking the failure occurred symmetrically with the 

crack opening in both sides of the specimen, see Figure 6.23a. The numerical modelling 

reproduces very well the localization of the diagonal strut crushing according to what was 

observed in experimental tests, see Figure 6.23b. 

 

 
(a) 

 
(b) 

Figure 6.23 – Deformed mesh with the representation of the principal stresses at maximum load: (a) 

S-2C-UM and (d) S-3C-S1.  

 

Strains of shear vertical reinforcement of masonry beams of type S obtained in 

numerical modelling did not fit well the experimental results. In some cases the numerical 

model presents near strains at peak load, but in other cases it deviates from the 

experimental strains, exhibiting higher strains, see Figure 6.24. It is difficult to determine the 

reasons for such differences due to the complexity of the behaviour of masonry beams but it 

is possible that the imperfect bond between the masonry and the steel bars contribute to 

lower strains as recorded in experimental tests. Besides, it should be mentioned that the 

diagonal bars of the truss type reinforcements were not modelled. 
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Figure 6.24 – Strains of the vertical reinforcement in numerical modelling of specimen S-3C-S3.  

 

To sum up, it should stressed that in general a reasonable fitting was achieved 

between numerical and experimental results obtained in masonry beams, even if better 

results have been obtained in masonry shear walls. In the point of view of the author the 

major concern about the numerical modelling of the masonry beams was the need of 

introducing the compressive behaviour of masonry in the direction parallel to bed joints. In 

fact, the numerical model considers a parabolic function to describe the compressive 

behaviour but this deviate from the experimental results obtained in Chapter 3. Another 

aspect that numerical modelling was not able to capture was the cracking of the webs of the 

units observed in experiments due to the high compression stresses at the upper region of 

the beams. However, it is considered that numerical model is clearly acceptable for the 

performance of the parametric study. 
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6.4 Parametric Study 
 

In order to get a detailed insight on the influence of distinct parameters on the 

response of masonry shear walls and beams, an extensive parametric study has been 

performed. Several parameters have been considered taking into account the particularities 

of each structure analyzed. In this study, the behaviour of unreinforced and reinforced 

masonry was evaluated in order to define guidelines and recommendations to the design of 

shear walls and masonry beams. Parametric study was developed considering the material 

properties used in calibration of experimental walls built with 3C-units. 

 

6.4.1 Shear walls 

 

As aforementioned, several parameters were considered in the parametric study of 

shear masonry walls, namely (i) pre-compression level; (ii) aspect ratio; (iii) filling of vertical 

joints; (iv) vertical reinforcement ratio; (v) horizontal reinforcement ratio; (vi) combination 

between vertical and horizontal reinforcements. Besides, distinct boundary conditions were 

also analysed (cantilever and fixed end walls) in order to assess the predominance of shear 

and flexure on the response of masonry shear walls.  

Walls with 1400 mm height, which is equivalent a height of 2800 mm in a real scale, 

was considered in the parametric study as it is a common value used in buildings. Distinct 

height to length ratios were considered by varying the length of the wall. Five aspect ratios 

(h/L = 2.33, 1.40, 1.00, 0.78 and 0.64) and five normalized axial stresses with relation to 

compressive strength of masonry, fa, (σ/fa = 0.0, 0.1, 0.2, 0.4 and 0.6) were adopted in the 

study.  

Firstly, two groups of 25 unreinforced masonry walls were used for the assessment of 

the influence of the aspect ratios and pre-compression levels. A failure surface (aspect ratio, 

pre-compression and lateral capacity) has been defined to both boundary conditions: 

cantilever and fixed end. In a second phase, the introduction of horizontal and vertical 

reinforcement ratios was gradually performed in order to understand the effects in lateral 

behaviour of masonry walls provided by each type of reinforcement. In addition, the variation 

of reinforcement ratios was carried out in conjunction with variation of aspect ratio and pre-

compression level in order to observe the differences in each case.  
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6.4.1.1 Unreinforced masonry walls with dry vertical joints   

 

The variation of the lateral resistance for unreinforced masonry walls according to the 

aspect ratio, for both cantilever and fixed end ended walls, and for varied pre-compression 

levels is indicated in Figure 6.25. It is observed that the relation between lateral resistance of 

unreinforced masonry walls and the aspect ratio is well described by a power function 

independently on the boundary conditions and on the level of pre-compression. As already 

observed by other authors the lateral resistance of masonry walls increases as the height to 

length ratio decreases (Anthoine and Magonette, 1995; Schultz et al., 1998 and Kikuchi et 

al., 2003). It is also seen that pre-compression level improves the lateral strength of the walls 

for the different values of height to length ratio, similarly to what has been pointed out in 

literature (Drysdale et al., 1999; Vasconcelos and Lourenço, 2009). 
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Figure 6.25 – Influence of aspect ratio on lateral capacity of shear-walls: (a) cantilever wall and         

(b) fixed end wall. 

 

The relation between the lateral resistance and the pre-compression level was seen 

to be well described by a parabolic function, see Figure 6.26, for the distinct aspect ratios 

and for both boundary conditions. From numerical analysis it is seen that the lateral strength 

increases up to approximately 40% of the compressive strength of masonry, after which 

occurs a progressive decrease on the lateral resistance. In this stage the compressive failure 

takes a central role on the lateral in-plane behaviour of the masonry walls. This result is valid 

for both boundary conditions of the walls. Additionally, it is also observed that the 

compressive failure is more important as the aspect ratio decreases, which is revealed by the 

higher curvature of the parabolic function.  
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Figure 6.26 – Influence of pre-compression on lateral capacity of shear-walls: (a) cantilever wall and 

(b) fixed end wall. 

 

The failure surfaces of the walls under in-plane loading were obtained by combining 

simultaneously the aspect ratio (h/L) and normalized axial stress (σ/fa) with the lateral 

resistance, (H), see Figure 6.27. The failure surface presents the same shape for both 

boundary conditions. The difference between cantilever and fixed end conditions is the level 

of the lateral resistance of he walls, which is higher in case of walls with both ends fixed due 

to lower the lever arm. In both cases, the surface curvature presents decreasing values at 

the aspect ratio increase and as the compressive stress level decreases, which is directly 

related to the predominant failure mode of the walls. Thus, it seems that the variation of the 

pre-compression level and aspect ratio play a major role on the lateral strength of walls, 

where the predominant shear response prevails on their the lateral in-plane behaviour. The 

influence is not so evident in walls governed essentially by flexure mechanism.  

 

 
(a) 

 
(b) 

Figure 6.27 – Failure surface of unreinforced shear-walls: (a) cantilever wall and (b) fixed end wall. 
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 An analysis of the failure modes developed on shear walls with distinct boundary 

conditions and with variable aspect ratio and pre-compression level was also performed. The 

typical failure modes are defined according to the following description:  

 

1. Flexure (FL)  

a. Rocking (R) – when an horizontal crack opened in base of wall due to the 

tensile stresses and the wall rotated; 

b. Crushing (C) – when the toe crushing of wall occurred due to the high 

compressive stresses. 

2. Shear (SH) - Diagonal cracking; 

 

The results of numerical modelling concerning the failure modes of the walls are 

displayed in Table 6.9 and Table 6.10. It is possible to observe that flexure failure modes 

were predominant in cantilever walls as expected. 

 
Table 6.9 – Failure modes of unreinforced shear 

walls (cantilever). 

            σ / fa 
   h/L 0.0 0.1 0.2 0.4 0.6 

2.33 FL (R) FL (R) FL (R) FL (R) FL (R)

1.40 FL (R) FL (R) FL (R) FL (R) FL (R)

1.00 FL (R) FL (R) FL (R) FL (C) FL (C)

0.78 FL (R) SH SH SH FL (C)

0.64 FL (R) SH SH SH FL (C)
 

Table 6.10 – Failure modes of unreinforced shear 

walls (fixed end). 

            σ / fa
   h/L 0.0 0.1 0.2 0.4 0.6 

2.33 FL (R) FL (R) FL (R) FL (R) FL (R)

1.40 FL (R) SH SH SH SH 

1.00 FL (R) SH SH SH SH 

0.78 FL (R) SH SH SH SH 

0.64 FL (R) SH SH SH SH 
 

 

In case of cantilever slender walls (h/L=2.33 and h/L=1.4), flexural rocking 

mechanism predominates for all pre-compression levels under analysis. For squared walls 

toe crushing develops for high pre-compression levels. Shear failures develop only for aspect 

ratios lower than 1.0 and for medium to high pre-compression levels. When no pre-

compression was applied flexural rocking failure mechanism characterized the behaviour of 

the walls with distinct boundary conditions. In case of fixed end walls, apart from the walls 

submitted to zero pre-compression level and the highest slender wall, where flexural rocking 

mechanism prevails, the shear failure mode is predominant on the lateral response of 

unreinforced masonry walls. Each of the failure modes develop for certain values of aspect 

ratios and pre-compression levels defining failure regions. The definition of the failure modes 

of some walls located along the boundaries is difficult because the diagonal cracking or toe 

crushing develops almost at same time. The understanding of the predominant failure mode 

of masonry shear walls is important for the analysis of the influence of parameters like 
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vertical and horizontal reinforcement ratio on the in-plane behaviour as their role depends to 

great extent on the deformation type exhibited by the walls.  

 

6.4.1.2 Unreinforced masonry walls with the fill of vertical joints 

 

The proposal of a masonry bond pattern with dry joints (masonry built with 3C-units 

and traditional bond pattern) aims at increasing the productivity during the execution of 

structural masonry. According to Gouveia and Lourenço (2007), the usage of filled vertical 

joints promotes only a very moderate difference on the strength of masonry walls subjected 

to lateral load. However, the results of diagonal compressive tests carried out on concrete 

block masonry with different bond patterns carried out in Chapter 3, reveal a great difference 

on the shear resistance of masonry built with 2C-units and filled vertical joints and 3C-units 

with dry vertical joints. In spite of the wallets built with 2C-units presented a lower width, the 

diagonal strength was about 3 times higher than specimens built with 3C-units and dry joints.  

Therefore, it was decided to evaluate the influence of this parameter on the lateral 

resistance of masonry walls under in-plane loading through the numerical analysis. Due to 

the absence of mechanical properties of filled vertical joints (3C-units), the same mechanical 

properties used for horizontal joints were assumed to vertical joints. Analysis was performed 

using the same group of 25 walls studied in previous analysis with different aspect ratio and 

submitted to different pre-compression levels. 

According to the results obtained for the lateral resistance of masonry walls with filled 

and unfilled vertical joints, it is seen that the usage of filled vertical joints play a reduced 

influence on the lateral strength when the predominant resistant mechanism was flexure see 

Figure 6.28. No significant differences were found between walls with filled and unfilled 

vertical joints with the variation of aspect ratio. The differences on the lateral strength are 

only visible in walls with the aspect ratio lower than 1.0 and for intermediate values of pre-

compression level, in which shear response takes the central role. In these cases the lateral 

strength is slightly higher in walls with filled vertical joints. 

In case of fixed end boundary conditions the lateral resistance of walls with filled 

vertical joints deviates clearly from the lateral resistance found in walls with unfilled vertical 

joints mainly when the aspect ratio is lower or equal to 1.0, see Figure 6.29. This behaviour 

is due to the predominant shear resisting mechanisms characterizing the in-plane behaviour 

of these walls, which is more remarkable than in cantilever walls. It should be noticed that 

almost no differences were found for slender walls, in which the flexural response 

predominates. 
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The higher increasing of lateral strength observed in cantilever walls was equal to 

10%, whereas in fixed end walls it was equal to 20%. Thus, it is clear that the influence of 

filling the vertical joints depends on the predominant shear or flexure resisting mechanism. 

This result is in agreement with results of the diagonal compression tests (Chapter 3). 
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Figure 6.28 – Influence of the filling of vertical joints on the lateral resistance of cantilever walls: (a) 

lateral strength vs. aspect ratio and (b) lateral strength vs. pre-compression. 
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Figure 6.29 – Influence of the filling of vertical joints on the lateral resistance of fixed end walls: (a) 

lateral strength vs. aspect ratio and (b) lateral strength vs. pre-compression. 

 

6.4.1.3 Horizontal reinforcement 

 

In the assessment of the influence of the horizontal reinforcement on the lateral 

resistance of the concrete block masonry walls, a total of 9 walls were considered for each 
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type of boundary conditions, namely 5 walls with variable aspect ratios under a pre-

compression σ/fa equal to 0.2 and 4 walls with aspect ratio of 1.0 with variable pre-

compression levels adopted in the previous analysis. Three horizontal reinforcement ratios 

were taken into account: 0.03%, 0.05% and 0.08%. Horizontal reinforcements were uniformly 

distributed along the height of the walls in five layers. Bars were symmetrically positioned in 

relation to the mid height at each three courses. 

Results clearly show that the boundary conditions have a major influence on the 

lateral behavior of horizontally reinforced masonry walls. For cantilever walls only an 

increase on the lateral strength was observed from the unreinforced masonry wall to the 

remaining reinforced masonry walls in case of an aspect ratio equal to 0.64, see Figure 6.30. 

In fact, horizontal reinforcements contribute to the lateral strength of the walls only 

after the onset of the diagonal crack. In case of cantilever walls diagonal cracking developed 

before the resistant maximum lateral resistance, only in case of very low aspect ratios, which 

means that reinforcements are not activated when flexural response is preponderant. 
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Figure 6.30 – Influence of the horizontal reinforcement on the lateral resistance of cantilever walls: (a) 

lateral strength vs. aspect ratio and (b) lateral strength vs. pre-compression. 

 

Similar trend was verified in fixed end walls with low values of the vertical pre-

compression (σ/fa = 0.1), after which it is clear that the increase on the horizontal 

reinforcement ratio leads to increasing values of the lateral strength, see Figure 6.31. After 

this pre-compression level the shear prevails in the response of the walls, being the 

horizontal reinforcements activated after opening of the diagonal cracking. In this case the 

horizontal reinforcements avoid the separation of the walls into two parts and promote the 

stress transfer between both edges of the diagonal crack. It should be noticed that the trend 

of overturning of one part of the wall in unreinforced masonry walls is prevented by the 
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presence of horizontal reinforcements. It is important to stress that a perfect bond between 

the reinforcements and the mortar of bed joints was considered in the numerical analysis. In 

design of masonry walls it is mandatory to ensure the required bond length for bed joint 

reinforcements so that they can be effective in the behavior of the walls. 
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Figure 6.31 – Influence of the horizontal reinforcement on the lateral resistance of fixed end walls: (a) 

lateral strength vs. aspect ratio and (b) lateral strength vs. pre-compression. 

 

Independently on the boundary conditions, it becomes clear that the horizontal 

reinforcement ensures a control of the diagonal cracking, increases the deformation capacity, 

providing a higher ductility for the masonry wall and enabled a better distribution of the 

stresses in the wall, see Figure 6.32.  

 

 
(a) 

 
(b) 

Figure 6.32 – Deformed mesh with the representation of the principal stresses after the application of 

a lateral displacement of 5 mm: (a) unreinforced masonry wall (h/L=1.00 - σ/fa=0.10) and (b) 

horizontally reinforced masonry wall (h/L=1.00 - σ/fa=0.10 – ρh=0.05%). 
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6.4.1.4 Vertical reinforcement 

 

In order to obtain a better insight on the influence of the vertical reinforcements on the 

behavior of concrete block masonry walls under lateral loads, it was decided to consider a 

parametric analysis on specimens with only vertical reinforcement. Also in this analysis, a 

total of 9 walls were considered for each type of boundary conditions, namely 5 walls with 

variable aspect ratios with a pre-compression σ/fa equal to 0.2 and 4 walls with aspect ratio 

of 1.0 with variable pre-compression levels from 0 to 0.6. Two different arrangements of 

reinforcements were applied in shear walls in this study with the bars distributed for length of 

wall and with reinforcements concentrated in extremities of wall. Three vertical reinforcement 

ratios were considered in the analysis, namely 0.03%, 0.05% and 0.08%. In case of 

distributed reinforcements, ρv, four vertical reinforcements were uniformly distributed along 

the length of the walls, except in specimen with h/L=2.33, where only three vertical 

reinforcements were considered due to its small length. In case of concentrated 

reinforcement, ρvc, only vertical reinforcement ratio equal to 0.05% were considered for 

masonry walls. 

From Figure 6.33 and Figure 6.34, it is observed that the presence of vertical 

reinforcements in masonry walls increased the lateral strength of cantilever and fixed end 

walls, when the flexural mode predominates in the lateral response. It is common that in 

unreinforced cantilever walls and especially for high aspect ratios, the horizontal load 

generates tensile stresses at the base of wall leading to the development of horizontal cracks 

in first courses and to the uplift until crushing of the bottom corner.  
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Figure 6.33 – Influence of the vertical reinforcement on the lateral resistance of cantilever walls: (a) 

lateral strength vs. aspect ratio and (b) lateral strength vs. pre-compression. 
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Figure 6.34 – Influence of the vertical reinforcement on the lateral resistance of fixed end walls: (a) 

lateral strength vs. aspect ratio and (b) lateral strength vs. pre-compression. 

 

In reinforced masonry walls, the vertical reinforcements reduce the uplift and resist 

the tensile stresses, leading to the increase on the lateral strength. However, this 

improvement also depends on the level of pre-compression of wall. In fact, the introduction of 

vertical reinforcements does not mean the increase on the lateral strength for all pre-

compression levels. In case of walls with a high pre-compression, vertical reinforcement 

increased the lateral strength because the failure mode of these walls was governed by the 

toe crushing. Therefore, vertical reinforcements reduce the uplift of these walls decreasing 

the compressive stresses at the bottom corner of wall allowing an increasing on the lateral 

capacity. On the other hand, when an unreinforced masonry walls fails by shear diagonal 

cracking, the introduction of vertical reinforcements can lead to a reduction on the lateral 

strength of the wall. The horizontal load applied in a masonry wall generates a diagonal 

compressive stress flow towards the bottom corner of the wall and, consequently, to a flow of 

transversal tensile stresses. Vertical reinforcements, bonded to the masonry, by avoiding the 

uplift of the wall increases the transversal tensile stresses leading to an earlier diagonal 

cracking. This behaviour can be observed through the principal tensile stresses along the 

diagonal strut of wall, see Figure 6.35. It should be referred that the presence of vertical 

reinforcement leads to peak principal tensile stresses mainly localized at the upper and lower 

regions of the diagonal strut. The evolution of principal stresses is much smoother in 

unreinforced or lightly reinforced masonry walls. The result found in this work is in agreement 

with the one pointed out by Tomaževič (1999), which stated that vertical reinforcements 

alone are not able to contribute to the shear resistance of masonry. 
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Figure 6.35 – Premature cracking in masonry walls with vertical reinforcements. 

 

6.4.1.5 Vertical and horizontal reinforcement 

 

In order to analyze the influence of combining vertical and horizontal reinforcement on 

the lateral resistance of masonry walls a last parametric study was carried out. As in other 

cases, only nine walls from the group of 25 specimens for the evaluation of the effect of the 

aspect ratio and level of pre-compression were considered. In total 18 walls were used. In 

nine walls the vertical reinforcement ratio of 0.05% was kept constant and it was combined 

with three distinct horizontal reinforcement ratios (0.03%, 0.05% and 0.08%). In other nine 

walls the horizontal reinforcement ratio of 0.05% was kept constant and combined with three 

different vertical reinforcement ratios (0.03%, 0.05% and 0.08%). 

From the results it is possible to observe that in cantilever walls when the vertical 

reinforcement ratio is kept constant and the horizontal reinforcement ratio varied no changes 

in lateral strength occurred, which is attributed to the predominant flexural failure mode. On 

the other hand, in case of fixed end walls, an increase on lateral strength was observed due 

to the introduction of horizontal reinforcements, see Figure 6.36. However, the increase on 

the horizontal reinforcement ratio did not lead to the increase on the lateral strength. Shear 

failure mode developed in the masonry wall with vertical reinforcement ratio equal to 0.05% 

and without horizontal reinforcement. Thus, when horizontal reinforcements were inserted in 

the wall, they provided an increase on lateral strength and changed the failure mode from 

shear to flexure. After this, the increasing on horizontal reinforcement ratio has no influence 

on the lateral behaviour of masonry walls both in relation to the lateral strength and failure 

mode. 
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Figure 6.36 – Influence of the variation of horizontal reinforcement ratio on the lateral resistance of 

fixed end walls: (a) lateral strength vs. aspect ratio and (b) lateral strength vs. pre-compression. 

 

In masonry walls, where the horizontal reinforcement ratio was kept constant and 

equal to 0.05% and vertical reinforcement ratios were varied, the increase of the vertical 

reinforcement ratio improved the lateral strength of cantilever walls since flexure is the 

preponderant effect in this type of wall, see Figure 6.37. On the other hand, in fixed end walls 

the variation of vertical reinforcement did not cause any change on the behaviour of masonry 

walls.  
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Figure 6.37 – Influence of the vertical reinforcement ratio on the lateral resistance of cantilever walls: 

(a) lateral strength vs. aspect ratio and (b) lateral strength vs. pre-compression. 
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6.4.2 Beams 

 

The parametric study of masonry beams aims at obtaining a better insight on the 

variables influencing their flexural and shear behaviour. The parameters evaluated were (i) 

the span to height ratio; (ii) filling of the vertical joints; (iii) horizontal reinforcement ratio and 

(iv) the combination of vertical and horizontal reinforcements. These parameters were 

evaluated for different boundary conditions, namely simply supported and fixed end masonry 

beams in order to assess their influence in flexure and shear respectively. For each 

boundary condition ten span to height ratios were considered, see Figure 6.38 to          

Figure 6.41. A three point load configuration is adopted for applying the load through 

displacement control in order to avoid convergence problems in post-peak regime.  

The parametric study was carried out by considering the material properties used in 

calibration of experimental beams built with 3C-units.  
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Figure 6.38 – Simply supported masonry beams: variation of span. 
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Figure 6.39 – Simply supported masonry beams: variation of height. 
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Figure 6.40 – Fixed end masonry beams: variation of height. 
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Figure 6.41 – Fixed end masonry beams: variation of span. 

 

6.4.2.1 Unreinforced masonry beams with unfilled vertical joints   

 

Unreinforced masonry beams behave in a very brittle manner due to the low strength 

of unit-mortar interfaces. The simply supported masonry beams failed by flexure, whereas 

the fixed end beams failed by shear. Figure 6.42a shows the symmetrical flexural cracking 

pattern developed in a simply supported beam. The onset of flexural cracking is at bottom 

vertical joints located at mid span of the beam due to the zero tensile bond strength of the 

unit-mortar interfaces. In case of failure by shear in fixed end masonry beams, the onset of 

diagonal cracking takes place when the shear stress is higher than the shear strength of dry 

vertical joints provided by the friction between the units, see Figure 6.42b. It should be 

noticed that the shear friction resistance of the vertical joints is enhanced by the compressive 

stresses in the parallel direction to the bed joints developed in the upper region of the beam 

due to flexure. The shear sliding of vertical joints induces tensile stresses at the mortar bed 

joints leading to the definition of the diagonal cracking mostly at the unit-mortar interfaces.  
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(a) (b) 

Figure 6.42 – Deformed mesh with the representation of the principal stresses after the application of 

a displacement equal to 0.75 mm: (a) simply supported beam (L/H = 3.05) and (b) fixed end beams 

(L/H = 3.55). 

 

Flexural behaviour of unreinforced masonry beams with unfilled vertical joints is 

greatly influenced by shear resistance of the bed joints since the flexural strength is provided 

by the interlocking associated to the traditional running bond pattern and is ensured by the 

shear strength of bed joints. On the other hand, the shear resistance is dependent on the 

normal stresses in bed joints. The typical distribution of normal stresses in bed joints along 

the length of the masonry beams is displayed in Figure 6.43. It is seen that the distribution of 

normal stresses present an alternation of sign at each half block. The normal stresses profile 

along the length of the bed joints presents compressive and tensile peaks, which is the result 

of the no filling of vertical joints. In fact, due to the absence of mortar at the vertical joints, 

and taking into account the equilibrium of a unit, it is seen that the shear stresses at bed 

joints have to be balanced with differential normal stresses, see Figure 6.44. The upper 

mortar joint in the region of unit under the load application point is embraced by the 

compression struts (with an inclination of approximately 45º) and it is in compression, 

presenting two peaks in the region of the hollow cell of the units and a minimum at the region 

of internal webs. For the highest level of the load applied, the normal stresses in the region of 

the internal webs can even be tensile stresses, which can be associated to tensile stresses 

developed in the unit. The concentration of stresses reduces gradually in the first and second 

bed joints. 
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Figure 6.43 – Normal stress in bed joints of simply supported beams with unfilled of vertical joints: (a) 

L/H=1.52 and (b) L/H=2.54. 

 

  
Figure 6.44 – The way of stresses from the point of application to the supports through the bed joints. 

 

By comparing the profile of the normal stresses at bed joints for distinct geometry 

ratios, it is seen the span to height influences the distribution of the normal stresses at bed 

joints, see Figure 6.45. For the same height and increasing span length corresponding to a 

higher span to height ratio, the normal stresses present higher amplitude. This means that 
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normal stresses in bed joints increase with the higher flexural deformed shape resulting in 

the higher interlocking between units. This behaviour is also valid in case of the height 

increases and the span length is kept constant, where the interlocking between units 

progressively decreases as a result of the lower flexural deformation of the beams. 
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Figure 6.45 – Normal stress distribution in first bed joint of simply supported beams with unfilled 

vertical joints in the same level of loading: (a) variation of span length (P=2kN) and (b) variation of 

height (P=5kN). 

 

All fixed end masonry beams failed by shear through the development of a diagonal 

cracking resulting from sliding of vertical joints and tensile bond failure of the horizontal 

joints, see Figure 6.46.  
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Figure 6.46 – Normal and shear stresses in diagonal crack. 

 

This typical failure mode is the result of having dry vertical joints. As aforementioned, 

the low shear and tensile strength of the unit-mortar interface lead that diagonal crack mostly 

develops along the unit-mortar interfaces. This means that the shear behaviour of masonry 

beams is very dependent on the normal stresses in vertical and horizontal joints, since it is 

assumed that their shear resistance follows a typical Mohr-Coulomb criterion. From      

Figure 6.47, where the distribution of normal and shear stresses along the diagonal crack is 

indicated (vertical interfaces), it is observed that the normal stresses presents higher values 

at the extremities of the diagonal crack line (DCL) resulting from the typical normal stresses 
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diagram due to bending moments. In middle of DCL normal stresses presents low values 

which leads to a minimum shear strength, from which the diagonal cracking..  
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Figure 6.47 – Profile of normal stresses in vertical joints along the diagonal crack of fixed end beam 

with unfilled of vertical joints (L/H = 4.06): (a) normal stresses and (b) shear stresses. 

 

By comparing the normal stresses through the DCL among the masonry beams with 

distinct heights and spans for a same load level it can be concluded that they increase with 

the reduction of height of the beam and with the increase of the span of the beam, see 

Figure 6.48 
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Figure 6.48 – Normal stresses in vertical joints along the DCL of fixed end beams with unfilled vertical 

joints for the same level of vertical load: (a) influence of the variation of the height (P= 10kN) and (b) 

influence of the variation of span (P= 5kN). 
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The normal stresses along the height of the masonry beams can be the result of axial 

forces and bending moments. In this case, the normal stresses along the DCL increases for 

increasing span lengths due to the increase on the bending moments. The increase on the 

normal stresses as the height decreases of the beams can be explained by the decrease of 

the inertia properties of the cross section of the beams. 

The results obtained on the distribution of shear stresses along the DCL reveals that 

they also increase with the reduction of beam height and with the increase of the beam span, 

see Figure 6.49. In first case it is expected that the shear stresses decrease with the 

increase of the beam height since the length on which the shear stresses develop for the 

same load level increases. The increasing shear stresses with increasing beam span lengths 

can be explained in a similar manner. In case of high spans, it is possible that the damages 

at the bottom of the beam due to the flexure, associated to higher bending moments, reduce 

the height for the development of shear stresses leading to the higher shear concentration 

stresses on the remaining effective cross section. 
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Figure 6.49 – Shear stresses along vertical joints of the DCL of fixed end beams with unfilled vertical 

joints in the same level of vertical load: (a) influence of the variation of the height (P= 10kN) and  (b) 

influence of the variation of span (P= 5kN). 

 

The results also indicated that the capacity of masonry beams to resist vertical loads 

is influenced by the location of vertical joints in relation to the critical section. From        

Figure 6.50, where the load-displacement diagrams obtained in numerical modelling are 

shown, it is observed that masonry beams with distinct height to span ratios present similar 

behaviour.  
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Figure 6.50 – Influence of bond pattern on the strength of masonry beams with unfilled vertical joints: 

(a) simply supported beams and (b) fixed end beams. 

 

In effect, in spite of the specimen with L/H equal to 2.54 presents lower span than 

specimen with L/H equal to 3.05, the potential flexural crack develops from the vertical joint 

at equal distance from the support. It is in line with the vertical load in case of beam L/H 

equal to 2.54 and immediately to the left or to the right of load line in case of specimen with 

L/H equal to 3.05. This behaviour could also be observed in specimens with L/H equal to 

3.55 and 4.05. The same behaviour was observed in case of shear failure indicating that the 

arrangement of units has a high influence in failure mode of masonry beams. 

The maximum capacity of the masonry beams for the distinct boundary conditions is 

clearly influenced by the variation of their height and span length, see Figure 6.51.  
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Figure 6.51 – Variation of load capacity of beams with unfilled vertical joints in relation to the span to 

height ratio: (a) simply supported beams and (b) fixed end beams. 
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It is seen that the major parameter that influences the flexural and shear behaviour of 

masonry beams is the variation of the section. Both flexural and shear strength decreases 

significantly with the reduction of the height of the beams. Similar trend was recorded for the 

increase on the span length, even if a much smoother manner. In case of fixed end masonry 

beams the shear strength only decreases slightly with the increase of span length. 

In terms of flexure, considering an elastic behaviour of the unreinforced masonry 

beams a higher influence of the variation of the height of the beam was expected since the 

flexural strength is proportional to inertia of the cross section beam, which depends on the 

height of beam section. Otherwise, by keeping the height of the beam constant, and thus the 

same resisting cross section, and by varying the span length of the beam, it was expected 

that the vertical load decreased given that the bending moment acting on the beam depends 

directly on the span length. Besides, it was expected that the applied load should increase 

linearly with the span length it in fact was nonlinear. As seen previously from the normal 

stresses profile along the bed joints (Figure 6.45), the normal stresses increases for 

increasing span length of the beams, leading to the increase of shear strength of bed joints 

and thus to the nonlinear increase of flexural strength. 

In terms of shear, as expected the strength of masonry beams increase with the 

height. It was seen that for the same load acting on the beam the shear stresses are minimal 

for the highest height of the beam (Figure 6.49), meaning that an extra load level can be 

applied until the failure is reached. The shear resistance of the masonry beams is influenced 

by the span length in a much lower ratio. In the particular case, the higher shear resistance 

of the beam with L/H = 2.03 is explained by its geometry, which avoids the completely sliding 

of the central region over the diagonal crack of the beam according what was shown in 

Figure 6.42, as the progress of diagonal crack from the top of the beam is restrained by the 

supports. Apart from this particular case, almost no differences are observed in shear 

strength as the span length increases. Note that as is shown in Figure 6.44 the increase on 

the normal stresses on the dry vertical joints appear to be counterbalanced with increase on 

the shear stress, resulting on the maintenance of the shear strength.  

 

6.4.2.2 Unreinforced masonry beams with filling of vertical joints 

 

Similarly to shear walls, the parametric study on masonry beams included the 

analysis of the influence of the filling of vertical joints on the overall mechanical behaviour of 

masonry beams. As no mechanical characterization was carried out for vertical joints, the 

same mechanical properties used for horizontal joints were assumed to vertical joints in 
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numerical modelling. In this analysis the same geometry, loading and boundary conditions of 

the previously study were used. 

Contrarily to unreinforced masonry beams with unfilled vertical joints, in case of 

masonry beams with filled vertical joints, all specimens failed by flexure. The usage of filled 

vertical joints improves the shear strength of the beams avoiding the diagonal cracking. From 

Figure 6., where the profile of the normal stress along the bed joints is displayed, it is 

observed that the usage of filled vertical joints also provides a better distribution of normal 

stresses in bed joints, becoming the masonry a more homogeneous material.  
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Figure 6.52 – Normal stress in bed joints of simply supported beams with filling of vertical joints: (a) 

L/H=1.52 and (b) L/H=2.54. 
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In case of masonry beams with filled vertical joints, the distribution of stresses is 

much smoother, without the inversion of the stress sign. Only two smoother stress peaks are 

identified in the region of the load application being dissipated in lower bed joints, as in case 

of beam without filling in vertical joints.  

Contrarily to the shear walls the filling of vertical joints had a great influence on the 

behaviour of masonry walls leading to the preponderance of flexure. This is the result of the 

enhancement of the compressive strength in the parallel direction to bed joints, which 

consists of the primary direction for the development of normal stresses. Thus, it can be 

concluded that the filling of vertical joints on masonry beams improves behaviour of them 

under flexure due to improvement of the compressive strength of masonry material. 

As in case of masonry beams with unfilled vertical joints, normal stresses in bed joints 

are influenced by the variation of the height and the span length. However, the level of 

stresses is much lower reaching values of approximately 16% of the normal stresses in bed 

joints of the masonry beams with unfilled vertical joints, which confirms the better distribution 

of stresses provided by the filling of vertical joints, see Figure 6.53.   
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Figure 6.53 – Distribution of normal stresses at first bed joint of simply supported beams with filled 

vertical joints in the same level of loading: (a) variation of height (P= 5kN) and (b) variation of span 

(P=2kN). 

 

The distribution of normal stresses along the height of vertical joints is very similar to 

that observed in masonry beams with unfilled vertical joints, even if their value is much 

higher due to the increasing of the masonry beam capacity, see Figure 6.54a. Distribution of 

shear stresses in first steps of loading are also very similar to that observed in masonry 

beams with unfilled vertical joints, see Figure 6.54b. However, in the maximum load resisted 

by the beam, the peak of shear stresses did not occur in middle of beam probably because 

these specimen failed by flexure and they did not reached the maximum shear capacity. 
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Some discontinuities can be observed in normal and shear stresses along the height of 

beam in the ultimate load promoted by the sliding of courses due to the high compressive 

stresses. 

It is observed that the filling of vertical joints results on the significant enhancement of 

the load capacity of the masonry beams for both boundary conditions see Figure 6.55. 

Simply supported beams exhibited increases on the flexural capacity up to 60%, whereas the 

fixed end masonry beams the increase on the capacity was up to 200%, see Figure 6.55. As 

observed in shear walls, the filling of vertical joints had a higher influence on the elements 

where of shear resisting mechanism predominates.  
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Figure 6.54 – Stresses in vertical joints of the diagonal crack of fixed end masonry beam (L/H = 4.06): 

(a) normal stresses and (b) shear stresses. 
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Figure 6.55 – Variation of load capacity in beams with filled vertical joints in relation to the span to 

height ratio and comparison with beams with unfilled vertical joints: (a) simply supported beams and 

(b) fixed end beams. 
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6.4.2.3 Horizontal reinforcement 

 

 The influence of horizontal reinforcements on the flexural and shear behaviour of 

masonry beams was analysed by considering distinct arrangement of bed joint 

reinforcements for both boundary conditions. Two distinct arrangements of reinforcements 

were considered: (i) reinforcements uniformly distributed bars along the height; (ii) 

reinforcements concentrated in first bed joint. Three horizontal reinforcement ratios, ρh, were 

considered: 0.10%, 0.20% and 0.30%. Only horizontal reinforcement ratio equal to 0.10% 

was considered in masonry beams with reinforcements concentrated in the first bed joint. 

Results can be seen in Table 6.11. 

 
Table 6.11 – Ultimate load and failure modes of masonry beams with bed joint reinforcement. 

ρh Boundary 
condition 

Variation 
of 

 
H/L 

 0.00% 0.10% 0.20% 0.30% 0.10% 
concentrated 

1.50 39.49
(FL) 

65.23
(SH) 

70.33
(SH) 

71.00
(SH) 

70.26 
(SH) 

1.81 25.74
(FL) 

42.38
(SH) 

46.94
(SH) 

50.22
(SH) 

49.49 
(SH) 

2.26 15.36
(FL) 

30.98
(SH) 

31.27
(SH) 

33.31
(SH) 

33.34 
(SH) 

height 

3.03 7.87 
(FL) 

18.37
(FL) 

21.01
(SH) 

21.22
(SH) 

18.24 
(SH) 

1.52 11.33
(FL) 

33.29
(FL) 

35.38
(SH) 

37.29
(SH) 

34.95 
(SH) 

2.54 5.01 
(FL) 

16.45
(FL) 

17.04
(SH) 

18.24
(SH) 

11.86 
(SH) 

3.55 3.25 
(FL) 

10.36
(FL) 

11.31
(SH) 

11.44
(SH) 

10.74 
(SH) 

Simply 
supported 

span 

4.57 2.42 
(FL) 

8.37 
(FL) 

9.48 
(SH) 

10.32
(SH) 

9.68 
(SH) 

1.67 70.81
(SH) 

79.14
(SH) 

79.99
(SH) 

80.69
(SH) 

72.03 
(SH) 

2.00 51.23
(SH) 

58.45
(SH) 

59.04
(SH) 

59.40
(SH) 

50.70 
(SH) 

2.51 35.03
(SH) 

42.45
(SH) 

40.65
(SH) 

43.61
(SH) 

34.65 
(SH) 

height 

3.36 24.07
(SH) 

28.05
(SH) 

27.19
(SH) 

28.30
(SH) 

20.65 
(SH) 

2.03 22.52
(SH) 

43.87
(SH) 

45.60
(SH) 

46.61
(SH) 

36.81 
(SH) 

3.05 15.42
(SH) 

16.60
(SH) 

16.19
(SH) 

15.98
(SH) 

12.53 
(SH) 

4.06 15.29
(SH) 

15.05
(SH) 

14.99
(SH) 

15.00
(SH) 

12.48 
(SH) 

Fixed end 

span 

5.08 14.11
(SH) 

14.06
(SH) 

13.95
(SH) 

13.98
(SH) 

12.03 
(SH) 
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 The variation of the load capacity of simply supported and fixed end masonry beams 

for different height to span length ratio is displayed in Figure 6.56 and Figure 6.57. As 

expected, flexural capacity was improved by the application of horizontal reinforcements 

since they provide the increase of tensile strength of masonry beam, avoiding their 

premature and brittle failure.  
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Figure 6.56 – Variation of load capacity of simply supported beams with variation of horizontal 

reinforcement ratio: (a) variation of H in L/H ratio and (b) variation of L in L/H ratio. 
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Figure 6.57 – Variation of load capacity of fixed end beams with variation of horizontal reinforcement 

ratio: (a) variation of H in L/H ratio and (b) variation of L in L/H ratio. 

 

Simply supported masonry beams with horizontal reinforcement concentrated at the 

first bed joint exhibited higher flexural strength, as expected, since the contribution to 

increase tensile strength is higher due to the higher reinforcement area with higher lever arm. 

However, the improvement of flexural strength is not very significant if a comparison with the 
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ultimate load obtained in masonry beams with the same reinforcement ratio but distributed 

along the height of the beam. On the other hand, the horizontal reinforcement changed the 

failure mode of the majority of specimens from flexure (FL) to shear (SH). Exceptions to this 

trend are beams with span to height ratios equal to 1.52, 2.54, 3.05, 3.55 and 4.57, 

corresponding to specimens with height kept constant and span length variable, when the 

reinforcement ratio is 0.10%. These beams failed by flexure due to yield of the reinforcement 

positioned at first bed joint.  

In general, load capacity of beams was clearly improved by the introduction of 

horizontal reinforcements, but the variation of horizontal reinforcement ratio seemed not to 

influence the strength of masonry beams. The increase of the load capacity was more 

remarkable in simply supported beams, achieving in average 50% higher values than 

unreinforced masonry beams, probably due to change of the failure mode. In case of fixed 

end beams, shear failure mode with diagonal cracking is maintained and an increase on the 

load capacity of 15% is attained.  

In case of fixed end masonry beams, whose predominant shear behaviour is shear 

diagonal cracking, it should be noticed that the concentration of bed joint reinforcement at 

first course appears to be harmful. This means that the concentration of bed joint 

reinforcement should be avoided. As seen in Figure 6.58, the concentrated reinforcement at 

the first curse is not effective on the distribution of cracking, even if it avoids flexural cracking 

at bottom edge of the beam. A more distributed crack pattern is only achieved through the 

distribution of reinforcement along the height of the beam. The increase on the reinforcement 

ratio improves also the cracking distribution. 

 

(a) (b) 

(c) (d) 

Figure 6.58 – Deformed mesh with indication of cracking patterns and principal stresses in reinforced 

fixed end masonry beams with L/H = 3.36: (a) ρh = 0.00%, (b) ρh = 0.10% concentrated, (c) ρh = 0.10% 

and (d) ρh = 0.30%. 
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From the distribution of normal and shear stresses along DCL for the same load level 

it can be concluded that the introduction of horizontal reinforcements reduces the level of 

stresses in DCL independent on the boundary condition, see Figure 6.59 and Figure 6.60.  
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Figure 6.59 – Variation of stresses in vertical joints along DCL of simply supported beam (L/H = 2.26) 

for distinct reinforcement ratios (P= 5kN): (a) normal stresses and (b) shear stresses. 
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Figure 6.60 – Variation of stresses in vertical joints along DCL of fixed end beam (L/H = 2.51) for 

distinct reinforcement ratios (P= 10kN): (a) normal stresses and (b) shear stresses. 

 

The lowering of the stresses along the DCL is the result of the stress transfer 

between the masonry to reinforcements. The reduction of normal and shear stresses is 

related to the arrangement of the steel bars along the height of the masonry beam. The 

shear stress distribution profile shows that the level of stresses in unreinforced and 

reinforced masonry beams with concentration of bed joint reinforcement at first course is 

practically coincident. This behavior confirms that the concentrated reinforcement is not 
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effective on the redistribution of shear stresses between masonry and reinforcement, 

meaning that horizontal reinforcements did not provided increase in shear capacity of 

masonry beams. 

 

6.4.2.4 Vertical and horizontal reinforcement 

 

In order to evaluate the influence of vertical reinforcements on the mechanical 

behaviour of masonry beams, a constant horizontal reinforcement ratio of 0.20% was 

considered, being adopted three vertical reinforcement ratios, namely 0.05%, 0.15% and 

0.25%. Two different spacing were considered for vertical reinforcement ratio of 0.05%, 

namely 200mm and 300mm, whereas only the spacing of 200mm was taken for the other 

reinforcement ratios. In this analysis the same geometry, loading and boundary conditions of 

the previously studies were used. Results can be seen in Table 6.12. 

 
Table 6.12 – Ultimate load of masonry beams horizontally and vertically reinforced in numerical 

modelling. 

ρv Boundary 
condition 

Variation 
of 

 
H/L 

 0.00% 0.05% 0.15% 0.25% 0.05% s=300mm

1.50 70.33 120.50 121.50 120.30 132.20 
1.81 46.94 103.90 107.00 106.80 99.58 
2.26 31.27 75.24 80.17 80.86 70.09 

height 

3.03 21.01 43.51 45.92 46.15 44.84 
1.52 35.38 58.45 58.90 59.62 56.08 
2.54 17.04 33.28 33.45 34.11 34.86 
3.55 11.31 23.05 24.04 24.32 22.23 

Simply 
supported 

span 

4.57 9.48 17.73 18.18 17.99 17.77 
1.67 79.99 125.80 125.60 124.70 137.20 
2.00 59.04 123.80 123.90 122.65 113.10 
2.51 40.65 97.99 116.80 116.40 82.91 

height 

3.36 27.19 66.05 81.33 82.65 57.45 
2.03 45.60 49.95 59.98 59.50 60.45 
3.05 16.19 45.63 55.35 56.86 45.63 
4.06 14.99 37.69 46.43 49.43 32.01 

Fixed end 

span 

5.08 13.95 34.63 43.51 46.00 30.55 
 

From the analysis of results, relating the ultimate load found for the beams with 

different geometries, boundary conditions and for distinct reinforcement ratios, it can be 



Chapter 6 – Numerical simulation 255

concluded that the use of vertical reinforcement results in a considerable additional 

resistance. Besides, vertical reinforcements control the opening of diagonal cracking. 

In case of simply supported beams, all specimens had their strength limited by the 

crushing of masonry at mid span upper edge, which explains the non variation of the ultimate 

loads by increasing the vertical reinforcement ratio. On the other hand, in case of fixed end 

masonry beams, the variation of vertical reinforcement led to the increasing of beam capacity 

in case of resisting mechanism is controlled by shear. 

Simply supported beams with large span length to height ratios such as the beam 

with L/H = 4.57 reached the crushing of masonry before the yield of reinforcements. 

Decreasing the span to height ratio, the strength of beams increased and the crushing takes 

place after the yielding of reinforcements, In fact, with the increase of the applied vertical 

load some vertical reinforcements reached the yield stress becoming the beam more 

deformable enabling the yielding of horizontal reinforcements, contributing to the increase of 

the ultimate load. 

As previously mentioned, in fixed end beams shear behaviour is preponderant. Thus; 

the failure mode of these masonry beams was quite different. All specimens failed by 

masonry crushing on upper edge at middle span. However, before achieving this limit state 

all vertical reinforcement reached the yield stress. As in case of simply supported beams, the 

yield of vertical reinforcements became the beam more deformable leading to the yielding of 

horizontal reinforcements and finally to crushing of masonry. Therefore, the increase of 

vertical reinforcement ratio delayed the crushing of masonry and improved the behaviour of 

beam. 

Variation in spacing of vertical reinforcements did not influence the behaviour of 

simply supported masonry beams. On the other hand, in case of fixed end specimens, higher 

spacing in general seemed to reduce the strength of beams. This behaviour occurred 

possibly due to fact that lower spacing represents higher capacity of control the opening of 

diagonal cracks, see Figure 6.61.  

 

(a) (b) 

Figure 6.61 – Deformed mesh with the representation of the principal stresses after the application of 

a displacement equal to 3.00 mm in a fixed end beam with L/H = 3.36: (a) spacing equal to 200 mm 

and (b) spacing equal to 300 mm. 

 



Chapter 6 – Numerical simulation 256 

In order to evaluate the influence of horizontal reinforcements on the mechanical 

behaviour of masonry beams, a constant vertical reinforcement ratio of 0.05% was 

considered, being adopted three horizontal reinforcement ratios, namely 0.10%, 0.20%, 

0.30% and 0.10% concentrated in the first bed joint. A spacing of 200 mm was considered 

for vertical reinforcements. In this analysis the same geometry, loading and boundary 

conditions of the previously studies were used. Results can be seen in Table 6.13.  

 
Table 6.13 – Ultimate load of masonry beams horizontally and vertically reinforced in numerical 

modelling with variation of horizontal reinforcement ratio. 

ρh Boundary 
condition 

Variation 
of 

 
H/L 

 0.10% 0.20% 0.30% 0.10%   
concentrated 

1.50 105.20 120.50 123.40 108.90 
1.81 77.13 103.90 112.70 89.52 
2.26 52.10 75.24 82.13 65.88 

height 

3.03 27.83 43.51 52.42 46.82 
1.52 42.11 58.45 65.91 51.47 
2.54 22.56 33.28 40.20 34.60 
3.55 15.17 23.05 28.64 24.26 

Simply 
supported 

span 

4.57 11.26 17.73 22.13 18.38 
1.67 123.50 125.80 126.50 118.90 

2.00 121.10 123.80 125.40 113.90 

2.51 101.90 97.99 96.36 93.46 
height 

3.36 69.51 66.05 63.35 62.95 

2.03 49.95 49.95 49.95 49.95 

3.05 45.44 45.63 46.79 46.20 

4.06 40.35 37.69 38.38 39.17 

Fixed end 

span 

5.08 37.54 34.63 33.79 33.19 
 

As expected, the variation of horizontal reinforcement ratio increase the flexural 

strength of simply supported masonry beams since tensile stresses generated by the loading 

can be resisted by the reinforcements. On the other hand, as in case of vertical 

reinforcements for shear walls, the variation of horizontal reinforcement ratio did not cause 

any change on the behaviour of fixed end masonry beams. The behaviour of these beams is 

governed by shear; so, the horizontal reinforcements seem not increase the shear strength 

of masonry beams. 

 



Chapter 6 – Numerical simulation 257

6.5 Summary and conclusions 
 

For the numerical simulation of masonry walls under in-plane lateral load and of 

masonry beams under flexure and shear micro-modelling approach was selected due to the 

need of understanding in detail the resisting mechanisms of masonry walls and beams. The 

mechanical properties of materials used in the model were obtained from experimental tests, 

even if few of them had to be obtained by fitting the numerical and the experimental results. 

In a first phase the numerical model has been calibrated based on the experimental results 

of masonry walls and beams. Very reasonable agreement was found between the numerical 

force-displacement diagrams and the monotonic experimental envelop describing the in-

plane behaviour of masonry walls and beams. In a second phase, an extensive parametric 

study has been performed aiming at evaluating the influence of the aspect ratio, vertical pre-

compression, filling of vertical joints, horizontal and vertical reinforcement ratio on the in-

plane behaviour of masonry walls. The parameters selected for the parametric study relating 

masonry beams included the span to height ratio, the filling of vertical joints and the variation 

of the horizontal and vertical reinforcement ratio. 

Concerning the results of numerical modelling of masonry walls the following 

conclusions can be drawn:  

(a) A failure surface defined based on the pre-compression and aspect ratio has been 

found indicating that walls with low aspect ratio and moderate pre-compression levels are 

more favourable to develop shear failure, whereas walls with high aspect ratios and low pre-

compression levels are more favourable to develop flexure failure. On the other hand, it was 

observed that in cantilever walls flexure is preponderant, whereas in fixed end walls shear 

failure prevails on the in-plane response of the masonry walls. 

(b) the influence of vertical reinforcements depends on the predominant resisting 

mechanism. They exhibited a small influence on the lateral resistance of walls when shear is 

the preponderant effect but they provide an enhancement on lateral strength when flexural 

govern the behaviour of the walls since they resist tensile stresses due to the uplift of the 

wall.  

(c) in case of horizontal reinforcement, its influence on the behaviour of shear walls 

depends on the preponderance of the resisting shear mechanisms. It was observed that 

horizontal reinforcements act only after the diagonal cracking as observed in experiments. 

Besides, horizontal reinforcements provided a better distribution of stresses in the walls 

leading to a more distributed diagonal cracking. It was noticed that it is very difficult to 

observe the influence of horizontal reinforcements on the lateral resistance of cantilever walls 

due to the preponderant flexure effect.  
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(d) the filling of vertical joints influences the lateral resistance in case on shear 

resisting mechanism prevails. as regards the filling of vertical joints, it was seen that in 

cantilever walls a maximum increase of 10 % on the lateral resistance was achieved, 

whereas in fixed end masonry walls the increase reached a maximum of 20%.  

The parametric study carried out on masonry beams revealed that:  

(a) the usage of filled vertical joints increased the shear strength of masonry beams, 

particularly in case of shear resisting mechanisms control the ultimate load. The increase on 

the flexural strength is attributed to the higher compressive strength of masonry in the 

parallel direction when compared the compressive resistance in dry masonry. Besides, it was 

clear that the filling of vertical joints provide a better distribution of stresses becoming the 

masonry a more homogeneous material.  

(b) horizontal reinforcements in masonry beams can be compared with vertical 

reinforcements in shear walls because they are longitudinal bars in relation to the applied 

efforts. Horizontal reinforcement increased the flexural strength of masonry beams, since 

resist the tensile stresses. Besides, the horizontal reinforcements increased shear strength of 

masonry beams relatively to unreinforced beams due to the prevention of sliding and thus of 

the progress of diagonal cracking. However, the variation on reinforcement ratio has no 

influence on the shear resistance of masonry beams.  

(c) the introduction of vertical reinforcements improved the shear resistance of 

masonry beams. The vertical reinforcements control the crack opening and generated a 

change on the failure mode of beams leading flexure failure by crushing of masonry. As in 

case of shear walls, the combination of horizontal and vertical reinforcements reveal to 

enhance the flexural and shear behaviour of masonry beams. 
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7 DEVELOPMENT OF A NEW ANALYTICAL 
DESING METHOD 

 

7.1 Introduction 
 

Masonry structures subjected to in-plane lateral loads are basically designed to resist 

flexural and shear efforts. Flexural behaviour is well understood and the existent design 

methods give reliable previsions for the maximum flexural capacity of structures. Flexural 

design of masonry structures follows the same methodology used for concrete structures. On 

the other hand, shear behaviour is more complex and it is not still very well explained. In 

case of masonry structures, mortar joints generate weakness planes and concentrate the 

majority of nonlinear behavior of masonry. 

In general, design methods evaluate the shear behaviour separately from flexure 

behavior. However, it is clear that both mechanisms occur simultaneously and interact for the 

different levels of horizontal loading. For example, shear strength depends on the level of 

normal stresses, which are directly related to the flexure of the wall.  

Thus, based on the results of in-plane experimental tests carried out on shear walls 

and masonry beams and on the parametric study carried out through the finite element 

modelling presented in Chapter 6, a design method is proposed by considering the coupling 

between flexure and shear behavior. The design method proposed in this research uses an 

iterative method to calculate the maximum lateral capacity of masonry elements subjected to 

in-plane loading and may be considered as an improvement of the design model proposed 

by Brunner and Shing (1996). The design methodology is systematized in a Windows® 

application and practical examples are presented to clarify the use of the software.  
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7.2 General assumptions about the behaviour of masonry 
structural elements subjected to in-plane loading 
 

Experimental and parametric numerical analysis provided relevant information on the 

resisting mechanisms developed in masonry walls and beams subjected to in-plane loading. 

Apart from the arrangement of masonry units in relation to normal stresses, shear walls and 

masonry beams develop similar flexural and shear resisting mechanisms. In shear walls, 

flexure leads to flexural cracking predominantly at bed joints and compressive stresses 

perpendicular to the bed joints. On the other hand in case of masonry beams, flexural efforts 

lead to compressive stresses in the parallel direction to bed joints and the flexural cracking 

occurs mainly at the vertical joints due the horizontal tensile stresses. For example, a simply 

supported beam can be simplified by symmetry through a half of beam with a support A 

which restricts displacements and a support B which restrict displacements in direction of the 

axis of beam and rotations and with half of loading applied over the support B as showed in 

Figure 7.1. The applied loading generates a reaction force of equal value in support A. This 

structural scheme is equivalent to the scheme of a shear wall since the reaction in support A 

can be admitted as the loading and the loading as the reaction force. The same analogy can 

be made between a fixed end wall and a fixed end beam with a load applied in the middle of 

beam. 

 

P

M

V

+

+

P

M+

+
-

P/2 P/2

V

shear wall

beam

simplification
by symmetry

P/2

M

+
+

V

equivalence
to shear wall

V

M+

+

P/2

P/2
support A support B

 
Figure 7.1 – Equivalence between shear walls and masonry beams subjected to a concentrated load. 

 

In general, concentrated loads are not common in masonry beams in a real building. 

In this case, masonry beams are partially restricted at the extremities where moments and 

shear forces act as a result of rotations and displacements caused by lateral loading. The 

same analogy with shear walls can be performed in this configuration of masonry beams. 
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However, the whole length of beam should be considered instead of the half of beam as in 

previous case, see Figure 7.2.  
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Figure 7.2 – Equivalence between shear walls and masonry beams in real buildings 

 

As seen in Chapter 6 from the parametric analysis, the behaviour of masonry 

elements under in-plane loading depends on the boundary conditions. As seen from     

Figure 7.3, the deformation patterns are quite different, leading to the distinct preponderance 

of flexure or shear effects. In cantilever walls, the lateral load leads to generation of a 

diagonal flow of compressive stresses from the load application point up to the opposite 

bottom corner. The concentration of compressive stresses at bottom corners results in most 

cases in the crushing of this region. Diagonal tensile cracks can occur in the alignment of the 

compressive strut associated to the tensile stresses developed in the perpendicular direction. 

Flexure can leads to horizontal cracks mainly at the bed joints associated to the tensile 

stresses and to uplift of the base of the wall, which can be prevented or minimized by the 

introduction of vertical reinforcements. Fixed end walls present also the diagonal flow of 

compressive stresses, but here the stresses concentration can occur at the top and bottom 

corners of the wall, resulting in the possible crushing. However, it should be mentioned that 

the level of concentration of compressive stress at the corners reach a lower level than in 

case of cantilever walls. On the other hand, this configuration of stresses results in more 

common diagonal tensile cracks, meaning that for this boundary condition the shear 

behaviour is more predominant. For fixed end walls tensile stresses due to flexure can also 

occur leading to horizontal cracking, even if this crack patterns is much rarer than in case of 

cantilever walls, see Figure 7.3b.  

Apart the normal stresses direction, the same configuration of stresses can be 

observed in masonry beams and shear walls. Simply supported beams can be compared 

with cantilever walls whereas fixed end beams can be compared with fixed end walls. 
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Figure 7.3 – Possible crack patterns due to in-plane horizontal loading                                      (a) 

cantilever shear walls and (b) fixed-fixed end shear walls. 

 

In simply supported beams under the four point load configuration point, as defined in 

experimental program and numerical analysis, the vertical loading leads to a diagonal flow of 

compressive stresses connecting the supports to the load application points, see          

Figure 7.4a. Tensile stresses appear transversally to the diagonal flow of compressive 

stresses and at the mid span of bottom edge resulting in diagonal and vertical cracking. In 

case of fixed end beams, tensile cracks can develop at mid span of the beams and at the 

interface between the beams and the supports at the upper region due to the flexure and 

diagonal tensile cracks develop along the diagonal flow of compressive stresses, see    

Figure 7.4b. For both boundary conditions the compressive crushing occurs at the upper 

edge of the beams and in case of fixed end, the beams present also crushing at the bottom 

corners. It is seen also that the diagonal cracks follows predominantly the horizontal and 

vertical joints but can pass through the concrete units. The onset of flexural cracks take place 

at the vertical joint from the bottom edge but their progress up to the upper edge 

encompasses also the bed joints. 
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Figure 7.4 – Possible crack patterns in masonry beams: (a) simply supported and (b) fixed end. 

 

It is seen that either in shear walls or masonry beams, flexural and shear resisting 

mechanisms characterizes their global resistance under in-plane loading. Besides the 

boundary conditions, the behaviour of structural masonry elements subjected to in-plane 

loading depends on the pre-compression level, aspect ratio and on the presence of vertical 

and horizontal reinforcement (Chapter 6). Different combinations of these variables lead to 
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distinct failure modes of the masonry elements. In general terms, the failure modes 

developed in the masonry structural elements can be classified as follows: 

1. failure by flexure; 

a. Flexural cracking; 

b. Yielding of longitudinal reinforcements; 

c.  Crushing of masonry; 

2. failure by shear; 

a. Diagonal cracking; 

b. Yielding of transversal reinforcements; 

c. Sliding. 

3. Mixed flexure-shear failure mode; 

 

The flexural failure mode prevails in case of low compression load levels and for high 

aspect ratios. Flexural cracking is a failure mode only by unreinforced elements and 

develops when tensile stresses due to flexure reach the tensile bond strength of unit-mortar 

interface. In addition, if the masonry element is reinforced with longitudinal bars, the opening 

of the flexural cracking is minimized or prevented due the contribution of reinforcement to 

resist the tensile stresses. The increase of lateral loading can promote the yielding of vertical 

reinforcements or crushing of masonry, which represent other two possible flexural type 

failure modes. 

As shown in Figure 7.3 and Figure 7.4, diagonal flow of compressive stresses 

appears in masonry elements subjected to in-plane loading and consequently tensile 

stresses develop in the perpendicular direction to the diagonal flow. When the tensile 

stresses reach the tensile strength of masonry, diagonal cracks open and the masonry 

element can fail by diagonal cracking if no transversal reinforcement exists. In fact, tensile 

diagonal cracking is considered to promote the brittle collapse of unreinforced masonry 

elements. If the masonry element has transversal reinforcements, the shear failure is much 

more ductile and can occur by yielding of the transversal reinforcements. In fact, the shear 

reinforcement aims at promoting the load transfer between the edges of the diagonal crack, 

contributing to the resisting load by the development of tensile stresses. The shear sliding 

failure over the diagonal crack can occur when deficient anchorage length of transversal 

reinforcements. In case of walls, the shear sliding failure can develop along a horizontal bed 

joint, mostly positioned at the base of the wall.  

Masonry elements subjected to in-plane loading can also fail by mixed flexure-shear 

mode. This mixed failure happens when both flexural and shear resisting mechanism 

contribute to the final resistance of the masonry element. The typical shear-flexure failure 

mode is characterized in a first phase by diagonal cracking due to the tensile stresses 
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perpendicular to the diagonal flow of compressive stresses. Due to the presence of 

transversal reinforcement, the failure by diagonal cracking is prevented and the increase on 

the lateral load lead to the yielding of longitudinal reinforcements or to the crushing of 

masonry due to high compressive stresses. The mixed failure mode can also occur in 

unreinforced elements after diagonal cracking and further stress concentration at the bottom 

corners resulting in the crushing of masonry. In this case, the load limits for each failure 

mode are very close. 

 

7.3 Design methodology 
 

Flexure and shear resisting mechanisms are usually considered separately in design. 

However, flexural and shear efforts occur simultaneously leading often to the simultaneous 

development of flexural and shear resisting mechanism. Sometimes it is very difficult to 

define the failure mode during experimental tests. Shear is function of normal stresses and 

distribution of normal stresses depends on flexure.  

Besides, the shear resistance depends on the effective cross section of the structural 

element, which is a function of the tensile and compressive stresses developed due to 

flexural efforts. Thus, the main goal of the analysis of structural masonry under in-plane load 

presented in this work is the design of masonry cross sections taking into account the 

coupling between shear and flexural behavior. For the effect, an iterative design model 

considering the coupling of flexure and shear has been developed following the general flow 

chart given in Figure 7.5. 
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Figure 7.5 – Simplified flow chart of design model considering coupling of flexure and shear. 

 

The shear resistance of a masonry element is calculated after the flexural strength of 

masonry elements is obtained based on the classical design approach used in reinforced 

concrete sections. If the shear resistance is higher than the flexural resistance, then the 
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resistance of the structural masonry element is determined by the flexural resistance and 

flexural failure mode can be attributed to the collapse. If shear resistance is lower than 

flexural resistance, an iterative method should be applied. A loading which promotes a shear 

force equal to the previous calculated shear resistance should be applied and the masonry 

element section should be re-equilibrated. A new shear resistance is calculated using the 

output results of the section equilibrium and it is compared to the previous shear resistance. 

If both results are equal, the shear resistance of the masonry element was found. On the 

contrary, a new iteration should be carried out.  

 

7.3.1 Flexural resisting mechanism 

7.3.1.1 Unreinforced Masonry 

 

Early flexural cracking develop frequently in masonry due to its low tensile bond 

strength. Flexural cracks develop mainly at bed joints in walls and at the vertical joints in 

case of beams reducing the effective section area of these elements. The flexural cracking 

load can be calculated considering the elastic behaviour of masonry element and taking into 

account the contribution of the tensile strength masonry, see Figure 7.6.  

 

P

+
- σc

σt
x

P

+

-
σc

σt

h

x
h

M = Pz

+

+

z

L

M = PL/4
 

Figure 7.6 – Normal stresses distribution in masonry for the calculation of flexural cracking for 

unreinforced elements. 

 

As seen in Chapter 4, the neutral axis can be derived from the equilibrium of forces 

(Eq. 7.1), the compatibility of strains (Eq. 7.3) and considering that tensile stresses (σt) 

reaches the tensile bond strength of masonry (ffl), see Eq. 7.4.  
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Where, x is position of neutral axis, t is the thickness of masonry element, Em is the elastic 

modulus of masonry, εm and εt are the strains of compressed and tensioned masonry, ffl is 

the tensile bond strength of masonry and σ is the pre-compression for shear walls. In case of 

masonry beams σ = 0. 

The flexural cracking moment, Mfc, is obtained by taking the equilibrium of bending 

moments, see Eq. 4.15. 
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7.3.1.2 Reinforced masonry 

 

In case of masonry reinforced with longitudinal bars, the influence of reinforcements 

should be considered in the calculation of the flexural cracking moment. As in case of 

unreinforced elements, the loading that produces the flexural cracking can be calculated 

considering the elastic behaviour of the masonry element and taking into account the 

contribution of the tensioned masonry, see Figure 7.7. 
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Figure 7.7 – Strain distribution in masonry and reinforcements in reinforced masonry elements. 

A parcel is added to previous equations in order to consider the influence of 

longitudinal reinforcements, see Eq. 7.6 to Eq. 7.11. 
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Where Asli is the area of longitudinal reinforcements, Es is the elastic modulus of 

reinforcements, σsli and εsli are the stress and strain of longitudinal reinforcements 

respectively. 

In case of reinforced masonry, after the opening of flexural cracks, longitudinal steel 

bars begin to resist the tensile stresses increasing the flexural strength of the walls. When 

flexural behaviour governs the lateral behaviour of masonry walls, they can fail either by 

breaking of reinforcements or by crushing of the masonry. In this case the maximum capacity 

of the masonry element can be calculated by means of the classic flexural theory based on 

the plane-section assumption. The evaluation of masonry elements subjected to flexure shall 

be based on the following assumptions:  

• the reinforcement is considered to be completely adherent to masonry leading that 

masonry and reinforcements have the same strain at the level of the reinforcements. 

• the tensile strength of the masonry is taken to be zero; 

• the tensile strain of the reinforcement should be limited by 0.01; 

• the maximum compressive strain of the masonry is chosen according to compressive 

behaviour of masonry; 

• the maximum tensile strain in the reinforcement depends on the material; 

• the stress-strain relationship of masonry is taken to be linear, parabolic, parabolic 

rectangular or rectangular (λ = 0.8x); 
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• for cross-sections not fully in compression, the limiting compressive strain is taken to 

be not greater than εmu = -0.0035 or εmu = -0.002 depending on the geometry of units 

according to Eurocode 6 (2005). 

The resistant moment (MR) should be calculated considering the constitutive laws for 

masonry in compression (Eq. 7.12 and Eq. 7.13), compatibility of strains (Eq. 7.14), and 

equilibrium of forces and moments (Eq. 7.15 and Eq. 7.16 respectively). 
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Where, ξ is a local coordinate, fsly and εsly is the yield stress and strain of longitudinal 

reinforcements respectively. 

 

7.3.2 Shear resisting mechanism 

7.3.2.1 Unreinforced Masonry 

 
As aforementioned, in case of unreinforced masonry under in-plane load the diagonal 

cracking means the global collapse of the masonry walls and beams as there are no resisting 

mechanisms able to perform the stress transfer between both edges of the crack, being the 

masonry element divided into two parts. This means that the calculus of the diagonal 

cracking shear force, Vdc, represents the shear resistance of the unreinforced masonry 

elements, Vs. From the parametric study carried out in Chapter 6, it was also seen that 

masonry beams reinforced only with horizontal bars and shear walls reinforced only with 

vertical bars also fail by tensile diagonal cracking since only dowel action is not able to 

improve the shear strength of those masonry elements.  
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Considering the masonry as an elastic, homogeneous and isotropic structural 

material, the basic equation for the evaluation of the diagonal cracking shear force can be 

derived by the equation of principal stresses provided by the elementary theory of elasticity:  
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Where, Vs is the shear resistance, Vdc is the diagonal cracking shear force, ft is the tensile 

strength of masonry, σ(ε(ξ)) is the normal stress along the compressive length of the wall, εm 

is the maximum strain of masonry, ε(ξ) is the strain of masonry at ξ distance from the zero 

normal stress and x is the depth of the neutral axis. 

This equation is similar to the equation presented by Tomaževič (1999) for the 

calculation of shear strength of unreinforced masonry walls, see Eq. 7.19. 
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Where h and t are respectively the length and thickness of the wall and σ is the average 

normal stress calculated by dividing the pre-compression load by the area of the cross 

section. The variable b is a shear stress distribution factor and is taken to be equal to 1.5.  

The major difference between the proposed formulation and the equation pointed out 

by Tomaževič (1999) is the consideration of variable normal stresses along the cross section 

of the wall instead of the average constant normal stresses. It appears that the distribution of 

normal stresses along the length of the diagonal strut is not constant due to the flexure of the 

wall. Thus, the distribution of compressive stresses in the section with the higher moment 

seems to be a more realistic and it was considered for the calculation of the diagonal 

cracking shear force. The calculation of the diagonal cracking shear force requires an 

iterative process since the position of neutral axis and the compressive stresses due to 

flexure are necessary, see Figure 7.8.  
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Figure 7.8 - Flow chart for the calculation of the diagonal cracking shear force. 

 

7.3.2.2 Reinforced masonry 

 

In case of reinforced walls, diagonal cracking determines the contribution of 

transversal reinforcements for the shear resistance. If diagonal cracks do not open, 

horizontal reinforcements have no contribution for the shear resistance as they do not work. 

This is the case of shear reinforced masonry walls fail by shear sliding over a bed joint, see 

Figure 7.9a. This behaviour does not occur in masonry beams as the running bond pattern 

prevents the sliding over a vertical joint without a diagonal crack. However, if diagonal crack 

opens, as already seen in Chapters 4 and 6, the transversal reinforcement increases the 

shear strength of masonry walls since it connects both edges of the diagonal crack allowing 

the stress transfer between them by conducting tensile stresses see Figure 7.9b.  

 

P

 

P
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(a) (b) 

Figure 7.9 – Failure by sliding: (a) horizontally and (b) diagonally. 

 

Longitudinal reinforcements also increase the shear strength of reinforced elements 

through the dowel action effect according to Tomaževič (1999) and Shing et al. (1990a, b). 
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However, as seen in Chapter 6 and according to Tomaževič (1999) longitudinal 

reinforcements without the presence of transversal reinforcements is not effective for the 

contribution of the shear strength of masonry elements. Therefore, in case of shear walls and 

beams being reinforced with longitudinal and transversal steel bars, the shear resistance 

should be calculated by considering the contribution of masonry and the contribution of 

vertical and horizontal reinforcements see Figure 7.10. Thus, the shear strength of reinforced 

shear masonry elements is calculated through Eq. 7.20. 
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Figure 7.10 – Shear resisting mechanisms of reinforced masonry elements: (a) shear wall and (b) 

masonry beam. 

 

rdamss VVVV ++=  Eq. 7.20

 

Where Vs is the shear resistance, Vms is the shear resistance of masonry and Vda and Vr are 

the resistance of longitudinal and transversal reinforcement respectively. 

 In the proposed model, the contribution of masonry to the shear resistance is limited 

to the compressed part of the wall and it is a function of the normal stresses in the section of 

masonry element. The Mohr-Coulomb law is a very well known failure criterion for the 

description of the shear failure of brittle materials, see Figure 7.11.  
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Figure 7.11 – Mohr-Coulomb’s failure criterion. 
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The Mohr-Coulomb criterion is composed of two parts: the Coulomb’s linear relation 

describing the sliding shear resistance and Mohr’s circle describing the biaxial tension-

compression behavior. The classic Coulomb criterion defines the relation between the shear 

strength, τ, and the normal stresses, σ, according to Eq. 7.21. 

 

µσττ += 0       cσσ ≤≤0  Eq. 7.21

 

Where, τ0 and µ are the cohesion and friction coefficient of bed joints for shear walls or 

vertical joints for masonry beams respectively. This criterion is valid only for low levels of 

normal stresses, being defined the limit of σc, after which the shear behaviour of masonry 

structural elements is describe by the Mohr criterion, in which the relation between shear and 

normal stresses is given by Eq. 7.22. 

 

a
a f

f στ −= 1       ac f≤≤ σσ  Eq. 7.22

 

Where, fa is compressive strength of masonry perpendicular to bed joints in case of shear 

walls and parallel to bed joints in case of masonry beams and σ is the normal stress. 

The normal stress, σc, corresponding to the intersection point c, between the 

Coulomb criterion (Eq. 7.21) and Mohr criterion (Eq. 7.22), can be calculated through        

Eq. 7.23. 
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Thus, considering that the normal stresses present a variation through the length and 

height of section in shear walls and masonry beams respectively, the shear strength may be 

calculated through the integration of Mohr-Coulomb criterion as a function of normal stresses 

through the length or height of section, see Figure 7.12.  
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Figure 7.12 – Variation of normal stresses and shear strength envelop through the height of section 

(a) shear wall and (b) masonry beam. 

 

Therefore, the contribution of masonry for the shear strength of masonry shear walls 

and masonry beams is given by Eq. 7.24. 
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Where, xc is the value of ξ corresponding to the normal stress σc. 

As aforementioned, the contribution of longitudinal reinforcements to the shear 

strength due to the dowel action is taken into account in the proposed model and it is defined 

according to the equation presented by Tomaževič (1999), see Eq. 7.25. 

 

slymslida ffAV Σ= 026.1  Eq. 7.25

 

Where, Asli is the area of longitudinal reinforcements (vertical bars for shear walls and 

horizontal bars for masonry beams), fm is the compressive strength of mortar and fsly is yield 

stress of longitudinal reinforcements. 

Finally, the contribution of the transversal reinforcement (Vr) for the shear resistance 

of the masonry structural elements is calculated through Eq. 7.26. 
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stystir fAV Σ=  Eq. 7.26

 

Where, Asti is the area of transversal reinforcements (horizontal bars for shear walls and 

vertical bars for beams) and fsty is yield stress of transversal reinforcements 

Effectiveness of horizontal reinforcements depends on the aspect ratio of the walls 

and also on their anchorage length. This means that, after diagonal crack, the length of 

horizontal reinforcement to both sides of the crack should be higher than the anchorage 

length. Thus, considering that the diagonal cracking develops according to an orientation of 

45º as shown in Figure 7.13 (Brunner and Shing, 1996), only reinforcements positioned in a 

central region of the wall are effective in resisting shear strength. In case of masonry beams, 

the same evaluation should be performed. This means that the percentage of effective 

reinforcements has to be calculated based on the anchorage length. 
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Figure 7.13 – Region of the wall where horizontal reinforcements are effective. 

 

The complete procedure to be followed for the calculation of the lateral resistance of 

masonry shear walls and beams is given in the flow chart of Figure 7.14. By using input data 

of geometry and material properties, diagonal cracking shear force, Vdc, is calculated through       

Eq. 7.17 following the iterative procedure pointed out in the flow chart of Figure 7.8. After 

this, the flexural design is performed in order to obtain the maximum compressive strain of 

masonry, εm, the position of neutral axis, x, and resistant moment of the masonry element, 

MR. Admitting that the diagrams of moments and shear forces of the masonry element is 

known, the shear force, Vfl, equivalent to the resistant bending moment considered in section 

of the maximum moment, should be calculated. In case of unreinforced masonry elements or 

masonry elements reinforced only with longitudinal bars, if diagonal cracking shear force, Vdc, 

is higher than the shear force, Vfl, the masonry element fails by flexure. If the shear force, Vfl, 

is higher than diagonal cracking shear force, Vdc, the masonry element fails by shear.  
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Figure 7.14 – Methodology proposed for defining the load capacity of masonry elements under in-

plane loading. 

 

In case of reinforced masonry elements, the diagonal cracking shear force, Vdc, is not 

considered as an ultimate state but it is important for the assessment of the contribution of 

horizontal reinforcements to the shear resistance. If diagonal cracking shear force is higher 

than the shear force, Vfl,, equivalent to the resistant bending moment, MR, the diagonal 

cracking does not open and the shear resistance, Vs1, is calculated by considering the 

contribution of masonry, Vms, and the contribution of longitudinal bars, Vda. If diagonal 

cracking shear force is lower than the shear force, Vfl, equivalent to the resistant bending 

moment, MR, it is considered that diagonal cracking develops and the contribution of the 

transversal bars, Vr, is taken into account in the shear resistance, according to Eq. 7.20. The 

reinforced masonry elements fail by flexure if the shear resistance, Vs1, and diagonal 

cracking shear force is higher than the shear force, Vfl. In case of diagonal cracking shear 

force is lower and shear resistance, Vs1, is higher than the shear force, Vfl, equivalent to the 

resistant bending moment, MR, the masonry element fails in a mixed flexural-shear mode. If 

diagonal cracking develops and shear resistance, Vs1, is lower than the shear force, Vfl, an 

iterative procedure is followed to calculate the actual shear resistance. In the iterative 

process the cross section of the masonry element should be re-equilibrated by considering a 

moment, M, which is equivalent to the shear resistance, V1. Considering the new maximum 

compressive strain of masonry, εm, and the position of neutral axis, x, a new shear 
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resistance, Vs2, should be calculated through Eq. 7.20 and compared to the previous shear 

resistance, Vs1. If both results are equal, the shear resistance of the masonry element was 

found and shear failure mode is attributed to the wall. On the contrary, a new iteration should 

be carried out. Note that the contribution of the masonry for the shear resistance, Vms, is 

calculated in a first phase based on the normal stress configuration used for the flexural 

ultimate state. 

 

7.3.3 Comparison of the design models with experimental results 

 

In order to evaluate the accuracy of the proposed model and to compare its 

performance with other analytical approaches described in Chapter 2, a database composed 

of approximately 100 walls tested under in-plane load was organized. For the database 

various types of walls were selected, namely with distinct geometry, masonry materials, 

vertical and horizontal reinforcement ratios and pre-compression levels. The main aim was to 

find a wide range of specimens ensuring the occurrence of distinct failure modes. The major 

concern on the definition of the database was the obtainment of the mechanical properties of 

masonry materials of the tested walls, namely from units and mortar, due to the absence of 

this information in the literature. Mechanical properties like friction coefficient, cohesion and 

tensile strength were almost never reported in most of the researches about in-plane 

behaviour of masonry walls in spite of these are basic properties for the assessment of the 

lateral resistance of the walls. Thus, according to the characteristics of the units and mortar, 

friction coefficient and cohesion were estimated from Eurocode 6 (2005), when no 

information was given. When tensile strength was not reported in literature, a value of 

approximately 67% of the average bed joint sliding strength was taken into account as 

suggested by Steelman and Abrams (2007). The geometrical features (z/h), vertical and 

horizontal reinforcement ratios (ρv and ρh) and the mechanical properties considered for each 

wall are summarized in Table 7.1. Here, fyv is the yielding strength of vertical reinforcements, 

fyh is the yielding strength of horizontal reinforcements, fb is the compressive resistance of 

units, fm is the compressive strength of mortar, fa is the compressive strength of masonry, ft is 

the tensile strength of masonry, fx1 is the flexural strength of masonry and fv0 is the initial 

shear strength of interface unit-mortar. In Table 7.2, information about the literature sources 

from which the walls were taken for the analytical study is presented. 
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Table 7.1 – Database used to comparing the design models of shear-walls. 

Nº Dimensions
(mm)

Area
(cm2)

z/h ρv

(%)
fyv

(MPa)
ρh

(%)
fyh

(MPa)
fb

(MPa)
fm

(MPa)
fa

(MPa)
ft

(MPa)
fx1

(MPa)
fv0

(MPa) µ
σ

(MPa) Material

1 1206 x 800 x 100 1206 1.18 0.00 580.00 0.00 580.00 11.77 3.58 5.95 0.19 0.41 0.42 0.49 0.56 concrete
2 1206 x 800 x 100 1206 1.18 0.00 580.00 0.09 580.00 11.77 5.16 5.95 0.19 0.41 0.42 0.49 0.56 concrete
3 1206 x 800 x 100 1206 1.18 0.10 580.00 0.09 580.00 11.77 3.82 5.95 0.19 0.41 0.42 0.49 0.56 concrete
4 1208 x 800 x 100 1208 1.18 0.10 580.00 0.09 580.00 11.77 7.11 5.95 0.19 0.41 0.42 0.49 0.55 concrete
5 1206 x 800 x 100 1206 1.18 0.10 580.00 0.09 580.00 11.77 8.62 5.95 0.19 0.41 0.42 0.49 1.30 concrete
6 1208 x 800 x 100 1208 1.18 0.10 580.00 0.09 580.00 11.77 7.72 5.95 0.19 0.41 0.42 0.49 1.30 concrete
7 1206 x 800 x 100 1206 1.18 0.10 580.00 0.13 580.00 11.77 4.82 5.95 0.19 0.41 0.42 0.49 0.56 concrete
8 1206 x 800 x 100 1206 1.18 0.10 580.00 0.05 580.00 11.77 5.16 5.95 0.19 0.41 0.42 0.49 0.56 concrete
9 1116 x 808 x 94 1049.04 1.17 0.11 580.00 0.10 580.00 9.29 4.82 5.44 0.59 0.31 0.21 0.49 0.57 concrete
10 1224 x 808 x 94 1150.56 1.17 0.10 580.00 0.10 580.00 9.29 8.84 5.44 0.59 0.31 0.21 0.49 0.56 concrete
11 1829 x 1829 x 143 2612.9 1.00 0.38 440.96 0.24 461.63 16.54 24.12 19.98 0.50 0.20 0.20 0.40 1.38 concrete
12 1829 x 1829 x 143 2612.9 1.00 0.38 440.96 0.24 385.84 16.54 24.12 19.98 0.63 0.20 0.20 0.40 1.86 concrete
13 1829 x 1829 x 143 2612.9 1.00 0.74 496.08 0.13 385.84 16.54 27.56 20.67 0.63 0.20 0.20 0.40 1.86 concrete
14 1829 x 1829 x 143 2612.9 1.00 0.74 496.08 0.13 385.84 16.54 20.67 17.91 0.13 0.20 0.20 0.40 0.00 concrete
15 1829 x 1829 x 143 2612.9 1.00 0.74 496.08 0.13 385.84 16.54 20.67 17.91 0.32 0.20 0.20 0.40 0.69 concrete
16 1829 x 1829 x 143 2612.9 1.00 0.38 440.96 0.13 385.84 16.54 20.67 17.91 0.13 0.20 0.20 0.40 0.00 concrete
17 1829 x 1829 x 143 2612.9 1.00 0.74 496.08 0.13 385.84 16.54 20.67 20.67 0.32 0.20 0.20 0.40 0.69 concrete
18 1829 x 1829 x 143 2612.9 1.00 0.38 440.96 0.24 461.63 16.54 20.67 20.67 0.13 0.20 0.20 0.40 0.00 concrete
19 1829 x 1829 x 143 2612.9 1.00 0.38 440.96 0.13 385.84 16.54 20.67 20.67 0.63 0.20 0.20 0.40 1.86 concrete
20 1829 x 1829 x 143 2612.9 1.00 0.38 440.96 0.13 385.84 17.91 18.60 22.05 0.32 0.20 0.20 0.40 0.69 concrete
21 1829 x 1829 x 143 2612.9 1.00 0.74 496.08 0.24 385.84 17.91 18.60 22.05 0.13 0.20 0.20 0.40 0.00 concrete
22 1829 x 1829 x 143 2612.9 1.00 0.38 440.96 0.24 461.63 17.91 18.60 22.05 0.32 0.20 0.20 0.40 0.69 concrete
23 1829 x 1829 x 143 2612.9 1.00 0.54 440.96 0.24 461.63 17.91 20.67 22.74 0.63 0.20 0.20 0.40 1.86 concrete
24 1829 x 1829 x 143 2612.9 1.00 0.54 440.96 0.13 385.84 17.91 20.67 22.74 0.63 0.20 0.20 0.40 1.86 concrete
25 1829 x 1829 x 143 2612.9 1.00 0.54 440.96 0.24 461.63 17.91 20.67 22.74 0.32 0.20 0.20 0.40 0.69 concrete
26 1829 x 1829 x 143 2612.9 1.00 0.74 496.08 0.24 385.84 17.91 16.54 17.23 0.63 0.20 0.20 0.40 1.86 concrete
27 1422 x 1321 x 137 1941.93 1.00 0.58 451.30 0.15 427.18 45.47 20.67 22.46 0.86 0.20 0.20 0.40 2.73 clay
28 1829 x 1321 x 137 2496.77 1.00 0.56 444.41 0.15 444.41 45.47 20.67 23.08 0.63 0.20 0.20 0.40 1.86 clay
29 2235 x 1321 x 137 3051.06 1.00 0.55 444.41 0.15 444.41 45.47 20.67 23.08 0.54 0.20 0.20 0.40 1.52 clay
30 610 x 760 x 100 610 1.13 0.26 522.00 0.22 253.00 10.00 10.00 5.20 0.45 0.20 0.20 0.40 1.00 concrete
31 610 x 760 x 100 610 1.13 0.26 522.00 0.22 253.00 10.00 10.00 5.20 0.45 0.20 0.20 0.40 2.00 concrete
32 790 x 1200 x 190 1501 0.55 1.15 370.00 0.17 351.00 50.80 45.80 33.40 0.34 0.20 0.20 0.40 0.79 concrete
33 790 x 1200 x 190 1501 0.55 0.67 353.00 0.35 347.00 50.80 48.70 29.20 0.34 0.20 0.20 0.40 0.79 concrete
34 793 x 1200 x 133 1054.69 0.55 0.53 342.00 0.83 370.00 33.60 48.70 28.30 0.34 0.20 0.20 0.40 0.79 concrete
35 1060 x 1200 x 133 1409.8 0.55 0.45 342.00 0.83 370.00 33.60 43.70 26.50 0.34 0.20 0.20 0.40 0.79 concrete
36 1326 x 1200 x 133 1763.58 0.55 0.41 342.00 0.83 370.00 33.60 51.00 32.50 0.34 0.20 0.20 0.40 0.78 concrete
37 793 x 1200 x 133 1054.69 0.55 0.87 336.00 0.25 339.00 33.60 49.20 27.20 0.34 0.20 0.20 0.40 0.79 concrete
38 1060 x 1200 x 133 1409.8 0.55 0.58 336.00 0.25 339.00 33.60 50.70 33.60 0.34 0.20 0.20 0.40 0.79 concrete
39 1326 x 1200 x 133 1763.58 0.55 0.51 336.00 0.25 339.00 33.60 47.10 30.20 0.34 0.20 0.20 0.40 0.78 concrete
40 1626 x 1626 x 152 2477.41 0.58 0.44 514.00 0.34 414.00 19.20 57.00 12.00 0.32 0.20 0.20 0.40 0.69 concrete
41 1100 x 1700 x 190 2095.12 0.50 1.16 360.07 0.00 0.00 28.12 45.46 26.35 0.18 0.20 0.20 0.40 0.19 concrete
42 1100 x 1700 x 190 2095.12 0.50 1.16 360.07 0.16 354.08 28.12 45.46 26.35 0.18 0.20 0.20 0.40 0.19 concrete
43 1100 x 1700 x 190 2095.12 0.50 1.16 360.07 0.32 354.08 28.12 45.46 26.35 0.18 0.20 0.20 0.40 0.19 concrete
44 1100 x 1700 x 190 2095.12 0.50 1.16 360.07 0.64 354.08 28.12 45.46 26.35 0.18 0.20 0.20 0.40 0.19 concrete
45 1100 x 1700 x 190 2095.12 0.50 0.56 388.87 0.32 354.08 28.12 45.46 26.35 0.18 0.20 0.20 0.40 0.19 concrete
46 1100 x 1700 x 190 2095.12 0.50 0.73 369.44 0.00 0.00 26.62 33.11 28.61 0.18 0.20 0.20 0.40 0.19 concrete
47 1100 x 1700 x 190 2095.12 0.50 0.73 369.44 0.16 354.08 26.62 33.11 28.61 0.18 0.20 0.20 0.40 0.19 concrete
48 1100 x 1700 x 190 2095.12 0.50 0.73 369.44 0.32 354.08 26.62 33.11 28.61 0.18 0.20 0.20 0.40 0.19 concrete
49 1100 x 1700 x 190 2095.12 0.50 0.73 369.44 0.64 354.08 26.62 33.11 28.61 0.18 0.20 0.20 0.40 0.19 concrete
50 2240 x 1450 x 240 5376 0.50 0.00 0.00 0.00 0.00 7.36 2.26 2.84 0.13 0.20 0.15 0.40 0.12 clay
51 2240 x 1450 x 240 5376 0.50 0.00 0.00 0.00 0.00 7.36 4.91 3.58 0.17 0.20 0.15 0.40 0.28 clay
52 2240 x 1450 x 240 5376 0.50 0.00 0.00 0.00 0.00 7.36 4.41 3.47 0.17 0.20 0.15 0.40 0.28 clay
53 1120 x 1500 x 240 2688 0.50 0.00 0.00 0.00 0.00 7.36 1.11 2.29 0.21 0.20 0.15 0.40 0.41 clay
54 1120 x 1480 x 240 2688 0.50 0.00 0.00 0.00 0.00 7.36 1.81 2.66 0.18 0.20 0.15 0.40 0.31 clay
55 1120 x 1480 x 240 2688 0.50 0.00 0.00 0.00 0.00 7.36 1.81 2.66 0.24 0.20 0.15 0.40 0.51 clay
56 1250 x 1500 x 240 3000 0.50 0.00 0.00 0.03 258.00 7.36 1.67 2.59 0.28 0.20 0.15 0.40 0.66 clay
57 1250 x 1500 x 240 3000 0.50 0.00 0.00 0.03 258.00 7.36 4.09 3.39 0.28 0.20 0.15 0.40 0.66 clay
58 1250 x 1500 x 240 3000 0.50 0.00 0.00 0.08 258.00 7.36 7.30 4.04 0.22 0.20 0.15 0.40 0.46 clay
59 1250 x 1500 x 240 3000 0.50 0.00 0.00 0.08 258.00 7.36 7.10 4.00 0.22 0.20 0.15 0.40 0.46 clay
60 1250 x 1500 x 240 3000 0.50 0.00 0.00 0.17 258.00 7.36 4.09 3.39 0.28 0.20 0.15 0.40 0.66 clay
61 1250 x 1500 x 240 3000 0.50 0.00 0.00 0.17 258.00 7.36 5.79 3.77 0.26 0.20 0.15 0.40 0.59 clay
62 400 x 607 x 63 252 0.50 0.00 0.00 0.00 0.00 12.10 12.40 5.43 0.58 0.20 0.20 0.40 1.66 concrete
63 400 x 607 x 63 252 0.50 0.00 0.00 0.00 0.00 12.10 17.80 6.15 0.58 0.20 0.20 0.40 1.66 concrete
64 400 x 607 x 63 252 0.50 0.00 0.00 0.16 314.00 12.10 12.40 5.43 0.58 0.20 0.20 0.40 1.66 concrete
65 400 x 607 x 63 252 0.50 0.00 0.00 0.16 314.00 12.10 17.80 6.15 0.58 0.20 0.20 0.40 1.66 concrete
66 400 x 607 x 63 252 0.50 0.00 0.00 0.29 302.00 12.10 12.40 5.43 0.58 0.20 0.20 0.40 1.66 concrete
67 400 x 607 x 63 252 0.50 0.00 0.00 0.29 302.00 12.10 17.80 6.15 0.58 0.20 0.20 0.40 1.66 concrete
68 400 x 607 x 63 252 0.50 0.00 0.00 0.37 302.00 12.10 12.40 5.43 0.58 0.20 0.20 0.40 1.66 concrete
69 400 x 607 x 63 252 0.50 0.00 0.00 0.37 302.00 12.10 17.80 6.15 0.58 0.20 0.20 0.40 1.66 concrete
70 374 x 569 x 65 243.1 0.50 0.00 0.00 0.00 0.00 17.80 7.80 9.78 0.57 0.20 0.15 0.40 1.78 clay
71 374 x 569 x 65 243.1 0.50 0.00 0.00 0.00 0.00 17.80 12.30 9.18 0.57 0.20 0.15 0.40 1.78 clay
72 374 x 569 x 65 243.1 0.50 0.00 0.00 0.16 314.00 17.80 7.80 9.78 0.57 0.20 0.15 0.40 1.78 clay
73 374 x 569 x 65 243.1 0.50 0.00 0.00 0.16 314.00 17.80 12.30 9.18 0.57 0.20 0.15 0.40 1.78 clay
74 374 x 569 x 65 243.1 0.50 0.00 0.00 0.30 302.00 17.80 7.80 9.78 0.57 0.20 0.15 0.40 1.78 clay
75 374 x 569 x 65 243.1 0.50 0.00 0.00 0.30 302.00 17.80 12.30 9.18 0.57 0.20 0.15 0.40 1.78 clay
76 374 x 569 x 65 243.1 0.50 0.00 0.00 0.38 302.00 17.80 7.80 9.78 0.57 0.20 0.15 0.40 1.78 clay
77 374 x 569 x 65 243.1 0.50 0.00 0.00 0.38 302.00 17.80 12.30 9.18 0.57 0.20 0.15 0.40 1.78 clay  
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Nº Dimensions
(mm)

Area
(cm2)

z/h ρv

(%)
fyv

(MPa)
ρh

(%)
fyh

(MPa)
fb

(MPa)
fm

(MPa)
fa

(MPa)
ft

(MPa)
fx1

(MPa)
fv0

(MPa) µ
σ

(MPa) Material

78 978 x 521 x 51 496.77 0.70 0.00 0.00 0.00 0.00 27.73 15.85 18.36 0.50 0.20 0.20 0.40 1.38 concrete
79 978 x 952 x 51 496.77 0.62 0.00 0.00 0.00 0.00 27.73 15.85 18.36 0.32 0.20 0.20 0.40 0.69 concrete
80 978 x 952 x 51 496.77 0.62 0.00 0.00 0.00 0.00 13.87 15.85 9.30 0.32 0.20 0.20 0.40 0.69 concrete
81 940 x 940 x 48 448.77 0.62 0.12 446.47 0.12 446.47 19.29 15.50 15.85 0.13 0.20 0.20 0.40 0.00 concrete
82 940 x 940 x 48 448.77 0.62 0.12 446.47 0.12 446.47 19.29 15.50 15.85 0.32 0.20 0.20 0.40 0.69 concrete
83 940 x 940 x 48 448.77 0.62 0.12 446.47 0.12 446.47 19.29 15.50 15.85 0.50 0.20 0.20 0.40 1.38 concrete
84 1000 x 1000 x 100 1000 0.50 0.00 0.00 0.00 0.00 50.00 10.00 8.95 0.36 0.13 0.15 0.40 0.98 clay
85 1000 x 1000 x 100 1000 0.50 0.00 0.00 0.00 0.00 50.00 10.00 8.95 0.39 0.13 0.15 0.40 1.07 clay
86 1000 x 1000 x 100 1000 0.50 0.00 0.00 0.00 0.00 50.00 10.00 8.95 0.35 0.13 0.15 0.40 0.95 clay
87 1000 x 1000 x 100 1000 0.50 0.00 0.00 0.00 0.00 50.00 10.00 11.73 0.42 0.13 0.15 0.40 1.20 clay
88 1000 x 1000 x 100 1000 0.50 0.00 0.00 0.00 0.00 50.00 10.00 11.73 0.31 0.13 0.15 0.40 0.78 clay
89 1000 x 1000 x 100 1000 0.50 0.00 0.00 0.00 0.00 50.00 10.00 11.73 0.38 0.13 0.15 0.40 1.06 clay
90 1800 x 1800 x 140 2520 1.00 0.62 318.00 0.06 325.00 30.00 10.00 17.60 0.13 0.20 0.20 0.40 0.00 concrete
91 1800 x 1800 x 140 2520 1.00 0.62 318.00 0.01 325.00 30.00 10.00 17.60 0.13 0.20 0.20 0.40 0.00 concrete
92 1800 x 1800 x 140 2520 1.00 0.62 318.00 0.16 320.00 30.00 10.00 17.00 0.13 0.20 0.20 0.40 0.00 concrete
93 1800 x 1800 x 140 2520 1.00 0.62 318.00 0.06 320.00 30.00 10.00 17.00 0.13 0.20 0.20 0.40 0.00 concrete
94 1800 x 1800 x 60 1080 1.00 1.45 318.00 0.00 0.00 30.00 10.00 18.50 0.13 0.20 0.20 0.40 0.00 concrete
95 1800 x 1800 x 60 1080 1.00 0.87 318.00 0.00 0.00 30.00 10.00 18.50 0.13 0.20 0.20 0.40 0.00 concrete
96 1800 x 1800 x 140 2520 1.00 0.62 318.00 0.06 325.00 30.00 10.00 18.80 0.27 0.20 0.20 0.40 0.50 concrete
97 1800 x 1800 x 140 2520 1.00 0.62 318.00 0.06 325.00 30.00 10.00 18.80 0.20 0.20 0.20 0.40 0.25 concrete
98 1800 x 1800 x 140 2520 1.00 0.97 318.00 0.05 325.00 30.00 10.00 24.30 0.20 0.20 0.20 0.40 0.25 concrete
99 3000x1800x140 4200 1.00 0.60 318.00 0.06 325.00 30.00 10.00 24.30 0.17 0.20 0.20 0.40 0.15 concrete

100 1020 x 1150 x 143 1458.6 0.50 0.00 0.00 0.00 0.00 5.70 10.00 3.20 0.37 0.20 0.20 0.40 0.90 AAC
101 1020 x 1150 x 143 1458.6 0.50 0.00 0.00 0.07 580.00 5.70 10.00 3.20 0.37 0.20 0.20 0.40 0.90 AAC  
 

Table 7.2 – Authors of researches used to create the database. 

Nº of walls Author 
1 – 10 This work 

11 – 26 Shing et al. (1989) 
27 – 29 Brunner and Shing (1996)
30 – 31 Tomaževič (1996) 
32 – 39 Yoshimura et al. (2003) 

40 Chai and Yaw (1999) 
41 – 49 Matsumura (1990) 

 

Nº of walls Author 
50 – 61 Jingqian et al. (1986) 
62 – 77 Tomaževič and Zarnic (1986)
78 – 80 Mahmoud et al. (1995) 
81 – 83 Ghanem et al. (1993) 
84 – 89 Vermeltfoort et al. (1993) 
90 – 99 Voon and Ingham (2006) 

100 – 101 Gouveia and Lourenço (2007)
 

 

The comparison between experimental and analytical lateral resistance predicted by 

Eurocode 6 (2005) is shown in Figure 7.15a. It is observed that the European code provides 

in general lower values of the lateral resistance than the ones obtained in experimental tests, 

meaning that it gives very safe values of the lateral capacity of masonry walls. It is seen that 

the predicted values of maximum horizontal load was higher than the experimental lateral 

resistance only in 15% of the walls. In addition, only in 2% of the walls the analytical lateral 

resistance exceeds in more than 10% the experimental values. Approximately 40% of the 

analysed walls presented an analytical lateral strength 30% lower than experimental result. 

In average, Tomaževič’s model predicted an analytical lateral resistance of 

approximately 64% the experimental maximum horizontal load, being the scatter reasonably 

low. This model only predicted higher lateral resistance than experimental results in 2% of 

the walls of the database, see Figure 7.15b. A reason that explains the lower analytical 

values is related to the evaluation of the sliding resistance, which does not consider the initial 

cohesion. If the cohesion is considered in evaluation of sliding, the relation between 
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predicted and experimental horizontal load increases to 0.80 and the coefficient of variation 

of the results shows also a small reduction. 
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Figure 7.15 – Comparison of the design models for shear walls: (a) Eurocode 6 (2005), (b) 

Tomaževič’s model, (c) Brunner and Shing’s model and (d) proposed model. 

 

The great innovation of the Brunner and Shing’s model is the consideration of 

coupling between the flexure and shear in the proposed design model. The ratio between the 

analytical lateral resistance provided by the Brunner and Shing’s model and the experimental 

values is about 0.78 with a coefficient of variation around to 35%, see Figure 7.15c. The 

Brunner and Shing’s model defines integration bounds for the calculation of shear strength 

based on the inclination of diagonal crack, which is assumed to develop at an orientation of 

45º. The distribution of compressive stresses acting at the bottom edge of walls is considered 

effective only between the intersection point between the diagonal crack and the base of the 

wall and the bottom corner of the wall. This means that the model considers only part of the 

compressed length of the wall for the calculation of the shear strength. Consequently, in case 
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of walls with aspect ratio greater or equal than 1.0, diagonal crack is considered to develop 

from the bottom corner of the wall resulting in the null compressed length. In Figure 7.15c 

this fact can be really seen from the underestimation of the lateral strength in walls with 

aspect ratio equal to 1.0 (walls from nº 30 to nº 50 and from nº 90 to nº 98). 

The proposed design model in this work is considered to be an improvement of the 

Brunner and Shing’s model by considering the Mohr-Coulomb criterion for the calculation of 

the shear strength of masonry walls. In fact, all extent of the compressed part is considered 

for the calculation of the shear strength of masonry. However, different stretches of the 

failure criterion are considered depending on the level of normal stresses along the 

compressed length of the wall. By comparing the proposed model and the other ones 

presented in literature, it is seen that a better approximation is achieved between 

experimental and analytical lateral resistance of the walls, see Figure 7.15d. In average, the 

analytical to experimental lateral resistance ratio is about 0.92 with a coefficient of variation 

of approximately 20%. This result confirms the better accuracy of this model to predict the 

lateral resistance of walls, when a comparison, in average terms, among the analytical 

models is performed, see Table 7.3. 

 
Table 7.3 – Comparison of the accuracy of the design models to predict the lateral resistance of shear 

walls 

 Eurocode 6 (2005) Tomaževič Brunner & Shing Proposed
Average of Htheo/Hexp 0.74 0.64 0.78 0.92 

C. V. (%) 32.88 23.28 34.85 18.45 
 

Due to the unavailability of experimental results on the behaviour of masonry beams 

in literature, it was not possible to compare the performance of the distinct analytical models 

to obtain an estimation of the load capacity. Concerning the experimental results on beams 

available in this work, it was decided not to apply the model given the uncertainty on the 

stiffness of the elastic support aiming at representing the effect of axial force generated by 

the friction resistance.  

 

7.4 Software to design masonry elements under in-plane 
loading 
 

Some sophisticated computer programs for structural design of masonry structures 

have been recently developed aiming at analysing the complete behaviour of masonry 
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buildings under different load conditions. Structural engineers can insert all geometrical 

details of the structural elements to be designed, material properties and boundary 

conditions and the software gives almost the final structural design. However, the complexity 

of these programs requires the critical analysis of results, which sometimes is hardly carried 

out by the civil engineers. In this scope, it is important provide the structural engineer with 

simple tools in order to be able to proceed with initial localized structural verifications before 

accepting the results of the sophisticated structural programs. Simple design methods can be 

also useful for the individual structural verification of masonry sections given the internal 

efforts for a specific load combination. 

Therefore, aiming at providing a tool for the design of masonry elements subjected to 

in-plane loading considering the coupling shear and flexural behaviour, a Windows® 

application called RMW (Reinforced Masonry Walls) was developed by using the compiler 

Borland Delphi 7 which uses Pascal language. Software RMW allows designing reinforced 

masonry walls and beams using the Eurocode 6 (2005), Tomaževič’s model, Brunner and 

Shing’s model and the design method proposed in this study. Besides, a prediction of the 

flexural and diagonal cracking can be performed through the methodology presented in 

section 7.3. Besides, software RMW provides the interaction diagrams Bending moment vs. 

Normal compressive force and Shear force vs. Normal compressive force for a given 

reinforced masonry element section. Software RMW presents a friendly interface divided in 

two parts: region of data entrance and cascade menus, see Figure 7.16.  

 

Figure 7.16 – Interface of the software RMW. 
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7.4.1 Data entrance 

 

The entrance of data in the automatic program is divided in three parts: geometry, 

material properties and internal forces resulting from the load combinations. The geometry 

data includes the height, length, width and lever arm of the masonry wall or beam. In 

addition, the type, amount and position of vertical and horizontal reinforcements should be 

indicated. The material properties of units, mortar, reinforcements and of masonry as a 

composite should be indicated (flexural strength of masonry, tensile strength of masonry, 

initial shear strength of the interface unit-mortar, friction coefficient the interface unit-mortar, 

compressive strength of mortar, compressive strength of units, yield stress of reinforcements 

and elastic modulus of reinforcements). In case of compressive behaviour of masonry, 

software RMW allows the user to choose between the linear, parabolic, rectangular and 

parabolic-rectangular diagrams describing the distribution of normal stresses, see         

Figure 7.17.  

 

Figure 7.17 – Optional diagrams for compressive behaviour of masonry. 

 

It is needed to define the anchorage length and the total length for horizontal 

reinforcements in order the program is able to identify which horizontal bars can be 

considered in the calculation of the shear strength. Finally, internal efforts (normal force, 

moment and shear force) acting in masonry structural element should be defined in order to 

identify the state of the structural element in relation to the interaction diagrams. 

 

7.4.2 Main menus 

 

There are five cascade menus in software RMW, namely the menus File, Run, 

Graphs, Tools and Help. In menu “File” the user can decide to save the inserted data in a 

text file and open a new file or a previously saved data file, see Figure 7.18.  
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Figure 7.18 – Menu “File” of the software RMW. 

 

In the menu “Tools” the user can configure the maximum number of iterations and the 

convergence interval of the Newton’s iterative method for the coupling shear-flexure design. 

In this menu the user can still choose the number of points that will be plotted in the 

interaction diagrams and the values of safety factors, see Figure 7.19. In menu “Help” the 

user can access the manual describing the software and check additional information about 

the software, see Figure 7.20. 

 

  
Figure 7.19 – Menu “Tools” of the software RMW. 

 

  
Figure 7.20 – Menu “Help” of the software RMW. 
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In menu “Run” the user can choose to obtain the prediction of cracking loads and the 

design resistance of the masonry structural element according to the distinct selected design 

methods, see Figure 7.21a. In the menu “Graphs” the user can create the interaction 

diagrams according to the design models presented in this study, see Figure 7.21b. The 

software provides a message box with the information about the flexural and shear diagonal 

cracking loads. Besides, information about the intermediate calculation such as the depth of 

neutral axis, distance of the application point of the resultant compressive force to the neutral 

axis, strains in reinforcements and maximum strain in masonry, the maximum bending 

moment resisted by the wall or beam section, the maximum shear force resisted by the wall 

or beam, the separated contribution of each resisting mechanism for the shear strength and 

finally the failure mode, see Figure 7.22. It is still possible to evaluate the equilibrated 

condition of a section with a given applied bending moment lower than its flexural capacity. 

 

  
Figure 7.21 – Menus “Run” and “Graphs” of the software RMW. 

 

 

 
Figure 7.22 – Message boxes with the results of the software RMW. 
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 Finally, the software provides also interaction diagrams, see Figure 7.23, which define 

a line representing the maximum capacities of the reinforced masonry wall or beams in terms 

of bending moments and shear forces for different levels of normal forces. They are envelop 

diagrams of all possible combination of bending moments and axial forces and of shear 

resistance and normal forces. The point represented in Figure 7.23 represents the internal 

forces acting on the structural masonry element as defined in the entrance data. If the point 

is inside the region delimited by the interaction diagrams the reinforced masonry wall is in 

safe state. The doted interaction diagram V x N results by dividing the interaction diagram M 

x N by the lever arm of the concentrated load, z, and represents the lateral resistance of the 

masonry walls associated to the flexural resisting mechanism. The continuous line 

represents the interaction diagram V x N corresponding to the shear resisting mechanism.  

 

Figure 7.23 – Interaction diagrams calculated by the software RMW. 

 

7.5 Design of Masonry walls and beams 
 

In order to exemplify the application of the software RMW and design method 

proposed in this research an elastic and linear structural analysis and design of a masonry 

building is presented.  

A building with seven floors, roof, elevator room and water reservoir was considered 

by adapting the example presented in Ramalho and Côrrea (2003) to the structural solution 

of masonry walls and beams with the traditional masonry bond pattern and real scale three 

cell concrete units, see Figure 7.24 and Figure 7.25.  

 



Chapter 7 – Development of a new analytical design method 286 

1    FLOORST

2    FLOORND

3    FLOORRD

4    FLOORTH

5    FLOORTH

6    FLOORTH

7    FLOORTH

ELEVATOR
ROOM

WATER
RESERVOIR

28
0

28
0

28
0

28
0

28
0

28
0

28
0

28
0

16
0

16
0

16
02560

2240

1960

1680

2400

1400

1120

840

560

280

   

J3 J3

76
0

320

100 120 100

J3

180 80

18
0

20
0

20
0

12
0

2020 20

13020

20

ELEVATOR
ROOM

MACHINES

76
0

320

20 20

20

WATER
RESERVOIR

35
0

35
0

280

WATER
RESERVOIR

 

Figure 7.24 – Vertical layout and plan view of water reservoir and elevator room of the building 

(Ramalho and Côrrea, 2003 - dimensions in cm). 
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Figure 7.25 – Plan view of typical floor of the building (Ramalho and Côrrea, 2003 - dimensions in cm) 

 

The methodology for the design is composed of two phases: (1) obtaining the internal 

efforts of masonry walls and beams based on the global analysis of the building; (2) design 

of masonry walls and beams through the software RMW. The obtaining of the internal efforts 

requires the calculation of the load combinations and the numerical modelling of the building. 
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For the structural design all walls defined in the architecture were considered to be in 

structural masonry. 

 

7.5.1 Calculation of the external loading 

7.5.2 Vertical loading 

 

The vertical loading in general use buildings encompasses mainly dead and live 

loads. The dead load assumes a permanent character and refers essentially to the weight of 

the structural and non-structural elements such as walls, floors, roofs and finishing materials. 

The calculation of the dead loads can be made by using information about the density of 

construction materials (concrete, mortar, masonry), which is available in technical 

documents. In this work, the vertical loading was defined according to Eurocode 1 – Part 1 

(2001). Concrete slabs reinforced in two directions casted in place were considered in design 

with density equal to 25kN/m3 and with a covering layer corresponding to a permanent 

vertical load of 1.0kN/m2. Stairs were considered to be supported on the lateral walls 

corresponding to a vertical load of 2.0kN/m2. The concrete blocks of the structural masonry 

walls have a self weight of 20kg. Considering a mortar covering of 5mm on both sides of wall 

a total self weight for the walls of 8.0kN/m was taken into account. Besides, live loading was 

also considered according to the Portuguese Standard RSA (1983). Vertical loading was 

distributed from slabs to the structural walls through the yield lines method, see Figure 7.26. 

Table 7.4 and Table 7.5 summarize the geometry and vertical loads on each slab. 

 

                      (a)                                                                         (b) 
Figure 7.26 – Reactions of slabs in walls: (a) typical floor and (b) elevator room and water reservoir. 
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Table 7.4 – Loading and geometrical properties of elevator room and water reservoir. 

Geometry Loading (kN/m2) 
Slab Lx 

 (cm) 
Ly  

(cm) 
Thick. 
(cm) 

Self-
weight

Live 
loading Covering

Non-load 
-bearing  
masonry 

Total 

Machines 200.0 190.0 10.0 2.5 5.5 1.0 - 10.0 
Elevator room 300.0 220.0 8.0 2.0 1.5 1.0 - 4.5 

Bottom of  
water reservoir 300.0 740.0 10.0 2.5 14.0 1.0 0.5 18.0 

Cover of  
water reservoir 300.0 740.0 8.0 2.0 0.5 1.0 0.0 3.5 

 
Table 7.5 – Loading and geometrical properties of typical floors. 

Geometry Loading (kN/m2) 
Slab Lx 

 (cm) 
Ly  

cm) 
Thick.  
(cm) 

Self-
weight

Live 
loading Covering

Non-load-
bearing 
masonry 

Total 

S1 = S6 160.0 180.0 8.0 2.0 1.5 1.0 - 4.5 
S2 = S5 240.0 320.0 8.0 2.0 1.5 1.0 - 4.5 
S3 = S4 280.0 440.0 8.0 2.0 1.5 1.0 - 4.5 
S7 = S8 160.0 260.0 8.0 2.0 1.5 1.0 - 4.5 

S9 300.0 220.0 8.0 2.0 1.5 1.0 - 4.5 
S10 = S11 240.0 120.0 8.0 2.0 1.5 1.0 - 4.5 
S12 = S13 
S14 =S15 340.0 300.0 8.0 2.0 1.5 1.0 - 4.5 

S16 300.0 130.0 8.0 2.0 2.0 1.0 - 5.0 
stairs 150.0 200.0 - 2.0 2.0 1.0 - 5.0 

 

7.5.3 Horizontal loading 

 

The main horizontal loading acting in a building is wind and seismic forces. Eurocode 

1 – Part 4 (2004) and Eurocode 8 (2003) were the European standards used to evaluate 

wind and seismic actions on masonry buildings respectively. Besides, the Portuguese 

Standard RSA (1983) was also considered to obtain wind and seismic national parameters. 

 

7.5.3.1 Wind actions 

 

Wind actions act directly as pressures on the external surfaces of enclosure walls, 

resulting in forces normal to the surface of the structure. In general, the wind action is simply 

represented by pressures or forces whose effects are equivalent to the extreme winds. Wind 

forces act on the building were calculated according to the national code for calculation of 

building actions (Portuguese Standard RSA, 1983) through Eq. 7.27.  
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wkfw pdhF 1δ=  Eq. 7.27

 

Where, δf is the force coefficient which depends on the shape of building, h1 is the height of 

the building, dk is the dimension of building perpendicular to the wind load direction to be 

considered and pw is the dynamic pressure of wind.   

According to RSA (1983), the building under study is considered to be in zone B, with 

soil roughness of type I, which lead to calculus of dynamic pressure through Eq. 7.28.  

 

27356.0 vpw =  Eq. 7.28

14
10

18
28.0

+





=

hv  Eq. 7.29

 

Where, v is the wind velocity and h is the height above ground.  

Table 7.6 presents the resultant of wind forces to be applied at each floor of the 

building. Here, Fwx and Fwy are the wind forces acting according to the axis presented in 

Figure 7.25 and results from dynamic pressure applied to the surface multiplied by the 

effective area. The area is calculated by multiplying the storey height by the length of the 

building. The force coefficient was considered equal to 1.35, in case of wind acting in the 

direction perpendicular to the biggest side of building and equal to 1.00, in case of wind 

acting in direction perpendicular to the smallest side of building. 
 

Table 7.6 – Wind forces acting at each floor of building. 

Height (cm) Fwx (kN) Fwy (kN) 
280 11.08 33.06 
560 13.44 40.11 
840 15.18 45.30 

1120 16.62 49.59 
1400 17.86 53.30 
1680 18.97 56.62 
1960 19.99 59.64 
2240 22.42 31.22 
2560 18.79 10.01 
2720 6.40 3.41 

 

7.5.3.2 Seismic loading 

 

The seismic loading is the result of horizontal and vertical ground movements due to 

earthquake inducing inertial forces in the structure, which are related to the distributions of 
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mass and rigidity. For simplicity, earthquake loading can be represented by equivalent static 

forces if the response to seismic actions is not affected significantly by the contribution of 

vibration modes other than the first mode of vibration. According to Eurocode 8 (2003) the 

seismic action can be represented by the response spectrum defined in terms of ground 

acceleration designated by elastic response spectrum. The horizontal static forces equivalent 

to the seismic action is described by two independent orthogonal components represented 

by the same response spectrum. This simplified approach requires that the building fulfil the 

requirements of geometric regularity both in side and plan views (Eurocode 8, 2003).  

The elastic response spectrum is a plot of the peak response (displacement, velocity 

or acceleration) of a series of single degree of freedom systems of variable natural 

frequency, which are forced to vibrate by the same base vibration. The elastic response 

spectra given by the codes are obtained from different accelerograms, and are differentiated 

on the basis of the soil characteristics and structural damping. Thus, the response spectrum 

depends on the localization of the building, type of soil and of the damping coefficient of the 

structure. Each seismic region has associated a certain local seismic hazard, which is 

described by the peak ground acceleration (PGA). The Portuguese territory is divided in 

different seismic zones. The new version of the national annex of the European code 

presents a novel seismic region distribution according to the two types of seismic action 

corresponding to near and distant seismic sources, see Figure 7.27. For near seismic action, 

three seismic zones are considered with a maximum peak ground acceleration of 0.17g 

(seismic zone 1), of 0.11g for seismic zone 2 and of 0.08g for seismic zone 3, Table 7.7. For 

distant seismic zones, five zones are considered, being the peak ground acceleration in 

Zone 1 of 0.25g, 0.20g for the seismic zone 2, of 0.15 for the seismic zone 3, 0.10g for the 

seismic zone 4 and finally for the seismic zone 5 of 0.05g, see Table 7.8. 

 

    
(a)   (b) 

Figure 7.27 – Zoning for seismic action with a return period of 475 years: (a) near action and (b) 

distant action.  
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Table 7.7 – Peak ground acceleration for near 

seismic action. 

Zones ag (cm/s2) TB (s) TC (s) TD (s)
1 170 
2 110 
3 80 

0.10 0.25 2.00

 

Table 7.8 – Peak ground acceleration for distant 

seismic action. 

Zones ag (cm/s2) TB (s) TC (s) TD (s)
1 250 
2 200 
3 150 
4 100 
5 50 

0.10 0.60 2.00

 
 

For the horizontal components of the seismic action the design spectrum, Sd(T), is 

defined by the following expressions: 
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Where, T is the vibration period of a linear single-degree-of freedom system, ag is the design 

ground acceleration on type A ground (ag=γagr), S is the soil factor, agR is the reference peak 

ground acceleration, γ is the importance factor, q is the behaviour factor and β is the lower 

bound factor for the horizontal design spectrum, recommended to be equal to 0.2, TB and TC, 

are the lower and upper limits of the period of the constant spectral acceleration branch and 

TD is the period defining the beginning of the constant displacement response range of the 

spectrum. 

The fundamental period of vibration of the building can be calculated based on the 

Rayleigh method, by considering the first mode shape, or in buildings with total height up to 

40m, it can be approximated by the following expression: 

 

 

 

 



Chapter 7 – Development of a new analytical design method 292 

4/305.0 HT =  Eq. 7.34

 

Where, H is the height of the building, in m, from the foundation or from the top of a rigid 

basement. 

The use of the behaviour factor, q, aims at considering in a simplified manner the 

material non-linear behaviour. Note that all the ordinate of the response spectra are reduced 

by the behaviour factor, leading to the obtaining of the design response spectra. 

After the definition of the response spectrum, the base shear forces to perform an 

elastic structural analysis are calculated from Eq. 7.35. 

 

( ) λmTSF dsa =  Eq. 7.35

 

Where, Sd(T) is the ordinate of the design spectrum at period T, m is the total mass of the 

building above the foundation, λ is the correction factor to takes into account the lesser 

effective modal mass of the 1st fundamental mode (on average by 15% than the total building 

mass). 

The weight considered to calculate the seismic actions should be calculated by the 

combination of permanent, Gk,j, and variable actions, Qk,i see Eq. 7.36. 

 

∑ ∑+ ikiEjk QG ,,, ψ  Eq. 7.36

 

Where, ψE,I is the combination coefficient for variable action i. 

When the fundamental shape is approximated by horizontal displacements increasing 

linearly along the height of the building, the horizontal forces Fsai should be taken as being 

given by Eq. 7.37. 

 

∑
=

ii

ii
sasai zw

zw
FF  Eq. 7.37

  

Where, wi is the weigth in i-storey and zi is the height of the i-storey.  

The horizontal forces calculated according to Eq. 7.37 shall be distributed to the 

lateral load resisting system assuming that the floors are rigid in their plane. In this study the 

building was considered to be localized at North of Portugal, in zone 3 and 5 for near and 

distant seismic actions respectively. A correction factor, λ, of 0.85 is considered. A behaviour 

factor of 2.5 is adopted as reinforced masonry system is foreseen. The soil factor S is 
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considered to be equal to 1.0. The masonry building in analysis presents a fundamental 

period equal to 0.60, which leads to values of Sd equal to 33.33 cm/s2 and 50 cm/s2 for near 

and distant seismic actions. Table 7.9 presents the seismic forces acting at the distinct levels 

of building. 

 
Table 7.9 – Seismic forces acting in different levels of building. 

Height (cm) Weigth (kN) Close action (kN) Distant action (kN) 
280 1272.82 7.63 11.44 
560 1272.82 15.26 22.89 
840 1272.82 22.89 34.33 

1120 1272.82 30.51 45.78 
1400 1272.82 38.14 57.22 
1680 1272.82 45.77 68.66 
1960 1272.82 53.40 80.11 
2240 1010.98 48.47 72.72 
2560 582.51 31.92 47.89 
2720 119.14 6.94 10.41 

 

7.5.4 Actions combinations 

 

For the calculation of the internal efforts in masonry structural elements three load 

combinations were considered according to RSA (1983). The first load combination 

considered the live load as the as the main variable action, see Eq. 7.38. The second 

combination considered wind load as the main variable action, see Eq. 7.39. Finally, the last 

combination considered seismic forces as the main variable action, see Eq. 7.40. Only 

seismic forces for the distant action were considered in analysis since it was the more 

unfavourable. 

 

( )WkQkGkd SSSS 6.05.15.1 ++=  Eq. 7.38

( )QkWkGkd SSSS 7.05.15.1 ++=  Eq. 7.39

QkEkGkd SSSS 4.05.1 ++=  Eq. 7.40

 

Where, Sd is design action, SGk is the characteristic value of permanent actions, SQk is the 

characteristic value of live load, SWk is the characteristic value of wind actions and SEk is the 

characteristic value of seismic actions. 
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Each actions combination was considered in direction x and in direction y. In direction 

y, horizontal loads were applied with positive and negative sign since in this axis the 

analyzed building is not symmetrical.  

 

7.5.5 Structural analysis 

 

Structural analysis was performed through the representation of the building by a 3D-

frame, see Figure 7.28. In this type of analysis masonry walls are represented by 3D bars 

positioned at gravity center of the wall. Rigid bars connect the walls that intersect themselves 

in the plane of each floor in order to ensure the interaction between them. Masonry beams 

are also represented by simple bars connecting the groups of walls, see Figure 7.29.  

 

 
Figure 7.28 – 3D-frame representing the masonry building. 
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Figure 7.29 – Representation of rigid and flexible bars. (Nascimento, 1999).  
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 All bars were represented by beam elements with 6 degree of freedom per node. The 

transverse displacement for these elements is a cubic Hermite shape function expressed in 

the nodal displacements and rotations. It is assumed that the cross sections remain plane 

and perpendicular to the slope of the beam axis. Therefore these beam elements may be 

viewed as based on the Bernoulli theory. Shear deformation was taken into account 

according to the theory of Timoshenko, assuming a constant shear stress distribution along a 

cross-section. In order to consider the slab as a rigid diaphragm, all nodes in each floor were 

tied to a master node located in the geometrical center of the building. Horizontal forces were 

applied in the master node at the level of each floor. 

 Bars representing walls and masonry beams were considered with the real 

geometrical properties. Transversal section of rigid bars was considered with the thickness of 

the walls and with the ceiling height as suggested by Ramalho and Corrêa (2003). The 

elastic modulus of 2.77GPa was considered for all bars since according to Eurocode 6 

(2005) this value corresponds to a masonry composed of units with compressive strength of 

5.0MPa and mortar with a compressive strength of 10.0 MPa.  

  

7.5.6 Internal forces 

 

The numerical modelling of the 3D-frame of the building provides the normal, shear 

forces and bending moments in all bars of the building for the three load combinations. The 

walls and beams of the masonry building were named as shown in Figure 7.30.  

 

 
Figure 7.30 – Name of the walls and beams of masonry building. 

 

The complete results of the walls and beams are presented in Appendix B. After the 

attainment of the internal forces, namely the axial force, N, the bending moment, M, and the 
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shear force, V, structural masonry walls and beams can be designed by considering the 

three combinations previously presented. 

As the design of the masonry structural elements is repetitive, it was decided to 

present the example of only one wall and one beam in order to exemplify the design 

procedure. For the design of the masonry elements the following mechanical material 

properties were admitted: 

• Compressive strength of unit: 5.0 MPa. 

• Compressive strength of mortar: 10.0 MPa. 

• Compressive strength of masonry perpendicular to bed joints: 2.77 MPa. 

• Compressive strength of masonry parallel to bed joints: 1.39 MPa. 

• Tensile strength of masonry: 0.40 MPa. 

• Flexural strength of masonry: 0.10 MPa 

• Friction coefficient of joints: 0.40. 

• Cohesion of joints: 0.20 MPa. 

• Yield strength of reinforcements: 700 MPa 

• Safety factor for masonry: 2.0 

• Safety factor for reinforcements: 1.15 

 

7.5.6.1 Design of a masonry wall 

 

Wall P16 was chosen to exemplify the design procedure for shear walls since it is in 

general, one of the walls with the highest moment, normal and shear forces. The internal 

forces considered more unfavourable were obtained for the load combination where the 

seismic action was the main variable load, see  

Table 7.10 to Table 7.12.  

 
Table 7.10 – Axial forces in wall P16 for lateral load applied in y-direction (kN). 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

P16a -246 -219.6 -194.8 -169 -140.8 -109.2 -73.76 -34.29
P16b -244.7 -218.5 -193.8 -168.2 -140.2 -108.8 -73.46 -34.17

Wall

 
 

Table 7.11 – Shear forces in wall P16 for lateral load applied in negative y-direction (kN). 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

P16a -57.55 -58.95 -56.7 -52.24 -45.81 -37.43 -26.79 -12.82
P16b -57.55 -58.94 -56.68 -52.22 -45.78 -37.39 -26.75 -12.77

Wall

 
 

Table 7.12 – Bending moments in wall P16 for lateral load applied in negative y-direction (kNcm). 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

P16a -19250 -14800 -12020 -9654 -7418 -5258 4326 2346
P16b -19250 -14800 -12020 -9652 -7414 -5254 4321 2336

Wall
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The entrance of data in software RMW regarding wall P16, corresponding to the 

section of the basement, is presented in Figure 7.31. 

 

(a) (b) 

Figure 7.31 – Entrance of data of wall P16 in software RMW; (a) geometry data; (b) mechanical 

properties of materials 

 

The flexural cracking bending moments calculated from Eq. 4.15. for wall P16 are 

indicated in Table 7.13. Results indicate that at the basement and 1st floor acting moments 

are higher than resisting bending moments, meaning that flexural cracking occur. This result 

indicated that vertical reinforcement can be added in order to avoid this type of cracking.  

 
Table 7.13 – Flexural cracking moments for lateral load applied in negative y-direction (kN.cm). 

BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR
P16a 15345 13893 12529 11110 9559 7821 5872 3701
P16b 15274 13833 12474 11066 9526 7799 5855 3694

Wall

 
 

If the minimum vertical reinforcement ratio suggested by Eurocode 8 (2003) to be 

used in seismic regions of 0.08%, which is equivalent to a reinforcement area of 5.44cm2, is 

applied in the wall, the flexural cracking can be avoided. Considering the pre-fabricated 

reinforcements used in this study, 15 trussed-bars with 5mm-diamater should be applied in 

wall P16 according to Figure 7.32. The flexural strength of the reinforced wall can be 

calculated through Eq. 7.12 to Eq. 7.16 according to the flexure theory. In Figure 7.33 

information on the position of neutral line (x), the compressive force in masonry (Fm) and its 

position in masonry section (xg) and strains and forces in reinforcements is indicated. It is 

observed that by adding the minimum vertical reinforcement to the wall, its flexural resisting 

moment increases considerably. 
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Figure 7.32 – Vertical reinforcements in wall P16. 

  

Figure 7.33 – Results of software RMW for the 

flexural design of wall P16 at the basement. 

 

The interaction diagrams NxM and VxN given by software RMW for the wall P16 with 

the vertical reinforcement previously considered are indicated in Figure 7.34.  

 

Figure 7.34 – Interaction diagrams M x N and V x N of wall P16 

 

It can be seen that lateral resistance is ruled by shear up to a normal force of 

approximately 200kN, after which the lateral resistance is governed by flexure resisting 

mechanism. The results indicate also that no horizontal reinforcement is needed for the 

global stability of the walls as the shear internal force is considerably lower than the shear 

resistance. These results indicate that maybe unreinforced masonry can also be a structural 

solution in regions with moderate to low seismic hazard. 

The interaction diagrams MxN and VxN for wall P16 reinforced at bed joints with the 

minimum horizontal reinforcement suggested by Eurocode 8 (2003) and Eurocode 6 (2005) 

of 0.05% for masonry walls in seismic areas are presented in Figure 7.35 . This horizontal 

reinforcement ratio is equivalent to an area of 2.80cm2 .Considering the pre-fabricated 
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reinforcements used in this study, 7 trussed-bars with 5mm diameter with vertical spacing of 

two courses should be applied in wall P16. In this case, the lateral resistance of the wall is 

always controlled by the flexural resisting mechanism. It is seen that the shear envelop is 

always above the flexural envelop. This is the result of the increase on the shear resistance 

of the wall by the addition of the horizontal reinforcement. 

 

Figure 7.35 – Interaction diagrams M x N and V x N of masonry wall P16 with horizontal 

reinforcement provided by software RMW. 

 

7.5.6.2 Beam 

 

Masonry beam L2 was chosen to exemplify the design procedure for masonry beams. 

As in case of shear walls, the more unfavourable internal forces were associated to load 

combination which the seismic action was the main variable action. For masonry beam L2, 

the horizontal load acting in x-direction is predominant. Under this load combination the 

beam L2 is subjected to the internal forces presented in Table 7.14. Masonry beams are not 

subjected to axial forces since all nodes at level of each floor was considered with the same 

x- and y- displacements in order to ensure the consideration of rigid diaphragm to slabs. 

 
Table 7.14 – Shear forces and moments in beam L2 for lateral load applied in x-direction with seismic 

forces as the main action. 

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)
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(kN)

M
(kNcm)
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M
(kNcm)

V
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M
(kNcm)

V
(kN)

L2a -3449 -42.17 -2484 -33.99 -2530 -34.78 -2464 -33.9 -2372 -32.44 -2316 -31.33 -2415 -32.37 -565.7 -11.68
L2b 4259 -49.43 5169 -60.2 5127 -61.04 4679 -57.15 3983 -50.25 3132 -41.43 2311 -32.53 445.6 -8.56

ROOF
Beam

1ST FLOOR 2ND FLOOR 7TH FLOOR6TH FLOOR5TH FLOOR4TH FLOOR3RD FLOOR
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Entrance of data in software RMW of beam L2 regarding the internal forces recorded 

in 1st floor is presented in Figure 7.36. Considering that this window has a height equal to 

120 cm and the ceiling height of the building is 280 cm, the height of beam L2 is the 

difference between these two values. Thus, the beam L2 has a section with 160 cm x 20 cm. 

Considering the material properties, the bending moment which generates the flexural 

cracking can be calculated through Eq. 4.15. As no axial force acts in beam, the bending 

moment that generates the flexural cracking is the same for all floors and equal to         

426.67 kNcm. 

 

Figure 7.36 – Entrance of data of beam L2 in software RMW. 

 

Observing the acting bending moments in beam L2 in all floors presented in Table 

7.14 it is seen that moment of flexural cracking is very low and the beams should be 

reinforced. Considering the minimum reinforcement suggested by Eurocode 8 (2003), 1.6cm2 

of horizontal reinforcement should be applied in beam L2. Considering the pre-fabricated 

reinforcements used in this study, 4 trussed bars with 5mm diameter with spacing of two 

courses should be applied. The flexural strength of the masonry beam may be simply 

calculated through the classic theory of flexure through Eq. 7.12 to Eq. 7.16. Reinforced 

masonry beam resist to a bending moment equal to 5756.53 kNcm. On the other hand, the 

diagonal shear cracking load and thus the shear resistance of unreinforced masonry beam 

calculated by Eq. 7.17 and the flow chart of Figure 7.8 is equal to 7.69 kN, which is lower to 

the internal shear forces. Thus, vertical reinforcement should be added to the beam L2 to 

resist the shear forces. Shear generates diagonal cracking in beams as shown in Figure 

7.37. The introduction of vertical reinforcements provides the control of diagonal cracks and 

allows the development of shear strength in vertical joints. Thus, low vertical reinforcement 

ratios generate a high increasing in shear strength. Considering the pre-fabricated 
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reinforcements used in this study, 2 trussed-bars with 3mm-diamater with spacing showed in 

Figure 7.37 increased the resisted shear force to 143.53 kN, see Figure 7.38. 

 

120

J1

J1
16

0

30

20

 
Figure 7.37 – Diagonal cracking in beam L2 and 

reinforcement to be applied. 
 

Figure 7.38 – Design of beam L2 through 

software RMW.  

 

7.6 Summary and conclusions 
 

Based on experimental and numerical analysis a new design method for masonry 

elements subjected to in-plane loading was proposed. This model is considered to be an 

adaptation of the Brunner and Shing’s model (Brunner and Shing, 1996). The design method 

considers the coupling behaviour between flexure and shear in masonry elements. Flexure is 

evaluated through the classic theory of flexure. In case of unreinforced masonry walls, the 

shear resistance is assumed to be equal to the diagonal cracking shear force assuming 

masonry as a homogeneous and isotropic material and calculated based on the theory of 

elasticity. For reinforced masonry walls and beams a Mohr-Coulomb criterion is adopted to 

describe the shear resisting mechanism and only the compressed part of the walls and 

beams is considered for the calculation of the contribution of masonry the shear resistance. 

The compressed part of masonry is calculated based on the equilibrium of the section 

through the classic theory of flexure.  

The analytical method proposed was compared with three other analytical methods 

presented in literature review. The accuracy of three design models for masonry walls was 

evaluated and compared through the application of the models to a database composed of 
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101 walls. The proposed model presents a better performance than the other analytical 

models when a comparison is made between the experimental and analytical lateral 

resistance.  

A Windows® application was developed to verify in a fast simple manner the capacity 

of sections of unreinforced and reinforced masonry walls. The software evaluates sections of 

reinforced masonry elements subjected to in-plane loading through four different analytical 

models: Tomaževič’s analytical model (Tomaževič, 1999), Eurocode 6 (2005), Brunner and 

Shing’s model (Brunner and Shing, 1996) and the analytical model proposed in this research. 

Besides, software provides also the shear and flexural cracking loads and interaction 

diagrams MxN and VxN. Finally, an example of design of a masonry building is presented in 

order to exemplify the use of the software RMW. 
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8 CONCLUSION AND FINAL REMARKS 

 

8.1 Conclusion 
 

The very complex behaviour of masonry structures under in-plane loading observed 

by other researchers could be confirmed in the present work. Besides the anisotropic 

behaviour of masonry, the bi-axial stress state to which they are subjected becomes shear 

walls and beams structures an object for scientific research in the field of civil engineering. 

This work aimed at contributing to the advance on the understanding of reinforced masonry 

structures subjected to lateral loading. In the author’s point of view, this work contributed to 

achieve a better insight on the in-plane behaviour of masonry walls and beams and to clarify 

the influence of distinct parameters such as the presence of vertical and horizontal 

reinforcements, reinforcement ratios, boundary conditions, pre-compression level and 

masonry bond pattern. The work was divided in an enlarged experimental and numerical 

analysis of shear walls and masonry beams aiming at combining the main results for the 

development of  a new analytical method for the design of reinforced masonry walls and 

beams.  

 

8.1.1 Characterization of materials 

 

The characterization of materials plays an important role on the accurate analysis of 

experimental results of masonry walls and beams. Besides, the results of this chapter are 

fundamental for the numerical analysis as the mechanical properties of masonry and 

masonry materials are mandatory. Finally, the mechanical properties of materials are the 

fundamental data if the design of the structural masonry elements under in-plane loading is 

required. Regarding the characterization of materials it was possible to formulate the 

following conclusions:   
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a) The compressive test carried out on masonry wallets in the direction parallel to 

shells of the concrete blocks appeared to be an interesting alternative 

experimental method to obtain the tensile strength of the units. When the unit is 

under this type of compressive loading, tensile stresses develop in the central 

web of units. The diagram stress vs. strain in this tests presented two distinct 

phases. In first phase webs and shells resist the stresses as a conjunct.  When 

the central web reaches the tensile strength of unit, a peak of deformation occurs 

and after that only the shells of unit resist the stresses; 

b) The equal displacements measured in the middle of a concrete unit and in one 

vertical joint in compressive tests normal to bed joints confirmed the 

homogeneous behaviour of masonry. Results of these tests indicated that the 

compressive behaviour of masonry normal to bed joints follows a parabolic 

behaviour as in case of concrete under compression; 

c) In case of compressive strength of masonry parallel to bed joints the parabolic 

behaviour was not observed. In these tests a very ductile behaviour was observed 

mainly in specimens built with three cell concrete blocks since in this case the 

masonry was built without filling of vertical joints. Compressive strength of 

masonry parallel to bed joints presented lower values when compared with 

compressive strength perpendicular to bed joints; 

d) The equation proposed for Eurocode 6 (2005) to determine the compressive 

strength of masonry as a function the compressive strength of unit and mortar 

presented good correlation with the experimental results for both loading 

directions; 

e) In case of diagonal tests it could be concluded that the filling of vertical joints has 

a great influence on the tensile and shear strength of masonry. Specimens built 

with 2C-units and consequently with filled vertical joints presented an increase 

higher than 100%. 

 

8.1.2 Experimental analysis of reinforced masonry shear walls 

 

In experimental campaign carried out for the analysis of reinforced masonry walls 

under in-plane cyclic loading, geometry of units, masonry bond pattern, pre-compression 

level and horizontal reinforcement ratio were the variables analyzed. With the results of these 

tests it was possible to formulate the following conclusions: 
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a) Masonry bond pattern has no significant influence on the overall behavior of the 

reinforced walls, which means that the easier construction technology through 

bond pattern B2 can be a reasonable solution; 

b) The vertical pre-compression influences the behavior of the reinforced concrete 

block masonry walls. Higher values of normal stresses are associated to higher 

values of lateral strength but more fragile behaviour, leading to the reduction of 

the reinforcement efficiency;  

c) The effectiveness of the horizontal reinforcement appears to be related with the 

presence of vertical reinforcement. If vertical reinforcement is present, initial 

flexural cracking is limited, which enables the progression and development of 

diagonal cracking. On the other hand, it is demonstrated that the variation of the 

percentage of horizontal reinforcement seems not to improve the lateral strength. 

However, crack localization appears to be avoided by the presence of horizontal 

reinforcement, enabling a more smeared crack distribution and larger nonlinear 

lateral deformations. 

d) The use of filled vertical joints seemed to improved the lateral behaviour of 

masonry walls. Comparing specimens N60-2C-B2 and N60-3C-B2, a very similar 

behaviour can be observed in terms of lateral strength and deformation capacity. 

However, specimens built with 2C-units have lower thickness. More researches 

should be carried out to confirm this hypothesis. 

 

8.1.3 Tests in masonry beams 

 

In masonry buildings subjected to horizontal loads masonry beams are the elements 

responsible for the transference of load between masonry piers in case of the existence of 

openings. Thus, an experimental program was defined in order to better understand the 

behaviour of masonry beams. With the results of these tests it was possible to formulate the 

following conclusions: 

a) Unreinforced masonry beams present very low tensile strength and very brittle 

failure. 

b) Horizontal reinforcement clearly improved the flexural behaviour of masonry 

beams by increasing its tensile strength, the ductility through remarkable 

increasing deformation capacity and by providing a control of cracks opening. 

Besides, horizontal reinforcement seems to contribute to shear strength through 

the dowel action mechanism, delaying the opening of diagonal cracking. 
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c) Vertical reinforcements increase the shear strength and provide a better 

distribution of cracks. However, the location of vertical bars had a fundamental 

influence in its contribution to resist the shear stresses. 

d) Vertical reinforcement also improved the flexural behaviour of masonry beams in 

compressed area, producing a good control of the cracking and avoiding the 

splitting of units. 

e) The filling of vertical mortar joints had a great influence in behaviour of masonry 

beams. Masonry beams built with 2C-units and consequently with the fill of 

vertical joints presented higher strength than similar masonry beams built with 3C-

units and consequently without filling of vertical joints. 

 

8.1.4 Numerical modelling 

 

Based on the experimental results a numerical model using the micro-modelling 

approach was calibrated and a parametric analysis was carried out for shear walls and 

masonry beams using the software DIANA®. Aspect ratio, vertical and horizontal 

reinforcement ratios and masonry bond pattern were the variables analyzed. In case of shear 

walls, pre-compression level was also varied. With the results of these studies it was 

possible to formulate the following conclusions: 

a) The mechanical behaviour of masonry shear walls and beams under in-plane 

loading appeared to be described by the same flexural and shear resisting 

mechanisms; 

b) Failure mode of shear walls and masonry beams is highly influenced by boundary 

conditions. In cantilever walls and simply supported beams the flexural behaviour 

is preponderant flexural behaviour, whereas in fixed end walls and fixed end 

beams the shear behaviour takes the major role on the in-plane behavior. 

c) Filling of the vertical joints has no influence in flexural behaviour of shear masonry 

walls. However, in case of walls with preponderance of shear behaviour the filling 

of vertical joints can increase the lateral strength in 20%. In case of masonry 

beams the filling of vertical joints improve flexural and shear behaviour.  

d) Lateral strength of shear walls potentially increased with the reduction of the 

aspect ratio and with the increasing of pre-compression. However, when 

compressive stresses increase beyond 40% of the compressive strength of 

masonry, compressive failure takes a central role, being the lateral strength 

decreased considerably for higher values of the pre-compression; 
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e) Horizontal reinforcements increase the lateral strength of shear walls when 

diagonal cracks open by avoiding the separation of the wall into two parts and 

promoting the stress transfer between both edges of the diagonal crack. Besides, 

horizontal reinforcement ensures a control of the diagonal cracking and increases 

the deformation capacity, providing a higher ductility for the masonry wall and 

enables a better distribution of the stresses in the wall; 

f) Vertical reinforcement increases the flexural capacity of walls. However, if shear 

failure predominates the introduction of vertical reinforcements can reduce the 

lateral strength of the wall since they increase the tensile stresses at the middle of 

wall. This behaviour does not occur if the walls are reinforced with horizontal bars.  

g) Flexural strength of masonry beams without filled vertical joints is very influenced 

by the interlocking between the units. 

h) In case of masonry beams, horizontal reinforcements improve the flexural 

behaviour by increasing the tensile strength of masonry, avoiding the premature 

failure though the sudden propagation of flexural cracks from the bottom edge to 

the top edge of the beam. As in case of shear walls, horizontal reinforcements 

provide the control of cracking. However, horizontal reinforcement seemed not to 

influence the shear strength of beams. 

i) Vertical reinforcement provides an additional resistance in masonry beams after 

the appearance of diagonal crack and controls its opening.  

 

8.1.5 Development of a new design method 

 

Based on experimental and numerical results a new design method was developed 

considering the coupling behaviour between flexure and shear. In this proposed model, 

flexure is evaluated through the classic theory of flexure, whereas shear behaviour is 

described by a Mohr-Coulomb’s failure criterion and the shear strength is obtained by an 

iterative method. The new proposed model can be considered as an update of the Brunner 

and Shing’s model combined with Tomaževič’s model for unreinforced masonry walls. The 

proposed model was validated by using it on the prediction of the lateral strength of masonry 

walls from a database composed of 101 masonry walls. The database was built with the 

results of in-plane tests available in literature. In case of masonry beams the same procedure 

could not be carried out due to the absence of results in literature. 
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8.2 Further Works 
 

In the scope of mechanical characterization of masonry some aspects that deserve 

further attention are highlighted: 

a) Assessment of the influence of the mortar composition on the compressive 

strength of masonry parallel to bed joints, in tensile strength of masonry (through 

diagonal tests) and in tensile and shear strength of unit-mortar interface; 

b) Evaluation of the influence of reinforcements in compressive strength of masonry 

parallel to bed joints; 

c) Evaluation of bi-axial behaviour of masonry with concrete units mainly in tension-

compression; 

d) Evaluation of the bond strength of pre-fabricated trussed bars used as vertical 

and horizontal reinforcement; 

e) Detailed study for further clarification of the influence of the filling of vertical joints 

on the shear behaviour of masonry; 

f) Evaluation of the influence of reinforcements on the shear strength of masonry by 

means of diagonal compressive tests. 

 

In the scope of masonry shear wall some research orientations are highlighted: 

a) Study of masonry walls reinforced only with horizontal bars; 

b) Experimental assessment of the dowel action of longitudinal reinforcements on 

the shear behaviour of masonry walls; 

c) Study of masonry walls wit H section in order to verify the influence of the 

transversal walls in shear behaviour; 

d) Study of bond beams in behaviour of shear walls; 

e) Evaluation of the in-plane behaviour of masonry walls with openings. 

In the scope of masonry beams some aspects that deserve further attention are 

highlighted: 

a) Study of masonry beams using the units with U-shape (lintel blocks) in the base of 

specimens; 

b) Detailed of the dowel action effect provided by horizontal reinforcements; 

c) Evaluation of masonry beams with low span to height ratios since they are more 

common in masonry buildings; 

d) Study of the anchorage of vertical bars in beams; 
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APPENDIX A – SHEAR WALLS 

 

A.1 Lateral displacements  
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Figure A.1 – Displacements of LVDT 2: (a) N60-3C-B1-UM, (b) N60-3C-B1-SH, (c) N60-3C-B1-MA 

and (d) N60-3C-B1-PA. 
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Figure A.2 – Displacements of LVDT 2: (a) N60-3C-B1, (b) N60-3C-B2, (c) N150-3C-B1, (d) N150-

3C-B2, (e) N60-2C-B1 and (f) N60-2C-B2. 
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Figure A.3 – Displacements of LVDT 3: (a) N60-3C-B1-UM, (b) N60-3C-B1-SH, (c) N60-3C-B1-MA, 

(d) N60-3C-B1-PA, (e) N60-3C-B1 and (f) N60-3C-B2. 
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Figure A.4 – Displacements of LVDT 3: (a) N150-3C-B1, (b) N150-3C-B2, (c) N60-2C-B1 and (d) 

N60-2C-B2. 
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A.2 Diagonal displacements 
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Figure A.5 – Diagonal displacements of specimen N60-3C-B1-UM. 
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Figure A.6 – Diagonal displacements of specimen N60-3C-B1-SH. 
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Figure A.7 – Diagonal displacements of specimen N60-3C-B1. 
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Figure A.8 – Diagonal displacements of specimen N60-3C-B2. 
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Figure A.9 – Diagonal displacements of specimen N150-3C-B1. 

 

-100

-80

-60

-40

-20

0

20

40

60

80

100

-4 -3 -2 -1 0 1 2 3 4 5 6 7

Horizontal
Load 
(+)

(+)

 

Displacement (mm)

Lo
ad

 (k
N

)

-100

-80

-60

-40

-20

0

20

40

60

80

100

-4 -3 -2 -1 0 1 2 3 4 5 6 7

Horizontal
Load 
(+)

(+)

 

Displacement (mm)

Lo
ad

 (k
N

)

Figure A.10 – Diagonal displacements of specimen N150-3C-B2. 
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Figure A.11 – Diagonal displacements of specimen N60-3C-B1-MA. 
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Figure A.12 – Diagonal displacements of specimen N60-3C-B1-PA. 
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Figure A.13 – Diagonal displacements of specimen N60-2C-B1. 
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Figure A.14 – Diagonal displacements of specimen N60-2C-B2. 

 

A.3 Vertical displacements 
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Figure A.15 – Vertical displacements of specimen N60-3C-B1-UM. 
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Figure A.16 – Vertical displacements of specimen N60-3C-B1-SH. 
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Figure A.17 – Vertical displacements of specimen N60-3C-B1. 
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Figure A.18 – Vertical displacements of specimen N60-3C-B2. 
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Figure A.19 – Vertical displacements of specimen N150-3C-B1. 
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Figure A.20 – Vertical displacements of specimen N150-3C-B2. 
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Figure A.21 – Vertical displacements of specimen N60-3C-B1-MA. 
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Figure A.22 – Vertical displacements of specimen N60-3C-B1-PA. 
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Figure A.23 – Vertical displacements of specimen N60-2C-B1. 
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Figure A.24 – Vertical displacements of specimen N60-2C-B2. 

 

Obs.: Diagrams results represent the medium values of LVDTs positioned in extremities of 

the wall. 
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A.4 Interior rotation of the walls  
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Figure A.25 – Interior rotation: (a) N60-3C-B1-UM, (b) N60-3C-B1-SH, (c) N60-3C-B1-MA, (d) N60-

3C-B1-PA, (e) N60-3C-B1 and (f) N60-3C-B2. 
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Figure A.26 – Interior rotation: (a) N150-3C-B1, (b) N150-3C-B2, (c) N60-2C-B1 and (d) N60-2C-B2. 

 

Obs.: interior rotation (θi) of the walls was measured by vertical LVDTs attached to the wall 

(LVDTs 10, 11, 12 and 13) and calculated as follows: 
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Eq. A.1

 

Where, δ is the displacement measured by the respective LVDT and l1 is the distance 

between the vertical LVDTs attached to the side of wall. 
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A.5 Rotation of the top of the walls 
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Figure A.27 – Rotation of the top of the wall: (a) N60-3C-B1-UM, (b) N60-3C-B1-SH, (c) N60-3C-B1-

MA, (d) N60-3C-B1-PA, (e) N60-3C-B1 and (f) N60-3C-B2. 
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Figure A.28 – Rotation of the top of the wall: (a) N150-3C-B1, (b) N150-3C-B2, (c) N60-2C-B1 and (d) 

N60-2C-B2. 

 

Obs.: rotation of the top of the wall (θt) was measured by vertical LVDTs attached to the top 

of wall (LVDTs 6 and 7) and calculated as follows: 

 

2

76
l

LVDTLVDT
t

δδ
θ

−
=  Eq. A.2

 

Where, δ is the displacement measured by the respective LVDT and l2 is the length of wall.  

 

 In some specimens, the measurements of LVDTs which measured the rotation of the 

top of the wall reached values higher than the length of the field of them.  
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A.6 Strain-gauges in horizontal reinforcements 
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Figure A.29 – Strains in horizontal reinforcement (N60-3C-B1-SH): (a) Ext. 7 and (b) Ext. 8. 
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Figure A.30 – Strains in horizontal reinforcement (N60-3C-B1): (a) Ext. 7 and (b) Ext. 8. 
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Figure A.31 – Strains in horizontal reinforcement (N60-3C-B2): (a) Ext. 7 and (b) Ext. 8. 
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Figure A.32 – Strains in horizontal reinforcement (Ext. 8): (a) specimen N150-3C-B1 and (b) 

specimen N150-3C-B2. 
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Figure A.33 – Strains in horizontal reinforcements of specimen N60-3C-B1-MA (Ext. 8). 
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Figure A.34 – Strains in horizontal reinforcement (N60-3C-B1-PA): (a) Ext. 7 and (b) Ext. 8. 
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Figure A.35 – Strains in horizontal reinforcement (N60-2C-B1): (a) Ext. 7 and (b) Ext. 8. 

 

-100

-80

-60

-40

-20

0

20

40

60

80

100

-1000 0 1000 2000 3000 4000 5000

Horizontal
Load 
(+)

Strain x10-6 (mm/mm)

Lo
ad

 (k
N

)

-100

-80

-60

-40

-20

0

20

40

60

80

100

-1000 0 1000 2000 3000 4000 5000

Horizontal
Load 
(+)

Strain x10-6 (mm/mm)

Lo
ad

 (k
N

)

(a) (b) 

Figure A.36 – Strains in horizontal reinforcement (N60-2C-B2): (a) Ext. 7 and (b) Ext. 8. 
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A.7 Strain-gauges in vertical reinforcements 
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Figure A.37 – Strains in vertical reinforcement (N60-3C-B1): (a) Ext. 1, (b) Ext. 3 and (c) Ext. 5. 
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Figure A.38 – Strains in vertical reinforcement (N60-3C-B1-PA): (a) Ext. 1 and (c) Ext. 2. 
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Figure A.39 – Strains in vertical reinforcement (N60-3C-B1-PA): (a) Ext. 4, (b) Ext. 5 and (c) Ext. 6. 
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Figure A.40 – Strains in vertical reinforcement (N150-3C-B1): (a) Ext. 1 and (c) Ext. 6. 
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Figure A.41 – Strains in vertical reinforcement (N60-3C-B1-MA): (a) Ext. 1, (b) Ext. 2 and (c) Ext. 5. 
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Figure A.42 – Strains in vertical reinforcement (N150-3C-B2): (a) Ext. 3 and (c) Ext. 6. 
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Figure A.43 – Strains in vertical reinforcement (N60-3C-B2): (a) Ext. 1, (b) Ext. 3 and (c) Ext. 5. 
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Figure A.44 – Strains in vertical reinforcement (N60-2C-B1): (a) Ext. 1 and (c) Ext. 2. 
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Figure A.45 – Strains in vertical reinforcement (N60-2C-B1): (a) Ext. 5 and (c) Ext. 6. 
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Figure A.46 – Strains in vertical reinforcement (N60-2C-B2): (a) Ext. 1 and (c) Ext. 3. 

 

Obs.: Some strain-gauges exhibited damages and did not show measurements. 
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APPENDIX B – INTERNAL FORCES ON WALLS 
AND BEAMS OF MASONRY BUILDING  

 

B.1 Load Combination I - Live load as the main action  
 

Table B.1 – Bending moments and shear forces in beams for lateral load applied in x-direction with 

live load as the main action. 

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

L1a 799.5 -17.3 1043.0 -20.6 1160.0 -22.1 1260.0 -22.9 1383.0 -23.6 1550.0 -23.9 1781.0 -23.4 432.6 -8.3
L1b -717.9 -9.4 -781.5 -7.0 -764.5 7.9 -751.5 10.7 -740.7 13.4 -663.8 15.8 899.9 17.4 296.8 6.6
L2a -482.0 -9.5 -823.4 -12.5 -1046.0 -13.9 -1282.0 -15.8 -1561.0 -18.5 -1915.0 -22.5 -2364.0 -28.5 471.3 -11.5
L2b 1123.0 -19.9 1269.0 -22.8 1107.0 -21.9 782.1 -19.0 -645.1 -14.3 -546.3 -7.9 -889.9 12.5 259.8 7.1
L3 -1008.0 -16.8 -1298.0 -21.8 -1369.0 -23.1 -1359.0 -22.5 -1315.0 -20.8 -1266.0 -18.3 -1247.0 -15.0 -1317.0 -6.5
L4a -234.4 -5.8 -252.7 -5.7 -249.1 -5.7 -242.6 -5.9 -243.9 -5.9 -259.2 -5.7 -296.2 5.4 79.8 -3.7
L4b -328.7 5.6 -360.8 6.2 -365.7 6.3 -362.0 6.2 -359.7 6.2 -367.3 6.3 -394.9 6.6 -78.2 -3.5
L5a 140.4 -6.7 170.7 -7.3 193.8 -7.8 211.4 -8.2 223.2 -8.5 228.1 -8.6 225.0 -8.3 145.8 -7.7
L5b -68.9 -3.7 -64.2 -3.9 -55.4 -4.3 -47.3 -4.8 74.6 -5.3 99.8 -5.8 118.1 -6.0 -85.7 -6.2
L6a -652.5 8.6 -683.5 7.3 -677.7 -7.7 -669.0 -8.2 -670.8 -8.7 -696.5 -9.2 -748.9 -9.9 180.5 -5.0
L6b -623.6 -8.0 -744.4 -7.8 -782.3 -7.9 -787.7 -8.3 -788.4 -8.8 -806.0 -9.3 -851.6 -10.0 165.3 -4.9
L7a 88.0 4.6 89.9 4.7 88.5 4.7 88.2 4.7 90.9 4.8 98.5 5.0 119.8 5.6 0.0 4.6
L7b -136.1 -5.6 -86.8 -4.9 61.7 -4.3 74.1 4.2 88.3 4.7 108.4 5.3 144.2 6.1 0.0 -5.6
L8a 310.0 -8.6 -101.5 5.5 122.8 7.5 243.1 9.4 362.0 11.2 470.4 12.6 556.5 13.6 484.9 11.9
L8b -103.1 -4.2 407.8 -9.9 463.3 -10.7 498.5 -11.1 521.8 -11.4 534.9 -11.6 542.1 -11.7 423.1 -9.8
L9a -125.8 7.6 -152.1 9.3 -182.8 10.7 -210.5 11.7 -225.7 12.1 -217.0 11.5 -177.3 9.1 -2213.0 -15.3
L9b -177.8 10.4 -229.1 12.0 -267.6 13.0 -292.4 13.7 -295.9 13.7 -267.8 12.8 -204.0 9.9 -2659.0 -16.1
L10a 376.2 -10.8 542.0 -13.7 644.9 -15.5 718.6 -16.6 775.2 -17.4 816.4 -17.7 842.3 -17.8 713.0 -14.6
L10b -115.5 -6.7 -395.6 -8.7 -485.0 -7.4 -562.1 -7.8 -644.0 -9.2 -732.6 -11.0 -790.2 -12.5 -495.5 -6.7
L11a -256.5 -10.3 -304.6 -12.3 -356.3 -13.5 -397.0 -14.8 -435.0 -16.2 -470.2 -18.0 -482.1 -19.5 -363.7 -13.7
L11b 206.2 -8.8 -95.6 4.6 -78.5 5.4 133.5 6.3 203.7 7.3 269.3 8.1 325.9 8.9 265.1 7.9
L12a 795.6 -16.4 1128.0 -20.6 1336.0 -23.1 1506.0 -24.8 1678.0 -26.0 1883.0 -26.8 2136.0 -26.8 571.6 -10.7
L12b -558.2 -7.5 -651.8 -13.0 -742.5 -11.2 -819.8 -8.3 -975.7 8.9 -1323.0 13.9 -1776.0 20.2 315.1 8.7
L13a -565.6 -11.0 -611.9 9.5 -682.6 12.9 -740.6 16.0 -732.7 18.6 1072.0 20.9 1456.0 22.4 455.2 9.4
L13b -441.9 -12.7 -623.2 -9.9 -728.8 -10.6 -888.0 -12.1 -1161.0 -14.9 -1583.0 -19.6 -2208.0 -27.1 498.9 -11.4
L14 -740.2 -16.3 -980.9 -17.9 -1187.0 -18.0 -1409.0 -17.3 -1684.0 -16.3 -2077.0 -14.9 -2769.0 -13.2 -5046.0 -14.8

ROOF
Beam

1ST FLOOR 2ND FLOOR 7TH FLOOR6TH FLOOR5TH FLOOR4TH FLOOR3RD FLOOR
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Table B.2 – Axial forces in walls for lateral load applied in x-direction with live load as the main action. 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

P1a -48.7 -49.8 -42.2 -34.7 -27.3 -19.9 -12.6 -6.3
P1b -58.0 -44.6 -39.1 -32.9 -26.5 -19.7 -12.8 -6.1
P2a -358.7 -346.1 -295.7 -244.8 -193.8 -142.5 -91.1 -39.1
P2b -394.0 -319.2 -276.7 -232.2 -186.2 -138.6 -89.8 -39.0
P3a -168.1 -148.2 -127.3 -105.9 -84.2 -62.4 -40.2 -17.6
P3b -161.0 -139.6 -120.0 -100.4 -80.3 -59.8 -38.8 -18.0
P4a -261.2 -234.2 -202.2 -170.4 -138.6 -106.2 -72.2 -33.5
P4b -267.5 -228.2 -197.0 -166.1 -135.1 -103.4 -70.3 -33.9
P5a -621.9 -549.7 -472.9 -397.1 -321.4 -244.4 -165.0 -82.3
P5b -628.5 -541.5 -463.7 -388.1 -313.2 -237.8 -160.8 -81.3
P6a -61.5 -52.4 -45.0 -37.8 -30.5 -23.1 -15.7 -8.3
P6b -60.8 -52.2 -44.3 -36.8 -29.5 -22.3 -15.1 -8.1
P7a -527.8 -480.8 -423.6 -366.2 -309.3 -253.4 -198.8 -141.7
P7b -536.0 -476.1 -420.6 -363.7 -306.6 -249.5 -191.2 -125.4
P8a -566.3 -497.5 -437.9 -379.6 -322.8 -268.9 -220.8 -189.2
P8b -559.6 -499.4 -436.9 -376.8 -318.7 -263.6 -214.4 -194.2
P9 -338.0 -309.8 -277.5 -242.8 -207.3 -171.6 -136.2 -22.8
P10 -160.8 -147.1 -130.9 -114.0 -96.9 -80.0 -63.7 -80.3
P11a -239.5 -236.8 -200.6 -165.4 -130.6 -96.1 -62.0 -27.5
P11b -274.9 -214.0 -186.2 -156.6 -125.8 -94.2 -61.8 -28.0
P12a -283.1 -267.1 -228.0 -189.0 -150.0 -111.2 -72.5 -35.2
P12b -305.7 -248.9 -214.4 -179.2 -143.4 -107.1 -70.4 -34.6
P13a -370.0 -333.4 -286.9 -239.4 -191.4 -143.2 -95.2 -46.8
P13b -378.8 -322.4 -274.8 -228.1 -181.9 -135.9 -90.4 -45.0
P14a -251.5 -218.5 -188.6 -158.0 -126.9 -95.6 -64.4 -34.1
P14b -247.7 -215.7 -182.7 -151.1 -120.3 -90.0 -60.2 -31.8
P15a -431.8 -392.0 -337.1 -280.9 -223.7 -166.0 -108.0 -50.1
P15b -445.9 -372.3 -317.9 -264.6 -211.1 -156.7 -102.0 -47.5
P16a -645.3 -568.8 -487.9 -405.0 -321.0 -236.1 -150.8 -66.5
P16b -573.9 -518.0 -452.5 -381.3 -306.3 -228.4 -147.8 -65.5
P17a -338.5 -300.5 -259.5 -216.7 -172.7 -127.6 -81.3 -32.6
P17b -315.4 -279.9 -243.1 -204.6 -164.4 -122.5 -78.8 -32.8
P18a -124.2 -109.7 -93.9 -78.6 -63.4 -47.9 -32.1 -16.2
P18b -127.7 -106.5 -91.0 -76.1 -61.4 -46.5 -31.2 -15.8
P19a -632.8 -554.7 -477.2 -400.7 -324.1 -246.0 -165.1 -80.7
P19b -616.2 -538.6 -462.6 -388.2 -313.8 -238.3 -160.1 -78.9
P20a -213.0 -186.8 -161.5 -136.2 -110.7 -84.7 -57.4 -26.0
P20b -207.7 -181.3 -156.5 -131.9 -107.2 -82.0 -55.5 -25.7
P21a -481.7 -435.2 -376.2 -321.0 -267.9 -215.3 -160.3 -93.0
P21b -501.6 -425.1 -370.7 -317.6 -265.5 -213.4 -158.7 -91.7
P22a -773.0 -694.3 -611.2 -527.8 -446.0 -367.4 -295.3 -218.5
P22b -788.7 -697.7 -608.3 -521.8 -438.2 -358.4 -285.2 -224.8
P23a -367.2 -325.8 -285.2 -245.1 -205.7 -167.4 -130.3 -91.5
P23b -359.5 -321.6 -282.0 -242.2 -203.0 -164.5 -126.4 -83.9
P24a -192.7 -172.3 -151.6 -130.9 -110.5 -91.0 -72.8 -65.2
P24b -194.2 -172.1 -150.9 -129.9 -109.4 -89.6 -71.0 -66.7
P25 -399.4 -352.9 -306.4 -259.9 -213.4 -166.9 -120.4 -24.0

Wall
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Table B.3 – Shear forces in walls for lateral load applied in x-direction with live load as the main 

action. 

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

P2a -6.5 0.0 -10.4 0.0 -11.0 0.0 -11.5 0.1 -12.0 0.1 -12.5 0.1 -12.8 0.1 -11.0 0.0
P2b -9.4 0.0 -3.2 -0.1 -0.9 -0.1 1.1 -0.1 3.2 0.0 5.3 0.0 7.3 0.0 8.3 0.0
P4a -4.7 0.0 -6.4 0.0 -7.1 0.0 -7.6 0.0 -8.3 0.0 -9.4 0.0 -10.9 0.0 -11.9 0.0
P4b -5.0 0.0 -5.3 -0.1 -4.4 -0.1 -2.9 -0.1 -0.9 -0.1 1.6 -0.1 4.4 0.0 6.6 0.0
P6a -0.1 0.0 -0.2 0.0 -0.3 0.0 -0.3 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0
P6b -0.1 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.2 0.0 0.2 0.0
P7a -14.8 -0.1 -12.5 -0.1 -11.7 -0.2 -11.3 -0.2 -11.3 -0.2 -11.8 -0.2 -13.3 -0.3 -20.2 -0.5
P7b -13.8 -0.1 -14.7 -0.1 -13.9 -0.2 -12.0 -0.2 -9.1 -0.2 -5.1 -0.2 0.7 -0.3 11.4 -0.6
P10 -1.7 0.0 -2.1 0.0 -2.0 0.0 -1.9 0.0 -1.7 0.0 -1.6 0.0 -1.4 -0.1 -7.0 0.0
P12a -4.0 0.0 -4.7 0.0 -4.3 0.0 -4.2 0.0 -4.2 0.0 -4.3 0.0 -4.4 0.0 -5.2 0.1
P12b -5.1 0.0 -1.8 0.0 -0.1 0.0 1.1 0.0 2.1 0.0 3.0 0.0 4.0 0.0 5.6 0.0
P14a -2.0 0.0 -4.8 0.0 -5.2 0.0 -5.5 0.0 -5.6 0.0 -5.8 0.0 -5.8 0.0 -7.0 0.0
P14b -3.9 0.0 -0.2 0.0 0.8 0.0 1.7 0.0 2.5 0.0 3.3 0.0 4.0 0.0 5.6 0.0
P15a -5.2 0.0 -14.4 0.1 -15.6 0.1 -16.4 0.2 -17.1 0.2 -17.6 0.2 -17.9 0.2 -21.8 0.2
P15b -11.9 0.1 2.2 0.0 6.3 0.1 9.0 0.1 11.1 0.1 12.9 0.2 14.7 0.2 19.8 0.3
P17a -8.1 0.0 -11.5 0.0 -13.4 0.0 -14.8 0.0 -15.9 0.0 -16.8 0.0 -17.4 0.0 -15.3 0.0
P17b -3.4 0.0 0.6 0.0 3.4 0.0 5.9 0.0 8.2 0.0 10.5 0.0 12.5 0.0 12.3 0.0
P18a -0.6 0.0 -2.1 0.0 -2.6 0.1 -3.0 0.1 -3.3 0.1 -3.7 0.1 -4.0 0.1 -4.3 0.1
P18b -1.1 0.0 -0.6 0.0 -0.1 0.1 0.4 0.1 1.0 0.1 1.7 0.1 2.3 0.1 2.8 0.1
P20a -2.9 0.0 -4.5 0.0 -5.5 0.0 -6.2 0.0 -6.9 0.0 -7.7 0.0 -8.7 0.0 -9.6 0.0
P20b -1.9 0.0 -1.5 0.0 -0.5 0.0 0.8 0.0 2.2 0.0 3.7 0.0 5.4 0.0 6.8 0.0
P21a -9.8 0.0 -4.7 0.1 -3.4 0.1 -3.3 0.1 -4.1 0.1 -6.0 0.1 -10.5 0.0 -24.6 0.0
P21b -7.9 0.0 -9.2 0.1 -8.4 0.1 -7.0 0.1 -4.9 0.1 -1.6 0.1 4.2 0.1 18.5 0.0
P23a -7.1 0.0 -8.8 0.0 -9.6 0.0 -10.2 0.0 -10.7 0.0 -11.6 0.0 -13.2 0.0 -17.4 0.1
P23b -6.8 0.0 -7.5 0.0 -6.5 0.0 -4.9 0.0 -2.6 0.1 0.2 0.1 4.0 0.1 10.4 0.1
P24a -1.9 0.0 -2.6 0.0 -2.7 0.0 -2.7 0.0 -2.7 0.0 -2.7 0.0 -2.7 0.0 -7.4 0.0
P24b -1.7 0.0 -2.0 0.0 -1.9 0.0 -1.6 0.0 -1.2 0.0 -0.6 0.0 0.1 0.1 -7.4 0.1

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 
Table B.4 – Bending moments in walls for lateral load applied in x-direction with live load as the main 

action. 

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

P2a 8.7 -1638.0 2.5 -1527.0 5.8 1574.0 8.0 1696.0 9.5 1800.0 10.3 1887.0 11.2 1910.0 8.5 -1694.0
P2b 2.1 -1689.0 11.9 -697.1 10.6 -253.8 8.3 -224.2 5.6 -485.7 3.2 -761.8 0.5 -1035.0 9.3 1236.0
P4a 6.0 -732.3 4.8 -900.2 5.5 1010.0 4.8 1106.0 3.0 1227.0 0.2 1396.0 -4.1 1639.0 6.7 1691.0
P4b 2.9 -748.6 11.7 -787.2 14.6 -667.6 14.9 -457.5 13.3 -185.1 10.1 -291.8 -6.3 -700.6 3.5 -957.1
P6a 1.9 13.4 1.7 35.8 1.6 43.8 1.4 48.8 1.2 52.1 0.8 54.3 0.4 55.3 0.2 -54.1
P6b 1.2 21.1 3.2 -16.3 3.5 -10.1 3.4 -1.8 3.1 -9.8 2.6 -18.5 2.1 -26.3 1.8 -30.3
P7a 11.4 -3254.0 19.1 -2115.0 23.3 -1682.0 26.4 1707.0 29.5 1819.0 33.9 1995.0 37.9 2380.0 82.2 4098.0
P7b 11.2 -3305.0 21.0 -2383.0 26.4 -2061.0 29.7 -1762.0 32.4 -1374.0 36.4 -881.2 40.2 -476.0 94.2 -2787.0
P10 2.0 -258.2 2.9 -302.4 3.3 -288.9 3.8 -266.7 4.6 244.0 5.8 219.0 7.8 192.2 -2.3 1125.0
P12a 1.9 -869.9 2.1 -729.1 3.1 -615.8 3.9 607.4 4.4 625.4 4.7 650.3 5.0 670.9 -8.0 835.4
P12b 1.5 -924.3 2.7 -384.7 2.3 -72.6 2.4 -181.6 2.7 -294.4 3.1 422.0 3.4 554.2 -6.3 -853.2
P14a 1.2 -492.6 4.7 -671.9 4.1 741.0 3.7 784.5 3.3 814.8 3.0 838.0 3.1 840.2 -0.6 1092.0
P14b 3.8 -612.8 2.0 -95.4 3.0 -147.8 3.3 -256.7 3.4 -362.5 3.4 -466.8 3.7 563.7 -1.6 -856.4
P15a 2.4 -2013.0 20.9 -2052.0 21.2 2253.0 21.7 2424.0 22.2 2541.0 23.5 2620.0 26.8 2666.0 31.6 3679.0
P15b -10.7 -2031.0 5.0 -798.7 10.7 -1094.0 15.6 -1344.0 19.6 -1568.0 23.7 1822.0 -29.7 2072.0 -38.6 -3249.0
P17a 1.7 -1163.0 1.2 1661.0 1.6 1950.0 1.6 2153.0 1.4 2315.0 1.4 2442.0 2.1 2521.0 3.2 -2329.0
P17b 2.3 -955.3 3.9 -276.7 3.9 -593.3 3.8 -909.3 3.5 -1218.0 3.2 -1513.0 3.6 -1780.0 4.7 1872.0
P18a -2.9 -88.0 6.2 304.8 7.1 376.5 7.3 429.6 7.3 477.3 7.2 524.6 7.4 565.3 8.0 603.6
P18b -3.1 178.3 5.9 -90.8 6.8 -33.6 7.0 -72.3 7.1 -160.4 7.1 -253.6 7.4 -341.0 8.2 -400.1
P20a 1.5 425.5 3.4 658.7 5.1 790.4 5.7 895.1 5.4 998.7 4.5 1118.0 3.5 1270.0 -4.6 1378.0
P20b 1.4 -307.3 3.3 -250.2 5.3 -101.6 6.2 -144.4 6.1 -337.2 5.5 -553.1 4.8 -796.3 -5.8 -970.9
P21a 5.6 -2025.0 8.8 -934.6 8.5 -505.0 8.3 563.1 7.9 768.6 7.5 1160.0 7.2 2034.0 4.9 5045.0
P21b 4.3 -2020.0 12.6 -1459.0 11.9 -1253.0 11.5 -1031.0 10.8 -746.1 10.1 -364.1 9.5 -956.5 7.3 -3931.0
P23a 2.0 -1116.0 1.8 -1231.0 1.2 1372.0 1.8 1475.0 2.4 1580.0 3.3 1732.0 4.5 2013.0 -14.6 2762.0
P23b 2.3 -1104.0 4.5 -1120.0 6.3 -980.9 7.1 -748.4 7.4 -443.6 7.7 -127.0 8.3 -711.2 -19.6 -1830.0
P24a 1.3 -272.6 1.2 -362.7 0.6 382.8 1.0 386.0 1.7 382.3 2.7 380.2 -4.3 394.2 8.1 1092.0
P24b 1.4 -253.4 3.1 -287.0 4.4 -273.2 5.1 -232.4 5.6 -173.4 6.1 -98.5 7.3 -31.6 9.6 -1276.0

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR
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Table B.5 – Axial forces in walls for lateral load applied in positive y-direction with live load as the 

main action. 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

P1a -45.9 -41.1 -36.0 -30.6 -24.9 -18.8 -12.3 -6.2
P1b -45.9 -41.0 -36.0 -30.6 -24.9 -18.8 -12.3 -6.2
P2a -322.0 -288.5 -253.2 -215.9 -175.9 -133.2 -87.5 -38.4
P2b -322.0 -288.5 -253.2 -215.8 -175.8 -133.1 -87.4 -38.4
P3a -145.5 -127.9 -111.5 -94.6 -76.9 -58.1 -38.1 -17.1
P3b -145.6 -127.9 -111.6 -94.6 -76.9 -58.1 -38.1 -17.2
P4a -224.7 -202.3 -179.7 -155.2 -129.2 -101.3 -70.8 -34.9
P4b -224.1 -202.8 -180.1 -155.5 -129.3 -101.2 -70.4 -34.7
P5a -624.0 -535.3 -452.9 -375.4 -300.8 -227.2 -153.3 -77.9
P5b -623.0 -536.3 -453.7 -376.0 -301.0 -227.2 -153.0 -77.7
P6a -69.1 -56.1 -45.7 -36.7 -28.6 -20.9 -13.7 -7.4
P6b -69.0 -56.2 -45.8 -36.8 -28.6 -20.9 -13.7 -7.4
P7a -451.7 -416.3 -377.7 -334.8 -289.1 -241.5 -191.6 -134.9
P7b -449.5 -418.9 -379.9 -336.5 -290.2 -241.4 -189.2 -127.6
P8a -540.3 -470.4 -411.4 -356.6 -303.8 -253.2 -207.1 -180.6
P8b -538.2 -472.5 -413.3 -358.2 -305.1 -254.2 -208.1 -192.4
P9 -330.1 -294.2 -259.9 -226.2 -192.9 -160.0 -127.7 -22.8
P10 -137.0 -129.3 -117.6 -104.5 -90.6 -76.2 -61.6 -77.5
P11a -239.2 -211.5 -184.2 -155.6 -125.7 -94.6 -62.3 -28.5
P11b -239.4 -211.4 -184.1 -155.5 -125.6 -94.4 -62.2 -28.5
P12a -269.1 -240.4 -209.1 -176.5 -142.6 -107.5 -71.5 -35.4
P12b -269.2 -240.4 -209.1 -176.4 -142.5 -107.5 -71.4 -35.4
P13a -367.8 -320.5 -273.8 -227.6 -181.6 -135.8 -90.2 -44.2
P13b -367.8 -320.6 -273.8 -227.6 -181.6 -135.8 -90.3 -44.2
P14a -261.2 -222.2 -186.3 -152.7 -120.5 -89.2 -59.1 -31.6
P14b -261.1 -222.3 -186.4 -152.8 -120.5 -89.3 -59.2 -31.6
P15a -437.7 -385.7 -334.1 -280.5 -224.8 -167.6 -109.2 -49.5
P15b -437.8 -385.6 -334.1 -280.4 -224.8 -167.6 -109.1 -49.5
P16a -659.3 -586.1 -503.8 -417.7 -330.1 -242.1 -154.3 -67.7
P16b -658.9 -585.8 -503.5 -417.4 -329.8 -241.9 -154.2 -67.7
P17a -387.9 -336.1 -282.9 -230.7 -179.6 -129.7 -80.9 -32.9
P17b -387.8 -336.0 -282.9 -230.6 -179.5 -129.7 -80.9 -32.9
P18a -117.7 -105.4 -93.1 -79.8 -65.6 -50.6 -34.4 -17.4
P18b -117.6 -105.4 -93.2 -79.9 -65.7 -50.6 -34.5 -17.4
P19a -655.4 -577.0 -497.2 -417.1 -336.5 -254.6 -170.3 -83.0
P19b -655.7 -577.3 -497.5 -417.4 -336.8 -254.9 -170.5 -83.1
P20a -245.1 -209.4 -176.4 -145.2 -115.2 -86.0 -56.8 -25.3
P20b -245.1 -209.5 -176.5 -145.3 -115.3 -86.1 -56.9 -25.4
P21a -479.8 -426.0 -375.8 -325.7 -274.9 -222.9 -167.2 -97.7
P21b -479.3 -426.5 -376.4 -326.3 -275.6 -223.8 -168.2 -98.7
P22a -815.1 -728.3 -637.9 -547.7 -459.8 -375.9 -299.7 -217.2
P22b -816.0 -729.2 -638.8 -548.7 -460.9 -377.3 -301.6 -223.6
P23a -418.0 -366.2 -313.7 -263.4 -215.8 -171.4 -129.7 -86.8
P23b -418.1 -366.4 -314.0 -263.6 -216.1 -171.7 -130.2 -87.7
P24a -222.9 -194.8 -167.2 -140.8 -116.0 -93.1 -72.6 -61.2
P24b -223.0 -194.9 -167.3 -140.9 -116.1 -93.3 -72.7 -62.8
P25 -399.4 -352.9 -306.4 -259.9 -213.4 -166.9 -120.4 -24.0

Wall
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Table B.6 – Shear forces in walls for lateral load applied in positive y-direction with live load as the 

main action. 

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

P1a 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.1 0.0 0.1
P1b 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.1 0.0 0.1
P3a 0.0 2.6 0.0 3.1 -0.1 3.3 -0.1 3.2 -0.1 2.9 -0.1 2.6 -0.1 2.1 -0.1 1.2
P3b 0.0 2.6 0.0 3.1 0.1 3.3 0.1 3.2 0.1 2.9 0.1 2.5 0.1 2.1 0.1 1.2
P5a 0.1 22.2 -0.2 12.6 -0.3 6.3 -0.3 2.6 -0.4 0.4 -0.4 -1.0 -0.4 -2.1 -0.6 -5.1
P5b -0.1 22.2 0.2 12.6 0.3 6.4 0.3 2.8 0.4 0.6 0.4 -0.9 0.4 -2.1 0.5 -5.3
P8a 0.0 19.5 0.0 12.7 0.0 8.6 0.0 4.6 0.0 -0.1 0.0 -5.6 0.0 -12.3 -0.1 -8.7
P8b 0.0 19.5 0.0 12.9 0.0 9.0 0.0 5.0 0.0 0.4 0.0 -5.2 0.0 -12.4 0.1 -8.7
P9 0.0 9.0 0.0 5.4 0.0 4.5 0.0 4.1 0.0 3.8 0.0 3.4 0.0 3.1 0.0 3.3

P11a 0.0 8.6 -0.1 11.5 -0.1 12.2 -0.1 11.7 -0.1 10.5 -0.1 9.1 -0.1 7.6 -0.2 5.9
P11b 0.0 8.6 0.1 11.5 0.1 12.2 0.1 11.7 0.1 10.5 0.1 9.1 0.1 7.6 0.2 5.9
P13a 0.0 12.3 -0.1 11.0 -0.1 9.8 -0.2 8.3 -0.2 6.6 -0.2 4.7 -0.2 2.6 -0.3 2.1
P13b 0.0 12.3 0.1 11.0 0.1 9.8 0.2 8.3 0.2 6.6 0.2 4.7 0.2 2.6 0.3 2.1
P16a 0.0 31.7 -0.1 34.0 -0.1 32.5 -0.1 29.6 -0.2 25.9 -0.2 21.9 -0.2 18.0 -0.3 12.2
P16b 0.0 31.7 0.1 34.0 0.1 32.5 0.1 29.6 0.2 25.9 0.2 21.9 0.2 18.0 0.3 12.2
P19a 0.0 25.9 -0.1 25.0 -0.2 22.2 -0.2 19.2 -0.3 16.1 -0.4 12.8 -0.5 9.5 -0.7 7.3
P19b 0.0 25.9 0.1 25.0 0.2 22.2 0.2 19.2 0.3 16.1 0.4 12.8 0.4 9.5 0.7 7.3
P22a 0.0 37.8 0.0 40.7 0.0 38.2 0.0 34.0 -0.1 29.1 -0.1 23.7 -0.1 18.2 -0.2 11.4
P22b 0.0 37.8 0.0 40.9 0.0 38.5 0.0 34.5 0.0 29.7 0.1 24.5 0.1 19.1 0.2 12.8
P25 0.0 7.4 0.0 1.4 0.0 0.9 0.0 0.6 0.0 0.4 0.0 0.3 0.0 0.1 0.0 0.1

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 

Table B.7 – Bending moments in walls for lateral load applied in positive y-direction with live load as 

the main action. 

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

P1a 23.1 -0.7 30.5 1.6 32.3 2.4 30.7 3.2 27.1 3.9 22.3 4.5 17.1 5.0 11.0 -4.9
P1b 23.1 0.7 30.5 -1.6 32.3 -2.4 30.6 -3.2 27.0 -3.9 22.2 -4.5 17.0 -5.0 10.9 4.9
P3a 463.1 2.2 487.2 5.0 492.2 7.4 465.4 9.6 419.4 11.8 361.3 13.9 298.3 15.9 197.6 -15.7
P3b 463.2 -2.2 487.5 -5.0 492.7 -7.5 466.0 -9.7 419.7 -11.9 361.1 -13.9 297.3 -15.8 196.5 15.6
P5a 9660.0 -17.0 5403.0 32.4 2907.0 41.1 1331.0 47.2 290.5 51.5 -374.0 55.8 -718.1 -56.4 -768.4 84.4
P5b 9661.0 16.9 5407.0 -32.5 2920.0 -41.4 1353.0 -47.6 317.9 -51.9 -345.3 -56.1 -697.3 56.3 -771.8 -83.5
P8a 7556.0 1.8 4237.0 2.6 2695.0 2.0 1548.0 1.4 534.0 0.4 1090.0 2.0 2004.0 -2.4 -2864.0 -12.5
P8b 7559.0 -1.9 4248.0 -2.7 2734.0 -2.2 1603.0 -1.5 575.2 -0.5 1056.0 -2.4 2105.0 -3.3 -3214.0 17.0
P9 2688.0 -1.1 1410.0 1.3 979.6 0.6 732.8 0.2 559.7 0.3 -532.6 0.7 -527.5 -0.9 925.3 2.6

P11a 1476.0 -3.6 1779.0 8.9 1833.0 12.7 1727.0 14.9 1535.0 16.1 1302.0 16.9 1069.0 17.5 851.7 24.4
P11b 1476.0 3.6 1779.0 -8.9 1832.0 -12.7 1726.0 -14.9 1534.0 -16.1 1301.0 -16.9 1068.0 -17.4 850.5 -24.4
P13a 3109.0 -5.1 2267.0 14.0 1816.0 20.7 1413.0 24.4 1037.0 26.5 683.1 28.0 -360.9 -28.3 -519.8 44.9
P13b 3109.0 5.1 2268.0 -14.0 1817.0 -20.7 1414.0 -24.4 1037.0 -26.5 683.4 -28.0 -362.8 28.2 -520.7 -44.8
P16a 9638.0 6.0 7859.0 11.9 6495.0 15.6 5271.0 18.7 4141.0 21.6 3141.0 24.7 -2702.0 -25.4 2001.0 41.7
P16b 9638.0 -6.0 7858.0 -11.9 6495.0 -15.6 5270.0 -18.8 4139.0 -21.6 3139.0 -24.7 -2701.0 25.2 2000.0 -41.5
P19a 7888.0 5.3 6046.0 13.9 4643.0 22.9 3533.0 32.5 2613.0 43.1 1839.0 55.7 -1469.0 63.2 -1385.0 107.2
P19b 7888.0 -5.3 6046.0 -13.7 4645.0 -22.7 3536.0 -32.4 2617.0 -42.9 1844.0 -55.5 -1468.0 -62.9 -1376.0 -107.2
P22a 12420.0 -0.1 10190.0 0.6 8192.0 2.3 6442.0 4.5 4886.0 7.1 3549.0 11.8 -2612.0 16.3 1913.0 -28.5
P22b 12410.0 -0.1 10200.0 -0.5 8223.0 -2.1 6492.0 -4.2 4955.0 -6.8 3636.0 -11.3 -2779.0 -16.5 2369.0 -34.4
P25 2988.0 -0.1 908.7 0.0 516.6 0.0 262.1 0.0 84.8 -0.1 -112.7 0.1 -147.4 -0.6 15.6 2.1

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 

 

 

 

 

 

 

 

 



Appendix B – Internal forces on walls and beams of masonry building 350 

Table B.8 – Bending moments and shear forces in beams for lateral load applied in positive y-

direction with live load as the main action. 

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

L1a -352.6 -8.8 -542.1 -11.9 -721.6 -14.8 -834.1 -17.5 -877.3 -19.9 1065.0 -21.9 1395.0 -23.1 411.9 -8.3
L1b -350.4 8.8 -534.4 11.9 -710.1 14.8 -818.8 17.5 -857.4 19.8 1074.0 21.8 1389.0 22.9 412.0 8.3
L2a -290.6 9.5 -517.2 8.9 -636.3 6.8 -805.6 -9.3 -1095.0 -13.1 -1517.0 -18.0 -1992.0 -24.6 405.8 -10.2
L2b -290.6 -9.5 -425.0 -11.1 -526.2 -11.3 -582.9 -9.9 -649.7 -7.1 -856.2 9.9 -1340.0 16.2 304.3 7.9
L3 592.3 -8.6 578.3 -9.0 529.0 -9.3 449.3 -9.4 322.1 -9.2 -391.9 -8.6 -572.8 -7.1 -1331.0 8.5
L4a 421.0 -9.9 505.9 -10.5 505.2 -10.5 451.4 -10.1 357.4 -9.3 229.5 -8.3 -211.8 -7.1 116.4 -4.2
L4b 420.6 -9.9 505.1 -10.5 503.9 -10.5 449.6 -10.0 355.2 -9.3 227.3 -8.3 -212.2 -7.0 116.1 -4.2
L5a 375.5 -14.1 448.7 -15.9 460.7 -15.9 445.2 -15.3 413.2 -14.2 369.2 -12.7 318.2 -11.0 176.4 -8.6
L5b 375.5 -14.1 448.9 -15.9 461.0 -15.9 445.4 -15.3 413.1 -14.2 368.5 -12.7 317.3 -11.0 176.0 -8.6
L6a -1094.0 -20.1 -1198.0 -23.5 -1151.0 -23.8 -1065.0 -22.7 -973.1 -20.8 -897.0 -18.7 -831.8 -16.8 292.2 -6.8
L6b -1094.0 -20.1 -1199.0 -23.5 -1152.0 -23.8 -1065.0 -22.7 -973.8 -20.8 -897.7 -18.7 -831.9 -16.9 292.1 -6.8
L7a 372.9 10.1 554.4 12.8 612.8 13.7 596.5 13.4 542.1 12.6 479.5 11.6 444.5 11.0 0.0 10.1
L7b 372.6 10.1 554.3 12.8 612.8 13.7 596.6 13.4 542.1 12.6 479.1 11.6 444.0 11.0 0.0 10.1
L8a 361.1 -8.6 187.9 -7.8 151.9 -6.1 204.5 6.6 329.2 8.7 449.8 10.6 553.5 12.2 479.4 10.7
L8b 361.2 8.6 489.0 -10.6 561.8 -11.8 601.1 -12.4 618.8 -12.7 621.1 -12.8 617.8 -12.9 461.7 -10.5
L9a -514.7 -19.8 -664.0 -23.2 -647.6 -22.7 -557.4 -20.5 -439.3 -17.5 -330.9 -14.8 -284.6 -13.7 -2537.0 -24.3
L9b -518.0 -19.8 -669.8 -23.3 -656.0 -22.9 -567.7 -20.7 -450.4 -17.8 -343.0 -15.1 -303.6 -14.1 -2856.0 -26.8
L10a 185.2 8.3 187.4 7.8 151.3 6.1 206.3 -6.6 331.3 -8.7 452.3 -10.7 556.3 -12.3 481.7 -10.7
L10b 185.5 -8.3 -270.6 8.5 -346.6 9.6 -422.0 10.6 -508.7 11.8 -605.8 13.4 -672.6 14.7 -360.0 8.7
L11a 230.8 -10.5 278.6 -12.5 290.7 -13.6 295.4 -14.6 -312.6 -15.8 -363.0 17.4 -390.5 18.7 -256.3 -12.7
L11b 230.5 10.5 489.5 10.6 562.8 11.8 602.0 12.4 619.1 12.7 620.3 12.8 616.3 12.9 460.6 10.5
L12a 469.9 -13.7 692.2 -17.0 872.2 -19.0 1056.0 -20.7 1260.0 -22.1 1495.0 -23.2 1754.0 -23.3 484.7 -9.6
L12b 465.8 13.6 -522.8 -9.0 -643.7 -6.9 -814.8 9.3 -1106.0 13.0 -1535.0 18.0 -2021.0 24.7 408.7 10.3
L13a -373.0 9.7 685.9 16.9 864.9 19.0 1048.0 20.7 1250.0 22.1 1485.0 23.2 1745.0 23.3 482.5 9.5
L13b -376.1 -9.7 -429.4 11.4 -533.5 11.7 -587.9 10.5 -647.4 7.6 -857.5 -9.5 -1419.0 -16.6 322.2 -8.3
L14 -632.3 -9.1 -794.8 -9.1 -992.9 -9.2 -1243.0 -9.3 -1565.0 -9.4 -2012.0 -9.5 -2751.0 -9.7 -4914.0 -9.5

Beam
ROOF1ST FLOOR 2ND FLOOR 7TH FLOOR6TH FLOOR5TH FLOOR4TH FLOOR3RD FLOOR

 
 

Table B.9 – Bending moments and shear forces in beams for lateral load applied in negative y-

direction with live load as the main action. 

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

L1a -567.3 -11.3 -740.8 -13.9 -762.0 -15.3 -717.9 -16.3 720.0 -17.2 981.9 -18.0 1289.0 -17.9 317.4 -6.6
L1b -537.1 11.2 -706.0 13.9 -727.9 15.2 -684.8 16.2 742.0 17.2 991.8 17.9 1278.0 17.7 317.0 6.6
L2a 471.8 13.4 -655.6 -8.5 -849.9 -9.7 -1060.0 -11.6 -1343.0 -14.4 -1701.0 -18.5 -2114.0 -24.1 377.8 -9.9
L2b 419.7 -12.6 -484.4 -13.4 -479.2 -11.7 -469.1 -8.5 -595.8 8.4 -1039.0 14.6 -1674.0 22.8 428.5 10.0
L3 -205.0 -6.4 444.3 -11.5 571.7 -13.9 -560.3 -14.5 -646.3 -14.1 -753.6 -13.0 -912.3 -11.5 -1167.0 3.5
L4a -651.3 9.7 -815.2 11.0 -813.9 11.0 -742.9 10.4 -654.8 9.6 -578.5 8.8 -525.7 8.2 -85.3 -3.1
L4b -653.6 9.7 -819.2 11.0 -818.3 11.0 -747.2 10.4 -658.7 9.6 -581.6 8.9 -527.2 8.2 -85.6 -3.1
L5a -247.6 11.0 -276.7 11.9 -245.0 11.0 -185.3 9.5 122.1 7.6 77.8 5.6 41.0 3.9 -74.0 -5.3
L5b -247.9 11.0 -277.1 11.9 -245.3 11.1 -185.7 9.5 122.2 7.6 77.9 5.6 40.7 3.9 -73.9 -5.3
L6a -1337.0 20.7 -1736.0 23.0 -1793.0 22.4 -1679.0 20.3 -1483.0 17.6 -1270.0 14.4 -1142.0 11.2 54.5 -3.1
L6b -1337.0 20.7 -1736.0 23.0 -1793.0 22.3 -1679.0 20.3 -1483.0 17.5 -1269.0 14.4 -1141.0 11.2 54.6 -3.1
L7a -482.5 -11.1 -609.4 -13.0 -624.6 -13.3 -572.1 -12.5 -478.3 -11.0 -359.9 -9.2 -229.7 -7.3 0.0 -11.1
L7b -482.8 -11.1 -609.7 -13.0 -624.6 -13.3 -571.7 -12.5 -477.6 -11.0 -359.2 -9.2 -229.0 -7.2 0.0 -11.1
L8a -154.4 4.2 559.1 16.3 674.2 18.4 750.4 19.4 800.9 19.8 829.6 19.5 837.9 19.0 712.1 15.7
L8b -154.3 -4.2 -148.0 4.2 -124.5 -4.3 -95.8 -5.1 107.5 -6.0 184.8 -7.0 252.6 -7.8 228.3 -7.2
L9a 676.2 23.6 932.5 30.4 -1022.0 32.6 -1007.0 32.0 -913.0 29.4 -751.7 25.2 -500.3 18.8 -2332.0 11.3
L9b 670.7 23.4 917.8 30.0 -999.2 32.0 -982.2 31.3 -889.6 28.8 -731.5 24.7 -480.2 18.2 -2546.0 8.4
L10a 377.6 -12.5 565.1 -16.4 681.8 -18.5 758.4 -19.5 808.9 -19.9 837.7 -19.7 846.0 -19.2 718.9 -15.8
L10b 374.2 12.5 -205.6 -8.9 -239.2 -7.5 -272.7 -5.4 -343.1 4.9 -468.6 8.0 -578.6 10.7 -391.1 6.8
L11a -152.2 8.9 -213.1 4.3 -240.8 -4.1 -274.5 -6.3 -330.9 -8.9 -385.5 -12.0 -414.4 -14.7 -341.3 -10.9
L11b -151.9 -9.0 -147.8 -4.2 -124.1 4.3 -95.5 5.1 107.2 6.0 183.4 6.9 250.5 7.7 226.6 7.2
L12a -406.3 -8.6 -549.6 -13.2 -698.9 -17.1 845.5 -20.1 1144.0 -22.6 1475.0 -24.6 1851.0 -26.0 545.1 -10.6
L12b -411.4 8.5 -658.4 8.4 -853.7 9.5 -1064.0 11.4 -1350.0 14.2 -1716.0 18.3 -2143.0 24.0 378.9 10.0
L13a -428.1 -8.0 -554.4 13.1 -706.1 16.9 821.3 20.0 1119.0 22.4 1450.0 24.5 1828.0 25.9 540.1 10.5
L13b -429.6 7.9 -527.5 14.2 -522.2 12.5 -489.3 9.3 -592.9 -7.7 -1053.0 -14.3 -1797.0 -23.4 451.9 -10.5
L14 -492.2 -9.1 -630.4 -9.3 -837.6 -9.4 -1105.0 -9.5 -1446.0 -9.6 -1909.0 -9.8 -2669.0 -9.9 -4946.0 -9.8

Beam
ROOF1ST FLOOR 2ND FLOOR 7TH FLOOR6TH FLOOR5TH FLOOR4TH FLOOR3RD FLOOR

 
 

 

 

 



Appendix B – Internal forces on walls and beams of masonry building 351

Table B.10 – Axial forces in walls for lateral load applied in negative y-direction with live load as the 

main action. 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

P1a -60.7 -53.4 -45.3 -37.0 -28.8 -20.9 -13.1 -6.2
P1b -60.9 -53.3 -45.2 -37.0 -28.8 -20.8 -13.1 -6.2
P2a -430.6 -376.9 -319.2 -261.2 -204.1 -148.1 -93.4 -39.7
P2b -430.9 -376.6 -319.0 -261.0 -203.9 -147.9 -93.3 -39.7
P3a -183.5 -159.9 -135.8 -111.6 -87.7 -64.1 -40.9 -18.4
P3b -183.5 -159.9 -135.8 -111.6 -87.6 -64.1 -40.9 -18.4
P4a -305.0 -259.3 -218.9 -181.0 -144.4 -108.5 -72.1 -32.7
P4b -303.6 -260.2 -219.5 -181.3 -144.4 -108.2 -71.5 -32.4
P5a -628.2 -554.5 -482.6 -409.1 -333.4 -255.0 -172.8 -85.8
P5b -625.9 -556.3 -483.9 -409.8 -333.7 -254.8 -172.4 -85.5
P6a -53.3 -48.4 -43.5 -37.8 -31.4 -24.5 -17.0 -8.9
P6b -53.2 -48.6 -43.7 -37.9 -31.5 -24.5 -17.0 -8.9
P7a -614.7 -536.1 -464.1 -394.0 -326.6 -262.5 -201.7 -139.8
P7b -606.0 -540.6 -466.6 -395.2 -326.8 -261.4 -198.0 -130.8
P8a -587.1 -521.9 -460.6 -398.2 -337.0 -279.2 -228.2 -189.7
P8b -580.8 -526.5 -463.5 -400.0 -337.9 -279.5 -228.3 -202.1
P9 -354.0 -330.1 -297.2 -260.0 -221.4 -182.8 -144.5 -22.8
P10 -187.9 -165.3 -143.8 -122.7 -102.2 -82.8 -64.6 -80.8
P11a -274.8 -239.6 -202.8 -166.5 -130.9 -95.9 -61.6 -27.0
P11b -275.3 -239.2 -202.5 -166.3 -130.7 -95.7 -61.5 -27.0
P12a -319.5 -275.7 -233.4 -191.8 -151.0 -110.8 -71.5 -34.4
P12b -319.8 -275.4 -233.2 -191.7 -150.8 -110.7 -71.5 -34.3
P13a -381.0 -335.3 -287.9 -239.9 -191.7 -143.4 -95.4 -47.6
P13b -381.0 -335.3 -287.9 -239.9 -191.6 -143.3 -95.4 -47.5
P14a -238.1 -211.9 -184.9 -156.3 -126.7 -96.3 -65.4 -34.4
P14b -237.9 -212.1 -185.0 -156.4 -126.7 -96.3 -65.4 -34.4
P15a -439.8 -378.7 -321.0 -265.2 -210.1 -155.2 -100.8 -48.1
P15b -440.1 -378.5 -320.8 -265.0 -209.9 -155.1 -100.8 -48.0
P16a -560.7 -501.5 -437.3 -369.2 -297.6 -222.7 -144.6 -64.3
P16b -559.6 -500.5 -436.4 -368.5 -297.1 -222.2 -144.3 -64.2
P17a -266.3 -244.5 -219.9 -190.8 -157.6 -120.6 -79.2 -32.5
P17b -266.0 -244.2 -219.6 -190.6 -157.5 -120.5 -79.2 -32.5
P18a -134.2 -110.7 -91.7 -74.9 -59.1 -43.8 -28.7 -14.6
P18b -134.1 -110.8 -91.8 -74.9 -59.2 -43.9 -28.8 -14.6
P19a -593.2 -516.0 -442.3 -371.5 -301.1 -229.3 -154.6 -76.5
P19b -593.5 -516.2 -442.6 -371.8 -301.4 -229.7 -154.9 -76.6
P20a -175.6 -158.7 -141.5 -122.8 -102.5 -80.5 -56.0 -26.4
P20b -175.7 -158.7 -141.6 -122.9 -102.7 -80.7 -56.1 -26.5
P21a -503.8 -433.4 -370.2 -312.2 -257.6 -204.8 -150.7 -86.0
P21b -503.1 -434.2 -371.0 -312.9 -258.4 -205.7 -151.8 -87.1
P22a -745.1 -662.2 -580.3 -500.6 -423.1 -348.3 -278.7 -204.0
P22b -746.7 -663.7 -581.7 -501.9 -424.5 -349.9 -280.8 -210.3
P23a -308.6 -281.0 -253.2 -223.6 -192.5 -160.1 -126.4 -87.5
P23b -308.8 -281.3 -253.5 -223.9 -192.8 -160.6 -127.0 -88.5
P24a -163.9 -149.5 -135.2 -119.9 -103.8 -87.3 -71.0 -63.1
P24b -164.0 -149.7 -135.3 -120.0 -103.9 -87.5 -71.2 -64.7
P25 -399.4 -352.9 -306.4 -259.9 -213.4 -166.9 -120.4 -24.0

Wall

 
 

 

 

 

 

 

 

 

 

 



Appendix B – Internal forces on walls and beams of masonry building 352 

Table B.11 – Shear forces in walls for lateral load applied in negative y-direction with live load as the 

main action. 

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

P1a 0.0 -0.2 0.0 -0.2 0.0 -0.3 0.0 -0.2 0.0 -0.2 0.0 -0.2 0.0 -0.1 0.0 -0.1
P1b 0.0 -0.2 0.0 -0.2 0.0 -0.3 0.0 -0.2 0.0 -0.2 0.0 -0.2 0.0 -0.1 0.0 -0.1
P3a 0.0 -3.0 0.0 -3.8 -0.1 -3.6 -0.1 -3.1 -0.1 -2.5 -0.1 -1.8 -0.1 -1.0 -0.1 -0.9
P3b 0.0 -3.0 0.0 -3.8 0.1 -3.6 0.1 -3.1 0.1 -2.5 0.1 -1.8 0.1 -1.1 0.1 -0.9
P5a -0.1 -26.1 0.1 -22.3 0.1 -18.2 0.0 -14.4 0.0 -10.7 -0.1 -6.6 -0.2 -1.9 -0.3 3.8
P5b 0.1 -26.3 -0.1 -22.1 -0.1 -17.8 0.0 -14.1 0.0 -10.4 0.1 -6.4 0.2 -1.9 0.3 3.6
P8a 0.0 -29.6 0.0 -37.9 0.0 -40.2 0.0 -40.4 0.0 -39.2 0.0 -37.6 0.0 -36.6 -0.1 -17.8
P8b 0.0 -30.1 0.0 -36.8 0.0 -39.0 0.0 -39.2 0.0 -38.2 0.0 -36.8 0.0 -36.4 0.1 -17.8
P9 0.0 -6.6 0.0 0.6 0.0 3.2 0.0 4.3 0.0 4.7 0.0 4.7 0.0 4.8 0.0 5.9

P11a 0.0 -8.3 0.0 -10.3 0.0 -10.1 0.0 -8.9 0.0 -7.1 0.0 -5.1 -0.1 -2.8 -0.1 -0.1
P11b 0.0 -8.3 0.0 -10.3 0.0 -10.1 0.0 -8.9 0.0 -7.1 0.0 -5.1 0.1 -2.8 0.1 -0.1
P13a 0.0 -12.7 0.0 -12.2 0.0 -11.6 0.0 -10.3 0.0 -8.7 -0.1 -6.9 -0.1 -5.1 -0.1 -2.4
P13b 0.0 -12.7 0.0 -12.2 0.0 -11.6 0.0 -10.3 0.0 -8.7 0.1 -6.9 0.1 -5.1 0.1 -2.4
P16a 0.0 -27.7 -0.1 -24.4 -0.2 -20.7 -0.2 -16.5 -0.2 -11.9 -0.2 -6.8 -0.2 -0.6 -0.3 5.8
P16b 0.0 -27.7 0.1 -24.4 0.2 -20.7 0.2 -16.5 0.2 -11.9 0.2 -6.8 0.2 -0.6 0.3 5.8
P19a -0.1 -21.8 -0.1 -15.0 -0.2 -9.8 -0.3 -6.0 -0.4 -3.0 -0.5 -0.3 -0.5 2.9 -0.8 9.0
P19b 0.1 -21.8 0.1 -15.0 0.2 -9.8 0.3 -6.0 0.4 -3.0 0.5 -0.3 0.5 2.9 0.8 9.0
P22a 0.0 -32.5 0.0 -28.7 0.0 -24.4 0.0 -19.7 0.0 -14.6 0.0 -9.2 -0.1 -4.0 -0.1 6.1
P22b 0.0 -32.3 0.0 -28.3 0.0 -23.7 0.0 -18.7 0.0 -13.5 0.0 -8.0 0.1 -2.5 0.2 7.9
P25 0.0 -7.4 0.0 -1.3 0.0 -0.8 0.0 -0.5 0.0 -0.3 0.0 -0.2 0.0 0.0 0.0 1.5

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 
Table B.12 – Bending moments in walls for lateral load applied in negative y-direction with live load as 

the main action. 

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

P1a -23.8 -0.7 -34.5 1.4 -35.0 1.8 -31.7 2.2 -26.5 2.6 -20.6 3.1 14.6 3.6 14.0 -3.6
P1b -23.8 0.7 -34.6 -1.4 -35.1 -1.8 -31.8 -2.2 -26.6 -2.6 -20.7 -3.1 14.7 -3.5 14.0 3.6
P3a -462.9 3.4 -557.7 6.0 -522.3 7.1 -444.7 8.2 -347.3 9.5 247.7 11.0 152.7 12.5 156.8 -12.1
P3b -462.9 -3.5 -557.7 -6.1 -522.1 -7.2 -444.5 -8.3 -347.4 -9.6 248.8 -11.0 154.7 -12.4 157.4 12.1
P5a -7930.0 11.2 -5139.0 16.2 -3360.0 12.6 -2110.0 7.0 1856.0 4.3 1537.0 14.7 966.4 23.3 1082.0 45.1
P5b -7921.0 -11.7 -5112.0 -16.1 -3316.0 -12.5 -2061.0 -6.7 1824.0 -4.8 1528.0 -15.0 992.3 -23.2 1072.0 -44.0
P8a -5998.0 -0.2 -6065.0 -1.2 -5833.0 -1.8 5816.0 1.5 5917.0 0.8 5912.0 1.7 6035.0 -2.3 -3725.0 -9.1
P8b -5972.0 -0.1 -5929.0 0.7 -5663.0 -1.3 5661.0 -1.1 5784.0 -0.3 5832.0 -2.6 6112.0 -4.3 -4438.0 15.3
P9 -2318.0 1.2 -590.6 -1.5 -617.0 -0.6 635.3 -0.5 813.2 0.7 890.6 1.0 925.2 -1.0 1643.0 3.4

P11a -1337.0 -0.9 -1544.0 -1.2 -1479.0 1.2 -1279.0 2.0 -1009.0 3.5 713.3 5.4 412.3 7.7 -35.5 11.3
P11b -1337.0 0.8 -1546.0 1.1 -1481.0 -1.1 -1281.0 -2.0 -1011.0 -3.5 714.4 -5.4 412.9 -7.6 -36.0 -11.2
P13a -2775.0 -4.3 -2084.0 -5.3 -1781.0 -3.2 -1452.0 3.8 1311.0 5.8 1135.0 8.4 926.8 10.6 422.2 18.7
P13b -2775.0 4.1 -2082.0 5.1 -1778.0 -3.0 -1449.0 -3.8 1309.0 -5.8 1132.0 -8.4 923.3 -10.4 418.9 -18.6
P16a -8468.0 8.2 -5500.0 16.6 -3784.0 21.7 -2475.0 25.4 1970.0 28.1 1500.0 30.7 689.0 -31.2 1478.0 47.1
P16b -8468.0 -8.4 -5500.0 -16.6 -3784.0 -21.6 -2475.0 -25.2 1969.0 -27.9 1499.0 -30.6 687.3 30.8 1479.0 -46.7
P19a -6978.0 9.0 -3968.0 21.8 -2130.0 33.1 -914.9 43.6 793.6 53.7 675.5 65.4 1083.0 70.1 1414.0 119.9
P19b -6978.0 -9.0 -3966.0 -21.4 -2126.0 -32.4 -908.2 -42.8 784.6 -52.9 668.0 -64.6 1092.0 -69.3 1419.0 -119.1
P22a -10990.0 -0.4 -6945.0 -1.7 -4655.0 -2.8 -2966.0 2.2 2515.0 0.6 2222.0 5.5 1799.0 11.1 2699.0 -20.5
P22b -11020.0 -0.4 -6923.0 1.9 -4588.0 -3.4 -2861.0 -3.1 2339.0 -1.2 2024.0 -4.5 1566.0 -10.9 2942.0 25.9
P25 -2643.0 -0.1 -582.4 -0.1 -226.3 -0.1 136.0 0.0 230.9 -0.1 291.4 0.2 299.2 -0.7 427.9 2.3

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 

 

 

 

 

 

 

 



Appendix B – Internal forces on walls and beams of masonry building 353

B.2 Load combination II - Wind as the main action 
 

Table B.13 – Axial forces in walls for lateral load applied in x-direction with wind as the main action. 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

P1a -43.8 -49.7 -41.6 -34.0 -26.5 -19.2 -12.1 -6.2
P1b -59.1 -41.2 -36.5 -31.1 -25.2 -19.0 -12.4 -5.8
P2a -333.2 -342.5 -291.1 -239.8 -189.0 -138.4 -88.2 -37.9
P2b -391.9 -297.8 -259.6 -219.0 -176.4 -132.0 -86.0 -37.7
P3a -164.2 -145.5 -124.9 -103.7 -82.3 -60.9 -39.1 -16.9
P3b -152.3 -131.3 -112.9 -94.5 -75.8 -56.6 -36.9 -17.5
P4a -248.1 -227.0 -195.9 -165.0 -133.9 -102.4 -69.3 -31.6
P4b -259.2 -216.6 -186.9 -157.6 -128.1 -98.0 -66.6 -32.6
P5a -591.9 -529.3 -456.0 -383.3 -310.1 -235.7 -158.8 -78.6
P5b -603.9 -514.6 -440.1 -367.8 -296.4 -224.9 -152.1 -77.1
P6a -58.8 -50.2 -43.3 -36.4 -29.5 -22.4 -15.1 -7.9
P6b -57.7 -49.7 -42.0 -34.8 -27.9 -21.0 -14.2 -7.6
P7a -503.3 -464.3 -407.5 -351.3 -295.8 -241.6 -188.8 -134.8
P7b -520.7 -454.0 -400.9 -346.1 -291.0 -235.6 -178.8 -114.4
P8a -543.5 -476.6 -419.6 -363.5 -308.7 -256.7 -210.3 -164.5
P8b -535.3 -477.4 -416.2 -357.6 -301.2 -247.5 -199.3 -169.5
P9 -322.0 -295.4 -264.7 -231.6 -197.3 -162.8 -128.0 -22.8
P10 -153.5 -141.0 -125.5 -109.1 -92.6 -76.3 -60.4 -70.5
P11a -218.0 -235.5 -197.7 -161.9 -127.1 -93.0 -59.6 -26.4
P11b -276.8 -197.8 -173.9 -147.4 -119.2 -89.9 -59.4 -27.1
P12a -264.3 -263.0 -223.7 -184.9 -146.4 -108.2 -70.3 -33.9
P12b -301.6 -232.8 -201.3 -168.7 -135.4 -101.5 -67.0 -33.0
P13a -351.7 -323.7 -279.4 -233.6 -186.9 -139.9 -93.0 -45.5
P13b -366.3 -305.3 -259.4 -214.9 -171.1 -127.8 -85.0 -42.5
P14a -242.0 -210.2 -182.8 -153.8 -123.9 -93.6 -63.1 -33.4
P14b -235.8 -205.5 -172.9 -142.3 -112.8 -84.2 -56.2 -29.5
P15a -408.7 -382.5 -329.7 -274.8 -218.8 -162.3 -105.6 -49.0
P15b -432.0 -349.8 -297.8 -247.8 -197.7 -146.9 -95.7 -44.8
P16a -643.8 -562.7 -479.5 -395.9 -312.3 -228.7 -145.6 -64.4
P16b -525.5 -478.6 -421.0 -356.8 -288.2 -216.1 -140.8 -62.7
P17a -331.9 -294.4 -253.6 -211.1 -167.7 -123.7 -78.6 -31.4
P17b -293.6 -260.2 -226.5 -191.1 -154.0 -115.2 -74.5 -31.7
P18a -117.0 -105.8 -90.6 -75.9 -61.2 -46.2 -30.9 -15.5
P18b -122.9 -100.4 -85.7 -71.7 -57.8 -43.7 -29.3 -14.9
P19a -609.0 -534.4 -460.0 -386.3 -312.3 -236.9 -158.8 -77.3
P19b -581.1 -507.4 -435.4 -365.1 -294.9 -223.7 -150.3 -74.2
P20a -204.9 -179.9 -155.5 -131.1 -106.5 -81.5 -55.1 -24.9
P20b -196.0 -170.6 -147.0 -123.8 -100.5 -76.8 -51.9 -24.3
P21a -450.5 -417.7 -359.9 -306.5 -255.3 -204.9 -152.5 -88.9
P21b -484.3 -400.5 -350.4 -300.4 -250.7 -201.0 -149.0 -85.8
P22a -729.9 -659.2 -582.1 -503.4 -425.7 -350.9 -281.9 -194.1
P22b -755.3 -664.0 -576.4 -492.6 -411.9 -334.7 -263.6 -200.5
P23a -352.1 -311.1 -271.9 -233.4 -195.8 -159.2 -124.0 -88.2
P23b -339.1 -304.0 -266.5 -228.5 -190.9 -153.9 -116.9 -74.8
P24a -182.6 -163.8 -144.1 -124.4 -105.0 -86.3 -68.9 -58.8
P24b -185.1 -163.3 -142.9 -122.7 -103.0 -83.9 -65.8 -60.4
P25 -377.8 -334.0 -290.2 -246.4 -202.6 -158.8 -115.0 -24.0

Wall
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Table B.14 – Shear forces in walls for lateral load applied in x-direction with wind as the main action. 

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

P2a -12.0 -0.1 -14.6 0.0 -14.5 0.1 -14.3 0.1 -14.2 0.1 -14.0 0.1 -13.6 0.1 -10.9 0.1
P2b -14.6 0.0 -8.1 -0.1 -5.5 -0.1 -3.0 -0.1 -0.6 -0.1 1.9 -0.1 4.5 0.0 6.4 -0.1
P4a -8.0 0.0 -10.3 0.0 -10.8 0.0 -10.9 0.0 -11.1 0.0 -11.5 0.0 -12.4 0.1 -12.7 0.1
P4b -8.2 0.0 -9.3 -0.1 -8.4 -0.1 -6.7 -0.1 -4.4 -0.1 -1.7 -0.1 1.4 -0.1 4.0 0.0
P6a -0.2 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0
P6b -0.2 0.0 -0.2 0.0 -0.2 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0
P7a -23.9 0.0 -22.7 -0.1 -21.4 -0.1 -20.1 -0.1 -18.9 -0.2 -18.0 -0.2 -17.8 -0.2 -22.3 -0.5
P7b -23.9 0.0 -22.9 -0.1 -21.6 -0.2 -19.2 -0.2 -15.6 -0.2 -10.9 -0.2 -4.4 -0.3 6.3 -0.5
P10 -3.0 0.0 -3.6 0.0 -3.6 0.0 -3.3 0.0 -3.0 0.0 -2.6 0.0 -2.1 0.0 -11.3 0.0
P12a -7.1 0.0 -6.5 0.0 -5.4 0.0 -4.7 0.0 -4.3 0.0 -4.1 0.0 -3.9 0.0 -4.4 0.1
P12b -8.0 0.0 -4.2 0.0 -2.0 0.0 -0.4 0.0 0.9 0.0 2.0 0.0 3.2 0.0 5.0 0.0
P14a -4.1 0.0 -6.2 0.0 -6.4 0.0 -6.3 0.0 -6.2 0.0 -6.1 0.0 -5.9 0.0 -6.8 0.0
P14b -5.8 0.0 -2.1 0.0 -1.0 0.0 0.1 0.0 1.1 0.0 2.0 0.0 2.9 0.0 4.5 0.0
P15a -11.3 0.0 -17.5 0.2 -17.5 0.2 -17.6 0.1 -17.6 0.1 -17.5 0.1 -17.2 0.2 -20.4 0.2
P15b -17.3 0.1 -2.7 0.0 2.1 0.0 5.2 0.1 7.7 0.1 9.8 0.2 12.0 0.2 17.1 0.3
P17a -11.8 0.0 -14.6 0.0 -16.0 0.0 -16.8 0.0 -17.4 0.0 -17.7 0.0 -17.7 0.0 -15.0 0.0
P17b -7.4 0.0 -3.5 0.0 -0.6 0.0 2.1 0.0 4.7 0.0 7.2 0.0 9.6 0.0 10.2 0.0
P18a -1.2 0.0 -2.9 0.0 -3.4 0.0 -3.7 0.0 -3.9 0.0 -4.1 0.0 -4.2 0.1 -4.4 0.1
P18b -1.7 0.0 -1.5 0.0 -1.2 0.0 -0.6 0.0 0.1 0.0 0.8 0.0 1.5 0.1 2.0 0.1
P20a -4.4 0.0 -6.4 0.0 -7.2 0.0 -7.6 0.0 -8.0 0.0 -8.5 0.0 -9.1 0.0 -9.8 0.0
P20b -3.5 0.0 -3.7 0.0 -2.7 0.0 -1.4 0.0 0.2 0.0 1.8 0.0 3.6 0.0 5.0 0.0
P21a -15.6 0.0 -9.5 0.0 -7.5 0.0 -6.9 0.0 -7.1 0.0 -8.3 0.0 -11.8 0.0 -25.1 0.0
P21b -13.9 0.0 -13.6 0.1 -12.2 0.1 -10.3 0.1 -7.9 0.1 -4.4 0.1 1.4 0.1 14.6 0.0
P23a -11.6 0.0 -13.9 0.0 -14.6 0.0 -14.7 0.0 -14.6 0.0 -14.6 0.0 -15.2 0.0 -18.0 0.1
P23b -11.4 0.0 -12.9 0.0 -12.1 0.0 -10.1 0.1 -7.4 0.1 -4.0 0.1 0.2 0.1 7.0 0.1
P24a -3.1 0.0 -4.1 0.0 -4.2 0.0 -4.1 0.0 -3.9 0.0 -3.6 0.0 -3.4 0.0 -11.6 0.0
P24b -2.9 0.0 -3.5 0.0 -3.5 0.0 -3.1 0.0 -2.5 0.0 -1.8 0.0 -0.8 0.1 -11.6 0.1

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 

Table B.15 – Bending moments in walls for lateral load applied in x-direction with wind as the main 

action. 

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

P2a 10.3 -2743.0 6.5 -2222.0 10.6 -2025.0 12.7 2089.0 13.7 2121.0 14.0 2124.0 14.1 2045.0 11.8 -1692.0
P2b 2.7 -2789.0 15.5 -1476.0 15.1 -904.5 13.0 -480.1 10.1 -89.4 7.3 290.4 4.0 657.8 13.1 939.1
P4a 6.4 -1227.0 1.0 -1458.0 0.9 1518.0 1.5 1557.0 2.7 1601.0 4.9 1682.0 -8.3 1831.0 10.4 1790.0
P4b 1.1 -1240.0 12.8 -1361.0 16.3 -1237.0 16.9 -991.4 15.4 -673.5 12.4 -298.8 -8.9 -274.8 5.7 -604.8
P6a 2.0 25.5 0.9 50.8 0.7 58.5 0.5 61.7 0.2 62.6 0.2 62.0 0.5 60.3 0.7 -57.3
P6b 0.7 31.9 3.5 -33.8 3.8 -29.4 3.8 -20.9 3.4 -10.7 3.0 -2.5 2.4 -12.1 2.2 -17.9
P7a 10.0 -5448.0 15.2 -3749.0 18.6 -3092.0 21.5 2944.0 24.6 2921.0 29.2 2908.0 33.5 3028.0 75.3 4249.0
P7b 9.1 -5450.0 19.3 -3749.0 24.9 -3170.0 28.1 -2721.0 30.4 -2196.0 33.9 -1573.0 37.3 -849.7 86.8 -1899.0
P10 1.8 -434.0 2.4 -520.0 2.6 -502.8 3.0 -463.6 3.7 414.5 4.9 360.1 6.8 298.8 -2.3 1796.0
P12a 1.9 -1472.0 1.6 -1058.0 3.1 -787.9 4.1 679.9 4.6 659.8 4.9 647.0 5.1 619.2 -7.9 719.9
P12b 1.3 -1513.0 2.7 -791.8 1.7 -354.0 1.6 -67.7 1.8 135.9 2.2 303.9 2.6 469.6 -5.2 -752.6
P14a 1.5 -865.4 5.2 -897.4 4.1 892.4 3.4 905.7 2.9 903.7 2.4 893.2 2.5 858.7 -0.5 1069.0
P14b 4.5 -974.0 1.8 -377.8 2.2 -175.1 2.8 -26.4 3.1 -150.5 3.2 287.8 3.6 420.4 -1.7 -680.3
P15a 5.5 -3355.0 24.8 -2684.0 23.0 2465.0 21.6 2590.0 20.8 2655.0 20.9 2672.0 22.9 2631.0 26.3 3484.0
P15b -14.3 -3370.0 2.2 -1006.0 5.5 -535.1 11.4 -790.9 16.4 1111.0 21.3 1461.0 -27.8 1767.0 -37.6 -2779.0
P17a 2.3 -1858.0 2.0 -2055.0 1.5 2295.0 1.3 2437.0 1.1 2527.0 0.9 2579.0 1.2 2576.0 2.3 -2295.0
P17b 2.4 -1665.0 4.4 -721.3 4.2 -219.8 4.1 -370.5 3.8 -706.6 3.5 -1037.0 3.7 -1353.0 4.8 1542.0
P18a -2.5 171.9 5.6 415.8 6.4 483.8 6.5 521.9 6.5 550.0 6.4 575.9 6.5 596.2 7.1 622.3
P18b -2.8 259.1 5.1 -221.8 5.8 -178.5 6.1 -100.6 6.1 -24.0 6.3 -126.3 6.6 -223.9 7.3 -284.8
P20a 1.2 628.8 2.7 908.0 4.1 1022.0 4.5 1091.0 4.1 1150.0 3.2 1222.0 2.2 1326.0 -3.3 1402.0
P20b 1.1 -540.8 2.5 -553.0 4.4 -410.7 5.3 -223.6 5.3 -55.8 4.9 -288.5 4.4 -544.0 -5.4 -725.0
P21a -5.9 -3366.0 6.4 -1743.0 6.4 -1112.0 6.3 1072.0 6.1 1216.0 5.9 1519.0 5.7 2254.0 4.3 5135.0
P21b 3.3 -3362.0 12.6 -2229.0 11.7 -1801.0 11.2 -1465.0 10.5 -1103.0 9.8 -665.7 9.1 -456.8 7.6 -3202.0
P23a 2.8 -1850.0 3.5 -1989.0 3.1 2060.0 2.2 2099.0 1.1 2107.0 1.1 2140.0 2.6 2277.0 -12.4 2798.0
P23b 2.3 -1842.0 5.1 -1908.0 7.1 -1757.0 7.8 -1477.0 7.9 -1105.0 8.0 -651.5 8.3 -169.7 -19.3 -1328.0
P24a 1.9 -446.0 2.6 -572.2 2.3 -586.4 1.6 572.2 0.5 542.7 1.1 508.3 -3.0 482.8 7.1 1755.0
P24b 1.5 -428.6 3.6 -504.1 5.0 -491.4 5.7 -437.5 6.0 -357.4 6.3 -256.8 7.2 -132.6 8.4 -1940.0

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR
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Table B.16 – Bending moments and shear forces in beams for lateral load applied in x-direction with 

wind as the main action. 

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

L1a 1288.0 -21.6 1591.0 -24.9 1664.0 -25.6 1688.0 -25.7 1721.0 -25.4 1791.0 -24.9 1933.0 -23.6 441.7 -8.3
L1b -1190.0 -14.6 -1251.0 -12.8 -1062.0 -9.7 -873.3 -6.5 -729.8 8.6 -626.0 11.6 -478.8 13.9 216.3 5.3
L2a -956.6 -15.3 -1093.0 -16.2 -1274.0 -17.4 -1450.0 -18.7 -1667.0 -20.7 -1962.0 -23.9 -2374.0 -29.3 490.1 -11.7
L2b 1667.0 -25.1 1919.0 -29.1 1756.0 -28.3 1400.0 -25.1 910.1 -20.0 -582.2 -13.4 -491.9 6.4 159.4 5.1
L3 -1631.0 -22.6 -2031.0 -28.8 -2080.0 -30.0 -1998.0 -28.9 -1854.0 -26.4 -1683.0 -22.9 -1531.0 -18.6 -1519.0 -11.4
L4a -194.5 -5.8 -209.1 -5.9 -204.0 -6.0 -197.7 -6.2 -200.3 -6.2 -216.8 -6.0 -253.0 -5.7 86.3 -3.6
L4b -350.6 5.6 -387.1 6.3 -395.6 6.5 -393.9 6.5 -390.4 6.5 -393.9 6.5 -415.3 6.8 -78.6 -3.3
L5a 187.5 -7.3 221.3 -8.0 243.1 -8.5 255.6 -8.9 259.9 -9.0 256.2 -8.9 245.4 -8.5 162.1 -7.6
L5b -91.2 4.5 -88.7 4.3 -76.4 4.1 -60.9 3.6 -47.4 -3.7 43.9 -4.3 68.8 -4.7 -78.6 -5.1
L6a -642.5 9.2 -628.8 7.4 -606.5 -7.6 -593.7 -8.1 -595.7 -8.5 -622.0 -8.9 -671.6 -9.6 173.6 -4.8
L6b -597.3 -8.7 -730.5 -8.0 -780.1 -7.9 -790.2 -8.2 -790.5 -8.6 -803.3 -9.1 -842.3 -9.7 148.5 -4.5
L7a 112.8 5.1 103.7 4.9 91.9 4.6 84.5 4.4 81.7 4.3 84.2 4.4 98.5 4.8 0.0 5.1
L7b -188.4 -6.1 -128.3 -5.2 -69.7 -4.4 62.0 -3.7 77.7 4.2 100.1 4.9 137.8 5.8 0.0 -6.1
L8a 407.4 -9.6 -204.3 -7.8 -145.6 -5.9 -100.7 5.9 172.6 7.9 296.7 9.5 397.5 10.8 353.1 9.8
L8b -171.7 -5.6 519.1 -11.1 568.0 -11.7 587.0 -12.0 589.7 -12.0 580.8 -11.8 568.3 -11.7 439.1 -9.6
L9a -105.5 -7.4 -117.2 7.3 -136.5 8.6 -159.4 9.7 -176.3 10.2 -176.1 9.9 -152.0 7.7 -2290.0 -17.0
L9b -192.2 10.6 -246.4 12.0 -282.7 12.8 -302.2 13.2 -299.4 13.1 -265.2 12.2 -196.2 9.4 -2757.0 -16.2
L10a 504.9 -12.5 691.2 -15.6 781.0 -17.1 829.9 -17.9 857.7 -18.2 869.6 -18.0 870.1 -17.7 730.4 -14.3
L10b -218.4 -8.7 -568.8 -11.6 -648.1 -10.5 -700.9 -10.2 -752.2 -11.2 -808.8 -12.4 -841.1 -13.5 -532.5 -7.4
L11a -399.6 -12.3 -382.5 -14.7 -428.2 -15.8 -456.1 -16.7 -478.7 -17.6 -498.1 -18.9 -497.5 -20.0 -374.2 -13.8
L11b 363.0 -11.0 -171.7 -5.3 -140.6 -4.6 -104.2 4.0 -75.4 5.1 140.2 6.1 210.4 7.1 177.6 6.5
L12a 1167.0 -19.2 1515.0 -23.3 1674.0 -25.1 1776.0 -26.1 1872.0 -26.7 1998.0 -26.9 2180.0 -26.3 562.1 -10.3
L12b -843.3 -11.2 -794.1 -16.8 -867.3 -15.1 -845.7 -12.1 -847.1 -8.1 -1006.0 9.7 -1371.0 15.5 227.9 6.9
L13a -804.1 -14.2 -801.3 -8.0 -734.5 8.2 -709.1 11.5 -700.7 14.5 660.4 17.1 1058.0 19.0 370.6 8.1
L13b 583.2 -15.9 -1211.0 -17.1 -1308.0 -17.7 -1410.0 -18.6 -1588.0 -20.3 -1905.0 -23.8 -2439.0 -30.2 539.8 -12.0
L14 -984.3 -20.6 -1277.0 -23.3 -1460.0 -23.3 -1625.0 -22.2 -1814.0 -20.3 -2081.0 -17.9 -2602.0 -15.0 -4730.0 -17.8

ROOF
Beam

1ST FLOOR 2ND FLOOR 7TH FLOOR6TH FLOOR5TH FLOOR4TH FLOOR3RD FLOOR

 
 

Table B.17 – Bending moments and shear forces in beams for lateral load applied in positive y-

direction with wind as the main action. 

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

L1a -269.8 -7.4 -425.5 -10.3 -634.6 -13.5 -794.5 -16.6 -883.8 -19.2 982.3 -21.5 1290.0 -23.1 407.3 -8.2
L1b -276.0 7.4 -427.6 10.3 -633.0 13.6 -788.0 16.7 -871.4 19.3 995.2 21.5 1291.0 23.0 408.2 8.3
L2a -267.0 7.6 -469.9 10.2 -532.9 7.9 -653.9 -7.9 -896.4 -11.6 -1299.0 -16.5 -1754.0 -22.8 380.9 -9.6
L2b -271.1 -7.8 -376.9 -9.6 -495.1 -10.5 -577.1 -10.0 -636.5 -8.0 -758.0 7.5 -1085.0 12.7 233.5 6.6
L3 730.7 -8.9 580.4 -7.6 469.7 -7.1 377.7 -7.0 264.1 -6.9 -227.1 -6.6 -424.1 -5.4 -1250.0 9.0
L4a 783.9 -12.7 957.1 -14.0 955.6 -14.0 858.9 -13.2 701.5 -11.9 502.5 -10.3 261.2 -8.5 147.3 -4.3
L4b 784.5 -12.7 957.9 -14.0 956.1 -14.0 859.0 -13.2 701.1 -11.9 501.9 -10.3 261.3 -8.5 147.2 -4.3
L5a 579.2 -19.7 684.6 -22.3 687.9 -22.0 645.2 -20.6 576.5 -18.4 491.4 -15.8 400.7 -13.0 213.1 -9.1
L5b 579.4 -19.7 685.3 -22.3 688.9 -22.1 646.2 -20.6 577.2 -18.4 491.6 -15.9 400.7 -13.0 213.3 -9.1
L6a -1539.0 -28.9 1641.0 -34.2 1775.0 -34.4 1666.0 -32.2 1419.0 -28.7 1114.0 -24.8 -860.3 -21.2 359.7 -7.7
L6b -1538.0 -28.9 1642.0 -34.2 1776.0 -34.4 1666.0 -32.2 1420.0 -28.7 1114.0 -24.8 -860.0 -21.2 359.8 -7.7
L7a 659.7 14.3 940.0 18.5 1020.0 19.7 978.7 19.0 873.0 17.3 747.6 15.4 653.6 13.9 0.0 14.3
L7b 659.6 14.3 940.1 18.5 1020.0 19.7 979.1 19.0 873.2 17.3 747.3 15.4 653.1 13.9 0.0 14.3
L8a 492.5 -9.6 363.8 -12.3 336.1 -10.9 278.1 -8.7 211.5 -6.1 262.4 6.3 392.5 8.5 344.1 7.8
L8b 493.1 9.6 654.4 -12.2 732.3 -13.6 757.9 -14.1 751.3 -14.1 724.6 -13.9 694.4 -13.6 503.4 -10.8
L9a -918.6 -29.0 -1208.0 -36.0 -1215.0 -36.2 -1085.0 -33.1 -891.6 -28.3 -686.0 -23.2 -527.9 -19.4 -2824.0 -32.1
L9b -921.0 -29.0 -1210.0 -36.0 -1219.0 -36.3 -1091.0 -33.2 -898.6 -28.5 -694.6 -23.4 -543.7 -19.7 -3074.0 -34.1
L10a 314.6 11.5 363.8 12.3 336.2 10.9 278.1 8.7 211.2 6.1 262.8 -6.3 393.4 -8.5 344.8 -7.9
L10b 314.6 -11.5 -360.8 11.3 -418.3 12.2 -468.6 12.7 -528.3 13.3 -599.0 14.1 -645.1 14.8 -306.7 8.5
L11a 345.2 -12.6 427.8 -15.0 439.8 15.9 428.1 16.3 414.8 16.9 413.4 17.8 422.2 18.5 261.8 -12.2
L11b 345.1 12.6 655.7 12.3 734.2 13.6 760.1 14.1 753.0 14.1 725.3 13.9 694.4 13.6 503.4 10.8
L12a 624.6 -14.7 788.3 -17.1 901.3 -18.4 1026.0 -19.4 1175.0 -20.2 1352.0 -20.8 1543.0 -20.4 417.3 -8.4
L12b 623.2 14.7 -474.1 -10.2 -539.2 -7.9 -662.8 7.9 -908.5 11.6 -1315.0 16.5 -1780.0 22.9 384.0 9.7
L13a -371.3 10.9 787.1 17.2 900.8 18.4 1025.0 19.4 1172.0 20.3 1348.0 20.8 1539.0 20.4 416.0 8.4
L13b -373.5 -10.9 -367.3 9.7 -487.2 10.8 -571.2 10.5 -628.0 8.5 -749.4 -7.1 -1123.0 -12.8 245.3 -6.9
L14 -634.1 -8.6 -785.3 -8.7 -959.0 -8.7 -1178.0 -8.8 -1464.0 -8.9 -1865.0 -9.0 -2527.0 -9.1 -4403.0 -9.0

Beam
ROOF1ST FLOOR 2ND FLOOR 7TH FLOOR6TH FLOOR5TH FLOOR4TH FLOOR3RD FLOOR

 
 

 

 



Appendix B – Internal forces on walls and beams of masonry building 356 

Table B.18 – Axial forces in walls for lateral load applied in positive y-direction with wind as the main 

action. 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

P1a -39.0 -35.2 -31.4 -27.2 -22.6 -17.3 -11.6 -5.9
P1b -39.0 -35.2 -31.4 -27.2 -22.6 -17.3 -11.6 -5.9
P2a -272.0 -246.6 -220.3 -191.6 -159.3 -122.8 -82.1 -36.7
P2b -271.9 -246.6 -220.4 -191.6 -159.2 -122.8 -82.1 -36.7
P3a -126.6 -111.7 -98.7 -85.0 -70.0 -53.7 -35.7 -16.1
P3b -126.6 -111.7 -98.7 -85.0 -70.1 -53.7 -35.7 -16.1
P4a -187.3 -173.9 -158.4 -139.6 -118.2 -94.3 -67.0 -34.0
P4b -187.0 -174.3 -158.8 -139.9 -118.4 -94.3 -66.7 -33.8
P5a -595.3 -505.3 -422.7 -347.1 -275.9 -207.1 -139.2 -71.3
P5b -594.6 -506.0 -423.4 -347.6 -276.2 -207.2 -139.1 -71.2
P6a -71.4 -56.3 -44.5 -34.7 -26.2 -18.7 -11.9 -6.5
P6b -71.4 -56.3 -44.5 -34.8 -26.3 -18.7 -11.9 -6.6
P7a -376.4 -356.9 -331.0 -298.9 -262.2 -221.6 -176.8 -123.5
P7b -376.5 -358.7 -333.0 -300.7 -263.6 -222.2 -175.5 -118.1
P8a -500.1 -431.4 -375.4 -325.1 -277.1 -230.6 -187.5 -150.1
P8b -499.6 -432.6 -376.9 -326.7 -278.5 -231.9 -188.8 -158.7
P9 -308.7 -269.3 -235.4 -203.9 -173.4 -143.4 -113.9 -22.8
P10 -113.7 -111.2 -103.3 -93.4 -82.2 -69.9 -56.9 -65.9
P11a -217.6 -193.4 -170.4 -145.6 -118.9 -90.3 -60.1 -27.9
P11b -217.6 -193.3 -170.4 -145.6 -118.8 -90.3 -60.1 -27.9
P12a -240.8 -218.5 -192.3 -164.0 -133.9 -102.1 -68.6 -34.3
P12b -240.8 -218.6 -192.3 -164.0 -133.9 -102.1 -68.6 -34.3
P13a -348.1 -302.2 -257.7 -213.9 -170.6 -127.5 -84.7 -41.2
P13b -348.0 -302.3 -257.7 -214.0 -170.7 -127.6 -84.7 -41.2
P14a -258.3 -216.4 -179.0 -145.0 -113.2 -83.0 -54.4 -29.1
P14b -258.2 -216.5 -179.1 -145.1 -113.3 -83.0 -54.4 -29.1
P15a -418.6 -372.0 -324.7 -274.1 -220.6 -165.0 -107.6 -48.1
P15b -418.5 -372.0 -324.8 -274.1 -220.6 -165.0 -107.6 -48.1
P16a -667.2 -591.5 -506.0 -417.0 -327.5 -238.7 -151.4 -66.4
P16b -667.1 -591.5 -505.9 -416.9 -327.4 -238.6 -151.3 -66.4
P17a -414.2 -353.8 -292.7 -234.4 -179.3 -127.1 -78.0 -31.9
P17b -414.3 -353.8 -292.7 -234.5 -179.3 -127.1 -78.0 -31.9
P18a -106.1 -98.6 -89.3 -77.8 -64.9 -50.6 -34.8 -17.6
P18b -106.1 -98.7 -89.3 -77.9 -65.0 -50.6 -34.9 -17.6
P19a -646.7 -571.6 -493.3 -413.5 -332.9 -251.2 -167.4 -81.1
P19b -647.0 -571.9 -493.6 -413.9 -333.3 -251.5 -167.7 -81.2
P20a -258.3 -217.5 -180.3 -146.1 -114.1 -83.6 -54.1 -23.7
P20b -258.4 -217.6 -180.4 -146.2 -114.2 -83.7 -54.2 -23.7
P21a -447.5 -402.4 -359.4 -314.3 -267.1 -217.7 -164.0 -96.6
P21b -447.1 -402.8 -359.8 -314.8 -267.7 -218.4 -164.9 -97.5
P22a -800.1 -716.0 -626.5 -536.6 -448.7 -365.0 -289.4 -192.0
P22b -800.7 -716.6 -627.2 -537.4 -449.7 -366.3 -290.9 -198.4
P23a -436.6 -378.5 -319.5 -264.0 -212.7 -165.7 -122.8 -80.5
P23b -436.8 -378.7 -319.7 -264.2 -212.9 -166.1 -123.3 -81.2
P24a -233.0 -201.2 -170.1 -140.9 -114.1 -89.9 -68.5 -52.2
P24b -233.0 -201.3 -170.1 -141.0 -114.2 -90.0 -68.7 -53.7
P25 -377.8 -334.0 -290.2 -246.4 -202.6 -158.8 -115.0 -24.0

Wall

 
 

 

 

 

 

 

 

 

 

 



Appendix B – Internal forces on walls and beams of masonry building 357

Table B.19 – Shear forces in walls for lateral load applied in positive y-direction with wind as the main 

action. 

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

P1a 0.0 0.3 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.3 0.0 0.3 0.0 0.2 0.0 0.1
P1b 0.0 0.3 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.3 0.0 0.3 0.0 0.2 0.0 0.1
P3a 0.0 4.5 0.0 5.5 0.0 5.6 -0.1 5.3 -0.1 4.7 -0.1 4.0 -0.1 3.2 -0.1 1.9
P3b 0.0 4.5 0.0 5.5 0.1 5.6 0.1 5.3 0.1 4.7 0.1 4.0 0.1 3.2 0.1 1.9
P5a 0.1 38.6 -0.3 24.8 -0.4 15.3 -0.4 9.1 -0.5 4.9 -0.5 1.5 -0.5 -1.8 -0.6 -7.7
P5b -0.1 38.6 0.3 24.9 0.4 15.3 0.4 9.2 0.5 5.0 0.5 1.7 0.5 -1.7 0.6 -7.8
P8a 0.0 36.4 0.0 30.8 0.0 26.6 0.0 21.4 0.0 14.9 0.0 7.1 0.0 -2.0 -0.1 -5.0
P8b 0.0 36.5 0.0 30.7 0.0 26.6 0.0 21.6 0.0 15.2 0.0 7.4 0.0 -2.1 0.1 -5.0
P9 0.0 14.1 0.0 6.8 0.0 4.7 0.0 3.7 0.0 3.2 0.0 2.7 0.0 2.2 0.0 2.0

P11a 0.0 14.2 -0.1 18.7 -0.1 19.5 -0.1 18.4 -0.1 16.3 -0.1 13.6 -0.1 10.8 -0.2 7.6
P11b 0.0 14.2 0.1 18.7 0.1 19.5 0.1 18.4 0.1 16.3 0.1 13.6 0.1 10.8 0.2 7.6
P13a 0.0 20.7 -0.1 18.8 -0.2 17.0 -0.2 14.6 -0.2 11.8 -0.2 8.7 -0.2 5.3 -0.3 3.7
P13b 0.0 20.7 0.1 18.8 0.2 17.0 0.2 14.6 0.2 11.8 0.2 8.8 0.2 5.3 0.3 3.7
P16a 0.0 51.4 -0.1 53.1 -0.1 49.8 -0.1 44.4 -0.1 37.9 -0.1 30.8 -0.2 23.5 -0.2 13.6
P16b 0.0 51.4 0.1 53.1 0.1 49.8 0.1 44.4 0.1 37.9 0.1 30.8 0.2 23.5 0.2 13.6
P19a 0.0 41.4 -0.1 37.6 -0.1 31.9 -0.2 26.7 -0.2 21.5 -0.3 16.3 -0.4 10.9 -0.6 5.8
P19b 0.0 41.4 0.1 37.6 0.1 31.9 0.2 26.7 0.2 21.6 0.3 16.3 0.4 10.9 0.6 5.7
P22a 0.0 60.8 0.0 63.0 0.0 58.0 0.0 50.9 -0.1 42.6 -0.1 33.7 -0.1 24.7 -0.2 12.9
P22b 0.0 60.8 0.0 63.2 0.0 58.2 0.0 51.2 0.1 43.0 0.1 34.3 0.1 25.4 0.2 14.1
P25 0.0 12.4 0.0 2.3 0.0 1.5 0.0 1.0 0.0 0.7 0.0 0.4 0.0 0.2 0.0 -0.5

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 

Table B.20 – Bending moments in walls for lateral load applied in positive y-direction with wind as the 

main action. 

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

P1a 38.7 -0.6 52.1 1.5 54.6 2.4 51.3 3.2 44.6 3.9 36.3 4.5 27.2 5.0 18.1 -4.9
P1b 38.7 0.6 52.1 -1.5 54.6 -2.4 51.3 -3.2 44.6 -3.9 36.3 -4.6 27.2 -5.0 18.1 4.9
P3a 772.2 1.6 841.7 4.1 834.9 6.7 771.0 9.1 674.7 11.4 559.9 13.5 -443.3 15.6 288.2 -15.4
P3b 772.3 -1.6 842.3 -4.1 835.9 -6.8 772.3 -9.3 675.9 -11.5 560.8 -13.6 -443.2 -15.6 288.3 15.4
P5a 15410.0 -26.0 8910.0 47.0 5037.0 56.5 2542.0 61.8 838.1 64.0 -755.1 65.5 -1052.0 -63.9 -1354.0 90.3
P5b 15410.0 26.0 8907.0 -47.1 5040.0 -56.8 2555.0 -62.2 859.0 -64.4 -770.9 -65.9 -1029.0 64.0 -1349.0 -89.9
P8a 11980.0 2.5 7756.0 3.2 5693.0 2.1 4091.0 1.2 2594.0 0.3 1144.0 2.0 329.3 -2.2 -2419.0 -12.8
P8b 11980.0 -2.4 7723.0 -3.4 5685.0 -2.4 4103.0 -1.6 2623.0 -0.6 1186.0 -2.0 401.5 2.6 -2736.0 16.1
P9 4336.0 -1.8 1984.0 2.1 1161.0 0.8 707.6 0.3 -470.1 0.3 -537.7 0.7 -533.1 -0.9 559.0 1.9

P11a 2405.0 -4.0 2873.0 10.6 2917.0 15.4 2706.0 17.8 2357.0 18.8 1941.0 19.1 1519.0 -19.2 1109.0 26.6
P11b 2405.0 4.1 2873.0 -10.6 2918.0 -15.4 2706.0 -17.9 2357.0 -18.8 1941.0 -19.2 1519.0 19.1 1109.0 -26.5
P13a 5050.0 -4.7 3708.0 16.1 3017.0 25.0 2376.0 29.4 1769.0 31.3 -1254.0 32.3 -825.0 -32.1 -837.4 50.1
P13b 5050.0 4.7 3709.0 -16.1 3017.0 -25.1 2376.0 -29.5 1769.0 -31.5 -1256.0 -32.4 -827.0 32.0 -839.1 -50.0
P16a 15590.0 4.6 12190.0 9.0 9793.0 11.8 7723.0 14.4 5852.0 17.1 -4427.0 20.1 -3753.0 -20.8 2033.0 35.8
P16b 15590.0 -4.6 12190.0 -9.0 9793.0 -11.9 7723.0 -14.5 5851.0 -17.2 -4426.0 -20.1 -3751.0 20.6 2032.0 -35.7
P19a 12790.0 3.4 9246.0 9.4 6733.0 16.5 4841.0 24.9 3331.0 34.7 -2467.0 46.5 -1961.0 54.5 -1326.0 92.0
P19b 12790.0 -3.3 9246.0 -9.3 6734.0 -16.6 4843.0 -25.0 3334.0 -34.8 -2469.0 -46.6 -1960.0 -54.5 -1319.0 -92.2
P22a 20140.0 -0.2 15700.0 1.4 12250.0 3.9 9348.0 6.4 6815.0 8.8 -4797.0 13.1 -4053.0 16.7 -1963.0 -29.4
P22b 20140.0 0.2 15700.0 -1.3 12260.0 -3.8 9376.0 -6.2 6857.0 -8.7 -4895.0 -12.7 -4183.0 -16.9 2162.0 -35.5
P25 4844.0 0.0 1386.0 0.0 747.1 0.0 336.8 0.0 -140.1 -0.1 -256.6 0.1 -302.6 -0.5 -133.8 1.7

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 

 

 

 

 

 

 

 

 



Appendix B – Internal forces on walls and beams of masonry building 358 

Table B.21 – Axial forces in walls for lateral load applied in negative y-direction with wind as the main 

action. 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

P1a -63.8 -55.8 -46.8 -37.9 -29.1 -20.8 -13.0 -6.0
P1b -63.9 -55.7 -46.8 -37.8 -29.1 -20.8 -12.9 -6.0
P2a -453.1 -393.8 -330.3 -267.2 -206.1 -147.6 -92.0 -38.9
P2b -453.4 -393.6 -330.1 -267.0 -206.0 -147.5 -91.9 -38.9
P3a -189.9 -165.0 -139.1 -113.2 -88.0 -63.7 -40.3 -18.2
P3b -189.9 -165.1 -139.1 -113.2 -88.0 -63.7 -40.3 -18.2
P4a -321.2 -268.9 -223.7 -182.5 -143.6 -106.2 -69.2 -30.3
P4b -319.5 -270.0 -224.4 -182.8 -143.7 -105.9 -68.7 -30.0
P5a -602.3 -537.2 -472.2 -403.2 -330.2 -253.4 -171.7 -84.5
P5b -599.6 -539.4 -473.7 -404.0 -330.6 -253.2 -171.3 -84.2
P6a -45.2 -43.5 -40.8 -36.5 -31.1 -24.7 -17.4 -9.0
P6b -45.0 -43.7 -40.9 -36.6 -31.1 -24.7 -17.4 -9.0
P7a -648.0 -556.5 -475.0 -397.5 -324.6 -256.7 -193.7 -131.6
P7b -637.3 -561.5 -477.5 -398.6 -324.7 -255.5 -190.2 -123.5
P8a -578.2 -517.3 -457.4 -394.6 -332.5 -273.9 -222.5 -165.4
P8b -570.7 -522.5 -460.6 -396.4 -333.3 -274.0 -222.4 -174.7
P9 -348.6 -329.2 -297.5 -260.2 -220.8 -181.3 -142.0 -22.8
P10 -198.5 -171.3 -147.0 -123.7 -101.6 -80.9 -61.9 -71.3
P11a -276.9 -240.1 -201.4 -163.8 -127.5 -92.6 -58.9 -25.5
P11b -277.4 -239.7 -201.0 -163.5 -127.3 -92.4 -58.8 -25.5
P12a -324.9 -277.3 -232.7 -189.7 -147.9 -107.6 -68.7 -32.6
P12b -325.2 -277.0 -232.5 -189.5 -147.8 -107.5 -68.7 -32.6
P13a -370.0 -326.8 -281.1 -234.5 -187.4 -140.2 -93.3 -46.8
P13b -369.9 -326.8 -281.1 -234.5 -187.4 -140.1 -93.2 -46.8
P14a -219.7 -199.3 -176.5 -151.0 -123.5 -94.7 -64.8 -33.8
P14b -219.5 -199.5 -176.7 -151.1 -123.6 -94.8 -64.8 -33.8
P15a -422.1 -360.4 -302.9 -248.6 -196.0 -144.3 -93.7 -45.7
P15b -422.4 -360.1 -302.6 -248.4 -195.8 -144.1 -93.6 -45.7
P16a -502.9 -450.5 -395.1 -336.2 -273.4 -206.3 -135.2 -60.8
P16b -501.7 -449.4 -394.2 -335.5 -272.8 -205.9 -134.9 -60.7
P17a -211.6 -201.2 -187.6 -168.0 -142.7 -111.9 -75.2 -31.2
P17b -211.3 -200.9 -187.3 -167.7 -142.5 -111.8 -75.1 -31.2
P18a -133.7 -107.5 -87.0 -69.6 -54.0 -39.3 -25.3 -12.8
P18b -133.6 -107.5 -87.0 -69.7 -54.1 -39.4 -25.4 -12.8
P19a -543.1 -469.8 -401.8 -337.4 -273.9 -209.0 -141.3 -70.3
P19b -543.3 -470.1 -402.1 -337.7 -274.2 -209.4 -141.6 -70.5
P20a -142.6 -133.0 -122.2 -108.7 -92.9 -74.5 -52.8 -25.4
P20b -142.6 -133.0 -122.3 -108.8 -93.0 -74.6 -52.9 -25.5
P21a -487.5 -414.8 -349.9 -291.8 -238.2 -187.5 -136.6 -77.2
P21b -486.7 -415.6 -350.8 -292.5 -239.0 -188.3 -137.5 -78.2
P22a -683.5 -605.7 -530.6 -458.1 -387.6 -319.1 -254.4 -170.0
P22b -685.2 -607.3 -532.0 -459.5 -389.0 -320.6 -256.3 -176.3
P23a -254.4 -236.5 -218.6 -197.7 -173.7 -147.0 -117.4 -81.6
P23b -254.6 -236.7 -218.9 -198.0 -174.1 -147.4 -118.0 -82.5
P24a -134.7 -125.8 -116.8 -106.1 -93.7 -80.2 -65.9 -55.4
P24b -134.8 -126.0 -117.0 -106.2 -93.9 -80.3 -66.1 -57.0
P25 -377.8 -334.0 -290.2 -246.4 -202.6 -158.8 -115.0 -24.0

Wall

 
 

 

 

 

 

 

 

 

 

 



Appendix B – Internal forces on walls and beams of masonry building 359

Table B.22 – Shear forces in walls for lateral load applied in negative y-direction with wind as the main 

action. 

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

P1a 0.0 -0.3 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.3 0.0 -0.3 0.0 -0.2 0.0 -0.2
P1b 0.0 -0.3 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.3 0.0 -0.3 0.0 -0.2 0.0 -0.2
P3a 0.0 -4.9 0.0 -6.0 0.0 -5.8 -0.1 -5.2 -0.1 -4.3 -0.1 -3.2 -0.1 -2.1 -0.1 -1.5
P3b 0.0 -4.9 0.0 -6.0 0.0 -5.8 0.1 -5.2 0.1 -4.2 0.1 -3.2 0.1 -2.1 0.1 -1.5
P5a -0.1 -42.0 0.2 -33.3 0.2 -25.5 0.2 -19.3 0.1 -13.6 0.0 -7.8 -0.1 -1.3 -0.2 7.2
P5b 0.1 -42.1 -0.2 -33.0 -0.2 -25.1 -0.2 -18.9 -0.1 -13.3 0.0 -7.6 0.1 -1.3 0.2 7.0
P8a 0.0 -45.4 0.0 -53.4 0.0 -54.9 0.0 -53.6 0.0 -50.3 0.0 -46.1 0.0 -42.5 -0.1 -20.1
P8b 0.0 -46.1 0.0 -52.0 0.0 -53.5 0.0 -52.2 0.0 -49.1 0.0 -45.2 0.0 -42.2 0.1 -20.1
P9 0.0 -11.9 0.0 -1.3 0.0 2.4 0.0 4.0 0.0 4.7 0.0 4.8 0.0 5.2 0.0 6.3

P11a 0.0 -13.9 0.0 -17.6 0.0 -17.6 0.0 -15.9 0.0 -13.2 0.0 -10.0 0.0 -6.5 0.0 -2.3
P11b 0.0 -13.9 0.0 -17.6 0.0 -17.6 0.0 -15.9 0.0 -13.2 0.0 -10.0 0.0 -6.5 0.0 -2.3
P13a 0.0 -21.0 0.0 -19.8 0.0 -18.6 0.0 -16.3 0.0 -13.6 0.0 -10.7 0.0 -7.5 0.0 -3.8
P13b 0.0 -21.0 0.0 -19.8 0.0 -18.5 0.0 -16.3 0.0 -13.6 0.0 -10.6 0.0 -7.5 0.0 -3.8
P16a 0.0 -47.6 -0.1 -44.3 -0.2 -38.8 -0.2 -32.4 -0.2 -25.1 -0.2 -16.9 -0.2 -7.5 -0.3 2.9
P16b 0.0 -47.6 0.1 -44.3 0.2 -38.8 0.2 -32.4 0.2 -25.1 0.2 -16.9 0.2 -7.5 0.3 2.9
P19a -0.1 -38.0 -0.2 -29.1 -0.2 -21.3 -0.3 -15.4 -0.4 -10.3 -0.4 -5.6 -0.5 -0.2 -0.7 8.6
P19b 0.1 -37.9 0.1 -29.1 0.2 -21.3 0.3 -15.3 0.4 -10.2 0.4 -5.5 0.5 -0.2 0.7 8.6
P22a 0.0 -56.2 0.0 -52.7 0.0 -46.2 0.0 -38.6 0.0 -30.2 0.0 -21.2 -0.1 -12.2 -0.1 4.0
P22b 0.0 -56.0 0.0 -52.2 0.0 -45.4 0.0 -37.6 0.0 -29.0 0.0 -19.9 0.1 -10.6 0.1 5.9
P25 0.0 -12.3 0.0 -2.2 0.0 -1.4 0.0 -0.9 0.0 -0.6 0.0 -0.4 0.0 -0.1 0.0 2.0

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 
Table B.23 – Bending moments in walls for lateral load applied in negative y-direction with wind as the 

main action. 

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

P1a -39.5 -0.7 -56.3 1.1 -57.6 1.3 -52.7 1.5 -44.7 1.8 -35.3 2.2 -25.5 2.6 21.8 -2.7
P1b -39.4 0.6 -56.3 -1.1 -57.6 -1.3 -52.7 -1.5 -44.7 -1.9 -35.3 -2.3 -25.5 -2.6 21.9 -2.7
P3a -771.1 3.5 -899.8 5.7 -855.9 6.2 -745.8 6.8 -603.1 7.6 449.4 8.7 306.8 9.9 250.4 -9.5
P3b -771.1 -3.6 -899.7 -5.9 -855.4 -6.4 -745.1 -6.9 -602.6 -7.7 449.7 -8.7 308.0 -9.8 250.4 9.5
P5a -13900.0 21.2 -8660.0 -32.6 -5407.0 31.4 -3193.0 26.9 2268.0 18.2 1967.0 7.1 1249.0 8.2 1729.0 25.0
P5b -13890.0 -21.8 -8625.0 -32.1 -5353.0 -31.1 -3136.0 -26.5 2232.0 -17.8 1955.0 -6.8 1270.0 -8.3 1724.0 -24.0
P8a -10610.0 -1.0 -9414.0 -0.6 -8521.0 -1.6 -7638.0 1.4 7391.0 0.8 7192.0 1.4 7048.0 -2.1 -3853.0 -7.2
P8b -10570.0 0.6 -9238.0 0.5 -8310.0 -0.9 -7432.0 -0.9 7236.0 -0.3 7088.0 -2.3 7080.0 -4.1 -4659.0 13.1
P9 -4007.0 2.0 -1093.0 -2.6 -694.4 -1.1 -587.5 -0.9 841.1 1.0 993.1 1.2 1078.0 -1.2 1755.0 3.1

P11a -2283.0 0.5 -2666.0 -2.6 -2602.0 -3.9 -2304.0 3.9 -1884.0 2.8 -1403.0 0.8 929.7 2.7 -369.6 4.6
P11b -2283.0 -0.6 -2667.0 2.6 -2604.0 4.0 -2306.0 -4.0 -1885.0 -2.9 -1403.0 -0.9 929.1 -2.6 -368.9 -4.5
P13a -4757.0 -3.4 -3545.0 -2.5 -2979.0 -4.5 -2400.0 5.0 1981.0 3.9 1690.0 1.3 1321.0 2.4 732.7 6.4
P13b -4757.0 3.2 -3542.0 2.2 -2975.0 4.5 -2395.0 -5.1 1978.0 -4.0 1686.0 -1.4 1317.0 -2.3 727.0 -6.3
P16a -14580.0 8.3 -10070.0 16.8 -7339.0 21.9 -5187.0 25.5 3692.0 27.9 3046.0 30.1 1900.0 -30.5 1161.0 44.8
P16b -14580.0 -8.5 -10070.0 -16.8 -7337.0 -21.8 -5185.0 -25.3 3689.0 -27.7 3042.0 -30.0 1896.0 30.1 1163.0 -44.4
P19a -11990.0 9.4 -7444.0 22.5 -4555.0 33.6 -2571.0 43.4 1776.0 52.4 1570.0 62.6 962.2 -66.2 1532.0 113.2
P19b -11990.0 -9.4 -7441.0 -22.1 -4550.0 -32.8 -2563.0 -42.4 1765.0 -51.4 1561.0 -61.7 957.7 65.2 1539.0 -112.2
P22a -18880.0 -0.4 -12850.0 -2.5 -9165.0 -4.6 -6331.0 4.4 4511.0 2.9 4059.0 2.5 3298.0 7.9 2955.0 -16.1
P22b -18910.0 -0.5 -12830.0 2.7 -9089.0 5.1 -6213.0 -5.3 4320.0 -3.8 3849.0 -1.4 3059.0 -7.6 3117.0 21.5
P25 -4541.0 -0.1 -1099.0 -0.1 -491.0 -0.1 140.4 -0.1 310.4 -0.1 416.9 0.1 441.6 -0.7 553.2 2.1

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 

 

 

 

 

 

 

 

 



Appendix B – Internal forces on walls and beams of masonry building 360 

Table B.24 – Bending moments and shear forces in beams for lateral load applied in negative y-

direction with wind as the main action. 

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

L1a -613.0 -11.6 -745.0 -13.8 -702.0 -14.3 -600.8 -14.6 615.0 -14.9 843.5 -15.1 1113.0 -14.5 249.8 -5.4
L1b -573.5 11.5 -702.8 13.7 -662.6 14.2 -564.6 14.5 641.0 14.8 857.5 15.0 1106.0 14.4 249.9 5.4
L2a 564.1 14.0 -695.8 -9.6 -879.6 -10.2 -1067.0 -11.6 -1305.0 -13.8 -1605.0 -17.2 -1958.0 -21.9 334.3 -9.0
L2b 494.9 -13.1 -461.6 -13.4 -415.1 -11.2 -390.4 -7.6 -542.3 9.1 -1014.0 15.3 -1641.0 23.5 440.5 10.0
L3 -307.8 -5.3 -471.9 -11.7 -586.3 -14.7 -667.3 -15.5 -739.2 -15.1 -829.5 -14.0 -973.8 -12.8 -1126.0 -6.3
L4a -990.5 12.4 -1245.0 14.4 -1243.0 14.3 -1130.0 13.4 -971.2 12.1 -807.1 10.7 -660.9 9.4 -94.1 2.9
L4b -993.4 12.4 -1249.0 14.4 -1248.0 14.4 -1134.0 13.4 -975.1 12.1 -810.1 10.8 -662.1 9.4 -94.3 2.9
L5a -459.3 16.8 -524.4 18.6 -488.2 17.5 -405.7 15.2 -301.0 12.4 -188.7 9.3 99.9 6.4 -70.5 -3.6
L5b -459.4 16.8 -524.6 18.6 -488.3 17.5 -405.7 15.2 -301.2 12.4 -189.3 9.3 99.4 6.4 -70.5 -3.6
L6a -1905.0 29.3 -2534.0 33.5 -2639.0 32.8 -2472.0 29.8 -2170.0 25.5 -1829.0 20.6 -1555.0 15.8 112.6 4.1
L6b -1906.0 29.3 -2534.0 33.5 -2638.0 32.8 -2471.0 29.7 -2169.0 25.4 -1827.0 20.6 -1552.0 15.8 112.0 4.1
L7a -766.0 -15.2 -999.8 -18.8 -1042.0 -19.4 -968.8 -18.3 -827.8 -16.1 -651.5 -13.4 -470.2 -10.7 0.0 -15.2
L7b -766.1 -15.2 -999.9 -18.8 -1042.0 -19.4 -968.0 -18.3 -826.3 -16.1 -649.9 -13.4 -468.5 -10.6 0.0 -15.2
L8a -256.9 5.6 722.6 19.9 833.5 22.0 886.7 22.5 904.3 22.2 895.5 21.1 866.5 19.8 731.9 16.1
L8b -256.7 -5.6 -287.1 6.5 -265.0 6.4 -210.1 5.7 -146.5 4.6 -92.3 -4.1 85.8 -5.1 114.4 -5.4
L9a 1066.0 32.4 1453.0 42.5 1543.0 45.1 -1484.0 43.4 -1319.0 39.1 -1072.0 32.7 -732.8 23.9 -2782.0 19.8
L9b 1060.0 32.1 1435.0 42.0 1518.0 44.4 -1454.0 42.7 -1291.0 38.4 -1047.0 32.0 -709.5 23.3 -2888.0 17.1
L10a 507.1 -15.3 729.6 -20.1 842.4 -22.1 896.3 -22.7 913.8 -22.3 905.0 -21.3 876.1 -20.0 740.2 -16.3
L10b 503.3 15.2 -251.4 -11.9 -286.6 -10.6 -298.2 -8.2 -305.1 -5.2 -378.6 5.2 -488.4 8.3 -363.6 5.4
L11a -251.7 11.2 -346.8 7.7 -341.3 6.3 -306.1 4.0 -308.1 -5.5 -356.9 -8.9 -384.7 -12.0 -336.8 -9.2
L11b -252.3 -11.3 -286.8 -6.5 -264.3 -6.4 -209.3 -5.7 -146.0 -4.6 -92.3 4.1 84.8 5.1 113.4 5.4
L12a -461.2 6.6 -520.3 -10.9 -671.3 -15.0 -755.9 -18.3 981.4 -20.9 1319.0 -23.2 1705.0 -24.9 517.9 -10.1
L12b -468.1 -6.7 -695.5 9.4 -880.1 10.0 -1068.0 11.4 -1309.0 13.6 -1617.0 17.0 -1983.0 21.8 334.3 9.0
L13a -463.0 -9.2 -527.6 10.8 -678.8 14.9 -765.7 18.1 953.7 20.8 1291.0 23.1 1679.0 24.8 512.1 10.0
L13b -462.9 9.1 -514.1 14.4 -465.3 12.1 -408.3 8.5 -530.7 -8.3 -1023.0 -15.0 -1753.0 -24.1 461.5 -10.5
L14 -400.6 -8.7 -511.4 -8.9 -700.3 -9.0 -948.5 -9.1 -1266.0 -9.3 -1693.0 -9.4 -2389.0 -9.5 -4455.0 -9.4

Beam
ROOF1ST FLOOR 2ND FLOOR 7TH FLOOR6TH FLOOR5TH FLOOR4TH FLOOR3RD FLOOR

 
 

B.3 Load combination III – Seismic force as the main 
action 

 
Table B.25 – Bending moments and shear forces in beams for lateral load applied in x-direction with 

seismic force as the main action. 

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

L1a 3635.0 -40.8 4377.0 -45.7 4376.0 -44.5 4107.0 -41.3 3701.0 -36.9 3222.0 -31.4 2796.0 -25.0 497.3 -8.1
L1b -3585.0 -37.2 -4187.0 -39.4 -4031.0 -36.0 -3581.0 -30.9 -2956.0 -24.7 -2213.0 -17.8 -1477.0 -10.6 -123.3 -3.6
L2a -3449.0 -42.2 -2484.0 -34.0 -2530.0 -34.8 -2464.0 -33.9 -2372.0 -32.4 -2316.0 -31.3 -2415.0 -32.4 -565.7 -11.7
L2b 4259.0 -49.4 5169.0 -60.2 5127.0 -61.0 4679.0 -57.2 3983.0 -50.3 3132.0 -41.4 2311.0 -32.5 445.6 -8.6
L3 -4640.0 -50.1 -5756.0 -64.0 -5870.0 -66.5 -5541.0 -63.4 -4918.0 -56.7 -4076.0 -47.3 -3121.0 -36.3 -2481.0 -29.1
L4a 232.9 -4.8 303.8 -5.6 357.3 -6.1 387.6 -6.4 379.5 -6.4 336.1 -6.2 275.5 -6.0 109.5 -2.8
L4b -417.1 4.6 -510.9 6.0 -564.1 6.5 -585.0 6.7 -575.0 6.7 -549.7 6.6 -536.1 6.7 -77.6 1.8
L5a 407.2 -10.3 473.5 -11.5 501.6 -12.4 496.5 -12.5 465.5 -12.1 415.3 -11.1 354.0 -9.6 239.0 -7.5
L5b -338.2 8.7 -384.7 9.5 -392.0 10.0 -364.6 9.6 -312.7 8.7 -246.4 7.5 -175.7 6.0 -124.1 4.0
L6a -624.3 10.1 -300.8 6.3 -181.8 4.6 -145.7 -5.0 -148.8 -5.2 -177.5 -5.6 -214.5 -6.3 142.6 -3.4
L6b -528.0 -9.9 -618.0 -6.8 -708.6 -5.6 -740.9 -5.5 -739.7 -5.8 -732.6 -6.1 -746.3 -6.1 54.3 -2.4
L7a 345.0 7.3 263.4 6.2 169.0 4.8 100.9 3.8 62.4 3.0 39.5 -2.3 -52.6 -2.9 0.0 7.3
L7b -416.0 -7.9 -310.9 -6.5 -196.2 -4.9 -103.9 -3.6 33.4 -2.4 72.7 3.3 149.9 4.7 0.0 -7.9
L8a 888.8 -14.6 -1168.0 -21.1 -1125.0 -20.0 -977.2 -17.6 -773.6 -14.4 -542.3 -10.8 -323.6 -7.5 -224.8 -5.1
L8b -742.3 -12.3 1106.0 -17.3 1156.0 -17.9 1115.0 -17.3 1020.0 -16.0 889.4 -14.2 752.1 -12.3 549.8 -9.2
L9a 317.6 -10.2 304.9 -9.9 258.8 -8.9 206.1 -7.8 152.0 -6.7 107.3 -5.9 101.3 -6.0 -1061.0 -13.1
L9b -367.1 11.9 -424.2 12.9 -435.9 13.1 -425.7 12.9 -393.0 12.2 -332.5 10.9 -228.7 8.5 -1920.0 -5.8
L10a 1130.0 -20.5 1462.0 -25.6 1531.0 -26.6 1483.0 -25.7 1370.0 -23.8 1216.0 -21.1 1055.0 -18.4 842.2 -13.4
L10b -958.5 -18.4 -1465.0 -25.9 -1542.0 -25.9 -1502.0 -24.3 -1402.0 -22.7 -1272.0 -20.8 -1125.0 -18.8 -759.6 -11.1
L11a -1118.0 -22.1 -792.6 -27.6 -832.7 -28.8 -811.3 -28.2 -757.7 -26.6 -685.4 -24.7 -598.3 -22.7 -463.1 -15.0
L11b 1104.0 -21.4 -895.6 -14.0 -889.8 -13.8 -797.6 -12.5 -655.1 -10.6 -484.6 -8.3 -313.9 -6.0 -204.3 -4.3
L12a 2978.0 -31.8 3529.0 -36.1 3566.0 -36.1 3400.0 -34.3 3130.0 -31.7 2811.0 -28.2 2525.0 -23.9 529.7 -8.5
L12b -2799.0 -27.2 2135.0 -34.7 1919.0 -33.9 -1620.0 -30.6 -1472.0 -25.8 -1244.0 -20.0 -981.8 -14.8 241.0 -5.6
L13a -2061.0 -28.6 -3071.0 -27.2 -2858.0 -24.0 -2446.0 -19.8 -1915.0 -15.1 -1304.0 -10.0 -764.4 -4.9 -65.5 2.5
L13b 1944.0 -29.8 -4327.0 -51.7 -4440.0 -53.3 -4268.0 -51.6 -3978.0 -48.5 -3692.0 -45.3 -3609.0 -44.5 -714.0 -14.0
L14 -2256.0 -40.6 -2871.0 -49.7 -3046.0 -51.0 -3018.0 -48.3 -2863.0 -42.9 -2635.0 -35.2 -2466.0 -26.0 -3871.0 -30.5

ROOF
Beam

1ST FLOOR 2ND FLOOR 7TH FLOOR6TH FLOOR5TH FLOOR4TH FLOOR3RD FLOOR
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Table B.26 – Axial forces in walls for lateral load applied in x-direction with seismic force as the main 

action. 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

P1a -10.1 -42.4 -33.2 -25.5 -18.5 -12.3 -6.9 -4.1
P1b -55.8 -15.8 -16.8 -16.1 -14.5 -12.1 -8.8 -3.5
P2a -143.1 -273.0 -224.8 -178.9 -135.8 -95.4 -58.1 -24.4
P2b -320.4 -135.8 -126.6 -113.8 -97.4 -77.3 -53.3 -24.3
P3a -119.4 -109.8 -94.1 -77.1 -60.3 -44.0 -27.9 -10.5
P3b -82.5 -66.7 -57.5 -49.3 -40.5 -30.9 -20.7 -11.7
P4a -143.3 -157.6 -135.7 -113.6 -91.6 -69.3 -46.0 -18.4
P4b -179.1 -124.2 -107.2 -90.7 -74.0 -57.0 -39.5 -22.3
P5a -358.3 -354.1 -308.5 -261.3 -212.4 -161.4 -107.7 -51.1
P5b -398.7 -307.0 -258.7 -213.7 -170.9 -129.2 -88.3 -47.1
P6a -38.2 -32.3 -28.9 -24.9 -20.5 -15.8 -10.8 -5.5
P6b -35.3 -30.8 -25.1 -20.2 -15.7 -11.6 -7.7 -4.3
P7a -298.8 -312.4 -268.4 -228.0 -189.5 -153.2 -120.0 -91.9
P7b -362.3 -273.0 -242.6 -209.5 -175.3 -139.8 -101.8 -55.9
P8a -353.7 -305.2 -270.6 -235.3 -200.5 -167.3 -137.5 -101.0
P8b -338.3 -302.1 -257.2 -216.3 -177.7 -141.0 -107.7 -104.3
P9 -188.6 -177.3 -162.3 -143.9 -123.6 -102.2 -79.4 -15.2
P10 -91.4 -88.1 -79.6 -69.7 -59.4 -49.2 -39.2 -42.8
P11a -70.2 -196.3 -156.1 -121.6 -90.4 -62.0 -36.8 -15.3
P11b -245.9 -80.2 -80.9 -75.6 -66.5 -54.5 -39.1 -19.0
P12a -124.1 -204.3 -170.2 -137.7 -106.5 -76.7 -48.4 -22.5
P12b -237.1 -111.9 -100.7 -87.7 -73.1 -57.0 -39.2 -20.1
P13a -205.6 -228.1 -201.6 -171.0 -138.1 -104.0 -69.2 -32.8
P13b -251.4 -172.3 -141.4 -114.5 -89.8 -66.4 -44.0 -23.2
P14a -160.0 -138.9 -127.3 -111.1 -92.1 -71.4 -49.2 -26.2
P14b -143.4 -125.3 -98.6 -77.1 -58.4 -41.5 -26.5 -13.6
P15a -230.8 -282.1 -247.3 -206.6 -164.2 -121.9 -79.7 -36.6
P15b -303.9 -183.6 -151.6 -125.5 -100.4 -74.6 -48.4 -23.2
P16a -549.6 -460.1 -377.2 -300.0 -227.2 -158.7 -96.0 -41.7
P16b -194.7 -202.0 -194.9 -178.0 -154.1 -123.8 -86.3 -39.6
P17a -256.4 -227.7 -193.2 -157.7 -122.5 -88.2 -54.6 -20.1
P17b -140.4 -123.7 -110.6 -96.8 -81.1 -63.1 -42.7 -20.5
P18a -66.8 -73.3 -63.0 -52.8 -42.5 -32.0 -21.2 -10.4
P18b -84.6 -56.9 -48.4 -40.3 -32.5 -24.6 -16.6 -8.7
P19a -417.7 -369.3 -319.1 -268.2 -216.6 -163.8 -109.2 -51.9
P19b -333.5 -287.9 -245.3 -204.8 -165.2 -125.3 -84.6 -43.3
P20a -140.1 -124.4 -107.9 -91.0 -73.9 -56.4 -38.0 -16.1
P20b -112.8 -96.4 -82.5 -69.2 -56.1 -42.7 -28.9 -14.8
P21a -244.0 -284.3 -238.5 -199.6 -163.9 -129.8 -95.5 -56.1
P21b -344.2 -230.3 -207.5 -180.1 -151.2 -121.2 -88.9 -49.5
P22a -430.3 -407.5 -369.9 -325.9 -280.2 -235.0 -192.5 -131.0
P22b -503.9 -423.7 -356.2 -296.2 -240.3 -187.4 -138.8 -135.2
P23a -236.5 -204.0 -176.9 -151.6 -127.0 -103.4 -81.9 -64.4
P23b -198.1 -182.0 -160.2 -136.9 -113.5 -90.0 -65.1 -33.0
P24a -111.9 -103.0 -91.4 -79.4 -67.4 -55.9 -45.2 -40.5
P24b -119.2 -102.1 -88.1 -74.7 -61.7 -49.0 -36.7 -41.6
P25 -237.5 -210.1 -182.7 -155.3 -127.9 -100.5 -73.1 -16.0

Wall
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Table B.27 – Shear forces in walls for lateral load applied in x-direction with seismic force as the main 

action. 

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

P2a -36.5 -0.1 -35.1 0.2 -33.0 0.3 -30.7 0.3 -27.7 0.3 -24.0 0.2 -19.1 0.2 -10.3 0.2
P2b -38.0 0.1 -31.4 -0.2 -28.0 -0.3 -24.4 -0.3 -20.1 -0.3 -15.1 -0.2 -9.0 -0.2 -0.5 -0.2
P4a -22.9 -0.1 -29.3 0.1 -30.2 0.1 -29.0 0.2 -26.7 0.2 -23.7 0.2 -20.6 0.2 -16.5 0.2
P4b -23.1 0.0 -28.7 -0.1 -28.8 -0.2 -26.6 -0.2 -23.0 -0.2 -18.4 -0.2 -13.0 -0.2 -7.3 -0.2
P6a -0.5 0.0 -0.9 0.0 -1.0 0.0 -1.0 0.0 -0.9 0.0 -0.8 0.0 -0.7 0.0 -0.6 0.0
P6b -0.6 0.0 -0.8 0.0 -0.9 0.0 -0.8 -0.1 -0.7 0.0 -0.6 0.0 -0.4 0.0 -0.3 0.0
P7a -65.1 0.0 -72.4 0.0 -71.3 0.0 -67.6 0.0 -61.4 0.0 -53.0 0.0 -43.0 -0.1 -34.6 -0.2
P7b -69.7 0.0 -62.7 -0.1 -61.2 -0.2 -57.6 -0.2 -51.3 -0.2 -42.5 -0.2 -31.0 -0.2 -16.2 -0.3
P10 -8.5 0.0 -11.1 0.0 -11.3 0.0 -10.8 0.0 -9.7 0.0 -8.2 0.0 -6.4 0.0 -25.2 0.0
P12a -20.8 0.0 -16.1 0.0 -12.0 0.0 -9.4 0.0 -7.4 0.0 -5.5 0.0 -3.1 0.0 -0.7 0.1
P12b -21.2 0.0 -15.0 0.0 -10.3 0.0 -7.2 0.0 -4.7 0.0 -2.3 0.0 0.7 0.0 4.5 0.0
P14a -13.4 0.0 -13.4 -0.1 -12.8 0.0 -11.7 0.0 -10.5 0.0 -9.0 0.0 -7.1 0.0 -6.2 0.0
P14b -14.4 0.0 -11.0 0.0 -9.7 0.0 -8.1 0.0 -6.3 0.0 -4.4 0.0 -2.1 0.0 0.2 0.0
P15a -38.0 -0.1 -33.6 0.3 -29.2 0.2 -26.3 0.2 -23.7 0.1 -20.6 0.1 -16.5 0.1 -14.1 0.0
P15b -41.5 0.2 -25.0 -0.2 -17.7 -0.1 -13.0 -0.1 -8.9 0.0 -4.7 0.1 0.5 0.2 8.0 0.3
P17a -28.2 0.0 -29.9 0.0 -29.9 0.0 -28.7 0.0 -26.7 0.0 -23.9 0.0 -20.3 0.0 -13.5 0.0
P17b -25.5 0.0 -23.2 0.1 -20.7 0.1 -17.5 0.0 -13.6 0.0 -9.2 0.0 -4.3 0.0 1.4 0.0
P18a -3.9 0.0 -6.9 0.0 -7.6 0.0 -7.5 0.0 -7.1 0.0 -6.5 0.0 -5.7 0.0 -5.2 0.0
P18b -4.2 0.0 -6.1 0.0 -6.3 0.0 -5.8 0.0 -4.9 0.0 -3.7 0.0 -2.5 0.0 -1.6 0.0
P20a -11.5 0.0 -15.5 0.0 -16.2 0.0 -15.8 0.0 -14.8 0.0 -13.4 0.0 -11.9 0.0 -10.6 0.0
P20b -11.0 0.0 -13.9 0.0 -13.6 0.0 -12.2 0.0 -10.1 0.0 -7.5 0.0 -4.7 0.0 -2.2 0.0
P21a -41.8 0.1 -32.5 0.0 -28.7 0.0 -26.2 0.0 -23.7 0.0 -21.3 0.0 -19.5 0.0 -24.7 0.0
P21b -40.8 0.0 -35.1 0.1 -31.5 0.1 -28.4 0.1 -24.5 0.1 -19.5 0.1 -12.5 0.1 -3.1 0.0
P23a -32.5 0.0 -39.7 -0.1 -41.2 -0.1 -39.9 -0.1 -36.7 -0.1 -32.4 -0.1 -27.3 0.0 -23.0 0.0
P23b -32.5 0.0 -39.3 0.1 -39.9 0.1 -37.5 0.1 -32.9 0.1 -26.6 0.1 -18.8 0.1 -9.0 0.1
P24a -8.6 0.0 -11.3 -0.1 -11.8 -0.1 -11.4 -0.1 -10.4 -0.1 -9.0 0.0 -7.3 0.0 -25.2 0.0
P24b -8.4 0.0 -11.0 0.1 -11.4 0.1 -10.9 0.1 -9.7 0.1 -8.0 0.1 -5.8 0.1 -25.2 0.1

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 
Table B.28 – Bending moments in walls for lateral load applied in x-direction with seismic force as the 

main action. 

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

P2a 19.3 -7841.0 -28.1 -5719.0 34.6 -4870.0 37.3 4330.0 36.5 4107.0 33.5 3713.0 29.7 3043.0 28.2 -1611.0
P2b -13.3 -7866.0 34.8 -5300.0 39.3 -4246.0 38.5 -3453.0 -35.1 2970.0 -30.4 2390.0 -24.7 1563.0 32.9 -136.0
P4a 10.4 -3499.0 -14.4 -4214.0 -19.7 -4290.0 22.6 -4078.0 24.1 3758.0 24.8 3376.0 25.5 2963.0 24.6 -2340.0
P4b -6.2 -3509.0 22.4 -4148.0 29.6 -4127.0 32.2 -3788.0 31.6 -3259.0 -29.5 -2593.0 -26.5 -1833.0 -22.1 -1093.0
P6a 2.8 80.8 -2.7 127.6 -3.6 138.7 4.0 -137.5 4.1 -128.3 3.9 -113.6 3.7 -95.6 3.5 -78.1
P6b -1.1 83.8 5.3 118.0 6.3 -124.0 6.5 -116.5 6.2 -101.0 -5.7 -80.5 -5.0 -57.6 4.5 -37.3
P7a 6.0 -15640.0 2.0 -11900.0 3.3 -10530.0 2.1 9512.0 3.4 9035.0 7.8 8153.0 12.5 6884.0 34.4 5741.0
P7b 1.3 -15400.0 15.5 -10630.0 22.4 -9104.0 25.4 8113.0 26.4 7601.0 27.2 6612.0 27.9 5007.0 56.1 -2400.0
P10 1.3 -1242.0 0.8 -1579.0 0.5 -1598.0 0.8 -1514.0 0.4 -1361.0 1.1 -1152.0 2.2 -895.4 -0.7 4013.0
P12a 1.8 -4210.0 -0.3 -2781.0 3.4 -1882.0 5.3 -1320.0 6.0 1145.0 6.1 952.1 6.1 630.3 -8.3 242.5
P12b 2.2 -4229.0 2.5 -2658.0 2.6 -1670.0 3.3 -1031.0 3.2 744.1 2.8 475.7 2.5 262.3 -0.7 689.8
P14a -5.2 -2569.0 -8.7 -2042.0 4.7 -1848.0 2.9 1648.0 1.8 1520.0 0.8 1343.0 0.4 1093.0 -3.4 1011.0
P14b 7.8 -2632.0 7.3 -1739.0 2.6 -1437.0 0.9 -1146.0 1.9 919.1 2.6 676.1 3.6 375.6 4.2 78.7
P15a 25.4 -9551.0 44.5 -5988.0 34.4 -4467.0 26.2 3771.0 19.3 3699.0 13.5 3461.0 9.0 2933.0 3.4 2687.0
P15b -30.6 -9560.0 -31.2 -5010.0 -18.5 -3012.0 -7.6 -1840.0 -3.6 1550.0 -12.8 1155.0 -22.3 612.8 -38.8 1233.0
P17a 5.0 -5050.0 6.0 -4512.0 5.5 -4291.0 5.3 4044.0 4.9 3846.0 4.2 3517.0 -2.4 3036.0 2.9 -2061.0
P17b -4.2 -4933.0 7.7 -3702.0 6.9 -3107.0 6.8 -2509.0 6.4 1936.0 5.9 1389.0 5.2 727.7 -6.1 195.2
P18a -1.1 591.1 3.9 975.8 4.3 1061.0 4.3 -1056.0 4.2 -999.3 4.0 -910.4 3.9 -802.7 4.2 733.1
P18b -2.0 640.8 2.3 855.4 2.6 -893.5 2.8 -825.6 3.0 -700.1 3.3 -539.9 3.6 -362.2 -4.3 -220.4
P20a 0.7 -1652.0 1.5 -2196.0 1.7 -2285.0 1.4 -2213.0 0.8 2073.0 0.9 1894.0 2.0 1704.0 -0.7 1509.0
P20b 0.4 -1613.0 1.0 -2010.0 2.6 -1956.0 3.7 -1743.0 4.2 -1442.0 4.4 -1078.0 4.7 -672.2 5.3 -311.1
P21a -8.5 -9561.0 4.5 -5787.0 3.8 -4359.0 3.3 3765.0 2.6 3726.0 1.8 3628.0 1.3 3594.0 1.1 4974.0
P21b 3.9 -9558.0 14.4 -6086.0 13.2 -4778.0 12.5 4003.0 11.5 3706.0 10.3 3143.0 9.0 2137.0 7.0 -434.0
P23a 6.0 -5239.0 10.9 -5771.0 12.3 -5843.0 11.9 -5589.0 10.4 5186.0 8.2 4621.0 -5.8 3955.0 -1.9 3348.0
P23b -4.7 -5237.0 -10.5 -5746.0 13.8 -5715.0 14.6 -5317.0 14.0 -4640.0 12.8 -3742.0 11.4 -2664.0 -17.7 -1496.0
P24a 4.5 -1246.0 8.4 -1607.0 9.5 -1668.0 9.1 -1608.0 -7.8 -1465.0 -6.2 -1262.0 -3.9 1018.0 4.3 3951.0
P24b -3.8 -1236.0 -8.2 -1568.0 10.4 -1615.0 11.1 -1534.0 10.7 -1365.0 9.8 -1127.0 9.0 -831.2 -10.0 -4100.0

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR
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Table B.29 – Axial forces in walls for lateral load applied in positive y-direction with seismic force as 

the main action. 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

P1a -14.1 -12.9 -12.2 -11.3 -10.1 -8.3 -6.0 -3.4
P1b -14.1 -12.9 -12.2 -11.4 -10.1 -8.4 -6.0 -3.4
P2a -94.9 -88.3 -84.0 -78.6 -70.4 -58.6 -42.3 -20.9
P2b -94.6 -88.6 -84.2 -78.8 -70.6 -58.6 -42.3 -20.9
P3a -52.6 -46.2 -42.2 -38.1 -33.0 -26.7 -18.7 -8.5
P3b -52.7 -46.3 -42.3 -38.1 -33.1 -26.7 -18.7 -8.5
P4a -62.9 -65.3 -64.8 -61.2 -55.3 -47.2 -36.3 -21.4
P4b -63.2 -65.3 -64.9 -61.3 -55.4 -47.3 -36.3 -21.3
P5a -363.4 -300.4 -243.8 -194.6 -150.7 -110.6 -73.5 -39.2
P5b -363.8 -300.3 -243.9 -194.7 -150.9 -110.7 -73.6 -39.2
P6a -54.1 -41.0 -30.8 -22.8 -16.2 -10.6 -6.1 -3.4
P6b -54.1 -41.0 -30.8 -22.8 -16.2 -10.6 -6.1 -3.4
P7a -122.5 -130.4 -131.4 -127.1 -118.6 -105.5 -87.2 -60.4
P7b -126.0 -130.0 -131.8 -127.9 -119.5 -106.4 -87.4 -59.0
P8a -273.6 -229.2 -195.5 -167.9 -142.2 -116.6 -90.8 -67.6
P8b -275.9 -228.2 -195.4 -168.3 -142.9 -117.4 -91.7 -70.9
P9 -169.9 -139.6 -117.7 -99.9 -83.6 -68.2 -53.6 -15.2
P10 -36.1 -41.2 -41.3 -39.8 -37.2 -33.3 -28.3 -29.9
P11a -114.3 -102.2 -92.4 -81.2 -68.2 -53.4 -36.9 -18.9
P11b -114.0 -102.4 -92.6 -81.3 -68.3 -53.5 -37.0 -18.9
P12a -119.0 -111.7 -100.9 -88.4 -74.3 -58.6 -41.0 -21.7
P12b -118.8 -111.9 -101.1 -88.5 -74.4 -58.6 -41.0 -21.7
P13a -209.9 -180.1 -152.5 -126.0 -100.2 -74.7 -49.4 -23.0
P13b -209.7 -180.3 -152.6 -126.1 -100.3 -74.8 -49.5 -23.1
P14a -176.7 -144.5 -116.5 -92.1 -70.0 -49.7 -31.3 -16.7
P14b -176.7 -144.5 -116.5 -92.1 -70.1 -49.8 -31.3 -16.7
P15a -269.8 -243.8 -216.2 -184.6 -149.9 -113.0 -73.6 -30.4
P15b -269.6 -244.0 -216.4 -184.8 -150.1 -113.1 -73.6 -30.4
P16a -499.2 -443.2 -377.9 -309.6 -240.9 -173.6 -108.7 -47.1
P16b -499.8 -443.7 -378.4 -309.9 -241.2 -173.8 -108.8 -47.2
P17a -348.5 -295.4 -241.1 -189.8 -141.7 -97.5 -57.6 -23.4
P17b -348.7 -295.6 -241.3 -189.9 -141.9 -97.5 -57.7 -23.4
P18a -58.8 -59.0 -56.3 -51.0 -43.8 -35.3 -25.2 -13.0
P18b -58.8 -59.1 -56.3 -51.0 -43.9 -35.3 -25.2 -13.0
P19a -460.5 -411.5 -357.3 -300.1 -241.4 -181.6 -120.4 -57.7
P19b -460.7 -411.7 -357.5 -300.3 -241.6 -181.7 -120.5 -57.7
P20a -212.0 -177.1 -145.0 -115.5 -88.1 -62.5 -38.6 -15.6
P20b -212.0 -177.2 -145.1 -115.6 -88.1 -62.6 -38.7 -15.6
P21a -270.9 -250.1 -229.0 -204.4 -176.7 -146.5 -112.5 -68.3
P21b -270.9 -250.1 -229.0 -204.5 -176.9 -146.7 -112.8 -68.5
P22a -560.7 -504.7 -442.3 -378.0 -314.5 -254.1 -199.9 -126.3
P22b -560.5 -504.6 -442.3 -378.1 -314.8 -254.4 -200.4 -130.6
P23a -353.8 -305.0 -254.1 -206.1 -161.8 -121.8 -86.1 -52.9
P23b -353.8 -305.0 -254.2 -206.2 -161.9 -121.9 -86.3 -53.1
P24a -188.9 -162.0 -135.1 -109.8 -86.6 -65.8 -47.7 -30.1
P24b -188.9 -162.0 -135.1 -109.8 -86.6 -65.8 -47.8 -31.1
P25 -237.5 -210.1 -182.7 -155.3 -127.9 -100.5 -73.1 -16.0

Wall
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Table B.30 – Shear forces in walls for lateral load applied in positive y-direction with seismic force as 

the main action. 

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

P1a 0.0 0.3 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.4 0.0 0.4 0.0 0.3
P1b 0.0 0.3 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.4 0.0 0.4 0.0 0.3
P3a 0.0 5.5 0.0 7.2 0.0 7.8 0.0 7.7 -0.1 7.2 -0.1 6.3 -0.1 5.3 -0.1 4.0
P3b 0.0 5.6 0.0 7.2 0.0 7.8 0.0 7.7 0.1 7.2 0.1 6.4 0.1 5.4 0.1 4.0
P5a 0.2 45.9 -0.4 32.8 -0.5 23.4 -0.5 17.0 -0.5 12.0 -0.5 7.3 -0.5 1.9 -0.6 -7.5
P5b -0.2 45.9 0.4 32.7 0.5 23.3 0.5 17.0 0.5 12.1 0.5 7.4 0.5 2.0 0.6 -7.4
P8a 0.0 46.2 0.0 47.4 0.0 47.6 0.0 45.4 0.0 40.6 0.0 33.5 0.0 24.6 -0.1 17.0
P8b 0.0 46.5 0.0 46.9 0.0 47.2 0.0 45.1 0.0 40.4 0.0 33.3 0.0 24.3 0.1 17.3
P9 0.0 15.6 0.0 6.4 0.0 3.5 0.0 2.2 0.0 1.5 0.0 0.9 0.0 0.1 0.0 -0.6

P11a 0.0 17.1 -0.1 23.7 -0.1 26.0 -0.1 25.9 -0.2 24.1 -0.2 21.3 -0.1 17.9 -0.2 12.7
P11b 0.0 17.1 0.1 23.7 0.1 26.0 0.1 25.9 0.2 24.1 0.2 21.3 0.1 17.9 0.2 12.7
P13a 0.0 24.6 -0.1 24.2 -0.2 23.7 -0.2 22.1 -0.3 19.7 -0.3 16.5 -0.3 12.5 -0.4 10.5
P13b 0.0 24.6 0.1 24.2 0.2 23.7 0.2 22.1 0.3 19.6 0.3 16.5 0.3 12.5 0.4 10.5
P16a 0.0 59.9 0.0 64.4 0.0 63.5 0.0 59.7 0.0 53.8 0.0 46.0 -0.1 36.7 -0.1 23.1
P16b 0.0 59.9 0.0 64.4 0.0 63.5 0.0 59.7 0.0 53.8 0.1 46.0 0.1 36.7 0.1 23.1
P19a 0.0 47.5 0.0 43.6 0.0 38.3 0.0 33.4 -0.1 28.4 -0.1 22.7 -0.2 16.1 -0.3 8.1
P19b 0.0 47.5 0.0 43.6 0.0 38.3 0.0 33.4 0.1 28.4 0.1 22.7 0.2 16.1 0.3 8.1
P22a 0.0 70.6 0.0 75.8 0.0 73.4 -0.1 68.0 -0.1 60.2 -0.1 50.4 -0.1 39.3 -0.1 27.1
P22b 0.0 70.5 0.0 75.7 0.0 73.3 0.1 67.8 0.1 60.0 0.1 50.3 0.1 39.2 0.2 27.2
P25 0.0 14.2 0.0 2.8 0.0 1.9 0.0 1.5 0.0 1.2 0.0 0.9 0.0 0.6 0.0 -0.8

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 

Table B.31 – Bending moments in walls for lateral load applied in positive y-direction with seismic 

force as the main action. 

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

P1a 48.1 -0.4 69.4 1.1 76.5 1.9 75.8 2.6 70.2 3.1 61.4 3.6 50.6 3.9 -40.9 -3.7
P1b 48.0 0.4 69.5 -1.1 76.5 -1.9 75.8 -2.6 70.3 -3.2 61.5 -3.6 50.7 -3.9 -40.9 3.7
P3a 955.8 0.5 1126.0 2.1 1170.0 4.3 1131.0 6.3 1037.0 8.1 904.0 9.6 748.2 11.0 570.5 -11.1
P3b 956.0 -0.4 1127.0 -2.1 1171.0 -4.4 1132.0 -6.4 1039.0 -8.2 905.9 -9.7 750.1 -11.1 572.4 11.2
P5a 19400.0 -31.2 12370.0 56.9 8035.0 68.2 5039.0 73.8 2770.0 -74.9 -1082.0 -74.3 -976.7 -69.8 -1479.0 91.5
P5b 19390.0 31.4 12360.0 -56.7 8022.0 -68.3 5033.0 -74.1 2771.0 75.3 -1095.0 74.6 -987.5 70.1 -1468.0 -92.0
P8a 14890.0 2.5 11370.0 3.0 9680.0 1.6 8231.0 0.8 6692.0 0.3 5033.0 1.0 -3551.0 -0.8 -3859.0 -10.3
P8b 14880.0 -2.3 11290.0 -3.2 9605.0 -2.0 8170.0 -1.5 6646.0 -1.0 5003.0 -0.4 -3500.0 0.4 -4153.0 -12.5
P9 5340.0 -2.1 2471.0 2.6 1406.0 1.2 781.8 0.7 357.8 0.4 -221.5 0.1 -249.3 0.4 -176.6 0.1

P11a 2961.0 -4.3 3715.0 11.6 3944.0 17.1 3836.0 20.0 3516.0 21.0 3060.0 -21.1 2533.0 -20.4 1902.0 28.4
P11b 2961.0 4.3 3715.0 -11.6 3945.0 -17.2 3837.0 -20.1 3517.0 -21.0 3060.0 21.1 2533.0 20.4 1903.0 -28.4
P13a 6265.0 -4.4 4961.0 17.0 4351.0 27.5 3718.0 32.8 3054.0 34.9 2364.0 35.6 -1832.0 -34.8 -1940.0 54.5
P13b 6265.0 4.4 4961.0 -17.0 4350.0 -27.6 3717.0 -32.9 3053.0 -35.0 2364.0 -35.6 -1831.0 34.8 -1939.0 -54.7
P16a 19820.0 1.3 16080.0 2.2 13510.0 2.7 11200.0 3.5 8959.0 4.8 6799.0 6.6 -5474.0 -6.9 -3274.0 15.8
P16b 19820.0 -1.2 16080.0 -2.2 13510.0 -2.7 11200.0 -3.7 8957.0 -5.0 6797.0 -6.7 -5473.0 7.0 -3269.0 -16.1
P19a 16200.0 -0.5 12030.0 0.6 9118.0 1.9 6864.0 5.8 4970.0 11.2 3306.0 18.4 -2683.0 25.4 -1752.0 41.5
P19b 16200.0 0.6 12030.0 -0.3 9117.0 -2.3 6862.0 -6.3 4968.0 -11.8 3304.0 -18.9 -2681.0 -25.8 -1748.0 -42.4
P22a 25840.0 0.1 20750.0 2.8 16960.0 6.0 13650.0 8.4 10550.0 10.2 7646.0 13.0 -6021.0 14.3 -5441.0 -25.5
P22b 25840.0 0.1 20750.0 -2.7 16950.0 -6.2 13630.0 -8.6 10520.0 -10.5 7622.0 -13.1 -6024.0 -14.7 -5481.0 -30.7
P25 6008.0 0.0 2036.0 0.0 1265.0 0.0 726.9 0.0 317.4 0.0 -245.9 0.0 -407.8 -0.2 -214.9 0.6

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR
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Table B.32 – Bending moments and shear forces in beams for lateral load applied in positive y-

direction with seismic force as the main action. 

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

L1a -125.8 4.1 -220.4 -5.6 -405.9 -8.3 -592.3 -10.9 -733.6 -13.2 -835.2 -15.3 -889.2 -17.1 292.5 -6.0
L1b -139.6 -4.0 -234.3 5.7 -419.6 8.4 -602.3 11.0 -738.9 13.3 -835.9 15.4 -889.6 17.2 295.4 6.1
L2a -197.5 -4.2 -306.6 8.8 -261.2 7.1 -258.7 4.9 -348.2 -5.9 -590.6 -9.4 -906.7 -13.9 245.9 -6.0
L2b -197.3 3.9 -248.9 -5.7 -372.3 -7.5 -492.9 -8.6 -569.7 -8.8 -605.5 -8.4 -600.5 -7.5 65.9 -2.8
L3 669.2 -6.1 416.1 -2.9 373.0 3.3 355.1 3.8 306.2 3.9 236.3 4.1 -159.2 5.4 -825.7 10.2
L4a 1063.0 -12.7 1385.0 -15.3 1470.0 -15.9 1419.0 -15.5 1279.0 -14.3 1074.0 -12.7 790.2 -10.5 230.5 -4.2
L4b 1065.0 -12.7 1388.0 -15.3 1473.0 -15.9 1422.0 -15.5 1282.0 -14.3 1077.0 -12.7 792.5 -10.5 230.9 -4.2
L5a 690.2 -21.6 853.8 -25.9 891.7 -26.6 865.1 -25.6 796.3 -23.5 696.7 -20.6 583.5 -17.1 315.6 -10.2
L5b 690.6 -21.6 854.7 -25.9 893.1 -26.6 866.6 -25.7 797.8 -23.5 698.1 -20.6 585.0 -17.1 316.9 -10.2
L6a 1701.0 -32.6 2567.0 -40.9 2897.0 -43.0 2895.0 -41.8 2688.0 -38.5 2374.0 -34.2 2095.0 -29.6 532.5 -9.7
L6b 1701.0 -32.6 2568.0 -40.9 2897.0 -43.0 2896.0 -41.8 2689.0 -38.5 2376.0 -34.2 2095.0 -29.6 532.6 -9.7
L7a 892.7 16.3 1302.0 22.5 1470.0 25.0 1479.0 25.1 1390.0 23.8 1249.0 21.6 1119.0 19.5 0.0 16.3
L7b 892.6 16.3 1302.0 22.5 1470.0 25.0 1479.0 25.1 1390.0 23.8 1249.0 21.6 1118.0 19.5 0.0 16.3
L8a 545.1 -8.5 536.2 -15.9 560.7 -16.2 533.8 -15.1 478.9 -13.2 411.4 -10.8 344.1 -8.3 261.5 -7.2
L8b 545.7 8.5 745.4 -11.7 846.9 -13.3 881.0 -14.0 869.3 -14.0 827.3 -13.6 779.0 -13.2 544.0 -9.7
L9a -1232.0 -34.1 -1719.0 -46.1 -1855.0 -49.7 -1795.0 -48.3 -1610.0 -43.9 -1348.0 -37.5 1057.0 -30.3 -2440.0 -43.9
L9b -1232.0 -34.0 -1714.0 -46.0 -1849.0 -49.5 -1788.0 -48.2 -1605.0 -43.7 -1344.0 -37.4 1055.0 -30.3 -2520.0 -44.5
L10a 409.1 12.8 537.2 15.9 562.0 16.3 535.3 15.2 480.2 13.3 412.4 10.9 344.8 8.4 261.5 7.2
L10b 408.6 -12.8 -396.4 12.6 -432.4 13.6 -451.1 13.7 -468.7 13.6 -489.8 13.5 -494.6 13.2 -180.2 7.7
L11a 408.3 -11.9 541.6 14.8 580.0 15.8 575.5 16.0 551.0 15.9 521.4 15.8 487.2 15.4 362.5 9.9
L11b 408.6 11.9 746.9 11.7 849.1 13.4 883.6 14.0 872.0 14.0 829.8 13.6 781.8 13.2 546.4 9.8
L12a 633.0 -11.4 701.9 -12.3 722.5 -12.2 755.6 -12.2 804.7 -12.1 863.8 -11.9 905.9 -10.8 220.7 -4.5
L12b 636.3 11.4 -303.3 -8.7 -258.2 -7.0 -259.4 -4.8 -353.9 6.0 -601.6 9.5 -921.7 14.1 249.6 6.0
L13a 304.9 9.0 709.2 12.3 733.2 12.3 767.5 12.3 816.5 12.2 875.2 12.0 919.1 10.9 223.6 4.5
L13b 302.6 -9.0 -229.5 5.5 -346.7 7.5 -470.7 8.7 -553.3 9.1 -596.1 8.7 -594.6 7.8 68.9 2.8
L14 -457.9 5.5 -564.5 5.5 -670.4 5.5 -800.6 5.5 -971.5 5.5 -1217.0 5.5 -1627.0 5.5 -2745.0 5.5

Beam
ROOF1ST FLOOR 2ND FLOOR 7TH FLOOR6TH FLOOR5TH FLOOR4TH FLOOR3RD FLOOR

 
 

Table B.33 – Bending moments and shear forces in beams for lateral load applied in negative y-

direction with seismic force as the main action. 

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

M
(kNcm)

V
(kN)

L1a -472.8 -8.2 -504.9 -9.1 -389.7 -8.4 -239.3 -7.6 304.6 -7.0 431.0 -6.3 578.5 -5.0 78.7 -2.0
L1b -433.7 8.1 -463.9 9.0 -351.6 8.4 242.6 7.6 327.6 6.9 444.1 6.2 574.7 4.9 78.6 2.0
L2a 496.7 10.4 -599.6 -8.1 -710.4 -8.0 -807.6 -8.2 -909.3 -8.8 -1028.0 -10.0 -1165.0 -11.6 152.4 -4.7
L2b 431.1 -9.5 359.2 -9.1 -180.1 -6.8 -165.3 4.1 -366.2 8.0 -749.5 13.0 -1226.0 19.4 367.1 7.7
L3 -370.8 -2.8 -527.4 -9.3 -643.2 -12.4 -716.6 -13.4 -768.3 -13.2 -824.4 -12.6 -919.0 -12.2 -972.6 -8.7
L4a -1192.0 12.5 -1566.0 15.4 -1652.0 16.1 -1592.0 15.6 -1451.0 14.4 -1267.0 12.9 -1033.0 11.0 -150.9 3.2
L4b -1195.0 12.5 -1570.0 15.5 -1656.0 16.1 -1597.0 15.6 -1455.0 14.5 -1269.0 12.9 -1035.0 11.0 -151.1 3.2
L5a -617.0 19.9 -757.7 23.6 -773.4 23.9 -724.4 22.5 -635.3 20.0 -520.3 16.7 -398.9 13.2 -197.3 6.6
L5b -617.1 19.9 -757.9 23.6 -773.7 23.9 -724.6 22.5 -635.5 20.0 -520.8 16.7 -399.6 13.2 -197.8 6.6
L6a -2200.0 32.7 -3112.0 40.3 -3423.0 41.8 -3386.0 40.1 -3144.0 36.3 -2808.0 31.4 -2522.0 26.1 348.8 7.5
L6b -2200.0 32.7 -3112.0 40.2 -3422.0 41.7 -3385.0 40.0 -3143.0 36.3 -2805.0 31.3 -2518.0 26.0 348.1 7.5
L7a -960.2 -16.9 -1343.0 -22.8 -1488.0 -25.0 -1478.0 -24.8 -1366.0 -23.1 -1195.0 -20.4 -1011.0 -17.6 0.0 -16.9
L7b -960.2 -16.9 -1343.0 -22.8 -1488.0 -24.9 -1477.0 -24.8 -1365.0 -23.0 -1193.0 -20.4 -1009.0 -17.6 0.0 -16.9
L8a -397.2 6.2 783.0 20.3 893.3 22.6 931.7 23.1 921.4 22.4 873.9 20.9 798.1 18.9 685.3 15.3
L8b -397.2 -6.2 -531.9 8.4 -577.4 9.2 -560.4 9.2 -501.8 8.6 -419.7 7.6 -338.2 6.8 -196.4 4.8
L9a 1321.0 36.1 1866.0 49.9 2052.0 54.9 2023.0 54.5 -1862.0 50.3 -1589.0 43.2 -1205.0 33.3 -2872.0 37.7
L9b 1315.0 35.8 1849.0 49.5 2028.0 54.3 1995.0 53.8 -1833.0 49.6 -1563.0 42.6 -1182.0 32.7 -2927.0 35.7
L10a 549.4 -15.0 790.1 -20.4 902.7 -22.7 941.9 -23.2 931.7 -22.6 884.3 -21.1 808.7 -19.1 694.6 -15.4
L10b 545.6 14.9 300.9 -13.3 -297.2 -13.0 -309.0 -11.6 -302.4 -9.5 -282.4 -7.0 -247.5 -4.5 -275.8 -4.1
L11a -354.1 11.2 -497.7 10.7 -528.6 10.4 -498.9 9.0 -429.6 6.9 -334.2 4.4 -250.5 2.0 -280.6 -2.4
L11b -354.7 -11.3 -531.7 -8.4 -577.0 -9.2 -559.7 -9.2 -501.2 -8.5 -419.7 -7.6 -338.9 -6.8 -197.1 -4.8
L12a -467.5 6.7 -413.4 -4.8 -481.1 -8.0 -569.4 -10.5 -607.2 -12.5 640.7 -14.4 926.7 -16.3 323.3 -6.6
L12b -476.6 -6.8 -593.5 7.9 -704.4 7.7 -803.1 7.9 -909.1 8.6 -1034.0 9.8 -1180.0 11.5 150.7 4.8
L13a -418.8 -7.8 -424.2 4.7 -488.4 7.8 -578.1 10.3 -617.4 12.4 -612.8 14.3 898.3 16.2 317.0 6.5
L13b -415.5 7.8 423.1 10.1 -227.0 7.6 -173.8 4.4 -344.7 -7.4 -761.8 -12.7 -1318.0 -19.8 381.4 -8.1
L14 -158.9 -5.6 -187.9 -5.7 -279.7 -5.9 -409.0 -6.0 -575.5 -6.1 -795.9 -6.2 -1155.0 -6.3 -2288.0 -6.2

Beam
ROOF1ST FLOOR 2ND FLOOR 7TH FLOOR6TH FLOOR5TH FLOOR4TH FLOOR3RD FLOOR

 
 

 

 

 



Appendix B – Internal forces on walls and beams of masonry building 366 

Table B.34 – Axial forces in walls for lateral load applied in negative y-direction with seismic force as 

the main action. 
BASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR 4TH FLOOR 5TH FLOOR 6TH FLOOR 7TH FLOOR

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

N
(kN)

P1a -51.7 -45.3 -37.8 -30.2 -22.9 -16.0 -9.7 -4.2
P1b -51.8 -45.2 -37.7 -30.2 -22.9 -16.0 -9.7 -4.1
P2a -368.8 -320.5 -267.3 -213.9 -162.4 -113.9 -68.9 -27.7
P2b -369.1 -320.3 -267.1 -213.7 -162.3 -113.8 -68.9 -27.8
P3a -149.3 -130.3 -109.3 -88.2 -67.7 -48.1 -29.8 -13.6
P3b -149.4 -130.4 -109.3 -88.2 -67.6 -48.1 -29.8 -13.6
P4a -260.3 -215.8 -177.4 -142.6 -110.0 -78.9 -49.1 -19.2
P4b -258.8 -216.8 -178.0 -142.9 -110.0 -78.7 -48.7 -19.0
P5a -395.3 -359.9 -322.7 -279.8 -232.0 -179.6 -122.2 -59.0
P5b -392.7 -362.0 -324.1 -280.7 -232.4 -179.6 -121.9 -58.8
P6a -19.6 -22.2 -23.1 -22.2 -20.0 -16.8 -12.4 -6.3
P6b -19.4 -22.3 -23.2 -22.3 -20.1 -16.8 -12.5 -6.3
P7a -527.8 -447.7 -377.2 -310.4 -247.9 -190.4 -138.3 -89.9
P7b -517.4 -452.4 -379.6 -311.5 -247.9 -189.3 -135.6 -84.1
P8a -407.6 -369.4 -328.5 -283.1 -237.4 -194.4 -157.5 -107.4
P8b -400.3 -374.3 -331.6 -284.8 -238.1 -194.4 -157.1 -112.6
P9 -247.2 -239.0 -218.1 -191.3 -162.1 -132.5 -102.5 -15.2
P10 -162.1 -137.7 -116.6 -96.5 -77.5 -59.8 -43.9 -45.7
P11a -201.7 -174.4 -144.6 -116.0 -88.8 -63.2 -39.0 -15.4
P11b -202.2 -173.9 -144.2 -115.7 -88.6 -63.0 -38.9 -15.4
P12a -242.0 -204.5 -170.0 -137.0 -105.3 -75.0 -46.5 -20.9
P12b -242.3 -204.2 -169.8 -136.8 -105.1 -74.9 -46.5 -20.9
P13a -247.3 -220.3 -190.4 -159.4 -127.6 -95.6 -63.8 -32.9
P13b -247.3 -220.3 -190.4 -159.4 -127.6 -95.6 -63.8 -32.9
P14a -127.0 -119.7 -109.5 -96.0 -80.4 -63.1 -44.4 -23.0
P14b -126.8 -119.9 -109.7 -96.1 -80.4 -63.2 -44.4 -23.0
P15a -264.9 -221.9 -182.8 -147.6 -114.8 -83.6 -54.5 -29.4
P15b -265.1 -221.6 -182.5 -147.3 -114.6 -83.5 -54.4 -29.4
P16a -246.0 -219.6 -194.8 -169.0 -140.8 -109.2 -73.8 -34.3
P16b -244.7 -218.5 -193.8 -168.2 -140.2 -108.8 -73.5 -34.2
P17a -49.0 -56.6 -63.2 -65.1 -62.1 -53.9 -39.6 -17.3
P17b -48.6 -56.2 -62.9 -64.8 -61.9 -53.8 -39.6 -17.2
P18a -92.5 -71.0 -54.9 -42.0 -31.0 -21.2 -12.6 -6.1
P18b -92.4 -71.1 -54.9 -42.0 -31.0 -21.3 -12.7 -6.1
P19a -290.4 -245.4 -206.8 -172.6 -140.1 -107.3 -73.2 -37.5
P19b -290.6 -245.6 -207.0 -172.8 -140.3 -107.5 -73.4 -37.6
P20a -41.1 -43.8 -45.5 -44.7 -41.8 -36.5 -28.2 -15.3
P20b -41.2 -43.9 -45.5 -44.8 -41.9 -36.6 -28.3 -15.3
P21a -316.3 -262.9 -215.6 -174.4 -137.7 -104.0 -71.6 -37.0
P21b -315.5 -263.6 -216.3 -175.1 -138.3 -104.6 -72.3 -37.7
P22a -371.5 -324.6 -282.2 -242.8 -204.9 -167.4 -130.2 -76.2
P22b -373.0 -326.0 -283.5 -244.0 -206.0 -168.5 -131.6 -80.4
P23a -80.8 -81.0 -82.9 -82.2 -78.4 -71.2 -60.4 -43.7
P23b -81.0 -81.2 -83.1 -82.4 -78.6 -71.5 -60.8 -44.3
P24a -42.1 -43.1 -44.4 -44.3 -42.4 -38.9 -33.9 -29.9
P24b -42.3 -43.2 -44.5 -44.4 -42.5 -39.1 -34.1 -30.9
P25 -237.5 -210.1 -182.7 -155.3 -127.9 -100.5 -73.1 -16.0

Wall
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Table B.35 – Shear forces in walls for lateral load applied in negative y-direction with seismic force as 

the main action. 

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

Vx
(kN)

Vy
(kN)

P1a 0.0 -0.3 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 -0.4 0.0 -0.4 0.0 -0.3
P1b 0.0 -0.3 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 -0.4 0.0 -0.4 0.0 -0.3
P3a 0.0 -5.7 0.0 -7.5 0.0 -7.9 0.0 -7.6 0.0 -6.9 0.0 -5.9 0.0 -4.8 0.0 -3.9
P3b 0.0 -5.7 0.0 -7.5 0.0 -7.9 0.0 -7.6 0.0 -6.9 0.0 -5.9 0.0 -4.8 0.0 -3.9
P5a -0.2 -47.8 0.3 -37.7 0.4 -29.3 0.4 -23.0 0.4 -17.3 0.3 -11.3 0.2 -4.1 0.2 6.7
P5b 0.2 -47.9 -0.3 -37.4 -0.4 -29.0 -0.4 -22.7 -0.4 -17.0 -0.3 -11.1 -0.2 -4.0 -0.2 6.6
P8a 0.0 -51.5 0.0 -60.7 0.0 -64.2 0.0 -64.2 0.0 -61.2 0.0 -56.2 0.0 -50.4 0.0 -31.2
P8b 0.0 -52.1 0.0 -59.4 0.0 -62.8 0.0 -62.8 0.0 -60.0 0.0 -55.2 0.0 -49.8 0.0 -31.2
P9 0.0 -14.2 0.0 -2.9 0.0 0.9 0.0 2.6 0.0 3.3 0.0 3.7 0.0 4.3 0.0 5.2

P11a 0.0 -16.9 0.1 -23.1 0.1 -24.9 0.1 -24.3 0.1 -22.2 0.1 -19.1 0.1 -15.4 0.1 -9.5
P11b 0.0 -16.9 -0.1 -23.1 -0.1 -24.9 -0.1 -24.3 -0.1 -22.2 -0.1 -19.1 -0.1 -15.3 -0.1 -9.5
P13a 0.0 -24.8 0.0 -24.8 0.1 -24.6 0.1 -23.0 0.1 -20.6 0.1 -17.5 0.1 -13.7 0.1 -10.4
P13b 0.0 -24.8 0.0 -24.8 -0.1 -24.5 -0.1 -23.0 -0.1 -20.6 -0.1 -17.4 -0.1 -13.6 -0.1 -10.3
P16a 0.0 -57.6 -0.1 -59.0 -0.1 -56.7 -0.1 -52.2 -0.2 -45.8 -0.2 -37.4 -0.2 -26.8 -0.2 -12.8
P16b 0.0 -57.6 0.1 -58.9 0.1 -56.7 0.1 -52.2 0.2 -45.8 0.2 -37.4 0.2 -26.8 0.2 -12.8
P19a 0.0 -45.6 -0.1 -38.9 -0.2 -32.4 -0.2 -27.1 -0.3 -22.0 -0.3 -16.6 -0.3 -10.0 -0.5 0.3
P19b 0.0 -45.5 0.1 -38.9 0.2 -32.4 0.2 -27.0 0.3 -22.0 0.3 -16.6 0.3 -9.9 0.5 0.4
P22a 0.0 -68.0 0.0 -70.1 0.1 -67.0 0.1 -61.3 0.1 -53.5 0.0 -43.7 0.0 -32.6 0.0 -17.4
P22b 0.0 -67.8 0.0 -69.6 -0.1 -66.2 -0.1 -60.3 -0.1 -52.3 0.0 -42.5 0.0 -31.2 0.0 -17.4
P25 0.0 -14.2 0.0 -2.7 0.0 -1.9 0.0 -1.4 0.0 -1.1 0.0 -0.8 0.0 -0.5 0.0 1.7

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 

Table B.36 – Bending moments in walls for lateral load applied in negative y-direction with seismic 

force as the main action. 

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

Mx
(kNcm)

My
(kNcm)

P1a -48.7 -0.3 -72.3 -0.4 -78.6 -0.2 -77.0 0.0 -70.6 0.0 -61.2 0.1 -49.9 0.3 44.6 0.7
P1b -48.6 0.3 -72.3 0.4 -78.7 0.2 -77.1 0.0 -70.6 0.0 -61.2 -0.2 -49.9 -0.3 44.6 -0.7
P3a -954.9 2.5 -1158.0 -3.7 -1182.0 -3.2 -1117.0 -2.7 -996.4 2.5 -840.0 2.8 670.9 3.2 568.7 -3.0
P3b -954.9 -2.6 -1158.0 3.6 -1181.0 3.2 -1116.0 2.8 -996.0 -2.6 -840.1 -2.8 671.8 -3.1 568.6 2.9
P5a -18520.0 29.0 -12220.0 -49.6 -8236.0 -54.7 -5409.0 54.8 -3179.0 50.8 1851.0 43.1 1463.0 32.7 1654.0 -28.9
P5b -18510.0 -29.6 -12180.0 48.9 -8185.0 54.1 -5356.0 -54.5 -3131.0 -50.4 1838.0 -42.9 1477.0 -32.6 1652.0 29.6
P8a -14090.0 -1.5 -12350.0 -1.2 -11340.0 -1.0 -10300.0 -1.1 -9076.0 0.7 8039.0 0.5 7831.0 1.4 -4437.0 2.2
P8b -14060.0 1.1 -12180.0 1.3 -11130.0 -0.2 -10100.0 -0.4 -8889.0 -0.3 7923.0 -1.4 7806.0 -3.3 -5686.0 6.0
P9 -5146.0 2.3 -1928.0 -3.0 -960.1 -1.4 -745.5 -1.1 -515.7 -1.1 705.4 -1.2 928.2 -1.0 1457.0 2.4

P11a -2890.0 2.6 -3594.0 -7.6 -3757.0 -11.2 -3596.0 -12.5 -3232.0 12.4 -2735.0 11.2 -2158.0 9.0 -1454.0 -10.8
P11b -2890.0 -2.7 -3595.0 7.5 -3758.0 11.2 -3597.0 12.5 -3233.0 -12.5 -2735.0 -11.3 -2157.0 -9.1 -1453.0 10.9
P13a -6094.0 -0.2 -4862.0 -8.3 -4320.0 -16.1 -3719.0 -19.1 -3077.0 19.4 2488.0 18.2 2107.0 15.8 1854.0 -22.3
P13b -6094.0 -0.1 -4860.0 8.2 -4315.0 16.1 -3714.0 19.1 -3072.0 -19.5 2484.0 -18.3 2102.0 -15.9 1848.0 22.4
P16a -19250.0 6.3 -14800.0 13.0 -12020.0 17.2 -9654.0 19.8 -7418.0 21.4 -5258.0 22.7 4326.0 -22.9 2346.0 31.4
P16b -19250.0 -6.5 -14800.0 -13.0 -12020.0 -17.0 -9652.0 -19.6 -7414.0 -21.2 -5254.0 -22.4 4321.0 22.5 2336.0 -30.9
P19a -15720.0 7.7 -11010.0 18.1 -7878.0 26.2 -5569.0 32.6 -3701.0 37.6 2558.0 42.9 2116.0 -43.6 551.3 73.7
P19b -15720.0 -7.7 -11010.0 -17.6 -7872.0 -25.4 -5561.0 -31.5 -3691.0 -36.6 2549.0 -41.8 2111.0 42.5 559.1 -72.4
P22a -25090.0 -0.2 -19110.0 -3.7 -15200.0 -6.9 -11940.0 -7.7 -8932.0 7.3 6144.0 5.7 5682.0 2.5 5477.0 1.4
P22b -25120.0 -0.2 -19090.0 3.9 -15130.0 7.3 -11830.0 8.4 -8790.0 -8.3 5955.0 -6.7 5474.0 -3.4 5270.0 5.8
P25 -5832.0 -0.1 -1869.0 -0.1 -1115.0 -0.1 -593.9 -0.1 -201.5 -0.1 342.0 0.1 492.5 -0.5 481.0 1.5

Wall
7TH FLOOR4TH FLOOR 5TH FLOOR 6TH FLOORBASEMENT 1ST FLOOR 2ND FLOOR 3RD FLOOR

 
 




