

Universidade do Minho

Escola de Engenharia

Francisco Carlos Afonso

Operating System Fault Tolerance Support

for Real-Time Embedded Applications

Tese de Doutoramento em Electrónica Industrial

Área de Conhecimento: Informática Industrial

Trabalho efectuado sob a orientação de:

Professor Doutor Adriano José da Conceição Tavares

Professor Doutor Carlos Alberto Batista da Silva

Doutor Sergio Montenegro-Retana

Janeiro de 2009

iii

Acknowledgements

I would like to thank my supervisors at University of Minho, Prof. Dr. Adriano

Tavares and Prof. Dr. Carlos Silva, for their continuous support and guidance during

the four years of this work. I am grateful for their constant availability to discuss the

thesis direction, for helping me with difficult topics, and for providing every resource

I needed to carry on this work.

To Dr. Sergio Montenegro, my supervisor at FIRST, and now at DLR, I would

like to thank the kindness and hospitality regarding my internship at FIRST. I am also

grateful for the several emails he answered me explaining the BOSS mechanisms and

proposing solutions to the problems I faced.

I also would like to thank my PhD colleagues at the Department of Industrial

Electronics, José Carlos Metrôlho, Sergio Lopes e Paulo Cardoso, for their advice and

support to my research. I wish we could have worked closely during our research

time.

I am also grateful for the financial support provided by Fundação para a Ciência

e a Tecnologia, which has sponsored my scholarship, my internship at FIRST, and the

presentation of my work in several conferences and workshops. I also thank

University of Minho and the Department of Industrial Electronics, for providing and

adequate work environment and for financing the acquisition of the required

hardware.

To my brothers João Luiz and José Augusto, I would like to thank for their

encouragement and assistance from the thesis proposal to the thesis review.

Everything I did would be much more difficult if it weren’t for my parents,

Francisco e Cândida, who received us home for more than six months and gave us lots

of care and love during these four years.

Last but not least, I wish to thank to my beloved wife Helena and my dear kids

Mariana and Carlos, for being always beside me during this hard endeavor. A PhD

research can be a very lonely task, and I am sure I would not have finished it if I did

not have my caring family at home. To them I dedicate this thesis.

v

Operating System Fault Tolerance Support

for Real-Time Embedded Applications

Abstract

Fault tolerance is a means of achieving high dependability for critical and high-

availability systems. Despite the efforts to prevent and remove faults during the

development of these systems, the application of fault tolerance is usually required

because the hardware may fail during system operation and software faults are very

hard to eliminate completely.

One of the difficulties in implementing fault tolerance techniques is the lack of

support from operating systems and middleware. In most fault tolerant projects, the

programmer has to develop a fault tolerance implementation for each application.

This strong customization makes the fault-tolerant software costly and difficult to

implement and maintain. In particular, for small-scale embedded systems, the

introduction of fault tolerance techniques may also have impact on their restricted

resources, such as processing power and memory size.

The purpose of this research is to provide fault tolerance support for real-time

applications in small-scale embedded systems. The main approach of this thesis is to

develop and integrate a customizable and extendable fault tolerance framework into a

real-time operating system, in order to fulfill the needs of a large range of dependable

applications. Special attention is taken to allow the coexistence of fault tolerance with

real-time constraints. The utilization of the proposed framework features several

advantages over ad-hoc implementations, such as simplifying application-level

programming and improving the system configurability and maintainability.

In addition, this thesis also investigates the application of aspect-oriented

techniques to the development of real-time embedded fault-tolerant software. Aspect-

Oriented Programming (AOP) is employed to modularize all fault tolerant source

vi

code, following the principle of separation of concerns, and to integrate the proposed

framework into the operating system.

Two case studies are used to evaluate the proposed implementation in terms of

performance and resource costs. The results show that the overheads related to the

framework application are acceptable and the ones related to the AOP implementation

are negligible.

vii

Suporte do Sistema Operativo à Tolerância a Falhas em Aplicações

Embebidas de Tempo-Real

Resumo

Tolerância a falhas é um meio de obter-se alta confiabilidade para sistemas

críticos e de elevada disponibilidade. Apesar dos esforços para prevenir e remover

falhas durante o desenvolvimento destes sistemas, a aplicação de tolerância a falhas é

normalmente necessária, já que o hardware pode falhar durante a operação do sistema

e falhas de software são muito difíceis de eliminar completamente.

Uma das dificuldades na implementação de técnicas de tolerância a falhas é a

falta de suporte por parte dos sistemas operativos e middleware. Na maioria dos

projectos tolerantes a falhas, o programador deve desenvolver uma implementação de

tolerância a falhas para cada aplicação. Esta elevada adaptação torna o software

tolerante a falhas dispendioso e difícil de implementar e manter. Em particular, para

sistemas embebidos de pequena escala, a introdução de técnicas de tolerância a falhas

pode também ter impacto nos seus restritos recursos, tais como capacidade de

processamento e tamanho da memória.

O propósito desta tese é prover suporte à tolerância a falhas para aplicações de

tempo real em sistemas embebidos de pequena escala. A principal abordagem

utilizada nesta tese foi desenvolver e integrar uma framework tolerante a falhas,

customizável e extensível, a um sistema operativo de tempo real, a fim de satisfazer às

necessidades de uma larga gama de aplicações confiáveis. Especial atenção foi dada

para permitir a coexistência de tolerância a falhas com restrições de tempo real. A

utilização da framework proposta apresenta diversas vantagens sobre implementações

ad-hoc, tais como simplificar a programação a nível da aplicação e melhorar a

configurabilidade e a facilidade de manutenção do sistema.

Além disto, esta tese também investiga a aplicação de técnicas orientadas a

aspectos no desenvolvimento de software tolerante a falhas, embebido e de tempo

real. A Programação Orientada a Aspectos (POA) é empregada para segregar em

viii

módulos isolados todo o código fonte tolerante a falhas, seguindo o princípio da

separação de interesses, e para integrar a framework proposta com o sistema

operativo.

Dois casos de estudo são utilizados para avaliar a implementação proposta em

termos de desempenho e utilização de recursos. Os resultados mostram que os

acréscimos de recursos relativos à aplicação da framework são aceitáveis e os

relativos à implementação POA são insignificantes.

ix

Contents

Acknowledgements.. iii

Abstract ..v

Resumo ...vii

Contents...ix

Figures ..xv

Tables...xix

List of Abbreviations..xxi

Chapter 1..1

Introduction ...1

1.1 Motivation..2

1.2 Problem statement..4

1.3 Approach and contributions...5

1.4 Thesis organization ..7

Chapter 2..9

Fault tolerance ...9

2.1 Faults, errors and failures...10

2.2 Dependability and fault tolerance ..12

2.3 Basic techniques in fault tolerance ..14

2.4 Redundancy..16

2.5 Design diversity ...16

2.6 Hardware fault tolerance..17

2.7 Software fault tolerance ...20

2.8 Fault tolerance strategies..21

x

2.8.1 Checkpoint and Restart ..21

2.8.2 Recovery Blocks ..22

2.8.3 Distributed Recovery Blocks ...23

2.8.4 N-Version Programming..26

2.9 Fault-tolerant communication..27

2.10 Fault tolerance software structures ..29

2.11 Fault tolerance application support ..33

2.11.1 FT-RT-Mach and DEOS..33

2.11.2 Delta-4..34

2.11.3 TMOSM and ROAFTS..35

2.11.4 Adaptive Fault Tolerance for Spacecraft37

2.11.5 Fault Tolerant CORBA..38

2.12 Summary ..39

Chapter 3..41

Aspect-Oriented Programming..41

3.1 Separation of concerns...42

3.1.1 Meta-level Programming ...43

3.1.2 Composition Filters..43

3.1.3 Aspect-Oriented Programming ..44

3.2 AspectC++ ...45

3.2.1 Weaving ...46

3.2.2 Join points, pointcuts and advices..47

3.2.3 The JoinPoint API..49

3.2.4 Performance and memory footprint ...51

3.3 AOP for the operating system..52

xi

3.4 AOP for the middleware ..53

3.5 Fault tolerance using AOP...55

3.6 Summary ..58

Chapter 4..59

BOSS operating system...59

4.1 Introduction..60

4.2 Kernel services...62

4.2.1 Task processing..62

4.2.2 Synchronization ...64

4.2.3 Communication..66

4.2.4 Utility classes ...68

4.2.5 Hardware interface and management...68

4.3 Middleware services ..70

4.3.1 Message to message communication ...71

4.3.2 Message to thread communication...73

4.4 Middleware extensions ..75

4.4.1 Message identification and discarding...76

4.4.2 External messages handling...77

4.5 Summary ..80

Chapter 5..81

Fault tolerance framework...81

5.1 Introduction..82

5.2 Fault tolerance thread model..83

5.3 Framework general description..84

5.3.1 Framework structure ..85

xii

5.3.2 Fault tolerance introduction ...86

5.3.3 Application-specific entities ..87

5.4 Framework general implementation ..90

5.4.1 Timing behavior...90

5.4.2 Class structure..92

5.5 FT strategies implementation...95

5.5.1 Recovery Blocks strategy ..95

5.5.2 Distributed Recovery Blocks strategy ...99

5.5.3 N-Version Programming strategy ..105

5.6 Discussion ..114

5.7 Summary ..115

Chapter 6..117

Applying AOP for fault tolerance..117

6.1 Application-level fault tolerance..118

6.1.1 Code generation ...119

6.1.2 AspectC++ restriction ..120

6.1.3 AOP implementation ...122

6.1.4 Discussion ..127

6.2 FT framework integration ..128

6.2.1 Code generation ...129

6.2.2 AOP implementation ...131

6.2.3 Discussion ..132

6.3 Operating system fault tolerance ...133

6.3.1 Semaphore error detection ...134

6.3.2 Code generation ...135

xiii

6.3.3 AOP implementation ...135

6.3.4 Discussion ..139

6.4 Project configuration using AOP ...139

6.5 Summary ..141

Chapter 7..143

Case studies and evaluation..143

7.1 Development and test environment ...144

7.1.1 Target systems ...144

7.1.2 Host system..145

7.1.3 Porting BOSS to the target board...146

7.2 Case study I: sorting application..146

7.2.1 Testing configurations ...146

7.2.2 Execution time measurements ...149

7.2.3 Runtime costs...153

7.2.4 Memory costs...157

7.2.5 FT scheduling tests ..159

7.3 Case study II: radar filtering application ...161

7.3.1 Testing configurations ...162

7.3.2 Fault tolerance implementations and testing..................................165

7.3.3 AOP implementations..165

7.3.4 Runtime costs...166

7.4 Evaluation ..167

7.4.1 FT framework ..167

7.4.2 Aspect-oriented implementation..168

7.5 Summary ..169

xiv

Chapter 8..171

Conclusions ..171

8.1 Conclusions..172

8.2 Future work..174

Bibliography ..177

xv

Figures

Figure 2.1: Faults, errors and failures. ...10

Figure 2.2: Means to achieve dependable systems. ...13

Figure 2.3: Triple Modular Redundancy. ..18

Figure 2.4: Self-checking modules. ...19

Figure 2.5: RB execution. ..22

Figure 2.6: DRB execution. ...24

Figure 2.7: Xu,Randell, Rubira-Calsavara and Stroud´s framework example.29

Figure 2.8: Tso, Shokri, Tai and Dziegiel´s class diagram for the RB technique.30

Figure 2.9: Reliable Hybrid pattern class diagram. ...31

Figure 2.10: The Generic Software Fault Tolerance pattern class diagram.32

Figure 3.1: Code tangling and code scattering...42

Figure 3.2: AspectC++ weaving process. ..46

Figure 3.3: AspectC++ program example..48

Figure 3.4: Example of source code transformation by AspectC++............................50

Figure 4.1: Task processing related classes. ..62

Figure 4.2: Thread states..63

Figure 4.3: Synchronization related classes...65

Figure 4.4: Communication related classes. ..67

Figure 4.5: BOSS utility classes. ...68

Figure 4.6: BOSS basic architecture. ...69

Figure 4.7: Kernel/HDL interface..70

Figure 4.8: Message class diagram. ...71

Figure 4.9: NameServer data structure...72

xvi

Figure 4.10: Middleware message distribution..72

Figure 4.11: IncommingMessageAdministrator class diagram....................................74

Figure 4.12: IncommingMessageAdministrator sequence diagram.............................74

Figure 4.13: TMR configuration..75

Figure 4.14: NameServer extension for discarding duplicate messages......................76

Figure 4.15: Middleware extensions class diagram. ..77

Figure 4.16: External messages processing. ..79

Figure 4.17: External message packet description...79

Figure 5.1: Fault tolerance thread model. ..83

Figure 5.2: Example of candidate thread for FT implementation................................84

Figure 5.3: Simplified FT framework class diagram. ..85

Figure 5.4: Example of FT application thread. ..87

Figure 5.5: RB execution timing example. ..91

Figure 5.6: RB execution activity diagram. ...92

Figure 5.7: FT strategy execution class diagram. ..92

Figure 5.8: MiddewareScheduler thread sequence diagram.94

Figure 5.9: RB strategy class diagram. ..96

Figure 5.10: RB strategy execution. ..97

Figure 5.11: RB timing example..98

Figure 5.12: Stateless RB threads configuration example. ..99

Figure 5.13: DRB strategy class diagram. ...100

Figure 5.14: DRB strategy execution...101

Figure 5.15: DRB strategy configuration example. ...104

Figure 5.16: DRB timing diagram. ..104

Figure 5.17: NVP strategy class diagram. ...106

xvii

Figure 5.18: NVP strategy execution...107

Figure 5.19: NVP state initialization example. ..108

Figure 5.20: Voting configurations..109

Figure 5.21: VoterThread class diagram..110

Figure 5.22: Voting execution diagram. ..112

Figure 5.23: Master election state diagram..113

Figure 5.24: Master voter failure worst scenario. ..114

Figure 6.1: Example of thread source code before fault tolerance introduction........118

Figure 6.2: Example of thread source code after fault tolerance introduction...........119

Figure 6.3: Code generation process using AOP at the application level..................120

Figure 6.4: AspectC++ base class introduction example...121

Figure 6.5: FT framework modified for AOP application...122

Figure 6.6: DRB strategy abstract aspect...123

Figure 6.7: DRB strategy concrete aspect example. ..124

Figure 6.8: NVP strategy with StdVoter abstract aspect. ..125

Figure 6.9: NVP strategy with StdVoter concrete aspect example.126

Figure 6.10: Code generation process when using AOP at the OS level...................129

Figure 6.11: Alternative code generation process with double weaving.130

Figure 6.12: MiddlewareScheduler activation aspect. ...131

Figure 6.13: Aspect for introducing FT attributes and methods in the Thread class.132

Figure 6.14: Semaphore error detection aspect for the first predicate.135

Figure 6.15: Semaphore error detection aspect for the second predicate.137

Figure 6.16: Synchronization aspect applied to the Semaphore class.138

Figure 6.17: Semaphore enter method sequence diagram. ..139

Figure 7.1: Test environment. ..145

xviii

Figure 7.2: Case study I - non-FT or RB configuration...147

Figure 7.3: Case study I - DRB configuration. ..147

Figure 7.4: Case study I - NVP configuration. ...148

Figure 7.5: Case study I - no-failure condition. ...151

Figure 7.6: Case study I – comparison between no-failure and variant 1 failure

conditions. ..152

Figure 7.7: Case study I - comparison between no-failure and one node failure

conditions. ..153

Figure 7.8: Case study I - CPU utilization configuration. ...154

Figure 7.9: Case study I - CPU utilization results. ..155

Figure 7.10: CPU utilization comparison for AOP and FT scheduling versions.......156

Figure 7.11: Comparison of FT and non-FT memory footprints...............................158

Figure 7.12: Case study I - detailed comparison of memory footprint.158

Figure 7.13: Case study II - non-FT configuration. ...162

Figure 7.14: Case study II - PSP configurtion. ..162

Figure 7.15: Case study II - TMR configuration. ..163

Figure 7.16: Case study II - display output example. ..164

Figure 7.17: Case study II – CPU utilization results. ..166

xix

Tables

Table 3.1: AspectC++ pointcut functions. ...48

Table 5.1: Multiple version strategies requirements..88

Table 5.2: Single version strategies requirements. ..88

Table 5.3: Voter requirements. ..89

Table 7.1: Case study I - local execution time...149

Table 7.2: Case study I - total execution time. ..150

Table 7.3: Case study I - time settings. ..150

Table 7.4: Memory footprint results. ...157

Table 7.5: Additional memory costs for AOP and FT scheduling versions.159

Table 7.6: FT scheduling test configurations...160

Table 7.7: FT scheduling test results. ..161

xxi

List of Abbreviations

AFT Adaptive Fault Tolerance

AOP Aspect-Oriented Programming

AOSD Aspect-Oriented Software Development

API Application Programming Interface

AT Acceptance Test

CORBA Common Object Request Broker Architecture

CPM Communication Processor Module

DRB Distributed Recovery Blocks

EJB Enterprise Java Beans

FIFO First In First Out

FT Fault Tolerance or Fault-Tolerant

FTRMS Fault-tolerant RMS

GSFT Generic Software Fault Tolerance

HDL Hardware Dependent Layer

I2C Inter-Integrated Circuit

ISR Interrupt Service Routine

MIPS Million Instructions per Second

MOP Meta-object Protocol

MS MiddlewareScheduler

NMR N-Modular Redundancy

NVP N-Version Programming

NAC Network Attachment Controller

OOP Object-Oriented Programming

xxii

OS Operating System

OSI Open Systems Interconnection

PC Personal Computer

PCMCIA Personal Computer Memory Card International Association

PSP Pair of Self Checking Processors

RB Recovery Blocks

RISC Reduced Instruction Set Computing

RMI Remote Method Invocation

RMS Rate Monotonic Scheduling

ROAFTS Real-Time Object-Oriented Adaptive Fault Tolerance Support

RPC Remote Procedure Call

RPM Revolutions per Minute

SIU System Interface Unit

SPI Serial Peripheral Interface

STU Single Translation Unit

TMO Time-triggered Message-triggered Object

TMOSM TMO Support Middleware

TMR Triple Modular Redundancy

TTP Time-triggered Protocol

WPT Whole Program Transformation

WTST Watchdog Timer and Scheduler Thread

1

Chapter 1

Introduction

This chapter initially describes the thesis motivation and the main topics

related to this work. The definition of the research problem and the

formulation of the research questions are addressed next. Finally, the

approach and contributions of this work are stated.

Chapter 1. Introduction

2

1.1 Motivation

Embedded systems have a widespread use in several domains, such as consumer

electronics, home/office automation, and the automotive industry. A precise

definition of the term embedded system does not exist. In general, embedded systems

are defined as hardware-software systems that perform a specific function, usually

being part of a larger system, which explains the “embedded” denomination. Besides

being designed to execute a predefined function, as opposed to a general purpose

computing system (mainframe, desktop, notebook, and so on), embedded systems

usually have a particular method of software development called cross-platform

development [96], in which the software is generated in other platform and then it is

transferred to the embedded device.

Most embedded systems have to react to the system environment in a timely

fashion. Real-time systems must satisfy timing constraints, and therefore the correct

response depends also on the time that it is produced. Examples of real-time

embedded systems include portable media players and control systems. The

consequences of not satisfying a timing constraint are severe in hard real time

systems, in contrast with soft real time systems, in which there is some degree of

tolerance to timing violations.

Some embedded systems demand high reliability, availability or safety, as a

system failure may endanger human lives or compromise the success of the entire

system operation. These are classified as safety-critical and mission-critical systems,

respectively. Examples of these critical systems include drive-by-wire systems in

automobiles, fly-by-wire systems in avionics, missile control systems and autonomous

space systems.

Critical systems are also termed high-dependability systems. Dependability is a

wider concept that includes several attributes, such as reliability, safety,

maintainability and security. The reliability of high-dependability systems can be

several orders of magnitude higher than for commercial systems. For instance, civil

transport airplane critical equipments are designed to have less than 10-9 catastrophic

failures per hour of operation (a failure in 114 thousand years) [71]. Similar

requirements are applied in railway control systems. High-dependability systems are

Chapter 1. Introduction

3

also needed in satellites and space missions because most of these systems must

operate without any maintenance at all.

As critical embedded systems are composed by hardware and software, there is a

strong need to reduce the number of failures related to these two domains. Hardware

reliability has been constantly increasing over time. However, transient and

permanent hardware faults may still occur, especially in environments subjected to

high energy particles and radiation, such as space systems. In relation to software

faults, the ever increasing functionality of the computer systems has a direct impact in

the software complexity, which is the main cause of design faults in software. Despite

the efforts taken at the several phases of software development, including the testing

phase, various software faults are likely to remain unpredicted and undetected.

Therefore, fault tolerance (FT) techniques are needed in order to maintain the system

operational in the presence of hardware and software faults.

Several fault tolerance techniques have been proposed in the last 30 years.

However, the application of these techniques is expensive, in terms of resources and

costs, and therefore they are normally only used in safety or mission-critical systems.

Fault tolerance is usually applied by means of redundancy and diversity.

Redundant hardware implies the establishment of a distributed system executing a set

of fault tolerance strategies by software, and may also employ some form of diversity,

by using different variants or versions for the same processing. Redundant hardware

involves extra software coordination, which makes the software system more complex

and error-prone. Software fault tolerance may be implemented by software re-

execution or multiple versions techniques, which also requires the application of

additional control mechanisms.

In many fault tolerant projects, the programmer has to address both application-

dependent and fault tolerance related concerns. This strong customization requires

highly specialized design teams, thus making realistic fault-tolerant software costly

and difficulty to implement and maintain. Therefore, there is an urgent need to

provide a flexible support for fault-tolerant applications that is able to deliver some

degree of transparency for the application developer and at the same time that

Chapter 1. Introduction

4

facilitates customizability across a broad range of applications, as well as diverse

reliability requirements.

One of the difficulties in implementing fault tolerance techniques is the lack of

support from operating systems and middleware. Operating systems are not designed

with fault tolerance support in mind and even those that were extended to include

some basic fault tolerance mechanisms did not provide support for a full fault tolerant

implementation. The same happens to middleware implementations, such as CORBA

[90], which were meant originally to solve the distribution problem, and only a few

years ago have specified basic mechanisms of fault tolerance [88].

Another problem regarding the fault tolerance implementation is that it has a huge

impact in the real-time behavior of an application. A fault tolerance implementation

normally demands additional computations for fault detection, alternative

implementations and replica coordination. These mechanisms change the application

timing behavior and often violate real-time constraints. As an example of this issue, it

can be mentioned the incompatibility of the FT-CORBA [88] and RT-CORBA [89]

specifications [48, 85].

In particular, for small-scale embedded systems, the introduction of fault

tolerance techniques may have impact on the restricted resources of these systems,

such as processing power, memory size, power consumption, physical size and

weight. These restrictions are considered in the requirements of many embedded

projects, such as satellite systems. Most fault tolerance research developed so far

focus on large-scale systems with no resource constraints, such as navy command and

control systems and airline reservation systems. Most solutions proposed to that kind

of systems are not applicable to small-scale embedded systems.

1.2 Problem statement

The purpose of this research is to provide fault tolerance support for real-time

embedded applications by extending a real-time operating system. The focus of this

research is on small-scale distributed embedded systems connected by local area

networks or field buses. The emphasis of fault tolerance is on the computation (fault-

Chapter 1. Introduction

5

tolerant computing) and not in the communication between nodes, which is assumed

to be reliable.

The main research questions are:

• Is the approach described above feasible and acceptable in terms of performance

and resource costs?

• What benefits and drawbacks this approach brings to the embedded software

development process?

• Can Aspect-Oriented Programming (AOP) [62], a new technique for advanced

separation of concerns [36, 91], be applied at the operating system and application

level to support the implementation of embedded fault-tolerant systems? If so,

what are the benefits?

The operating system employed in this research was the BOSS operating system

[81], developed by Fraunhofer Institute for Computer Architecture and Software

Technology (FIRST). This operating system was written in C++, uses object-oriented

technology extensively, and it includes a middleware for communication support

based on a publish-subscriber protocol. The BOSS operating system targets real-time

high-dependability applications, such as satellite and medical systems.

1.3 Approach and contributions

The main approach taken in this research was to develop and integrate a

customizable and extendable fault tolerance framework into a real-time operating

system, in order to fulfill the needs of a large range of dependable applications. This

FT framework defines a set of collaborations between operating system basic classes

and fault tolerance support classes in order to implement fault tolerance techniques

with maximum transparency the application-level threads. Additionally, AOP was

employed to provide a full modularization of the fault tolerance implementation.

The contributions of this research are listed as follows:

Chapter 1. Introduction

6

• The proposal of a framework for developing real-time embedded fault-tolerant

software. In contrast with previous works, we target the application thread level,

based on a thread model which allows both state and stateless threads.

• The development of several fault tolerance strategy implementations using the

proposed framework in order to cover a wide range of fault tolerance

requirements, supporting both hardware and software fault tolerance.

• The development of new mechanisms for the BOSS middleware, namely for

message identification, duplicate messages discarding and external messages

handling.

• The application of aspect-oriented techniques to the development of real-time

embedded fault-tolerant software. In contrast with previous works, we applied

AOP in order to provide fault tolerance to application threads. Additionally, we

employed AOP to integrate the proposed FT framework into the original

operating system and to implement fault tolerance mechanisms at the operating

system level.

• The evaluation and comparison of the proposed fault tolerance framework and the

AOP implementation in terms of performance and resource costs based on two

case studies: a sorting application and a radar filtering system. These case studies

were developed using a PowerPC 823 based target board, in a similar

configuration employed in a satellite computer system. Performances based on

execution time, plus costs related to runtime overhead and memory footprint were

measured for several FT configurations and implementations.

• The evaluation of the proposed framework and the AOP implementation in terms

of benefits to the embedded software development process, including

maintenance and reusability issues.

The approaches and contributions described in this thesis have been succinctly

presented in research papers published by international conferences and workshops

related to real-time systems, industrial embedded systems and aspect-oriented

software development [2-6].

Chapter 1. Introduction

7

1.4 Thesis organization

This thesis is divided in eight chapters. The remaining chapters are described as

follows:

• Chapter 2 introduces the main definitions and concepts related to fault tolerance.

It also presents the fault tolerance techniques applied in this work and reviews the

related work about fault tolerance.

• Chapter 3 presents the main concepts related to Aspect-Oriented Programming,

describes the AspectC++ language extension and reviews the research results

regarding the application of AOP in operating systems, middleware and fault-

tolerant systems.

• Chapter 4 describes the main features of the BOSS operating system, including

its kernel and middleware. A brief introduction about BOSS principles, history

and applications is presented, followed by a detailed description of the kernel and

the middleware. The middleware extensions developed for handling external

messages are also described.

• Chapter 5 describes the fault tolerance framework developed for supporting

application-level fault tolerance, as an extension to the BOSS operating system

and its middleware. The framework objectives and constraints are presented, as

well as the thread model for FT introduction. The implemented fault tolerance

strategies are described in detail. This chapter also discusses the benefits and

drawbacks of the proposed FT framework.

• Chapter 6 presents how AOP was applied to support the implementation of fault

tolerance. It covers the application of AOP for three different purposes: (1)

modularize the fault tolerance code at the application level; (2) integrate the FT

framework into the operating system; and (3) implement fault tolerance at the

operating system level. This chapter also discusses the benefits and drawbacks of

the AOP application.

• Chapter 7 presents the development and test environment applied in this work

and describes the case studies developed to test the proposed FT framework,

comparing performance and costs of several configurations and implementations.

Chapter 1. Introduction

8

• Chapter 8 concludes this thesis and indicates possible future directions for this

research topic.

9

Chapter 2

Fault tolerance

This chapter introduces the main definitions and concepts related to fault

tolerance. Besides, the main techniques and approaches to build fault-

tolerant systems are presented, as well as the related work regarding fault

tolerance.

Chapter 2. Fault tolerance

10

2.1 Faults, errors and failures

In this section, the basic terminology in fault tolerance is introduced by explaining

the difference between faults, errors and failures. These terms are frequently

combined with others to classify fault tolerance concepts and techniques, and

therefore a precise definition of these terms is required1.

A failure is an event that ocurrs when a system’s delivered service deviates from

the correct service [20]. The correct service is the one described in the system

specification. An error is a part of the system state that may cause a subsequent

failure. A fault is the cause of an error.

Figure 2.1 shows the relationship between faults, error and failures in a multi-

component system [117]. A fault is active when it produces an error, otherwise it is

dormant. A dormant fault may be activated (generates an error) after a system input or

computational process. The failure of a component represents a fault for the system,

and it can further generate a system error. Errors can propagate within a component or

system. An error that has not been detected is a latent error. A system failure occurs

when the error propagates to the system interface. In summary, a fault is a defect, an

error is a corrupted state, and a failure is the event that we want to avoid.

system

component

fault

error

failure

dormant fault

active fault

Figure 2.1: Faults, errors and failures.

1 For instance, error detection and error handling have a completely different meaning than fault

detection and fault handling.

Chapter 2. Fault tolerance

11

Faults can be classified according to many criteria. In relation to the domain, there

are hardware or software faults. Design faults occur much more frequently in software

than in hardware because of the difference in complexity of these two domains. This

difference is explained by the fact that hardware machines have usually a smaller

number of internal states than software programs [98].

In relation to persistence, faults can be classified in permanent or transient.

Hardware faults can be permanent or transient, but a software fault is always

permanent. Apparent transient software faults are in fact permanent software faults

with complex activation patterns. The ability to identify the activation pattern of a

fault determines the fault activation reproducibility. Faults can be categorized

according their activation reproducibility as solid (or hard, or bohrbugs [49]), and

elusive (or soft, or heisenbugs [49]). The activation of elusive faults is not

systematically reproducible. Elusive faults activation can depend, for instance, on

unusual combinations of internal states and external requests, system load, and timing.

Most residual design faults in large and complex software are elusive faults. The

similarity of the manifestation of elusive development faults and of transient physical

faults leads to both classes being grouped together as intermittent faults. Errors

produced by intermittent faults are termed soft errors [20].

Failures can be classified in relation to the domain as content failures and timing

failures. Content failures, also called value failures, present a deviation in the content

of the information delivered by a system in regard to the system specification. In

timing failures, the deviation is related to the arrival or duration of the information

delivery. A failure can also be consistent or inconsistent. Consistent failures are

perceived identically for all system users, while inconsistent failures are perceived

differently by one or more users. Inconsistent failures are also called Byzantine

failures.

Chapter 2. Fault tolerance

12

2.2 Dependability and fault tolerance

The dependability of a computer system is the ability to avoid system failures that

are more frequent and more severe than acceptable [20]. The concept of dependability

is strong connected with the concept of trust, and comprises the following attributes:

• Reliability: continuity of the correct service. Reliability is the probability that a

system will perform its intended function satisfactorily, for a specified period of

time. It is usually expressed in terms of failure rate (λ), or its inverse, the mean

time to failure (MTTF) [71]. The system reliability is dependent on the system

environment. For instance, the activation of some types of faults can be triggered

by specif input sequences [111]. A system can have many faults but still be

reliable if the environment does not trigger any fault activation in its normal

operation.

• Availability: readiness for correct service. Availability is the probability that a

system is performing its required function at a given point in time. To calculate

the system availability it is necessary to include information about the mean time

to repair (MTTR).

• Safety: absence of catastrophic consequences on the user and the environment. A

fail-safe system is one that cannot cause harm when it fails. A system can be fail-

safe but unreliable and vice-versa. For many systems, the fail-safe property

cannot be guaranteed as, for instance, in airplane flight control systems [108].

Safety can also be defined as the reliability with respect to catastrophic failures.

• Confidentiality: absence of unauthorized disclosure of information.

• Integrity: absence of improper system state alterations.

• Maintainability: the ability to undergo repairs and modifications.

There are four basic means to achieve dependability: fault prevention, fault

removal, fault forecasting and fault tolerance [20]. These techniques are described as

follows:

• Fault prevention: to avoid or prevent the introduction of faults in the system

design. Examples of software fault prevention include software design methods,

Chapter 2. Fault tolerance

13

modularization and reusability. Many design faults are introduced because of an

incorrect or incomplete system specification.

• Fault removal: to detect and eliminate faults from system, both at development

and operational phases. It includes verification, diagnosis and correction.

Verification can be static, using for instance inspections and formal methods, or

dynamic, with the application of fault injection and testing.

• Fault forecasting: to predict and estimate the presence and activation of faults as

well as their consequences. Fault forecasting techniques include failure mode and

effects analysis (FMEA), Markov chains and fault-trees. Fault forecasting

techniques may indicate the need for modifications in system design and the

application of fault tolerance.

• Fault tolerance: to preserve the delivery of a correct system service in the

presence of active faults. Fault tolerance is intended to prevent active faults from

becoming failures. In order to achieve fault tolerance, the system must react to

errors before they reach its boundaries.

Figure 2.2 shows the relationship among the four means to achieve dependable

systems. As represented in this figure, faults may be still present after system

development and validation, when fault prevention and fault removal techiques are

applied. The remaining faults must be taken care at operation time, by using fault

tolerance techniques. Fault forecasting may be applied in all phases of the system

lifecycle, using both prediction and estimation techniques regarding faults and

failures.

Fault
prevention

Fault
removal

Fault
 tolerance

Fault
forecasting

faults faults

fault/failure
prediction

fault/failure
estimation

fault/failure
estimation

development validation operation

Figure 2.2: Means to achieve dependable systems.

Chapter 2. Fault tolerance

14

In particular, software design faults are very hard to eliminate completely through

fault prevention and removal. Besides, hardware faults, either permanent or transient,

may happen during system operation. Therefore, only fault tolerance can cope with

software residual faults and hardware operational faults.

Fault tolerance is directly related to system reliability, as its application increases

the time between failures. Increasing system reliability will also result in larger

system availability and safety.

Fault-tolerant systems may be classified as follows [104, 111]:

• Critical systems: require a high degree of reliability and safety. This category

includes safety-critical systems, in which a failure can cause loss of lives, and

mission-critical systems, in which a failure can cause damage in equipment, or the

loss of efforts and the mission failure. Some safety-critical systems examples are

flight control systems, nuclear plants and railway control systems. Commercial

fly-by-wire systems, for instance, require a probability of failure per hour not

greater than 10-9, considered as ultra-high reliability [71].

• Long life systems: require that a computer operates as intended when the time

between maintenance is large or even without any maintenance at all. This

includes, for instance, satellites and space systems.

• High-availability systems: demand a very high probability that the system will

be ready to provide the intended service when required, such as airline reservation

systems.

• General purpose systems: are the less demanding in terms of fault tolerance,

generally providing only error detection capabilities.

2.3 Basic techniques in fault tolerance

Fault tolerance is implemented by means of error detection and system recovery.

Error detection aims to spot errors within the system. Several methods may be applied

to detect errors, such as replication checks, timing checks, reasonableness checks and

structural checks [57]. System recovery must apply error handling for eliminating

Chapter 2. Fault tolerance

15

the error from the system state and, additionally, may apply fault handling for

diagnosing the fault and preventing it from being activated again. There are three

general techniques for error handling: rollback, rollforward and compensation.

In the rollback technique, also called backward recovery, the system is restored

to a previous assumed error-free state. This technique requires that the system state is

stored periodically in predetermined recovery points, in a process called

checkpointing. It is effective against transient faults because these faults may have

disappeared after restarting from the last checkpoint. For permanent faults, the use of

rollback mechanisms must be associated with other techniques as, for instance,

changing the algorithm in case of software faults.

In the rollforward technique, also called forward recovery, the system is taken to

a new state without errors. Using this technique, the system tries to make corrective

actions to remove the error from the system state. Therefore, it requires precise

information about the error nature and extent. This diagnosis is application and system

dependent.

 In the compensation technique, the erroneous state contains enough redundant

information to enable error elimination. Corrections codes such as Hamming code and

multiple executions of the same computation are examples of error compensation. rror

Compensation does not depend on error detection, and so it can be executed

continuously. This form of recovery is called fault masking. Alternatively,

compensation can be executed only after some error detection.

Error handling techniques eliminate errors from the system state, but they do not

prevent new errors from occurring. For this reason, fault handling is needed. Fault

handling involves four steps:

• Fault diagnosis: identifies the fault type and location.

• Fault isolation: performs physical or logic exclusion from future participation in

service delivery.

• System reconfiguration: switches to a spare component or task.

• System reinitialization: updates system state and configuration information.

Chapter 2. Fault tolerance

16

Some components and systems are designed to fail only in specific modes that

preserve safety (fail-safe) or that do not produce incorrect results that may affect

further processing (fail-silent). Additionally, a system can be designed to provide a

degraded functionality in case of failure, returning to full functionality after a system

reconfiguration and reinitialization. These systems are termed failure-controlled

systems.

2.4 Redundancy

 Fault tolerance implementation depends heavily on redundancy. Redundancy is

the utilization of additional resources that are not required for normal system

operation.

 Hardware redundancy includes replicated and supplementary hardware to support

fault tolerance, and is the most used form of redundancy in fault-tolerant systems.

Software redundancy includes additional programs, modules and objects to support

fault tolerance [94]. Information redundancy is the use of additional information with

the aim of detecting or tolerating faults. Examples of information redundancy include

the use of parity bits and error correcting codes. Temporal redundancy involves

additional time for providing fault tolerance as, for instance, using multiple sequential

computations, but it is only effective with transient faults.

2.5 Design diversity

Redundancy is not sufficient for tolerating solid design faults. A replicated

hardware or software will fail identically for these faults, as they have the same

design. In order to tolerate solid design faults, it is necessary to make use of design

diversity, which means the redundancy of design.

Design diversity can be used in all forms of redundancy. In hardware systems it

would involve using modules of different hardware design, whereas in software it

would require different programs to implement the same function. For information

Chapter 2. Fault tolerance

17

redundancy, diversity can be implemented by using different data structures and not

just simple data copies.

Design diversity may be applied in all phases of the software development, such

as system requirements, design and implementation. Diverse specifications,

programming languages, algorithms and software teams can contribute to increase the

design diversity and therefore to reduce failures related to design faults.

2.6 Hardware fault tolerance

Hardware fault tolerance is generally defined as the kind of fault tolerance for

dealing with hardware faults. Hardware faults were a main issue in the early ages of

computing. Although the reliability of hardware systems has been improving steadily,

hardware faults are still a problem for dependable systems.

 Hardware faults can be permanent or transient. Transient hardware faults may be

produced, for instance, by high energy subatomic particles, electromagnetic radiation

and power fluctuations. Bursts of radiation are responsible for permanent and

transient failures in satellites.

Hardware fault tolerance can be implemented by using hardware or software

mechanisms. The application of extra hardware to detect and correct errors was the

first successful method for achieving fault-tolerant systems and it is still applied in

memories, disks and microprocessors. The Leon [45] and PPC-750FX boards [54],

applied in high-dependability applications as aerospace, use multiple circuits in the

processor to recover from hardware failures.

The utilization of software techniques to recover from hardware failures is usually

called software-based hardware fault tolerance [117]. In these systems, the system

software is modified to implement error detection and handling in single or multiple

computing units. Multiple computers are necessary to tolerate permanent hardware

faults.

Some software mechanisms designed for handling hardware transient faults, such

as backward recovery, are also effective against software elusive faults. The study in

Chapter 2. Fault tolerance

18

[49] relates an experiment in which only 1 out of 132 elusive software faults have

manifested again after a second run.

Hardware redundancy can be implemented in static, dynamic or hybrid

configurations. Static redundancy techniques use compensation or masking to avoid

system failures. A typical example is Triple Modular Redundancy (TMR), represented

in Figure 2.3, in which three output channels (generated by hardware or software) are

subjected to majority voting and consequently an error in one channel is tolerated.

Static redundant systems are fast and simple to implement, but demand more

hardware than other configurations. N-Modular Redundancy (NMR) is an extension

of the TMR technique using “n” redundant modules, which are able to tolerate (n-1)/2

faulty modules.

Module 1

Module 2

Module 3

Voter
input output

Figure 2.3: Triple Modular Redundancy.

Dynamic redundancy techniques use error detection followed by fault handling to

isolate the faulty components. Two examples of dynamic redundancy are shown in

Figure 2.4 [87]. In Figure 2.4(a) two self-checking modules are used, and the final

output is chosen based on the error signals. In Figure 2.4(b), a self-checking unit is

built by two modules that have their results compared. Other example of dynamic

redundancy is the usage of standby sparing (hot, warm or cold).

Chapter 2. Fault tolerance

19

Self-checking
module A

Self-checking
module B

Switch
output

Error A

Error B

Module A1

Module A2

Module B1

Module B2

Comparison

Comparison

Switch

Error A

Error B

output

(a) (b)

Figure 2.4: Self-checking modules.

Hybrid redundancy techniques combine elements of both static and dynamic

redundancy as, for instance, the substitution of the faulty unit by a spare in the TMR

technique.

The additional functionality needed to implement static, dynamic or hybrid

hardware redundancy (e.g. voters and comparators) can be provided by hardware or

software mechanisms. A common architecture based on software mechanisms

consists of a multi-computer system connected by a communication network,

commonly referred as a distributed system.

In distributed systems terminology, replication means the use of multiple

hardware and software. The main replication techniques are:

• Active replication (also termed the state machine approach). In this technique all

replicas process the inputs and send the results concurrently. This technique

assumes that all replicas are deterministic and will reach the same results. For

fail-silent nodes, the destination nodes are supposed to discard duplicated

messages. The active replication technique may be extended to tolerate value

failures [92], as TMR does, and even Byzantine failures [72] .

• Passive replication (also termed the primary-backup approach). It is a centralized

technique equivalent to standby sparing. In this technique all inputs are sent to a

primary replica, which processes them and replies, updating the state of the

backup replicas. If the primary replica fails, one of the backup replicas assume as

primary. Passive replication can only be applied in fail-silent nodes.

Chapter 2. Fault tolerance

20

2.7 Software fault tolerance

Complexity is the root cause of software faults in computer systems [81, 111].

Software fault tolerance is needed because of our inability to produce error-free

software. Fault tolerance can be applied to different software layers and software

elements, such as at the operating system level, the application level, the process

level, object level and function/method level.

Software fault tolerance can be divided in two groups: single version or multiple

version software techniques. Single version techniques aim to tolerate software faults

with a single software implementation, or version. To accomplish this, single version

software can use rollback and rollforward techniques, as well as time and information

redundancy. Examples of single versions techniques include error detection,

checkpoint and restart, exception handling, and input data re-expression. Although

single version techniques such as exception handling cannot fully recover from errors,

they can be used to produce fail-controlled systems.

 In contrast, with multiple version techniques, two or more software versions are

executed sequentially or concurrently. These versions are created using some kind of

design diversity, such as different programming teams or different algorithms, in

order to avoid design faults. Several strategies have been proposed to implement fault

tolerance with multiple version software, although most of them use the same

architectural principles used in hardware fault tolerance.

Multiple version software is in general very expensive, but it has been used in

safe-critical systems such as flight control systems, e.g. Airbus A340 [25], transport

systems, e.g. Elektra Railway Signaling System [58], and space systems, e.g. NASA

Space Shuttle [104]. The degree of design diversity utilization is variable. Full diverse

software may use even different specifications for each software team, while in the

other extreme diversity may be implemented by a single programmer, using different

algorithms for each software version.

Chapter 2. Fault tolerance

21

2.8 Fault tolerance strategies

This section presents several fault tolerance strategies, both for hardware and

software fault tolerance. A fault tolerance strategy, also termed technique or scheme,

is usually a pattern for fault tolerance implementation, using a set of error detection,

error handling, fault handling, redundancy and diversity mechanisms.

2.8.1 Checkpoint and Restart

The application of the Checkpoint and Restart technique started with computers in

the late 1950´s [50]. As the reliability and availability of these systems were very low,

it was common to save the state of a task in stable storage to avoid losing all the work

after a system failure.

Checkpoint and Restart is a strategy based on backward recovery [93]. After

detecting an error, a system or component tries to reach a previous error-free state and

then restarts processing again. Checkpointing can be taken periodically or at

previously determined points as, for instance, before executing some operation.

The application of Checkpoint and Restart is effective against transient hardware

faults and elusive software faults because they probably will not be activated in a

second execution under a slightly different context. Randell [98] states the following

about the use of checkpointing mechanisms: “fault tolerance does not necessarily

require diagnosing the cause of the fault, or even deciding whether it arises from the

hardware or the software.”

A checkpoint can be saved in memory or in stable storage, and is generally

discarded after the next checkpoint is executed. Other mechanisms of recovery points

include recovery cache and audit trail. In the recovery cache mechanism, only states

that will be changed are saved. In contrast, in the audit trail mechanisms, all state

changes are saved.

Chapter 2. Fault tolerance

22

2.8.2 Recovery Blocks

The Recovery Blocks (RB) strategy [55, 98] is an extension of the Checkpoint

and Restart strategy for multiple version software. In this technique, two or more

software variants are implemented. The main software variant, also called primary

alternate, is executed first and then an acceptance test (AT) is performed. The AT is

an application-dependent error detection mechanism, such as a reasonableness check.

If the acceptance test detects an error, alternate versions are executed sequentially

until one of them is successful. If all variants fail, the recovery block strategy ends in

a failure condition, and the error must be treated using forward recovery.

The general implementation of Recovery Blocks is shown in Figure 2.5. A

checkpoint or other kind of recovery point is taken before starting the execution of

alternates. After executing an alternate, an acceptance test is run and, in case of

success, the checkpoint is discarded and the recovery block ends normally. If

otherwise the acceptance test fails, the checkpoint is restored and a new alternate is

executed, unless no alternates are available, which represents a failure.

Establish
checkpoint

Execute
alternate

Restore
checkpoint

AT ok?

Other
alternate
exists?

no

yes

yes

no

exception

 exit

 failure

entry

Figure 2.5: RB execution.

Recovery Blocks may optionally use watchdog timers for establishing deadlines

for the variants execution, as a way to detect an anormal behavior, such as infinite

loops. A watchdog timer may be configured with the worst case execution time of the

alternate, before its execution. The watchdog timer activation acts as an exception

signal to the execution control of the recovery blocks strategy.

Typically, for primary alternate it is selected the more effective software version.

For the second or further alternate versions, a degraded functionality may be

Chapter 2. Fault tolerance

23

provided, as the primary version is expected to run correctly in future activations. The

degree of diversity in recovery blocks is restricted to different algorithms because

each alternate is implemented as a function or class method.

The Recovery Blocks construct can be nested. This means that inside one

alternate it should be possible to start another RB, and so several levels of recovery

block could be running at the same time. However, this feature demands a more

complex checkpoint and control implementation.

Most implementations of Recovery Blocks try to make the recovery point

mechanism automatic, as for instance using recovery caches, either in hardware or

software. Recovery caches save only global data accessed by alternates. However, in

order to restore the previous state after an error has been detected by the acceptance

test, all the operations taken by the software alternated have to be reverted. If an input

or output has occurred after the last checkpoint, as for instance, by sending or

receiving a message, this operation has to be reverted. Therefore, the implementation

of recovery blocks in concurrent systems must take in account the coordination

between recovery points in different processes or nodes to prevent system

inconsistencies and the domino effect [98].

The acceptance test is unique for all alternates and it does not include any fault

tolerance. Consequently it must be simple, effective and free from design faults.

Besides, a complex acceptance test can introduce too much runtime overhead.

An experiment using the RB strategy in a Naval Command and Control System

showed a failure coverage of over 70% [97]. The cost of the fault-tolerant software

was 60% greater than the original software cost, and the system presented a 40%

runtime overhead. These apparent high costs were considered acceptable in face of the

improvement in system reliability.

2.8.3 Distributed Recovery Blocks

The Recovery Blocks strategy does not establish any procedure for execution in

distributed environments. The Distributed Recovery Blocks (DRB) strategy [64]

Chapter 2. Fault tolerance

24

combines the Recovery Blocks concept with distributed processing in dual nodes to

provide additional fault tolerance for permanent hardware faults.

Figure 2.6 shows a block diagram of a DRB computing station. This scheme uses

two computing nodes, two software variants (try blocks), and a common acceptance

test. One of the nodes works as a primary node and the other as a shadow node.

A B

Establish
checkpoint

Restore
checkpoint

AT ok? AT ok?

end

B A

Establish
checkpoint

Restore
checkpoint

AT ok? AT ok?

Primary
ok? end

failure

failureyes yes
yes

no

yes

from predecessor computing station

to sucessor computing station

Primary node Shadow node

no

no

yes

no
no

Figure 2.6: DRB execution.

In normal operation, only the primary node sends outputs to other computing

stations. The nodes act in a two-phase mechanism. In the first phase, an input is

selected for running, and in the second phase, an output is produced. The DRB

operation is executed as follows. After an input selection, the two nodes start running

different try blocks: the primary node runs try block A, while the shadow node runs

try block B. After executing each try block, an acceptance test is performed. If the

Chapter 2. Fault tolerance

25

primary node succeeds in try block A, it sends a message to the shadow node

notifying its success and then outputs its results to the next computing station.

However, if the primary node fails and the shadow node passes its test, the shadow

node assumes the role of primary and sends its results. If both the primary and the

shadow fail in the first try block, they try to execute the remaining try block. A correct

execution of the second try block (A) in the shadow node will be a valid output. A

correct execution of the second try block (B) in the primary node is necessary to keep

state consistency between the nodes.

The DRB strategy also depends on a recovery point mechanism as the RB

strategy does, and can also have watchdogs to control the try blocks execution. A

failure in keeping the try block deadline is considered a failure in a time acceptance

test.

The DRB strategy has the following major useful characteristics [66]:

• Provides a uniform treatment for hardware and software faults.

• The recovery time is reduced because concurrency is exploited between the

primary and the shadow nodes. However, the timeout for failure detection of the

primary node can affect this recovery time.

• In normal operation (no errors), the increase in processing time for the primary

node is minimal because it does not have to wait for any message from the

shadow node, although it has to send the AT success notification to the shadow

node.

• It is cost effective because only two software variants are needed and the second

version can be simpler and provide a degraded functionality.

The drawbacks of DRB are related to node coordination. First, it needs some

mechanism for ensuring input data consistency, otherwise the two nodes will work in

different computations and their state will become inconsistent. Second, it requires the

communication of acceptance test results between the primary and the shadow node.

A delay in receiving this result would make the shadow node change its role to

primary, presuming it has failed. If that was not the case, both nodes would send their

results and two primaries nodes would be active. Finally, a mechanism for detecting

Chapter 2. Fault tolerance

26

role inconsistencies between nodes is required to avoid two primaries or two shadows

at the same time (e.g. when both nodes fail in the try blocks).

The DRB strategy assumes that the communication network is reliable [66]. Fault

values messages are negligible by incorporating error correcting schemes. However,

acknowledge messages by successor computing stations may be required to assure

reliable communication.

Some extensions to the DRB strategy have been proposed. The Extended

Distributed Recovery Block (EDRB) [51] includes a supervisor station for confirming

node crashes and misjudgments by DRB nodes about their partners. It also defines

two networks: one for supervision and the other for working nodes communication.

An approach for extending the DRB strategy for using more than two nodes and

more than two try blocks is described in [65]. This approach is called Recursive

Shadowing [66] because each additional shadow node interfaces with the previous

DRB station which is considered as a primary for the new configuration.

A Pair of Self-checking Processing Nodes (PSP) [70] consists of an

implementation of a DRB station using only one software version. It combines the

application of the Checkpoint and Restart strategy with two self-checking units. This

configuration does not tolerate solid software faults.

2.8.4 N-Version Programming

The N-Version Programming (NVP) strategy [27] combines the use of software

design diversity with the compensation technique. It is equivalent to static redundancy

(e.g. TMR) in hardware software tolerance. In NVP, two or more functionally

equivalent programs are executed either concurrently or sequentially and their outputs

are compared by a decision mechanism implemented by software. If only two

versions are used, the comparison of results is called matching, and can only detect

errors. If more than two versions are used, the comparison of results is called voting,

and errors can be detected and corrected by masking.

NVP includes a methodology for developing software versions with a high level

of diversity, based on a common specification that should include all necessary

Chapter 2. Fault tolerance

27

information for independent software teams [19]. It recommends the utilization of

different algorithms, programming languages and compilers. The level of NVP

application can be the entire program or single modules or functions.

The decision mechanism is the most critical element of the NVP strategy, as only

a single version is provided. Differently from the exact voters used in hardware, NVP

voters often must deal with inexact values, generated by different algorithms and

programming languages. Besides, the voter design is application-specific, similarly to

the acceptance test in Recovery Blocks. Several types of voters exist as majority,

mean, consensus and dynamic voters [94].

In comparison with Distributed Recovery Blocks, concurrent NVP has the

advantage of not requiring checkpoint mechanisms and the acceptance test. However,

it demands more hardware and software versions for tolerating the same number of

faults.

2.9 Fault-tolerant communication

A distributed fault-tolerant system depends heavily in fault-tolerant

communications. Fault tolerance strategies have to rely on network facilities to deliver

inputs and outputs to and from software variants, and to allow the coordination in

strategy execution. Furthermore, for systems with global state, missing an input

message will lead to state inconsistency among distributed variants.

 In order to obtain a fault-tolerant communication system, the following methods

are used [117]:

• Spatial masking – sending the same message by multiple links.

• Temporal masking – sending the same message multiple times.

• Detection/recovery – using acknowledgements, timeouts and retransmissions.

The detection/recovery method may use positive or negative acknowledgements.

In the positive acknowledgement method, if a receiver does not send an

acknowledgment after a timeout, the message is retransmitted. This may be repeated

for a fixed number of times. In the negative acknowledgement method, the receiver is

Chapter 2. Fault tolerance

28

responsible to detect that a message was lost (or is corrupted) and to ask for

retransmisson. This may be implemented by using sequence numbers, or by using a

time-triggered technique.

Multicast message transmission can use broadcast/multicast network facilities, or

even point-to-point messages, where the same message is sent individually to all

recipients. In that context and regarding sender resilience, multicast can be classified

as [117]:

• Unreliable multicast: no effort is made to overcome link failures.

• Best-effort multicast: the sender makes some effort to deliver the message, such

as performing retransmissions, but if the sender fails before delivering the

message to all recipients no reliability can be guaranteed.

• Reliable multicast: the participants coordinate to ensure that the message is

delivered to all recipients, as long as it is delivered to at least one recipient.

Even using broadcast/multicast network facilities, the sender may fail before the

message is correctly received by all receivers. Possible reasons are electric noise or

the lack of buffering space at the receiving node [61]. However, the implementation

of reliable multicast involves several rounds of communication and large use of

buffering, in order to guarantee atomicity in worst case scenarios. This high latency

makes this method unsuitable for hard real-time systems. Therefore, many real time

architectures use the best-effort approach, such as the Time-triggered Protocol (TTP)

[71] and the Time-triggered Message-triggered Object Support Middleware

(TMOSM) [70].

Besides reliable communication, some distributed fault tolerance strategies such

as DRB and NVP also demand input data consistency. Some communication systems

are able to guarantee the delivery of messages in the same order for all receivers. If

that is not the case, the fault tolerance strategy must include a mechanism for input

synchronization.

Chapter 2. Fault tolerance

29

2.10 Fault tolerance software structures

In order to reduce the complexity of the fault-tolerant software and promote

software reuse, several object-oriented patterns and frameworks have been proposed.

These software structures generally translate fault tolerance concepts as variants and

decision algorithms (also called abjudicators) into abstract classes that define

interfaces for the implementation of fault tolerance techniques. A common approach

is to separate the fault tolerance functionality from the application software, making it

reusable. Additionally, the applications program becomes a user of the fault tolerance

software, reducing system complexity.

Xu, Randel, Rubira-Calsavara and Stroud [119] proposed an object-oriented

structure for dealing with software fault tolerance. They suggested the application of

idealized components with diverse design using classes to implement the control

algorithm, the software variants and the abjudicator, as shown in the example of

Figure 2.7.

Controller

- pa: Abjudicator *
- pv1: Variant *
- pv2: Variant *
- pv_n: Variant *

+ recoveryBlocks(Abjudicator *, Variant **, ...) : status
+ nVersionProgramming(...) : status

Abjudicator Variant

Voter AT Variant1 Variant2 Variant_n

1*1

1

Figure 2.7: Xu,Randell, Rubira-Calsavara and Stroud´s framework example.

Each fault tolerance technique is implemented by a method of the Controller

class, using one Abjudicator and several Variant objects passed as arguments by the

application program. In this architecture, the inclusion of a new fault tolerance

strategy demands the addition of a new method to the Controller class. There is no

Chapter 2. Fault tolerance

30

definition on how input data is passed for the variants and how the results are

returned, but a general solution must be adopted, otherwise the Controller class would

not be reusable. Specialized abjudicators can be defined by deriving the Voter and

AT classes.

Variant classes can achieve design diversity by using diverse algorithms and

internal data structures. This is termed class-level design redundancy. However, some

mechanism must be provided for maintaining state consistency among Variant objects

if they maintain their state between activations. Less general solutions to variant

diversity include object-level design redundancy, in which variant objects belong to

the same class but are initialized with slightly different data, and operation-level

design redundancy, in which variant classes have diverse implementation algorithms

but no class data.

Tso, Shroki, Tai and Dziegiel [115] developed and implemented a framework of

software tolerance components. Figure 2.8 shows the class diagram for their

implementation of the Recovery Blocks technique.

RBscheme

Executive

TryBlock

CheckPointMechanism

AcceptanceTest

SingleProcess Concurrent

SRB DRB PTC Conversation

Primary Alternate

CheckPoint RecoveryCache AuditTrail

Timing Reasonable

Figure 2.8: Tso, Shokri, Tai and Dziegiel´s class diagram for the RB technique.

The RBscheme class is responsible for implementing the Recovery Blocks

technique. It delegates the control algorithm to an Executive object, which is

specialized by inheritance to cover several execution schemes, using single and

concurrent processes. Primary and alternate variants are implemented as classes

derived from the TryBlock class. Acceptance tests algorithms are defined by classes

that inherit from the AcceptanceTest class. Checkpointing mechanisms, as recovery

Chapter 2. Fault tolerance

31

caches and audit trails, are implemented by classes derived from the

CheckPointMechanism class.

The main drawback of this framework, comparing to Xu et al. framework, is the

definition of a different class structure for each fault tolerance scheme. For instance,

voter classes are added for NVP and data re-expression classes are added for data

diversity techniques, such as Retry Block and N-Copy Programming [11].

Daniels, Kim and Vouk [35] proposed the Reliable Hybrid pattern, which targets

the design of fault tolerance applications. The focus of this pattern is on the decision

mechanism, which can combine acceptance tests and voters in hybrid strategies, such

as Concensus Recovery Blocks [102] and Acceptance Voting [18]. Figure 2.9

presents the Reliable Hybrid pattern structure.

Master

+ request()

Version

+ request()

Abjudicator

+ getResult()

Version1

+ request()

Version2

+ request()

Version_n

+ request()

Voter

+ getResult()
- vote()

AT

+ getResult()
- accTest()

Hybrid

+ getResult()

VoterImplem1

+ getResult()
- vote()

VoterImplem2

+ getResult()
- vote()

ATImplem1

+ getResult()
- accTest()

ATImplem2

+ getResult()
- accTest()

Figure 2.9: Reliable Hybrid pattern class diagram.

The Reliable Hybrid pattern has a class diagram that is similar to Xu et al.

framework. The improvement is related to the abjudicator, which includes the Hybrid

class and implements the Composite pattern [47]. The Master class has a single

association with one Abjudicator object, which may be a Voter, an AT or a Hybrid

object. The Hybrid class possesses a list of Abjudicator objects (Voters, AT objects

and other Hybrid objects) and its getResult method calls each Abjudicator object

sequentially until a successful result is obtained.

Chapter 2. Fault tolerance

32

In this pattern, the fault tolerance strategy is performed by the Master class, which

calls the several Version objects and sends their results to the Abjudicator object.

However, no specific mechanism is devised to change the control algorithm.

Xu and Randell improved their previous framework and published it as the

Generic Software Fault Tolerance (GSFT) pattern [121]. This pattern class diagram is

shown in Figure 2.10.

ExternalInterface

+ request()

FTObject

+ request()

GenericFTinterface

+ request()
FTController

NVPRB Other

Variant

+ request()

Variant1

+ request()

Variant2

+ request()

Variant_n

+ request()

Abjudicator

+ getResult()

Voter

+ getResult()

AT

+ getResult()

Combined

+ getResult()

Figure 2.10: The Generic Software Fault Tolerance pattern class diagram.

A fault-tolerant class (FTObject) must implement ExternalInterface to conform to

the interface characteristics of an idealized component. The FTObject class passes the

user requests to the GenericFTInterface class, which actually executes the fault-

tolerant processing, using FTController subclasses to implement the control

algorithm. The abjudicator is implemented similarly to the Reliable Hybrid Pattern,

including a Combined class that behaves as the Hybrid class in that pattern. The main

difference of this pattern to the original framework proposed by the authors is the

inclusion of the FTController hierarchy that implements the control algorithm by

applying the Strategy pattern [47], similarly to the Tso et al. framework (Figure 2.8).

The GSFT pattern is, to our knowledge, the most comprehensive framework for

fault tolerance ever presented. However, it leaves undefined many issues. One is

regarding data passing between variants, abjudicators and the user application.

Chapter 2. Fault tolerance

33

Another issue is how to implement this pattern using processes or threads as units of

fault tolerance. In Chapter 5 we propose a fault tolerance framework that addresses

these issues.

2.11 Fault tolerance application support

Fault tolerance can be supported at different software layers, such as the operating

system, the middleware and the application level. This section presents the related

work in support fault tolerance at the application level.

2.11.1 FT-RT-Mach and DEOS

The FT-RT-Mach project of the FORTS group at University of Pittsburgh [44]

consisted of the implementation of fault tolerance support for the RT-Mach, an

operating system developed by the Carnegie Mellon University [110]. The project

purpose is to tolerate transient faults by thread re-execution in case of error detection

without modifying the original Rate Monotonic Scheduling (RMS) of periodic

threads, using the Fault-Tolerant RMS (FTRMS) algorithm [40]. The algorithm

affects the thread admission control of real-time periodic threads, as it takes into

account the time needed for thread recovery [37]. A thread in FT-RT-Mach has its

context information cleared at the end of each execution. A fault flag is provided for

each thread and it can be set by exception handlers or by application threads. This flag

is tested at the end of each thread execution and may trigger error recovery

mechanisms, such as Checkpoint and Restart or Recovery Blocks. Checkpointing in

FT-RT-Mach is not provided by the operating system; therefore, it must be

implemented by the application threads.

The same mechanisms used in FT-RT-Mach were applied in the DEOS operating

system, a commercial avionics operating system developed by Honeywell [37]. The

FTRMS algorithm and the fault tolerance support were adapted to this operating

system, which presents several differences in relation to FT-RT-Mach. Threads in

DEOS never have their context information cleared, and they usually run in an infinite

Chapter 2. Fault tolerance

34

loop, calling a function to suspend itself after each execution. Additionally, periodic

threads must be harmonic. Two periodic threads are harmonic if the larger period is an

integer multiple of the smaller. The checkpoint mechanism is performed by the

operating system, by defining and managing a backup state memory for each thread.

However, in order to reduce the time and memory overhead, the application

programmer has to define the set of variables that are considered as state information.

Only those variables are saved by the operating system.

2.11.2 Delta-4

The Delta-4 [21, 92] was a collaborative project developed by a multinational

team of companies and academic researchers. It started in 1986 and terminated in

1992, aiming the definition of dependable distributed system architecture for real-time

systems areas, such as computer integration manufacture. The system is meant to be

used on local area networks communicating by message-passing between nodes. The

architecture separates each node into a host computer and communication hardware

called Network Attachment Controller (NAC). NACs use built-in hardware self-

checking to be fail-silent and are capable of reliable multi-point communication using

an atomic multicast protocol. This protocol, implemented at the data-link layer of the

Open System Interconnection (OSI) model, guarantees atomicity and ordering to all

messages. As messages can be lost, it uses a message retry mechanism that tolerates a

pre-defined number of successive omission failures. Replicas are application objects

(processes) that can communicate using synchronous (equivalent to Remote

Procedure Call - RPC) or asynchronous messages.

Delta-4 supports the following fault-tolerant strategies:

a) For hardware fault tolerance:

• Active replication.

• Passive replication.

• Semi-active replication.

Chapter 2. Fault tolerance

35

b) For software fault tolerance:

• Recovery Blocks.

• N-Version Programming.

In the implementation of active replication, a system supplied voting mechanism

may be used to compare message signatures and select the correct output. In NVP, the

voting algorithm is application-dependent, as different software versions can find

different correct answers.

The system has mechanisms for cloning a new replica in order to replace a failed

one. The cloning mechanism depends on whether the replica is stateless or not.

Stateless replicas only require a standard initialization while state replicas require

some form of acquiring the current state from other replicas via a standard interface.

Unfortunately, the architecture proposed by Delta-4 was not applied in many field

applications and in research area, probably because it needs a special hardware for the

NAC.

2.11.3 TMOSM and ROAFTS

The DREAM laboratory at University of California - Irvine [38] has been

working on real-time and fault tolerance computing in object-oriented distributed

architectures. Their work is based on the Time-Triggered Message-Triggered Object

(TMO) structuring scheme, or model, formerly named RTO.k object scheme [67]. In

this model, a real time object has both time-triggered methods, which are activated at

predefined times and message-triggered methods, which are asynchronous and non-

blocking. Message-triggered methods have lower priority and are not allowed to

execute if they can interfere with time-triggered methods. For both kinds of methods

deadlines can be established and monitored.

The execution of TMO objects is controlled by the TMO Support Middleware

(TMOSM) [69]. This middleware has been ported to several operating systems as

Windows NT, Solaris, Windows XP, Windows CE and Linux. The middleware

requires clock synchronization between nodes and an operating system clock tick

Chapter 2. Fault tolerance

36

service for triggering a top priority thread, called Watchdog Timer and Scheduler

Thread (WTST). This thread is responsible for scheduling other middleware threads

and the pool of threads that effectively run the TMO application methods. WTST

reserves one time slice in three for the exclusive execution of application threads,

while the other time slices are scheduled for middleware threads. For instance, in the

Windows NT implementation described in [69], the time slice is set to 3 ms and,

therefore, an application thread is scheduled to run freely for 3 ms in a 9 ms cycle.

This mechanism is designed to reserve a minimum amount of CPU utilization for

application threads. Additionally, unused time periods attributed to middleware

threads are spent by application and operating system threads. In a defense prototype

case study it was observed that deadlines of 20 ms were met for about 99.9 % of time.

The failure in accomplishing the deadlines is reputed to overheads introduced by

operating system threads that could not be disabled.

Communication between TMO objects uses the concept of Data Field Channels

that are logical multicast channels based on some ID, called content code. It supports

two types of messages: state messages and event messages. State messages carry

information to be stored at fixed memory locations and messages can overwrite data

before being read by some process. Event based messages are normal messages that

are stored in a buffer after being received.

Fault tolerance was introduced by means of the Primary-Shadow RTO.k

replication (PSRR) scheme [67], which executes TMO objects replicas using the DRB

or PSP fault tolerance techniques. In this scheme, the shadow node is supposed to

receive several messages from the primary node, such as the acceptant test result and

an output success confirmation. The PSRR scheme has later evolved to implement

adaptive fault tolerance by means of the Real-Time Object-Oriented Adaptive Fault

Tolerance Support (ROAFTS) middleware [68], which is able to switch between three

basic modes: DRB/PSP (or parallel redundant mode), RB (or sequential backward

recovery mode) and exception handling (or sequential forward recovery mode). The

decision about changing FT modes is based on equipment availability, criticality and

recovery time. The middleware configuration includes network surveillance and

reconfiguration services in order to detect and confirm failures in working nodes.

ROAFTS has been ported to the Solaris operating system and CORBA, using 100 ms

Chapter 2. Fault tolerance

37

as time slice and satisfying deadlines from 40 to 100 ms [103]. The development of

ROAFTS is still in early phases and no implementation is publicly available as occurs

with the TMOSM [38].

2.11.4 Adaptive Fault Tolerance for Spacecraft

Adaptive Fault Tolerance (AFT) for Spacecraft [52] is a middleware designed for

space applications which can change the application fault tolerance configuration

based on the mission phase, the failure history and the environment. It aims to cover

hardware physical faults, rare conditions in software and unusual environment effects.

It is based on a dual redundant system architecture which runs atop the VxWorks

operating system. Tasks in this system are classified into critical and non-critical,

periodic and aperiodic. The objective of the adaptive fault tolerance mechanism is to

match redundancy and resource consumption with the mission phases and reliability

requirements. The system runs in one of 8 possible modes, differing in node processor

speeds and in the responsibilities of critical and non-critical tasks execution. Some

modes involve replication of critical tasks only, others the replication of all tasks, and

others no replication at all. For non-replication modes, transient faults can be detected

and tolerated by using acceptance tests and backward recovery mechanisms.

Replicated nodes use DRB or a Primary/Backup architecture using active replication.

Non-replicated modes use exception handling and Recovery Blocks.

The communication between nodes uses TCP or UDP socket primitives.

Messages can be sent to logical channels and multicast. Each task can join or leave a

channel dynamically. Both reliable and unreliable communications are provided. For

reliable logical channels, the delivery mechanism is based on the concept of negative

acknowledgement. Additionally, period cross-check messages circulate among the

replicated processes to ensure that any broadcast or multicast message has not been

lost.

In redundant strategies, the middleware is responsible for checking the heartbeat

of both replicas and to ensure that they have a consistent state. The replicated data

management maintains consistent (synchronized) state data among replicated objects

using several strategies such as processing input with uniformity (state updates

Chapter 2. Fault tolerance

38

associated to incoming messages are made to all processes before a response is

generated), processing without uniformity (a response is generated without ensuring

that all processes have updated their state data) and periodic update (state update is

sent by the primary process on a periodic basis).

The middleware has a node state restoration service to restart a failed node or

shutdown node and provide the startup configuration. State restoration can be

performed as a single event or incrementally. The system does not need clock

synchronization between computers.

2.11.5 Fault Tolerant CORBA

The Common Object Request Broker Architecture (CORBA) is a remote method

invocation based middleware defined by the Object Management Group (OMG) [90].

It offers transparency in relation to objects location and programming language in

which they are implemented, and hides operating systems, platforms, networks and

protocols details from application programs. The Fault Tolerant CORBA (FT-

CORBA) specification [88] is part of the formal CORBA architecture that aims to

provide fault tolerance support for applications that require high level of

dependability. The fault tolerance mechanisms provided by FT-CORBA are based on

entity redundancy, or the replication of CORBA objects. Besides, the specification

defines mechanisms for error detection and recovery. The following replication styles

are supported in FT-CORBA:

• Stateless: the replicated objects maintain no state data and therefore no state

consistency mechanism is performed.

• Cold Passive Replication: only the primary replica responds to client requests. If

the primary fails, then backup replica is selected and the state of the failed

primary is loaded from a logging system.

• Warm Passive Replication: similar to Cold Passive Replication, but the state of

the primary is transferred periodically to the backup replicas during normal

operation. This type of recovery provides faster recovery than Cold Passive

Replication.

Chapter 2. Fault tolerance

39

• Active Replication: all replicas execute the request simultaneously but only one

reply is sent to the client. Duplicate messages are discarded automatically by the

infrastructure. This mechanism provides faster recovery from failures, but

requires replica determinism and total order message delivery to maintain state

consistency among replicas.

• Active Replication with Voting: this is a planned extension to the existing

specification and adds a mechanism of exact majority voting before sending a

reply to the client.

The present FT-CORBA specification provides only fault tolerance to crash

failures. Faulty objects are supposed to stop working without generating incorrect

results. The fault detection mechanisms supported by FT-CORBA are based in

heartbeats and timeouts only. The implementation of FT-CORBA requires the

utilization of objects working as Replication Managers, Fault Detectors and Fault

Notifiers. The creation and management of objects and object groups can be

implemented by the FT-CORBA infrastructure or by the application program.

The application of FT-CORBA in real-time system is limited because it can spend

an unpredictable amount of time detecting faults and recovering from them [48]. In

Passive Replication the recovery time needed to switch to a backup replica can be

unacceptable for a real-time application and when using Active Replication too much

time can be spent providing totally ordered reliable multicast. The Real-Time

CORBA specification [89] targets systems with real time requirements, but this

specification is not compatible with FT-CORBA [48, 85].

Several projects aimed the implementation of fault tolerance in CORBA, such as

Aqua [99], DOORS [86] and MEAD [85].

2.12 Summary

Fault tolerance is a means of achieving high dependability for critical, long life

and high-availability systems. Despite the efforts to prevent and remove faults in

systems development, the application of fault tolerance is usually required because the

hardware may fail during system operation and the software is rarely fault free.

Chapter 2. Fault tolerance

40

The implementation of fault tolerance involves the application of error detection

and system recovery. System recovery aims to eliminate the error from the system

state, and additionally may diagnose the fault and preventing it from being activated

again. Fault tolerance implementation depends on redundancy, the utilization of

additional resources, and in design diversity in order to tolerate design faults.

Several fault tolerance techniques have been described, both for hardware and

software fault tolerance, using single or multiple version software. The emphasis was

to present FT strategies that are applied in this work, such as RB, DRB and NVP.

Fault-tolerant communication concepts have also been introduced.

 The related work regarding software structures for fault tolerance have been

presented. This includes frameworks and design patterns proposed by the research

community in order to reduce the complexity of the fault-tolerant software and

promote software reuse.

Finally, the related work regarding application-level fault tolerance support has

been presented. Some works introduce fault tolerance support by the operating

system, e.g., FT-RT-Mach, while others by the middleware, such as ROAFTS and

FT-CORBA.

41

Chapter 3

Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a new programming technique

that targets the modularization of crosscutting concerns. This chapter

introduces the main concepts related to AOP, describes the AspectC++

language extension and presents the related work regarding the application

of AOP in operating systems, middleware and fault-tolerant systems.

Chapter 3. Aspect-Oriented Programming

42

3.1 Separation of concerns

Separation of concerns is a concept that has been applied in software engineering

for a long time [36, 91] and involves the division of the software application in

smaller functionalities or concerns. Separation of concerns leads to the development

of systems in modules that could be developed largely independently from each other,

reducing the system complexity and improving its reusability. The usage of

procedural programming is the initial step into separation of concerns. Later, the

concept of information hiding was introduced and contributed to Object-Oriented

Programming (OOP) as a new mechanism of separation of concerns.

The lack of separation of concerns in a system can be detected by inspecting its

source code and looking for the existence of code tangling and code scattering. Code

tangling happens when a module handles multiple concerns. For instance, the same

source code can be dealing with business logic, persistence and distribution concerns.

Code scattering happens when a concern implementation is spread in multiple

modules. Figure 3.1 shows examples of code tangling and code scattering.

Distribution

Persistence
Business logic

Distribution

Persistence

Business logic

Business logic

Distribution

Distribution

Distribution

(a) tangling (b) scattering

Figure 3.1: Code tangling and code scattering.

Some concerns are very hard to separate from others. The implementation of

these concerns is often tangled with other concerns and is scattered throughout the

code. Therefore, they are called crosscutting concerns. Examples of crosscutting

concerns are distribution, fault tolerance, and security. Crosscutting concerns are also

Chapter 3. Aspect-Oriented Programming

43

called non-functional, as opposed to the functional concerns that implement the

system’s main functionality.

New mechanisms to provide advanced separation of concerns have been

proposed. The work in [56] identifies and analyses some mechanisms for

modularizing crosscutting concerns, such as Meta-level Programming [77] and

Composition Filters [8].

3.1.1 Meta-level Programming

Meta-level Programming is based on meta-object protocols (MOP), which enable

the modification of the language semantics and implementation. Meta-object

protocols are the interface between the base-level program and the meta-model

program. By intercepting the activation of methods in the base-level program, meta-

objects have the opportunity to execute other concerns. However, there is no special

mechanism to separate crosscutting concerns from each other. An example of MOP

for the C++ programming language is OpenC++ [28]. In OpenC++, the complete

syntax tree is visible on the meta-level and arbitrary transformations are supported.

The work in [120] evaluated OpenC++ to implement software fault tolerance

techniques, such as RB and NVP, in a distributed sorting application. They concluded

that the meta-object approach provides a cleaner and simpler interface to applications

comparing with standard object-oriented implementations. Moreover, they measured a

runtime overhead factor of about two between calling an OpenC++ operation and

calling a C++ operation, but this overhead was considered small in comparison with

the overhead imposed by the fault tolerance mechanism.

3.1.2 Composition Filters

Composition Filters extend object-oriented programming by adding filter classes.

Messages between objects are processed by filters both before and after the normal

method execution. More than one filter may be applied to a single message.

Separation of concerns is achieved by defining a filter class for each crosscutting

Chapter 3. Aspect-Oriented Programming

44

concern. No research work concerning the application of Composition Filters to fault

tolerance has been reported yet. The TRESE group at the University of Twente [114]

has available implementations of Composition filters for C# and Java.

3.1.3 Aspect-Oriented Programming

Aspect-Oriented Programming is a programming technique proposed in [62]. In

AOP, components are defined as properties of a system, for which the implementation

can be cleanly encapsulated. In contrast, aspects are properties for which the

implementation cannot be cleanly encapsulated in a generalized procedure. Aspects

and components crosscut each other in the implementation of a system. The goal of

AOP is to support the programmer in cleanly separating components and aspects from

each other, by providing mechanisms that make it possible to abstract and compose

them to produce the overall system.

The process of composing components and aspects is performed by the aspect

weaver. Essential to the weaver operation is the concept of join points, which are the

elements of the components’ static structure or dynamic behavior that aspect

programs are able to coordinate with. Join points can be method calls, variable

accesses or any other point in the execution of a program where additional behavior

can be attached. The kind of join points allowed for a given AOP implementation

defines its join point model. The behavior introduced in a join point is named advice.

A pointcut defines a set of join points.

A difference between AOP and other separation of concern approaches is the

definition of different abstraction and composition mechanisms for components and

aspects [62]. The work in [42] proposes that the distinguishing properties of AOP are

quantification and obliviousness. Quantification is the capacity of writing unitary

and separate statements that have effect in many non-local places in a programming

system. A quantification mechanism allows reaching several join points of the code

with one declarative statement. Obliviousness means that the component code does

not need to be prepared or aware of the additional behavior introduced by aspects.

Therefore, programmers in the components side (or base code) do not have to expend

any additional efforts to make the AOP mechanisms work.

Chapter 3. Aspect-Oriented Programming

45

Another definition of AOP was presented in [42]:

“In program P, whenever condition C arises, perform action A”.

In this definition, the program P represents the base component code. The

condition C is defined by a pointcut in the aspect code, and the action A is the advice

executed at the join points. The condition defined by C can be evaluated at compile-

time based on the static structure of the base code (e.g. method execution) or at

runtime, based on the dynamic behavior of the program (e.g. calls to method X in the

execution context of method Y). A single aspect usually defines a set of pairs (C, A).

Most criticism against AOP is related to the obliviousness property. The base

code can evolve and the original join points used by aspects can be modified. So,

aspects can miss the desired join points or capture undesired join points. This problem

has been called the AOSD (Aspect-Oriented Software Development) Evolution

Paradox [112]. The inexistency of an explicit interface between the base code and the

aspect code compromises the independent evolvability of the base code. On the other

hand, the use of explicit interfaces in the base code (e.g. annotations) reintroduces the

scattering that AOP was supposed to avoid [107]. Despite this and other drawbacks

[34, 84], the acceptance of AOP by the researchers from academia and industry is

high, possibly because AOP is very powerful and can solve real problems related to

crosscutting concerns.

The same team that proposed AOP has developed its first and most popular

implementation to date: AspectJ [17]. The two existing implementations of AOP for

C++ are AspectC++ [16] and XWeaver [122]. The AspectC++ implementation was

applied in this work, and it will be described in the next section.

3.2 AspectC++

AspectC++ is a general-purpose aspect-oriented language extension to C++ [16]

[106]. It has been strongly influenced by the AspectJ language model, but supports

additional concepts that are unique to the C++ domain. A primary design goal of

AspectC++ was to keep the low runtime overhead of the C++ programming language,

Chapter 3. Aspect-Oriented Programming

46

aiming its application in resource-constrained environments such as embedded

systems.

3.2.1 Weaving

The AspectC++ weaver composes the C++ base code and the aspect code in a

source-to-source transformation, as shown in Figure 3.2. After the weaving process,

the resulting source code can be compiled by any C++ compiler.

Base code Aspects

AspectC++
weaving

Transformed
source

code

Compilation
& linking

Executable
code

Figure 3.2: AspectC++ weaving process.

 Two weaving modes are available: Whole Program Transformation (WPT) and

Single Translation Unit (STU). WPT transforms all files (header files and translation

units) in the project directory tree and saves them in a new directory tree. The aspect

code, normally using the “.ah” file extension, is also transformed and saved in the new

directory tree. In the STU mode, the weaver transforms one file at a time, making

easier to integrate the weaver with makefiles and Integrated Development

Chapter 3. Aspect-Oriented Programming

47

Environments (IDE). In this mode, all header files directives are expanded and saved

together with the transformed translation unit.

3.2.2 Join points, pointcuts and advices

The following types of advices are supported in AspectC++:

• Code advices: define a computation that can be executed before, after or around

(instead of) a given join point.

• Introductions: define new attributes, methods and parent classes to existing

classes.

• Order definitions: establish the order of application among aspects.

Two types of join points are supported in AspectC++: name join points and code

join points. Name join points (or static join points) are named instances in the static

program structure, such as a class name, function name or namespace. Code join

points (or dynamic join points) represent events that happen during program

execution, such as the calling or execution of a function. Code join points result from

the application of pointcut functions to name join points. Four basic types of code

join points exist: call, execution, construction and destruction. Call and execution join

points are related to methods; construction and destructions join points are related to

classes.

Figure 3.3 presents a very simple example program using AspectC++ designed to

debug some method activations in the base code. In this program, the aspect

DebugClasses contains one pointcut (debug) and one code advice (a before advice).

The debug pointcut is defined by a pointcut expression that combines an execution

pointcut function with a call pointcut function using the algebraic “or” operation. The

execution pointcut function will select the join points related to the execution of all

methods of ClassA. If for instance this class has three methods, then three join points

will be selected. The call pointcut function will select the join points related to the

calling of ClassB methods whose names begin with the “set” string. If, for instance,

ClassB has only one method that matches this expression, the number of selected join

points will depend on how many places this method is called in the entire application

Chapter 3. Aspect-Oriented Programming

48

code. The before advice defined in DebugClasses will be executed always before the

selected join points. In this case, the advice code just prints the method signature (e.g.

“void ClassA::methodA(int,short int)”), provided by AspectC++.

aspect DebugClasses {

 pointcut debug() = execution(“ClassA”) ||
 call(“% ClassB::set%(...)”);

 advice debug() : before() {
 printf(“debug:before %s \n”, JoinPoint::signature());
 }
};

Figure 3.3: AspectC++ program example.

In addition to the four pointcut function previously discussed, other pointcut

functions are provided in order to filter or select join points with specific properties.

A summary of AspectC++ pointcut functions is presented in Table 3.1.º

Table 3.1: AspectC++ pointcut functions.

Pointcut function Kind Application
call(pointcut) function Selects calls to functions described by the

pointcut parameter.
execution(pointcut) function Selects functions implementations described by

the pointcut parameter.
construction(pointcut) class Selects class construction implementations

described by the pointcut parameter.
destructor(pointcut) class Selects class destruction implementations

described by the pointcut parameter.
within (pointcut) scope Filters all join points that are within the

functions or classes in the pointcut.
cflow(pointcut) ctrl flow Filters all join point inside the dynamic context

of joint points in the pointcut.
base(pointcut) type Returns all base classes of classes defined by the

pointcut.
derived(pointcut) type Returns all classes in the pointcut and all classes

derived from them.
that(type pattern) context Returns all join points where the C++ this

pointer is related to the type pattern.
target(type pattern) context Returns all join points where the target object of

a call is related to the type pattern.
result(type pattern) context Returns all join points where the result object of

a call/execution is related to the type pattern.
args(type pattern,…) context Returns all joint points which match the

provided argument signature.

Chapter 3. Aspect-Oriented Programming

49

In Table 3.1 we can see that besides the normal pointcut functions related to

functions and class construction/destruction, there are others related to scope,

dynamic control flow, base and derived types and context matching. The type patterns

defined as parameters of the that, target, result and args pointcut functions can be

used to convey context information to code advices.

Like C++ classes, aspects can have data members, constructors and member

functions, and derive from classes or from other aspects. Pointcuts can be defined as

virtual or pure virtual, which allows its redefinition in derived aspects. Aspects that

contain pure virtual member functions or pure virtual named pointcuts are called

abstract aspects. An aspect that inherits from an abstract aspect and defines all

pending virtual member functions and virtual pointcuts is called a concrete aspect.

Aspects can inherit only from ordinary C++ classes and abstract aspects.

3.2.3 The JoinPoint API

The aspect weaver creates a unique class for each join point affected by a code

advice that needs context information. This class is called the JoinPoint structure or

JoinPoint API and provides the context information to the code advice, such as

method parameters types and values, and method return type and value. It also

provides context information about calling and target objects, and other useful

information as the method signature and the number of arguments. For each affected

join point only the necessary context information is included in the JoinPoint

structure. This feature is very important to keep a low memory footprint in embedded

systems.

If context information is needed, an object of the JoinPoint structure is created in

each affected join point, and a pointer to this object (the tjp pointer) is passed to an

inline template function which also receives the JoinPoint structure as a template

argument (the JoinPoint type). This inline function will call the real code advice,

implemented as a template method of a class representing the aspect it belongs. In

summary, each aspect will be transformed into a C++ class and each code advice

related to this aspect will be transformed into a template member function. The aspect

class member functions will be called by code inserted at the affected join points,

Chapter 3. Aspect-Oriented Programming

50

which will pass a pointer to an unique JoinPoint structure carrying the context

information. Each non-abstract (concrete) aspect results in a singleton object.

An example of how AspectC++ weaves is shown in Figure 3.4. This figure

presents how the source code resembles if a before advice is applied at an execution

join point. The source code was simplified and methods/classes created by AspectC++

were renamed and shortened.

 //---------- base code after weaving

struct TJP_XYZ {
 //...
 inline static const char *signature () {
 return "void ClassA::methodA(int,short int)";
 }
};

void ClassA::methodA (int arg0, short arg1){
 TJP_XYZ jp;
 //... here the jp object is initialized

 AC::invoke_myAspect_ABC<TJP__XYZ> (&jp);

 this->__exec_old_methodA(arg0, arg1);
}

inline void ClassA::__exec_old_methodA(int aa,short int zz){
 // original methodA implementation
}
//----------- aspect code after weaving

class myAspect {
public:
 static myAspect *aspectof () {
 static myAspect __instance;
 return &__instance;
 }

 template<class JoinPoint> void ADVICE_1(JoinPoint *tjp){
 // advice code
 // here the JoinPoint type and the tjp pointer are seen.
 }
};

namespace AC {
 template <class JoinPoint>
 inline void invoke_myAspect_ABC (JoinPoint *tjp) {
 ::myAspect::aspectof()->ADVICE_1(tjp);
 }
}

Figure 3.4: Example of source code transformation by AspectC++.

Chapter 3. Aspect-Oriented Programming

51

The upper part of Figure 3.4 presents the base code after weaving. The JoinPoint

structure TJP_XYP is declared closer to the implementation of the affected method

(methodA). An object of this type is created inside methodA and its data fields are

initialized, if any. Then, the before advice is called, using an inline template function

invoke_myAspect_ABC. After returning from the advice code, the original

implementation of methodA is called, now renamed by the weaver to

__exec_old_methodA.

The aspect code after weaving, shown in the lower part of Figure 3.4, contains the

definition of the inline template function called by methodA. This function redirects

the call to ADVICE_1, a template method of the aspect class (myAspect), where the

advice code is located.

AspectC++ is not able to advice data member accesses as AspectJ does using the

get and set pointcut functions. This design decision was made because of the

possibility of accessing variables with pointers in C++, which cannot be captured as a

join point by the aspect weaver. However, an extension of AspectC++ described in

[78] offers this functionality, but without considering pointer accesses. Another

unimplemented feature of AspectC++ is template weaving. The weaver is able to

parse C++ templates but weaving is restricted to non-templated code. However,

support for template weaving is planned for future versions.

3.2.4 Performance and memory footprint

The work in [74] presents a series of micro-benchmarks for the main AspectC++

features, based on consumed CPU time (clock cycles), and memory (code/data and

stack), in a Pentium 3 computer using the GNU g++ 3.3.5 compiler. The work in

[106] extends the same experiment for the Intel C++ compiler icc 9.0. The results

show that code advices (before, after or around) applied to parameterless functions

have a very small runtime overhead (only 2 cycles) and no extra memory

consumption. Considering functions with parameters and the application of the

JointPoint pointer (tjp), there is an increase in stack consumption for the tjp pointer

and the function parameters. However, the runtime overhead to retrieve join point

specific context is quite low (0 to 6 cycles). The overheads for dynamic pointcut

Chapter 3. Aspect-Oriented Programming

52

functions as cflow, that and target (see Table 3.1) are relatively high (6 to 10 cycles),

as they require the testing of runtime conditions. They also consume more memory,

with a maximum of 50 bytes in the worst scenario. All overhead data presented here

was obtained using compiler optimization. The same test cases without compiler

optimization lead to much worse results.

Another work regarding AspectC++ performance and cost is presented in [75].

This paper reports an experiment comparing three different implementations of a

weather station embedded software product line: C-based, OOP-based and AOP-

based. The results show that the OOP version requires significantly more memory

space than its AOP counterpart (up to 138% more), and that AOP requires at most

10% more memory space than the C version. Moreover, the runtime performance of

AOP was the same as the C version, while the OOP version overhead was between 4

and 6.6%.

3.3 AOP for the operating system

Coady et al. [29] reported the application of AOP in the FreeBSD operating

system kernel to modularize the prefetching of virtual memory mapped files. The

prefetching mechanism implementation was spread in several functions over three

different layers of the operating system code. After refactoring, the prefetching modes

were implementing by single aspects, using AspectC, a subset of the AspectJ

language for the C language, developed by the authors at University of British

Columbia. The AOP solution presented several advantages over the tangled

implementation, such as configurability, independent development and better

comprehensibility. In a follow up work [30], the authors implemented other

crosscutting concerns in the FreeBSD code, such as page deamon wake up, disk quota

management and device blocking, analyzing the evolvability of AOP implementations

in several OS versions. They concluded that AOP brings several benefits, such as

localized changeability and explicit configurability. Unfortunately, the AspectC

weaver was not officially released.

Chapter 3. Aspect-Oriented Programming

53

PURE is an object-oriented (C++) operating system designed for embedded

applications by the University of Magdeburg [23]. Several works have been reported

with regard to the separation of crosscutting concerns in PURE using AspectC++.

Mahrenholz et al. [80] described how aspects can be woven with the operating system

kernel for monitoring task switches. The work in [79] presented the implementation of

the interrupt synchronization strategy in PURE using AOP. The same concern was

implemented in the PURE successor, named CiAO [73], as described in [76]. In this

work, several interrupt synchronization strategies (e.g. hard synchronization and two-

phase synchronization) were implemented by aspects and could be selected at

compile-time. The application of mutual exclusion mechanisms at PURE components

using AOP was described in [105].

A quantitative analysis of the application of AOP in the ECOS [39] operating

system is reported by Lohmann et al. [74]. In this work, the ECOS kernel was

refactored to implement as aspects the following crosscutting concerns: tracing,

interrupt synchronization and kernel instrumentation. Additionally, the

implementation of configuration options in the OS was changed from conditional

compilation (ifdefs) to aspect-oriented mechanisms. Each configuration option was

encapsulated into a single aspect that applies introductions or code advices to

implement the optional functionality. The AOP version of the OS showed at average a

0.9 % higher code size and a 1% better performance. The authors conclude that the

application of AOP (using AspectC++) for the modularization of crosscutting

concerns and the implementation of configuration options in operating systems does

not induce intrinsic overheads.

In Chapter 6, we describe the utilization of AOP to implement fault tolerance

mechanisms such as executable assertions at the operating system level

3.4 AOP for the middleware

Zhang and Jacobson [124] studied the degree of separation of concerns in the

internal implementation of CORBA middleware platforms and the advantages of AOP

in refactoring these systems. They developed an aspect mining methodology

Chapter 3. Aspect-Oriented Programming

54

supported by a software tool, and reported several new concerns to the platforms

chosen (JacOrb, ORBacus and OpenOrb), as the dynamic programming interface and

the support for portable interceptors. They also measured the degree of scattering

related to normal concerns like logging, synchronization, exception handling and

pre/post-condition checking. Additionally, they reimplemented some concerns in the

ORBacus middleware using AspectJ and applied a set of metrics to the original and

the refactored implementation. They concluded that AOP lowers the complexity of

the middleware architecture, increases modularity, maintains the performance, and

allows a higher level of adaptability and configurability, which is needed to customize

platforms for particular domains such as real-time, embedded, and fault-tolerant

systems.

The application of AOP to a large-scale middleware product line was reported by

Colyer and Clement [31, 32]. In this work, an IBM commercial middleware with

more than one million lines of code and hundreds of developers had several of its

concerns refactored using AspecJ, as tracing/logging, exception handling and

performance monitoring. The general approach was to develop a single abstract aspect

for each of these concerns, defining a common policy (when and how), and several

concrete aspects for defining the scope of application (where). This approach changes

the way the policy team work: instead of delivering policy documents, they can

implement the policy by writing the abstract aspects. As a consequence, policy

compliance is more accurate and any policy evolution can be implemented with less

efforts.

Colyer and Clement [32] also reported an experiment with AOP in an application

that uses a middleware support extensively. They modified an application server

software in order to separate the usage of Enterprise Java Beans (EJB) from the rest of

the application. This problem could only be solved by heterogeneous aspects that

impact on multiple places, but with different behavior in each of these places. The

base code was refactored by the removal of EJB related code and the creation of hook

methods that will be affected by advices. The woven application server software

presented significant improvements in startup time and memory footprint. The main

problem is that the aspect code is very dependent on the base code and cannot be

reused in other projects. However, the refactoring simplifies the base code and allows

Chapter 3. Aspect-Oriented Programming

55

selecting or not EJB support at compile-time. The authors argue that a similar solution

using plain OOP would be much more complex because of the huge number of

variation points.

Ceccato and Tonella [26] described how to migrate an existing non-distributed

application in a Java Remote Method Invocation (RMI) distributed application, based

on the AOP application. They state that making an application run in a distributed

environment involves many modifications that are spread and intertwined with the

original code. Their solution is able to keep the original application oblivious to the

distribution concern, which is regarded as a clear advantage in code understandability

and maintainability. Aspects are created for the several Java RMI implementation

issues, as remote interfaces, object factories, method invocation, parameter passing

and exception handling. Code generation employs TXL [116] and AspectJ.

An experiment on middleware specialization using AspectC++ was conducted by

Kaul and Gokhale [59]. Their motivation was to increase the performance and reduce

the memory footprint of middleware platforms by using aspects to include only the

needed features and to perform its optimization. They carried out a case study

involving different concurrency models in the ACE middleware [1]. AOP was used to

define the thread model and to implement part of its functionality, aiming to improve

the system performance. Their results show that the AOP version presented smaller

latency (3 to 4%) and larger throughput (2 to 3%) than the original OOP

implementation.

In Chapter 6, we describe how to integrate a fault tolerance framework, which is

considered an additional middleware, into the operating system code, using Aspect-

Oriented Programming.

3.5 Fault tolerance using AOP

This section describes the related work in implementing fault tolerance using

Aspect-Oriented Programming. Although fault tolerance (fault handling and

dependability) is considered a non-functional concern and it is commonly cited as one

Chapter 3. Aspect-Oriented Programming

56

of the problems that AOP can address [56, 62, 73], few works combining fault

tolerance and AOP have been reported.

Herrero et al. [53] created a replication model based on aspect-oriented

techniques. The replication aspect can be defined by the JReplica language or by

special UML extensions. A visual tool was being developed to generate JReplica code

from UML. In this work, computational reflection is used to separate the functional

level from the aspect level, but no information is given about how the final code is

generated. Input messages to functional objects are intercepted and redirected to the

aspect level. Output messages from objects are also intercepted and adapted to the

right middleware (e.g. CORBA or JavaRMI). Only passive replication is supported.

Replication mechanisms are implemented by aspects that define when state messages

are exchanged, and the behavior for error detection, notification and recovery. The

replication aspect can be composed with aspects developed for other concerns, as for

instance synchronization.

Gal et al. [46] proposed the use of aspect-orientation in real-time systems for the

distribution, timeliness and dependability domains. An example of the application for

each domain is given, using CORBA in a logging application as test case. Aspects are

implemented in AspectC++. The example for timeliness is based on execution time

surveillance using a watchdog timer, which raises an error condition if an execution

time budget is exceeded. The example for fault tolerance is based on the replication of

the logging messages to several stations, but no fault tolerance strategy is applied.

Kienzle and Guerraoui [63] question if it is suitable to use AOP techniques to

separate concurrency control and failure management concerns from the functional

code. They conclude that the answer is no, because they feel that this separation is

hard and potentially dangerous. They applied AspectJ in a case study based on

transactions, analyzing three basic approaches: (1) aspectizing transactions uniformly

in the whole program, (2) aspectizing transactions homogeneously in selected objects

and methods, and (3) aspectizing transactions heterogeneously in selected objects and

methods. They concluded that the first approach is impossible, the second approach

yields poor performance and that applying the third, heterogeneous aspects result in

functional code semantically coupled with the non-functional part, and consequently

any maintenance in the functional code should trigger a modification on the

Chapter 3. Aspect-Oriented Programming

57

transaction aspects. A comment on this paper written by Kiczales [12] states that the

AOP goal is not making a concern transparent, but instead making its implementation

modular. In Kiczales opinion, the performance of critical concerns like distribution,

failure handling and concurrency cannot be made totally transparent.

Szentiványi and Nadjm-Tehrani [109] reported a work for improving the

performance of a FT-CORBA implementation by applying AOP at the application

level. In this work, the logging of method executions needed for passive replication

was shifted from the FT middleware to applications using AspectJ. Synchronization

and method logging aspects are woven with base code update methods. The capability

of advising data field access (set join point) in AspectJ allows the synchronization of

variable accesses within the update methods. Using AOP, the overhead for passive

replication was reduced by around 40%.

Alexandersson et al. [9] address the question of whether AOP can provide a base

to implement fault tolerance mechanisms in non-distributed environments, termed

“node level fault tolerance”. This work presents examples of aspects for single node

computing, such as time-redundant execution, assertions and Recovery Blocks, using

AspectJ. An AOP recovery cache mechanism, needed for backward error recovery,

was implemented using the set join point of AspectJ. The time-redundant mechanism

applied in this work is a sequential software-implemented TMR. If the first execution

results do not agree with the second execution results, a third execution is performed.

The computation is defined by a class method and the results are the returning object.

Assertions are implemented by application-specific aspects that check inputs and

results of the selected methods and raise exceptions in case of failure. Recovery

Blocks is implemented using one abstract aspect that defines the FT algorithm and

application-specific concrete aspects that define the selected methods and introduce

the new methods, such as the acceptance test and the alternative computation.

Similarly to the time redundant mechanism, failures are handled by exceptions. The

authors conclude that AOP is well suited to implement node level fault tolerance.

 The work presented above was later reimplemented using AspectC++ because

the authors’ research targets embedded safe-critical systems [10]. For using

AspectC++ they developed some extensions to the official AspectC++ distribution,

such as the inclusion of set and get join points for primitive data types and their

Chapter 3. Aspect-Oriented Programming

58

pointers. This extension does not cover object data types because the assignment

operator can be overloaded or advised by an aspect.

In Chapter 6, we propose the utilization of AOP to introduce fault tolerance at the

application-level, based on the FT framework described in Chapter 5. This approach

differs from Alexandersson’ (reference) by defining the thread as the basic unit of

fault tolerance and by targeting distributed environments.

3.6 Summary

The separation of concerns concept has been applied in software engineering for a

long time. New techniques for dealing with crosscutting concerns have been proposed

recently, such as meta-programming, composition filters and AOP.

AOP is a new programming technique to support the programmer in cleanly

separating the functional components from crosscutting concerns, which are

implemented as aspects, providing a mechanism to compose them and produce the

overall system. The key concepts in AOP are join points, pointcuts and advices.

AspectC++ is a language extension to C++ that allows writing aspects and

weaving them with the base code using source-code transformation. The main

features of AspectC++ have been discussed, including the description on how aspects

are composed to the main functionality. Additionally, the research work about

AspectC++ performance and memory footprint has been presented.

This chapter has also reviewed the related work regarding the application of AOP

to operating systems, middleware and fault-tolerant systems. General purpose and

embedded operating systems have been submitted to AOP implementations of

crosscutting concerns, such as performance optimization and interrupt

synchronization, with good results in maintainability and resource utilization.

Middleware platforms and their applications are the main target of AOP so far.

Several works have reported middleware refactoring with AOP with excellent results

in reducing complexity and increasing configurability and maintainability. Finally, the

few works published about the application of AOP for fault tolerance have been

presented.

59

Chapter 4

BOSS operating system

This chapter describes the main features of the BOSS operating system. A

brief introduction about BOSS principles, history and applications is

presented, followed by a detailed description of the BOSS kernel and

middleware. Finally, the middleware extensions developed in this work are

presented.

Chapter 4. BOSS operating system

60

4.1 Introduction

Since 2004, the Embedded Systems Research Group (ESRG) [41] at University of

Minho and the Fraunhofer Institute for Computer Architecture and Software

Technology (FIRST) [43] have been cooperating in the field of dependable embedded

systems, based on the joint research of efficient and adaptable fault tolerance

technologies applied to real-time operating systems and middleware.

BOSS is a real-time operating system (OS) developed by FIRST. Its main design

principle is irreducible complexity, which means that the OS design aims to achieve

the minimum complexity in delivering a basic set of functionalities [81]. The

objective is to keep the OS simple and understandable, as complexity is the cause of

most development faults in software. Another advantage of this approach is to make

possible the validation of the OS critical parts by formal methods. BOSS targets high-

dependability applications, such as satellite and medical systems.

BOSS uses object-oriented technology in C++ extensively; it is fully preemptive

and presents low interrupt latency and thread switching time. It has been ported to

x86, PowerPC, Atmel AVR and ARM platforms. Additionally, an on-top-of-Linux

implementation is available, and it is used mostly for early testing. BOSS simplicity

makes easier the task of porting it to other platforms. Communication support is

provided for Ethernet and CAN networks. Furthermore, a non-preemptive version of

BOSS was developed, named TinyBOSS, targeting platforms with very limited

resources.

The BOSS microkernel has mechanisms for resource management and

synchronization, such as semaphores and signal boxes; for inter-task communication,

such as messages and mailboxes; for interrupt handling; and for input/output (I/O).

The basic OS constructs are implemented in BOSS as classes that can be configured

and extended by inheritance. This represents a great advantage over conventional

operating systems developed in procedural languages, such as C, which are usually

hard to understand and modify.

Middleware communication in BOSS is performed using a publisher-subscriber

protocol. Threads send messages locally or over the network by using a string as

subject, or topic. Messages are delivered to all objects which subscribe to the same

Chapter 4. BOSS operating system

61

subject. This loose coupling between senders and receivers makes fault tolerance

implementation easier because the communication between threads is location-

transparent and dynamically changeable.

The main application of the BOSS operating system was in the BIRD (Bispectral

Infrared Detector) satellite control system [81]. This micro satellite weights 92 kg and

was launched in 2001 by the German Aerospace Agency (DLR) to detect fires larger

than 12 m2. In this system, four processor boards (PowerPC 623) running BOSS

applications are used. One node acts as a worker, doing all the required computation,

while it is being constantly checked by a supervisor node. In case of failure in the

worker node, the supervisor assumes as worker. If the failed node is unable to assume

as supervisor after a re-initialization, one of the two spare nodes is activated and

becomes the new supervisor node. The system proved its reliability in some bursts of

solar activity that exposed the system to high energy radiation and particles [24],

which generated transient faults.

The BOSS operating system is also applied in CubeSat satellites. CubeSat is a

standard for a research pico satellite with dimensions 10x10x10 cm3, weighing no

more than one kilogram. The Technical University of Berlin is developing a CubeSat

project named BEESat [22]. TinyBOSS was selected as the operating system for the

board computer [60, 82], which uses an ARM-7 processor at 60 Mhz.

Another future application of BOSS is the HiPerCAR project [118]. This project

is funded by ESA and aims to provide a dependable architecture for space

autonomous robotics using limited resources. At the hardware level, HiPerCAR

combines radiation hardened computers with commercial computers for achieving

fault tolerance with high processing power. This system configuration includes one

reliable master node and several COTS nodes acting as workers. Each system function

can run in a worker node, in a nominal version, or in the master node, in the basic

version. The nominal software version implements the full functionality, but the basic

version only guarantees the safe operation of the system. After a failure in a worker

node, the master node must assume his functions promptly and try to reboot the faulty

node. In case of a permanent failure in the worker node, the master node must

promote a system reconfiguration using spare worker nodes.

Chapter 4. BOSS operating system

62

DLR has also plans for using BOSS in its new micro satellite bus architecture

termed Standard Satellite Bus (SSB) [83]. The architecture will be similar to the

BIRD architecture, using also four nodes and a worker/supervisor with spares scheme.

4.2 Kernel services

In this section the BOSS kernel will be described, following a subdivision based

in related functionalities as task processing, synchronization, inter-task

communication and timing.

4.2.1 Task processing

In BOSS, tasks are implemented by subclasses of the Thread class. Figure 4.1

shows a class diagram with the main methods involved with task processing.

BossObject

+ myName: char*
+ myId: long

Thread

- priority: unsigned long
- waitingUntil: Time
- lastTimeActivated: Time
- currentNumberOfThreads: long
- allThreads: Thread* ([MAX_THREADS])

run() : void
+ restart() : void
+ exit() : void
+ setPriority(unsigned long) : void
+ getPriority() : long
+ yield() : void
+ suspend() : void
+ suspendUntil(Time) : void
+ suspendFor(Time) : void
+ resume() : void

Scheduler

- runingNow: Thread*

+ getRunner() : Thread*
+ dispatch() : void
+ disableDispatch() : void
+ enableDispatch() : void

TimeManager

- tickInterval: Time

+ start() : void
+ timeEvent() : int
+ getTime() : Time

Application
Thread

+ run() : void

-runningNow

Figure 4.1: Task processing related classes.

Chapter 4. BOSS operating system

63

The Thread class, as well as most BOSS classes, inherits from the BossObject

class, which provides an optional name and identification number. Application

threads must inherit from the Thread class and implement the run method, which will

define the thread behavior.

BOSS uses priority-based preemptive scheduling. The priority attribute of the

Thread class keeps the thread priority. Larger priority values represent higher priority

levels. Thread priorities can be changed dynamically using the setPriority method.

For threads of same priority, the scheduling policy selects the thread with oldest

activation time, kept by the lastTimeActivated attribute. Time in BOSS is defined as a

64 bit quantity representing the number of microseconds passed since the system has

started. The Thread class maintains an array of pointers, named allTreads, to all

existing threads in the system, including the Idle thread. This array is used by the

Scheduler class to select the next thread to run after a call to the dispatch method.

A thread can be in one of the following states: ready-to-run, running and

suspended, as shown in Figure 4.2. After a thread object is created, the restart method

prepares it for execution by setting up its stack and context information. The initial

restart call for a thread is commanded by the operating system, but this method can

also be called during the thread execution. After restarting a thread, all stack

information is cleared and a call to the thread run method is performed. A ready-to-

run thread can be selected for execution after a call to the dispatch method of the

Scheduler class. From the running state, a thread can return to the read-to-run state if

another dispatch takes places or if it calls the yield method. The suspend method

causes a thread to go to the suspended state, while the resume method allows a thread

to be ready to run again.

ready-to-run

running

suspended

restart

dispatch

yield

resume

suspend

suspend

dispatch

Figure 4.2: Thread states.

Chapter 4. BOSS operating system

64

The mechanism of thread suspension or blocking in BOSS is implementing using

a time variable (the waitingUntil attribute shown in Figure 4.1). If a thread needs to be

suspended until a specific time, the suspendUntil method should be used.

Alternatively, a thread can be suspended for a period of time, using the suspendFor

method. The suspend method will suspend a thread forever, and it is in fact

implemented by calling the suspendUntil method with the maximum possible value of

time, which is never reached. The Scheduler class uses the getTime method of the

TimeManager class to verify which threads are able to execute, depending on their

time limit for suspension (waitingUntil). The resume method resets the thread

suspension limit, making a thread ready for execution.

The dispatch method is called whenever a context switch is needed as, for

instance, after the execution of suspend, resume or yield. Additionally, the dispatch

method is called after each system clock tick. The clock tick interval is defined by the

tickInterval attribute of the TimeManager class, shown in Figure 4.1. Besides, other

interruption sources may trigger a dispatch, depending on settings defined in the

related interruption management routines. The scheduler dispatch may be disabled by

calling the disableDispatch method of the Scheduler class.

In BOSS, all threads share the same addressing space. Thread stacks are created

in the system heap. However, the creation of kernel objects uses static memory

allocation and these objects are never destroyed.

4.2.2 Synchronization

Synchronization can be classified into two categories: resource synchronization

and activity synchronization [96]. Resource synchronization aims to achieve exclusive

access to a shared resource, as a global variable, a data structure or an I/O device.

Resource synchronization is also known as mutual exclusion. The section of the code

that accesses a shared resource is termed critical section. In contrast, activity

synchronization aims to ensure the correct execution order among cooperating tasks.

Figure 4.3 contains a class diagram with all kernel classes related to synchronization

in BOSS.

Chapter 4. BOSS operating system

65

Thread
Scheduler

- runingNow: Thread*

+ disableDispatch() : void
+ enableDispatch() : void

Semaphore

- counter: int
- owner: Thread*

+ enter() : void
+ leave() : void

SignalBox

- signalCounter: long
- suspendedReceiver: Thread*

+ getSignalCounter() : long
+ get(long) : bool
+ signal() : void
+ signalFromInterrupt() : void

«utility»
InterruptMng

+ beginAtomar() : void
+ endAtomar() : void

-runningNow

-suspendedReceiver

-owner

Figure 4.3: Synchronization related classes.

The following methods for supporting mutual exclusion are provided:

• Interrupt locking: this method consists of disabling system interrupts to

synchronize exclusive accesses to shared resources between tasks and interrupt

service routines (ISR). Interrupt locking affects the system interrupt latency and

can be used to protect small and fast critical sections. Interrupt locking is

provided by the global functions beginAtomar and endAtomar, which must

enclose a critical section. Interrupt locking nesting is implemented by

incrementing a global variable in begingAtomar and decrementing it in

endAtomar. Interrupts are enabled by endAtomar only when this variable reaches

its original value. As represented in Figure 4.3, several kernel classes use interrupt

locking in their implementations, such as the Scheduler and SignalBox.

• Preemption locking: this method consists of disabling the task scheduler, or the

dispatch mechanism. The application of this feature makes the scheduler non-

preemptive as a low priority thread will no more be preempted by a higher

priority task. However, preemptive locking does not synchronize resource

Chapter 4. BOSS operating system

66

accesses between tasks and ISR. Preemptive locking is provided by the methods

disableDispatch and enableDispatch of the Scheduler class. Similarly to interrupt

locking, preemption locking allows nesting by using a global variable to control

the nesting level. When this variable reaches the original value, the dispatch is

executed and future dispatches are permitted. The Semaphore and the SignalBox

classes use preemption locking in their implementation. The use of preemption

locking for larger critical section affects high priority task reactions.

• Semaphores: this method of mutual exclusion mechanism causes a thread to be

suspended upon calling the enter method if there is no resource available. BOSS

implements mutex semaphores by default. Semaphores have ownership and calls

to the leave method are only accepted by the owner. No priority inversion

avoidance mechanism is implemented. When several threads are blocked in the

same semaphore, the higher priority thread is released first. For equal priority

threads, the one with oldest activation time is unblocked first.

The support for activity synchronization is provided by the SignalBox class. A

signal box is a mechanism similar to a counting semaphore. Initially the signalCount

attribute is set to zero, and its incremented each time the signal method is called and

decremented when the get method is called. A thread will be suspended if it calls the

get method when the signalCount attribute is zero. Differently than Semaphore

objects, SignalBox objects can be used in synchronizations between ISR and threads.

However, only threads are supposed to be signaled, as ISR must not be suspended.

Furthermore, only one thread can be signaled, and a pointer to this thread is stored in

the suspendedReceiver attribute of SignalBox.

4.2.3 Communication

 The communication services of the BOSS kernel consist of passive classes that

support safe data transfers between tasks and also between ISR and tasks. Figure 4.4

shows the main BOSS classes involved in communication services.

Chapter 4. BOSS operating system

67

MailBox

- suspendedReceiver: Thread*
- messages: SortedList

+ receive() : SortedChainable*
+ send(SortedChainable*) : void
+ getFirst() : SortedChainable*

SortedChainable

- next: SortedChainable*
- currentList: SortedList*

+ getSortField() : long long
+ getNext() : SortedChainable*

SortedList

- first: SortedChainable*
- last: SortedChainable*

+ append(SortedChainable*) : void
+ getRemoveFirst() : SortedChainable*

Thread

Application
Msg

Type:class
len:int

AsyncCommFifo

- buf: Type ([len+1])
- writeIndex: int
- readIndex: int

+ write(Type*) : int
+ read(Type*) : int

-currentList-last-first

-messages

-suspendedReceiver

Figure 4.4: Communication related classes.

The MailBox class provides data communication between threads, similarly to a

message queue. Several threads may send messages to a single receiver thread, which

is suspended if it calls the receive method and no messages are available. Sending

threads are never blocked and messages are stored in linked list data structure

implemented by the SortedList class. The data message using MailBox, represented in

Figure 4.4 as Application Msg, must be a subclass of the SortedChainable class, as it

should have attributes and methods related to linked list node objects. Messages are

delivered in a First in - First out (FIFO) basis, although SortedList objects are able to

sort items using a priority field. Data objects sent to mail boxes are stored in a

SortedList and no data copy is performed. Therefore, the sender and receiver threads

are responsible for data objects creation and mutual exclusion.

The AsyncCommFifo class provides FIFO asynchronous non-blocking data

communication between one sender and one receiver using a producer-consumer

protocol. Senders and receivers can be either threads or interrupt service routines as

they are never blocked. AsyncCommFifo is a template class that receives the type of

the data objects and the internal buffer size as template parameters. The read and

write methods copy these data objects to and from the internal buffer, respectively.

Chapter 4. BOSS operating system

68

4.2.4 Utility classes

Besides the classes presented so far, the BOSS kernel provides several utility

classes for supporting thread timing control, memory management and debugging.

The main classes for timing control and memory management are presented in Figure

4.5.

t:class
poolSize:int

Pool

- freePtrs: t* ([poolSize])
- vals: t ([poolSize])

+ alloc() : t*
+ free(t*) : void

TimeControl

- programmedTime: Time
- cycleTime: Time

+ startAt(Time) : void
+ every(Time) : void
+ startAtEvery(Time, Time) : void
+ wait() : void

Figure 4.5: BOSS utility classes.

A thread can use one or more TimeControl objects to support the implementation

of its temporal behavior. Each TimeControl object defines a startup execution time

(startAt method) and a cycle time (every method). When a thread calls the wait

method of TimeControl, a new wake up time is calculated and passed to the

suspendUntil method of the Thread class.

The Pool class supports the creation and management of objects in static memory.

It is a template class with two template parameters: the type and number of objects to

be managed. The alloc method returns a pointer to an unused object, while the free

method returns it to the pool. If the pool is empty the alloc method will return a null

pointer. Multiple threads and ISR can share the same pool of objects as Pool methods

are protected by mutual exclusion mechanisms.

4.2.5 Hardware interface and management

BOSS has a small Hardware Dependent Layer (HDL) which implements the

platform-dependent functionality, as context switching and interrupts management.

The interface between the BOSS kernel and the HDL is defined by C functions that

Chapter 4. BOSS operating system

69

are implemented in one these layers. C functions are used to simplify calls from

assembly code in the HDL to the kernel, and vice-versa. However, most HDL code is

implemented in C and C++. Figure 4.6 shows the basic layers of the BOSS

architecture.

Application

Kernel

HDL

Hardware

BOSS basic architecture

Figure 4.6: BOSS basic architecture.

The main functions of the kernel/HDL interface are presented in Figure 4.7. The

hwSetUp function is called by the kernel to perform platform specific initialization, as

setting interrupt vectors and configuring memory management. The interruptsOn and

interruptsOff functions provide assembly code to enable and disable interrupts. The

initialization of the clock tick timer is implemented by the initTimer function, which

receives the clock tick interval as a parameter. The getMicroSeconds function returns

the time base in microseconds since the system startup. The setup function is called by

the restart method of the Thread class to initialize the thread stack frame. The context

switch is performed by the transfer function and the softReset function resets the node

and it may be used if an irrecoverable error is detected.

The kernel functions called by the HDL are described as follows. The

ThreadStartUp function is the entry point of thread execution after stack initialization.

This function calls the run method of the Thread class, which should not return;

otherwise a node reset will take place. The interruptPropagator function is called by a

general interrupt handler in the HDL to allow the execution of interrupt event services

defined by application threads. The parameter interrutptID is used to identify the

interrupt source and trigger the execution of the eventServer method of the Thread

Chapter 4. BOSS operating system

70

class. Finally, the dispatchCaller function is called when leaving interrupt handlers if

a dispatch is required.

// Kernel --> HDL

void hwSetUp(void);

void interruptsOn(void);

void interruptsOff(void);

Time initTimer(Time interval);

Time getMicroSeconds(void);

long *setup(long *stack, long stackSize, void *classRef);

void transfer(long **from, long *to);

void softReset(void);

// HDL --> Kernel

void ThreadStartUp(void * thread);

int interruptPropagator(int interruptID);

void dispatchCaller(void);

Figure 4.7: Kernel/HDL interface.

In BOSS there is no provision of mechanisms for installing and managing device

drivers. The application program can access the hardware directly, making use of

kernel objects and interrupt management support as needed.

4.3 Middleware services

Single node applications can be developed with the BOSS kernel classes

described so far. However, support for multiple node and distributed fault-tolerant

applications is provided by extra classes which implement a common communication

paradigm both for intern and extern threads. This new level of functionality is termed

middleware. BOSS middleware is based on asynchronous message-oriented

communication using the publisher-subscriber protocol. In this section, the original

BOSS middleware implementation will be described.

Chapter 4. BOSS operating system

71

4.3.1 Message to message communication

The basic unit of middleware communication in BOSS is the Message class,

shown in Figure 4.8.

Message

+ send(char*) : void
+ sendLocal(char*) : void
+ listen(char*) : void
+ removeListener(char*) : void
+ copyDataFrom(Message*) : void
+ execute(char*) : void

NameEntry

+ name: char*
+ object: void*

NameServer

entries: NameEntry ([MAXOBJECTS])

+ registerObject(char*, void*) : int
+ removeEntry(char*, void*) : void
+ forEach(char*, void*) : int
+ iteratorExecute(void*, void*, char*) : void

MiddleWareReceivers

+ iteratorExecute(void*, void*, char*) : void

Application Message

+ copyDataFrom(Message*) : void
+ execute(char*) : void

#entries

Figure 4.8: Message class diagram.

Application messages must inherit from the Message class and include data as

class attributes. Besides, Message derived classes must implement the copyDataFrom

method, which defines how the message data is updated with data from other

message. In addition, it may optionally implement the execute method, which defines

a specific behavior after message copying.

Figure 4.9 presents how the publisher-subscriber data structures are implemented.

A NameServer object maintains an array of NameEntry objects that relates subjects to

receiving messages. In the Figure 4.9 example, Message1 and Message3 are

subscribers of the subject1 subject. The same subject name can be subscribed by

more than one message. Furthermore, the same message can subscribe more than one

subject, as Message3 does.

Chapter 4. BOSS operating system

72

Message1

Message2

Message3

subject1

subject2

subject1

subject2

NameServer

name object

Figure 4.9: NameServer data structure.

A message is sent, or published, using the methods send and sendLocal of the

Message class. For sending a message it is necessary to pass the subject name as an

argument. The message distribution is performed by copying the data attributes of the

receiving message to all messages that have subscribed the related subject. The

distribution of messages is implemented by the MiddlewareReceivers class as shown

the sequence diagram of Figure 4.10.

receiver : Message : MiddlewareReceivers

listen(subject)

registerObject(subject, receiver)

sender : Message

sendLocal(subject)

forEach(subject, sender)

copyDataFrom(sender)

execute() iteratorExecute(...)

Figure 4.10: Middleware message distribution.

Initially, the receiver message registers his subscription to a subject by calling the

listen method. This is accomplished by the registerObject method of the

MiddlewareReceivers class, which sets up one entry in the data structure of Figure

4.9. When the sendLocal method of the sender message is called, the forEach

Chapter 4. BOSS operating system

73

method of MiddlewareReceivers is executed, starting a search in the NameServer data

structure for entries with the same subject name. When a match is found,

iteratorExecute executes the copyDataFrom method of the receiving message,

copying the data attributes from the sending message. Additionally, the execute

method of the receiving message is activated, allowing the execution of the code

related to message reception, as for instance, resuming a suspended thread.

The mechanism of overwriting the data of one message with the data of another

message is referred here as message to message communication. Using this

mechanism, message data can be written without previous data utilization. This is

ideal for transmitting state messages, in which only the most recent data is significant.

However, this mechanism is not suitable for event messages, in which messages

convey a system event, as events may be overwritten and lost.

4.3.2 Message to thread communication

In order to deliver event messages, a thread messaging mechanism is provided.

This includes support for message buffering and thread synchronization in message

reception. The IncommingMsgAdministrator class, shown in Figure 4.11, supplies

mail box functionality for threads. It is a template class that receives as template

parameters an application message class and the message buffer size. Internally,

IncommingMsgAdministrator maintains a memory pool of application messages using

a Pool object, and a MailBox object to provide the mail box functionality.

The IncommingMessageAdministrator class derives from Message class, and

therefore it can behave as a receiving Message, exactly as described in Figure 4.10.

The implementation of its copyDataFrom method is presented in Figure 4.12. When

this method is called, a pointer to a free message object is retrieved from the pool, a

copy is performed using copyDataFrom, and the receiving message is sent to the

MailBox.

Chapter 4. BOSS operating system

74

BasicMsg:class
PoolLen:int

IncommingMessageAdministrator

- mbox: MailBox
- pool: Pool<BasicMsg, PoolLen>
- lastRead: BasicMsg *

+ copyDataFrom(Message*) : void
+ execute(char*) : void
+ receive() : BasicMsg*
+ getFirst() : BasicMsg*

MailBox

- suspendedReceiver: Thread*
- messages: SortedList

+ receive() : SortedChainable*
+ send(SortedChainable*) : void

Message

t:class
poolSize:int

Pool

- freePtrs: t* ([poolSize])
- vals: t ([poolSize])

+ alloc() : t*
+ free(t*) : void

MiddleWareReceivers

+ iteratorExecute(void*, void*, char*) : void

application message and
size of message buffer

ApplicationThread

-pool

-mbox

Figure 4.11: IncommingMessageAdministrator class diagram.

: MiddlewareReceivers: Thread : IncommingMsgAdministrator pool : Pool mbox : MailBox

copyDataFrom(sender)

newEntry : Message

newEntry := alloc()

copyDataFrom(sender)

send(newEntry)

newMessage := receive()

free(lastRead)

newMessage := receive()

Figure 4.12: IncommingMessageAdministrator sequence diagram.

Threads receive messages by calling the receive method of

IncommingMessageAdministrator, as shown in Figure 4.12. The previous read

message is freed and sent back to the pool of message objects. Then, the receive

method of the MailBox object is executed. If the mail box is empty, the thread will be

suspended until a new message arrives.

Chapter 4. BOSS operating system

75

4.4 Middleware extensions

The original BOSS implementation received from FIRST did not provide a

generic mechanism for sending and receiving network messages. For instance, only

the sendLocal method of the Message class was implemented by the kernel. The

implementation of the send method, which is supposed to distribute a message both

internally and externally, was application-dependent (an application function or

method should be called). The same applied for middleware message reception,

which had to be implemented by an application thread.

Additionally, the original implementation did not support message identification.

Message identification is needed to discard duplicate messages and to implement

voting algorithms. Figure 4.13 presents a TMR fault-tolerant configuration that will

be used to discuss the reasons for providing message identification. In this

configuration, three replicas of Task A receive the same input and send their results to

three identical voters. The voter results are sent to three replicas of Task B. As voter

output messages are redundant, Task B can process the first message received and

discard the following messages. But for discarding messages it is necessary to

recognize that they are related to the same input data. A possible solution is to include

an identification number in the original input message and to retransmit this

identification number in the output messages of Task A and Voter A. Besides, message

identification is also useful for the voters because it provides information that can be

used to detect if a new voting cycle has started.

Task A

Task A

Task A

Voter A

Voter A

Voter A
input

Task B

Task B

Task B

Figure 4.13: TMR configuration.

Chapter 4. BOSS operating system

76

In the following sections, the new extensions to the BOSS middleware developed

in this work will be presented.

4.4.1 Message identification and discarding

The implementation of message identification and discarding of duplicate

messages by the middleware demanded the modification of the Message and

NameServer classes. For the Message class, it consisted of the inclusion of the msgID

attribute. The listen method of the Message class now accepts a Boolean value as a

parameter, to define whether duplicated messages must be discarded or not. The

default value for this parameter is false, meaning that no message discard is required.

This option will be stored in the discard flag of the new NameServer implementation,

shown in Figure 4.14.

Message1

Message2

subject1

subject2NameServer

name objectdiscard
flag last previous

msgID

true 15 14

false

Figure 4.14: NameServer extension for discarding duplicate messages.

Besides the discard flag, two message identification attributes were added to each

NameServer entry to store the last and the previous msgID. In the example shown in

Figure 4.14, Message1 was registered for discarding messages (discard flag equals

true), the last delivered message had 15 as msgID and the previous delivered message

had 14 as msgID. A new incoming message will only be delivered if it has a msgID

different from 15 and 14. For instance, a new message with msgID of 16 will be

delivered, and consequently the previous msgID attribute will receive the value of the

last msgID attribute (15 in this case), and last msgID attribute will receive the msgID

of the incoming message (16 in this case). If however, the new message has msgID of

15 or 14, it would be discarded and no modifications will be done to the last and

previous msgID attributes.

Chapter 4. BOSS operating system

77

Using the algorithm described above and considering the configuration presented

in Figure 4.13, Task B would only receive the first message sent by a voter in each

voting cycle. Any late arriving message from the previous voting cycle would also be

discarded.

Message identifications are defined as “unsigned short” variables (usually 16 bits)

and can be generated sequentially by sending tasks just but incrementing them for

each new message. No special care is needed when they reach the maximum value

(e.g. 65535) and return to zero because the discarding algorithm is not based on

ordering. The only restriction is to avoid start sending messages with the maximum

identification value because that is the value used to initialize the last and previous

msgID attributes.

4.4.2 External messages handling

This section will describe the middleware extension mechanism to support the

delivery of external messages. The Message and MiddlewareReceivers classes were

modified by the introduction of new variables, data structures and methods, as shown

in Figure 4.15.

MiddleWareReceivers

- sendMessageBuffer: char ([SEND_BUFFER_SIZE])
- sendProtector: Semaphore

+ iteratorExecute(void*, void*, char*) : void
+ sendNet(char*, Message*) : void
+ receiveNet(char*, int, unsigned long) : void

Message

+ msgID: unsigned short
+ sendNode: unsigned long
+ className: char*
+ externalMessages: Message* ([MAX_EXT_MESSAGES])

+ send(char*) : void
+ sendLocal(char*) : void
+ listen(char*) : void
+ removeListener(char*) : void
+ copyDataFrom(Message*) : void
+ execute(char*) : void
+ registerExternalMessage(Message*) : void
+ findRegisteredMessage(char*) : Message*
+ serialize(char*) : int
+ deserialize(char*) : void

Application Message

+ copyDataFrom(Message*) : void
+ execute(char*) : void
+ serialize(char*) : int
+ deserialize(char*) : void

«global functions»
HDL interface

+ sendPacket(char * , int) : void
+ getMyNode() : unsigned long

Misc

+ serializeShort(...) : void
+ serializeInt(...) : void
+ serializeFloat(...) : void
+ deserializeShort(...) : void
+ deserializeInt(...) : void
+ deserializeFloat(...) : void

Figure 4.15: Middleware extensions class diagram.

Chapter 4. BOSS operating system

78

In addition to the msgID attribute, already discussed in the last section, the

Message class has been augmented by the sendNode attribute, which identifies the

origin node of a message (e.g. IP number); by the className attribute, which stores

the name of the subclass of Message that will be sent to an external node; and by the

static externalMessages array of message pointers, which references auxiliary

messages used in message reception. The registerExternalMessage method inserts an

entry in the externalMessages array and the findRegisteredMessage method searches

for an auxiliary message with a given className attribute in the same array. Serialize

and deserialize are new virtual functions that must be implemented by external

messages for marshaling and unmarshaling the message data. These functions may

use the utility functions of the Misc class in the serialization and deserialization

process.

The MiddlewareReceivers class has gained a data buffer named

sendMessageBuffer to store the outgoing message data after serialization and a

semaphore to protect it from multiple accesses from sending threads. Two new

methods were added to MiddlewareReceivers: the sendNet method prepares the

message for network transmission, eventually calling the sendPacket method of the

HDL interface; and the receiveNet method distributes incoming messages, taking as

input the data received by the HDL when a message arrives.

The process of sending and receiving external messages is shown in Figure 4.16.

In the sender node, a message is prepared and the send method is called, passing the

message subject as an argument. After that, the sendNet method of

MiddlewareReceivers is executed and takes care of the message marshaling, by

preparing the sendMessageBuffer according to the sequence diagram shown in Figure

4.17.

The className information is taken from the sender message object, as well as

the msgID. The marshaling of the data message is performed by the sender itself,

using the serialize method. All data is sent in network byte order (big-endian). The

serialization functions of the Misc class are able to change the byte order for little-

endian platforms. When the buffer is ready for transmission, a pointer to it, as well as

its data size, are passed to the sendPacket function of the HDL interface, which

Chapter 4. BOSS operating system

79

eventually will send the data over the network. Finally, the message is also sent

locally using the sendLocal method.

: MiddlewareReceiverssender: Message

send(subject)

sendNet(subject, sender)

serialize(buffer *)

HDL interface

sendPacket(buffer *, size)

receiveNet(...)

Message

aux := findRegisteredMessage(className)

aux: Message

deserialize(data)

sendLocal(subject)

registerExternalMessage(aux)

receiver
node

sender
node

sendLocal(subject)

Figure 4.16: External messages processing.

subject className msgID serialized message data

“temperature” “TempMsg” 245 temperature value

C string C string unsigned short byte array

Message

-myTemp : float
TempMsg

Figure 4.17: External message packet description.

In receiver nodes, the following processing takes place (Figure 4.16). Initially, an

auxiliary message object of the sender message class must be created and registered

using the registerExternalMessage. When a message is received by HDL, the

receiveNet method of MiddlewareReceivers is called. Then, a receiving buffer, passed

as an argument, is scanned for removing the className information, which is then

Chapter 4. BOSS operating system

80

passed to the findRegisteredMessage in order to retrieve a pointer to the auxiliary

message object related to the incoming message. If no matching auxiliary message

exists the incoming message is discarded, otherwise the receiving data is copied to the

auxiliary message. The deserialize method of the auxiliary message executes the

unmarshalling of the message data. At this point, the auxiliary message is a replica of

the original sender message, and it can be sent locally using the sendLocal method.

The mechanism described above provides fully transparent communication for

applications. This means that the same application can run on different platforms

(with possibly different byte ordering), and communicate with other applications

without knowing in which platform they are running. Message objects can be sent

locally and over the network using the send method, and only have to implement the

serialize and deserialize methods. At the receiver’s side, an object of the same

message class must be created and registered at initialization time. No further

procedures are needed to handle external messages at the application level. All

platform and network dependent code is implemented at the Hardware Dependent

Layer.

4.5 Summary

The BOSS operating system is a real-time OS designed for small-scale embedded

systems with high-dependability requirements. Its object-oriented design aims the

reduction of the operating systems complexity, which is the cause of most design

faults. However, it covers all basic functionality needed to develop embedded

applications, including the communication between nodes, using a publisher-

subscriber protocol.

This work has improved the BOSS middleware by adding mechanisms for

message identification and discarding duplicate messages. Furthermore, support for

handling external messages was developed, making intra-node and inter-node

communication transparent for applications. The information provided in this chapter

is necessary for understanding the fault tolerance framework described in the next

chapter.

81

Chapter 5

Fault tolerance framework

This chapter describes the fault tolerance framework developed for

supporting application fault tolerance atop the BOSS operating system and

its middleware. As an introduction, the framework objectives and

constraints are presented. Afterwards, the framework is described in

various levels of detail ranging from the application programmer

perspective to specific FT strategy implementations. Finally, the benefits

and drawbacks of the proposed FT framework are discussed.

Chapter 5. Fault tolerance framework

82

5.1 Introduction

The FT framework designed for supporting application fault tolerance to the

BOSS operating systems has several objectives and constraints. First, it has to be

easily customizable and extensible, in order to support fault tolerance in a wide

variety of projects with different dependability requirements and hardware

availability. Therefore, it should provide mechanisms for hardware and software fault

tolerance using single or redundant hardware systems with single or multiple software

versions. Second, it has to be fully compatible with the BOSS operating system, using

the basic features provided by this OS and the communication infrastructure provided

by its middleware. Finally, it has to be simple and efficient to run in small-scale real-

time embedded systems without incurring in too much resource consumption, such as

processor and memory usage.

The FT framework described here focus in fault-tolerant computing and does not

include mechanisms for tolerating communication network errors. In this work, it is

assumed that the underneath communication is reliable and ordered.

As seen in Section 2.10, several object-oriented fault tolerance patterns and

frameworks have been proposed and developed by the research community. In

general, the unit of fault tolerance is an application object with behavior defined by a

subclass of an abstract “variant” class. Considering objects as units of fault tolerance

has also been applied in fault tolerance supporting systems such as FT-CORBA [88]

implementations, although using replication without diversity. Other systems such as

ROAFTS [68] use virtual objects (TMO objects in that case) as units of redundancy,

but method calls are implemented as threads.

The chosen approach is to use BOSS threads as units of fault tolerance because

threads and processes are the real units of computation in a multitasking system.

Consequently, thread restarting can be employed as an effective mechanism of system

recovery. The same mechanism can not be applied by object methods if, for instance,

an error condition leads to an infinite loop execution. Besides, using objects (virtual or

real) as units of fault tolerance increases system implementation complexity, reduces

performance, and increases memory usage. The same approach was used in FT-RT-

Mach [40] and in the AFT for Spacecraft work [52].

Chapter 5. Fault tolerance framework

83

5.2 Fault tolerance thread model

Not all kinds of application threads can be used as units of fault-tolerant

computing in the proposed framework. A fault-tolerant thread must comply with a

specific fault tolerance thread model, shown in Figure 5.1.

Figure 5.1: Fault tolerance thread model.

Fault-tolerant threads are supposed to read from input devices or receive input

messages from other threads, process the inputs and generate an output either by

writing to an output device or by sending a result message to other threads. The model

supports both state threads and stateless threads. For state threads, the output result

will depend both on the input data and on the previous state data. The input phase is

optional, as a thread can be activated by a timing mechanism and may use no external

data in the processing phase. However, the ordering of the input, processing, and

output phases should be preserved. A thread performing inputs and outputs during the

processing phase is non-compliant and can not be made fault-tolerant using this

framework.

An example of a candidate thread for fault tolerance implementation is presented

in Figure 5.2. In this example, ExampleThread runs cyclically, reading messages from

an IncommingMessageAdministrator object, which consists of a mailbox for messages

of the Msg class. The process method is executed next, and implements some

computing algorithm using data from the incoming message and possibly from an

internal state (attributes not shown). Finally the output method prepares the output

message and sends it locally and over the network, using the string “exampleResult”

as subject.

Chapter 5. Fault tolerance framework

84

class ExampleThread : public Thread {
 Msg* recMsg;
 Msg outMsg;
 IncommingMessageAdministrator<Msg,20> inMessages;
public:
 ExampleThread(){ ... // init code}

 void run () {
 while(1) {
 recMsg = inMessages.receive();
 process();
 output();
 }
 }

 void process(){
 ... // uses msg data and state data
 }

 void output(){
 ... // prepares output message
 outMsg.send("exampleResult");
 }
};

Figure 5.2: Example of candidate thread for FT implementation.

The thread model explained above is commonly adopted in the design of fault-

tolerant systems [7, 101]. Threads in this model behave like state machines, receiving

events/data as inputs and, in consequence, changing their internal state and sending

events/data as outputs. FT threads are not allowed to interact with other threads or to

perform any input/output during the processing phase.

5.3 Framework general description

In this section the fault tolerance framework will be described in the perspective

of the application programmer. The description approach is based on presenting how

the framework can be used to modify an existing non-fault-tolerant application thread

to make it fault-tolerant. The original non-fault-tolerant thread must comply with the

fault-tolerant thread model presented in the previous section.

Chapter 5. Fault tolerance framework

85

5.3.1 Framework structure

Figure 5.3 shows a simplified class diagram of the FT framework. A fault-tolerant

application thread (e.g. FTApplicationThread) must inherit from the FTThread class

and select an FTStrategy object that will implement the fault tolerance functionality.

Three FT strategies have been implemented: RB, DRB and NVP, but others can be

developed and integrated to the framework.

Thread

VoterThread

myVoterType: VoterType
- maxResponseTime: Time

initVoting(VoterType, Time) : void
executeVoting(unsigned short) : void
storeSolution() : void
findEqualSolution() : bool
sendResult() : void

FTStrategy

+ ftThread: FTThread*
+ maxResponseTime: Time

+ setFTThread(FTThread*) : void
+ setMaxResponseTime(Time) : void
+ executeFT() : void

BasicMsg:class

StdVoter

- outputSubject: char*
- inputSubject: char*

RBStrategy

FTThread

+ ftStrategy: FTStrategy*

+ setFTStrategy(FTStrategy*) : void
+ variant1() : void
+ variant2() : void
+ variant3() : void
+ saveCheckpoint() : void
+ restoreCheckpoint() : void
+ acceptanceTest() : bool
+ sendResult() : void
+ onFailure() : void
+ getState(char*) : int
+ setState(int, char*) : void

MiddlewareScheduler

DRBStrategy NVPStrategy

VoterApplicationThread FTApplicationThread

Used for the NVP
strategy only

Figure 5.3: Simplified FT framework class diagram.

Differently from software structures presented in Section 2.10, where variants and

adjudicators are represented by classes, here these functionalities are implemented as

methods of the FTThread hierarchy. The FTThread class declares several virtual

functions which must be implemented by the FT application thread, depending on the

selected FT strategy, such as software variants, checkpointing support functions and

the acceptance test. This approach has several advantages: (a) it simplifies the

framework class structure; (b) it allows direct access from these procedures to class

attributes defined by the application thread; and (c) it reduces runtime and memory

costs.

The VoterThread class supports the development of voters, which are required by

the NVP strategy. A voter application thread (e.g. VoterApplicationThread) must

inherit from VoterThread and define some virtual functions, such as

Chapter 5. Fault tolerance framework

86

findEqualSolution. Additionally, a standard voter class (StdVoter) is supplied. This

predefined voter thread provides exact voting (bit-by-bit comparison) when both

inputs and outputs are implemented by message passing.

The MiddlewareScheduler (MS) class controls all FT and voter threads. This

thread periodically searches for active FT/voter threads and executes part of the

required control algorithm. Besides, this thread triggers periodic middleware

messages to perform role definitions and thread state synchronization.

5.3.2 Fault tolerance introduction

The modifications required to make an application thread fault-tolerant include:

• Instantiation and registration of an FTStrategy object that will implement the

desired fault tolerance strategy, as RB, DRB or NVP.

• Execution of the executeFT method of the FTStrategy object after the thread

activation.

• Implementation of application-specific methods related to the selected fault

tolerance strategy (as the acceptance test in RB and DRB). Some of them consist

of new functionality but others will contain the code originally defined in the

processing and output methods.

Figure 5.4 shows an example of fault-tolerant implementation for ExampleThread

of Figure 5.2, using the DRB strategy. The main differences between this version and

the original code in Figure 5.2 are highlighted. The application thread now inherits

from the FTThread class, instead of the Thread class. A concrete FTStrategy is

instantiated as a DRBStrategy (myDRB). In the class constructor, the maximum

response time for execution is set to 20,000 microseconds and the setFTStrategy

method is called, assigning the address of the DRBSstrategy object to the ftStrategy

pointer (see Figure 5.3). In the run method, the original process and output methods

are replaced by a call to the executeFT method of the FTStrategy class. This method is

responsible for executing the particular strategy and for activating the application

specific methods defined in the application thread, as for example, variant1 (primary

block) and acceptanceTest. Some of these methods correspond to original

Chapter 5. Fault tolerance framework

87

implementations, but others, like variant2 (recovery block) and saveCheckpoint

should be defined to allow the execution of the DRB strategy.

In this example, ExampleThread is stateless; otherwise FTExampleThread should

also implement the methods getState and setState. These methods are needed to

provide state initialization between the primary and the shadow nodes in DRB. None

of these methods are necessary in the original version, as only one ExampleThread

instance runs in a single node.

class FTExampleThread : public FTThread {

 DRBStrategy myDRB;
 Msg* recMsg;
 Msg outMsg;
 IncommingMessageAdministrator<Msg, 20> inMessages;
public:

 FTExampleThread(){
 ... // init code
 myDRB.setMaxResponseTime(20000);
 setFTStrategy(&myDRB);
 }

 void run () {
 while(1) {
 recMsg = inMessages.receive();
 ftStrategy->executeFT();
 }
 }

 void variant1(){
 ... // same code of original process method
 }

 void sendResult(){
 ... // same code of original output method
 }
 // to be defined
 void variant2(){ ... }
 void saveCheckpoint(){ ... }
 void restoreCheckpoint(){ ... }
 bool acceptanceTest(){ ... }
};

Figure 5.4: Example of FT application thread.

5.3.3 Application-specific entities

Each FT strategy instantiation and usage demands the definition of strategy

attributes and application specific behavior. These requirements are summarized in

Chapter 5. Fault tolerance framework

88

Table 5.1, Table 5.2 and Table 5.3. Table 5.1 presents requirements for multiple

version software, Table 5.2 for single version software and Table 5.3 for voters.

Single version strategies use the same FTStrategy classes used for multiple

version software, but do not implement their full functionality. If some application

thread does not implement a given method, a default implementation is inherited. For

example, the default implementation for save/restoreCheckpoint is empty and for

acceptanceTest is to return true (success).

Table 5.1: Multiple version strategies requirements.

Definition Requirements
Entity Type

RB DRB NVP

FT Strategy object RBStrategy DRBStrategy NVPStrategy
Response time parameter Yes Yes Yes
variant 1 method Yes Yes Yes
variant 2 method Yes Yes Yes
variant 3 method - - Yes
saveCheckpoint method Yes Yes -
restoreCheckpoint method Yes Yes -
acceptanceTest method Yes Yes -
sendResult method Yes Yes Yes
onFailure method Optional Optional Optional
Voter Thread object - - Yes
getState method - state threads

only
state threads

only
setState method - state threads

only
state threads

only

Table 5.2: Single version strategies requirements.

Definition Requirements
Entity Type

Restart Checkpoint
and Restart

PSP TMR

FT Strategy object RBStrategy RBStrategy DRBStrategy NVPStrategy
Response time parameter Yes Yes Yes Yes
variant 1 method Yes Yes Yes Yes
variant 2 method - - - -
variant 3 method - - - -
saveCheckpoint method - Yes Yes -
restoreCheckpoint method - Yes Yes -
acceptanceTest method - Yes Yes -
sendResult method Yes Yes Yes Yes
onFailure method Optional Optional Optional Optional
Voter Thread object - - - Yes
getState method - - state threads

only
state threads

only
setState method - - state threads

only
state threads

only

Chapter 5. Fault tolerance framework

89

Table 5.3: Voter requirements.

Definition Requirements
Entity Type

Application
Specific Voter

Standard Voter
(StdVoter)

Thread name parameter Yes Yes
Coordination method parameter Yes Yes
Response Time parameter Yes Yes
Input subject parameter - Yes
Output subject parameter - Yes
storeSolution method Yes -
findEqualSolution method Yes -
sendResult method Yes -

The simplest single version FT strategy is the Restart strategy. In this technique

only one variant is defined, and the acceptance test is not implemented. Therefore, the

only possible error detection mechanism is deadline expiration, which is set by the

Response time parameter. The Checkpoint and Restart strategy can be implemented as

a single version simplification of the RB strategy. In this case, only one real variant is

defined, and the body of variant2 should contain a call to the variant1 method. In a

similar way, PSP is implemented with the DRB strategy and TMR with the NVP

strategy.

The onFailure method in Table 5.1 and Table 5.2 is always optional. It can be

used to define application-dependent fault handling mechanisms when a failure in the

strategy execution occurs. After running the code defined in the onFailure method,

the thread will be restarted by the operating system.

Table 5.3 displays the requirements for voting threads. These threads are only

needed when using TMR or NVP. In the general case, a voter is application-specific

and this thread must implement the VoterThread methods shown in Table 5.3. The

Coordination method parameter defines if all replica voters will execute the

sendResult method or if only a master voter will do it. The definition of the master

voter in a coordinated voting is performed by the FT framework. The Response time

of a voter is the maximum time allowed for a voting cycle. A cycle begins when the

voter receives the first solution. Voters try to find a match between two solutions (2

out of 3), but if only one solution is received and the voting cycle period has finished,

that solution is considered correct and it is sent as a result.

Chapter 5. Fault tolerance framework

90

In Table 5.3, the column labed “Standard Voter” lists the requirements for the

initialization of StdVoter objects. This class provides exact voting using messages for

receiving solutions and sending the results. Using this standard voter, other

parameters must be defined, as the subject of input and output messages.

5.4 Framework general implementation

This section describes the general FT framework implementation, which consists

of patterns and mechanisms used in all FT strategy development.

5.4.1 Timing behavior

The MiddlewareScheduler (MS) thread runs at the beginning of every clock tick

interval (e.g. 1ms; see Section 4.2.1) and controls the behavior and execution of each

FT thread and voter. Besides, this thread is also responsible for activating the

middleware thread that delivers external incoming messages.

Figure 5.5 shows an example of the execution of a Recovery Blocks (RB)

strategy. The MS thread runs periodically and releases the message reception thread

each two activation periods. The message reception thread is not executed in every

cycle in order to reduce CPU utilization and to provide at least one cycle in two for

FT threads free execution. In the first cycle, the FTThread receives a message and

starts the FT execution. This example shows a failure in the primary block and a

success in the recovery block.

Chapter 5. Fault tolerance framework

91

Figure 5.5: RB execution timing example.

Figure 5.6 contains an activity diagram that shows the interaction between the

FTThread and the MiddlewareScheduler thread in the execution of the RB strategy.

After being activated, an FT thread sets up a deadline for execution, based on the

actual time and the maximum allowed response time, the thread suspends. In

subsequent MS activations, this thread restarts the FTThread if the deadline has

expired. This situation represents a failure in delivering the correct response on time,

but after restarting the FTThread is ready to receive the next request. If the deadline

has not expired, the MS thread commands the next actions to be performed by the

FTThread thread and schedules it for execution. After executing the right operations

(save/restore state, run primary/recovery block, run acceptance test) the RB thread

suspends again and the MS thread checks the acceptance test (AT) result. If the

FTThread succeeds in the AT, the MS thread allows it to send its results and the

interaction finishes. If the FTThread fails in both blocks, it is restarted by the MS

thread.

Chapter 5. Fault tolerance framework

92

receives message
or wakes up

start

sets deadline
and suspends

commands save state
and acceptance test.

Resumes thread

saves state, runs
primary block, runs
acceptance test and

suspends

Passed AT

sends result

commands send
result and resumes

thread

commands restore
state and acceptance
test. Resumes thread

restores state, runs
recovery block and

acceptance test and
suspends

Final

Final

Passed AT
commands send
result. Resumes

thread

sends result

Final

Final

Deadline

Deadline

restart thread

Deadline

restarts thread

Final

FTThread (RB)

MiddlewareScheduler

[Yes]

[No]

[No]

[Yes] [No]

[No]

[Yes]

[No]

[Yes] [Yes]

Figure 5.6: RB execution activity diagram.

5.4.2 Class structure

Any FT strategy is executed in the context of two separate threads: the FTthread

and the MiddlewareScheduler thread. The FTThread executes methods in response to

the control algorithm performed by the MiddlewareScheduler thread. However, all the

code related to a given FT strategy is defined by its FTStrategy concrete class. Figure

5.7 shows a class diagram describing the main methods involved in the execution of

an FT strategy.

MiddlewareScheduler

+ sendMiddlewareMsg(...) : void

FTThread

+ ftStrategy: FTStrategy*

FTStrategy

+ ftThread: FTThread*

+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

Thread

+ myFTType: FTType
+ isRunningFT: bool
+ isVoting: bool

«enumeration»
FTType

+ NONE: int
+ FT: int
+ VOTER: int

VoterThread

+ executeVoting(unsigned short) : void
+ checkTimeoutVoting() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

Figure 5.7: FT strategy execution class diagram.

Every FTStrategy subclass must implement the executeFT method, which

performs the FT control algorithm that runs in the context of the FT thread (upper part

of Figure 5.6, excluding message reception). It must also implement the

Chapter 5. Fault tolerance framework

93

executeMSControl method, which performs the MS control algorithm for that stategy

(botton part of Figure 5.6). Using this approach, the MiddlewareScheduler class does

not depend on any FT strategy implementation, and FT strategies can be added to the

framework transparently.

The MS thread controls the execution of the voter threads in a similar way.

However, the MS control is simpler, as it only have to detect if the voting deadline

has elapsed. The executeVoting method is executed by the VoterThread, while the

checkTimeoutVoting method is called by the MS thread.

In contrast with the RB strategy presented so far, other FT strategies involve the

utilization of multiples instances of the FT thread, running in different nodes. These

FT threads have to communicate in order to coordinate, establish roles and initialize

states. In this framework, the required communication between FT threads is executed

by message passing between the MiddlewareScheduler threads of each node. If an FT

thread needs to send a message, it calls the sendMiddlewareMessage method of MS.

The sending message is broadcasted to all other nodes and their MS threads will

distribute it to the related FT threads in their nodes, if any, by calling the

processMiddlewareMessage method of the corresponding FT strategy. The same

applies to VoterThreads that can communicate using the same methods described

above.

Another feature performed by MiddlewareScheduler is the activation of the

startPeriodicMsg of FTStrategy and VoterThreads periodically (e.g. 300ms), in order

to trigger the execution of periodic tasks as, for instance, role conflicts detection in the

DRB strategy.

Finally, the MiddlewareScheduler thread is responsible for changing the FT

threads priorities according to the Earliest Deadline First (EDF) scheduling.

Therefore, in each MS activation the FT thread with earliest deadline is found and its

priority is raised to a maximum among application threads. This feature can be

enabled or disabled in the framework.

Figure 5.8 contains a sequence diagram that describes the activities performed by

MiddlewareScheduler each time it runs. First it reads messages coming from other

MiddlewareScheduler objects in other nodes. These messages are sent by external

Chapter 5. Fault tolerance framework

94

FTThreads and VoterThreads and must be delivered to internal objects of the same

type and name, if any. Therefore, MiddlewareScheduler checks if there is any local

thread with the name received in the incoming message. If there is, it determines if it

is an FT thread or voter, based on the myFTType attribute of the Thread class, and

calls the processMiddlewareMsg method of the related class (FTStrategy or

VoterThread). Next, if a predefined number of MiddlewareScheduler activations have

been executed; periodic messages of FT threads and voters are triggered, using the

startPeriodicMsg method. Finally, the control algorithm of active FT threads is

performed by running the executeMSControl method. Similarly, MS checks the

timeout for active voting threads by calling the checkTimeoutVoting method. Active

FT threads and voters are represented by a true value in the isRunningFT and isVoting

Boolean attributes of the Thread class.

:MiddlewareScheduler :FTStrategy

[myFTType==FT]: processMiddlewareMsg

:VoterThread

[myFTType==VOTER]: processMiddlewareMsg

reads message & finds thread by name
While there are
 new messages

* [myFTType==FT]: startPeriodicMsg

* [myFTType=VOTER]: startPeriodMsg
Each n

 activations

* [isRunningFT]: executeMSControl

* [isVoting]: checkTimeoutVoting

Figure 5.8: MiddewareScheduler thread sequence diagram.

Figure 5.8 does not represent FT thread scheduling, but this operation is

performed, if selected, at the end of each MS activation.

Chapter 5. Fault tolerance framework

95

5.5 FT strategies implementation

This section describes the implementation of the fault tolerance strategies which

were provided by the FT framework: RB, DRB and NVP. These strategies are

described in Section 2.8. The implementation of an FT strategy consists basically in

developing an FTStrategy class that contains the algorithm performed by the FT

technique. Each strategy may also define algorithms for role definitions and state

coordination. The implementation of these operations is supported by the

MiddlewareScheduler thread, as presented in the previous section.

5.5.1 Recovery Blocks strategy

The Recovery Blocks (RB) strategy, described in Section 2.8.2, consists of the

sequential execution of software variants, or alternates, using an acceptance test as

adjudicator. The implementation of RB in this framework is limited to two software

variants because it is the minimum configuration that is able to tolerate one active

fault. The utilization of more software variants would require additional development

efforts and it would increase the memory consumption.

Figure 5.9 shows a class diagram that only presents classes, attributes and

methods directly related to the RB strategy operation. The Recovery Blocks technique

is implemented by the RBStrategy class. This class derives from FTStrategy and

implements the executeFT method, which defines the FT thread behavior, and the

executeMSControl method, which defines the MiddlewareScheduler thread behavior.

Other virtual functions defined in FTStrategy are not implemented, as this strategy

runs in a single node and does not send messages to other replicas. The waitingForMS

attribute is used to indicate to the MS thread that the FT thread is waiting for further

commands. The passedAT attribute contains the result of the last acceptance test and

it is used by the MS to define the next commands. These commands are issued

through the following class attributes: tryBlock, which defines the next variant to run

and mustSendResult, which defines if a result can be sent. An example of the RB

strategy execution has been shown in Figure 5.5 and the coordination between the FT

thread and MS has been shown in Figure 5.6.

Chapter 5. Fault tolerance framework

96

RBStrategy

+ waitingForMS: bool
+ passedAT: bool
+ tryBlock: short
+ mustSendResult: bool

+ executeFT() : void
+ executeMSControl() : void

FTStrategy

+ maxResponseTime: Time

+ setMaxResponseTime(Time) : void
+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

FTThread

+ variant1() : void
+ variant2() : void
+ saveCheckpoint() : void
+ restoreCheckpoint() : void
+ acceptanceTest() : bool
+ sendResult() : void
+ onFailure() : void

Figure 5.9: RB strategy class diagram.

The execution of the RB strategy is presented in Figure 5.10. Two software

versions or alternates are applied, defined by the variant1 and variant2 methods. The

entry point is the execution of the executeFT method of RBStrategy, which sets the

deadline based on the maxResponseTime attribute and suspends. The MS resumes the

FT thread, which then executes the checkpointing (saveCheckpoint method), the

primary block (variant1 method), and the acceptance test (acceptanceTest method);

after that, the FT Thread suspends again. In the next activation, the MS checks the AT

result and, if it succeeded, commands the execution of the sendResult method and

finishes the strategy operation. Otherwise, it will command the checkpoint restoration

(restoreCheckpoint method), the execution of an alternate block (variant2 method),

and the reexecution of the acceptance test. If both variant executions fail in the

acceptance test, or if deadline expiration is detected by the MS thread, no results will

be sent and the onFailure method will be called (see description in Section 5.3.3).

After returning from the onFailure method, the thread will be restarted.

Chapter 5. Fault tolerance framework

97

Figure 5.10: RB strategy execution.

The maximum response time parameter (maxResponseTime) must include the

extra time needed to execute the second variant if the first variant fails. The minimum

value for this parameter is equal to three times the clock tick interval, as shown in

Figure 5.11, in which the clock tick interval is represented by 20 time units. In the

first period the FT thread only sets the deadline, in the second period it executes the

first variant, and in the third period it executes the second variant. When the FT thread

is sending the results the deadline verification is already disabled.

The checkpointing mechanism is application-dependent and it must save all static

variables, global variables and class attributes that can be modified by the first variant,

in order to be restored to their original values before running the second variant. This

might include state data and input data that is overwritten during the computation

process (see Figure 5.1). Non-static local variables and variables initialized by the

software variants do not need to be saved. For stateless threads with unmodified input

data no checkpoint is required, and the application thread may use the default empty

Chapter 5. Fault tolerance framework

98

implementation defined in the FTThread class. The acceptance test, implemented by

the acceptanceTest method, is also application-dependent and should return true in

case of success and false in case of failure. The default implementation of this method

returns true.

R
B

no
de MS

Msg rec.
FT thread
idle

input msg
received

starts variant1 variant2 send
result

input msg
delivered

0 10 20 30 40 50 60 70 80 90 100

Figure 5.11: RB timing example.

The RBStrategy class can also be applied to implement single version software

techniques, as described in Table 5.2. The Checkpoint and Restart strategy only

differs to RB because the second variant is equal to the first. Therefore, the

implementation of the variant2 method should consist of a call to the variant1

method. As discussed in Section 2.8.1, the Checkpoint and Restart strategy has

limited software fault tolerance capability.

The Restart strategy is the simplest configuration. In that strategy, the default

acceptanceTest method it used, and therefore, the only error detection mechanism is

deadline expiration, which causes a thread restart. Despite recovering the faulty thread

and allowing it to respond to further activations, this strategy can not avoid failures.

The RB strategy described here is based in sequential execution in a single node.

Therefore, state consistency mechanisms are not provided. However, it is possible to

implement fault-tolerant configurations applying multiple replicas of RB threads, if

these threads are stateless, as shown in Figure 5.12.

Chapter 5. Fault tolerance framework

99

Node1

:RBThread

Node2

:RBThread

SenderNode

: SenderThread

ReceiverNode

: ReceiverThread

data_in data_out

Figure 5.12: Stateless RB threads configuration example.

In this configuration, both RBThreads receive messages with the string “data_in”

as subject from SenderThread, and send their results in a message with the string

“data_out” as subject. The ReceiverThread subscribes to “data_out” messages but sets

the option for discarding duplicate messages (see Section 4.4.1). Therefore, only the

first message from RBThreads will be delivered. The RB strategy provides software

fault tolerance while its redundant execution provides hardware fault tolerance. If the

RB threads were not stateless, the output messages of the two RBThreads would

diverge in case of failure in one of them.

5.5.2 Distributed Recovery Blocks strategy

The Distributed Recovery Blocks (DRB) strategy, described in Section 2.8.3,

coordinates the execution of two RB-like threads in distinct nodes, using a

primary/shadow configuration, in which only the primary thread sends its results.

Although not defined by the DRB strategy [64], the implementation of DRB in this

framework provides a mechanism for maintaining the state consistency between

replicas, in order to support state threads.

Figure 5.13 shows a class diagram that only presents classes, attributes and

methods directly related to the DRB strategy operation. The DRB technique is

implemented by the DRBStrategy class, which derives from FTStrategy. The class

structure differences from RBStrategy to DRBStrategy are:

Chapter 5. Fault tolerance framework

100

• DRBStrategy implements the processMiddlewareMsg method to handle messages

received from the other replica.

• DRBStrategy implements the startPeriodicMsg method to trigger the transmission

of messages used to detect role conflicts between replicas.

• DRBStrategy contains an enumeration object called myDRBRole to define the

thread role: primary or shadow.

• DRBStrategy uses the isPrimaryDone and isShadowDone attributes to keep track

whether the primary and shadow threads have succeeded in the acceptance test.

• DRBStrategy uses the isFirstActivation and hasFinishedInitialization attributes to

support the implementation of state initialization.

FTStrategy

+ maxResponseTime: Time

+ setMaxResponseTime(Time) : void
+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

FTThread

+ hasState: bool

+ variant1() : void
+ variant2() : void
+ saveCheckpoint() : void
+ restoreCheckpoint() : void
+ acceptanceTest() : bool
+ sendResult() : void
+ onFailure() : void
+ getState(char *) : int
+ setState(int, char *) : void DRBStrategy

+ waitingForMS: bool
+ passedAT: bool
+ tryBlock: short
+ mustSendResult: bool
+ myDRBRole: DRBRole
+ isPrimaryDone: bool
+ isShadowDone: bool
+ isFirstActivation: bool
+ hasFinishedInitialization: bool

+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

«enumeration»
DRBStrategy::

DRBRole

+ PRIMARY: int
+ SHADOW: int

+myDRBRole

Figure 5.13: DRB strategy class diagram.

The execution of the DRBStrategy is presented in Figure 5.14. The primary thread

runs variant1 as primary block and variant2 as an alternate. The shadow thread runs

these variants in the reverse order.

101

Figure 5.14: DRB strategy execution.

102

At the entry point, the thread checks the need for state initialization based on the

hasState attribute of FTThread and the isFirstActivation attribute of DRBStrategy,

which is reset at startup. If state initialization is needed, the thread aborts operation

and will only execute in the next activation. In the meanwhile, a state message from a

previously initialized DRB thread should be received. If this message is not received,

the thread assumes that no other node has been running previously, and therefore the

default initialization values are taken. In both cases, the deadline is set and the thread

begins its normal RB-like execution.

There are different control algorithms for primary and shadow DRB threads. A

primary thread executes as if it were alone, similarly to the RB strategy execution

shown in Figure 5.10. However, if it misses the deadline it will be restarted as a

shadow thread. Additionally, a primary thread sends a message indicating success in

the acceptance test, and also a state message just after sending its results.

The shadow thread behaves differently, as it must execute the second variant,

perform the acceptance test, and wait for the acceptance test message from the

primary thread. In this implementation, the timeout for waiting this message is equal

to the execution deadline. Therefore, when this deadline expires, the MS thread in the

shadow node verifies the isPrimaryDone and isShadowDone variables to decide one

of the possible outcomes:

• exit the shadow execution silently, if both threads have succeeded;

• restart the shadow thread, if it has failed; or

• change the role of the shadow thread to primary and allow it to send its results, if

only the former primary has failed.

As shown in Figure 5.14, three types of messages are exchanged between DRB

replicas:

• AT success message: this message is generated by the primary thread to inform

the shadow thread about the success in executing an acceptance test.

• State message: this message contains state data needed to initialize a state thread.

The getState method of FTThread must be implemented for state threads. This

method serializes the state data that is assembled in the state message. The

Chapter 5. Fault tolerance framework

103

returning value of getState is the state data size. In the receiving side, the setState

method deserializes this data to the proper variables. A stateless FT thread should

not implement the getState and setState methods. In that case, the default

implementation of getState will return zero as state data size, which will set the

hasState attribute of FTThread to false. This is accomplished just at initialization

time.

• Role message: this message is sent periodically by both the primary and shadow

nodes to allow the detection and correction of role conflicts (primary/shadow

definitions). The receiving thread checks if the other replica role is equal to its

own, and if so, executes a role conflict resolution algorithm based on the node

identification number (see Section 4.4.2). The priority used in role conflicts is

inversely proportional to the node identification number. A DRB thread always

starts executing as shadow and therefore two DRB threads starting at the same

time will have the same role. That situation will be corrected as soon as the higher

priority thread receives the first role message from the lower priority thread, and

changes its role to primary. The period of the role message is defined by the

MiddlewareScheduler, as described in Section 5.4.2. Another role conflict

situation occurs when both the primary and shadow threads fail, and consequently

are restarted as shadow.

Figure 5.15 shows a DRB strategy configuration example similar to the one

presented in Figure 5.12 for the RB strategy. This configuration uses middleware

messages with subject “FTStatus” to send role, state and AT success messages as

explained above. Note that only the primary DRBThread sends its results to

ReceiverThread.

The minimum value for maximum response time (maxResponseTime parameter)

in the DRB strategy depends on many factors, such as the message transmission time

from the primary to the shadow node. Figure 5.16 shows a timing diagram that

presents the worst situation, in which the primary node starts executing after the

shadow node and fails in the execution of the first variant. In this figure, one clock

tick interval is represented by ten units of time.

Chapter 5. Fault tolerance framework

104

Node1

:DRBThread

Node2

:DRBThread

SenderNode

: SenderThread

ReceiverNode

: ReceiverThread

data_in data_out

FTStatus

primary

shadow

Figure 5.15: DRB strategy configuration example.

P
rim

ar
y MS

Msg rec.
FT thread
idle

Sh
ad

ow

MS
Msg rec.
FT thread
idle

both:
input msg
received

Primary
starts

Primary
variant1

Primary
variant2

Swadow
variant2

Swadow
starts

Swadow
exits

AT msg
delivered

Primary
sends result

AT ok message

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Figure 5.16: DRB timing diagram.

If we consider a small computing time for each variant execution and the worst

possible timing between nodes, as they are not synchronized, the following time

delays should be considered:

• Difference between DRB threads start times. The starting time of each thread

depends on the input message delivery to the FT threads, which happens once in

two MS activations. In the worst scenario, the time difference between FT thread

activations is equal to two clock tick intervals (2 ∆ck).

• DRB primary thread execution time. If the computation time of the variants is

small (e.g. half of a clock tick interval), the total execution time, excluding the

time spent in sending the results, is equal to three clock tick intervals (3 ∆ck).

Chapter 5. Fault tolerance framework

105

• Message transmission time. This is the delay in transmitting the AT success

message between the primary and the shadow node. This time is called ∆M.

• Message delivery time. This is the time delay between receiving a message in the

shadow node and delivering it to the MS thread mailbox. In worst case scenario

this delay is equal to two clock tick intervals (2 ∆ck).

• Shadow exit delay. This is the time spent from the message delivery to the MS

mail box to the moment when the FT thread runs again after this AT message is

read by the MS thread. This delay is about one clock tick interval (∆ck).

The sum of all the delays described above is equal to 8 ∆ck + ∆M. This represents

the minimum value of maxResponseTime for DRB execution. For example, if the

clock tick interval is 2 ms, and the network transmission delay is 10 ms, then

maxResponseTime should be at least 26 ms.

The DRBStrategy class can be applied to implement the PSP single version

software technique, as described in Table 5.2. In that case, the variant2

implementation should call the variant1 method. As explained in Section 2.8.3, this

configuration has limited software fault tolerance capability, but is effective against

hardware permanent and transient faults.

5.5.3 N-Version Programming strategy

The N-Version Programming (NVP) strategy, described in Section 2.8.4, consists

of the concurrent execution of software variants followed by a decision mechanism,

usually implemented by majority voting. The implementation of NVP in this

framework is limited to three software variants because it is the minimum

configuration needed to mask one active fault. The utilization of more software

versions would require additional hardware resources that are usually not available for

small-scale embedded systems.

Figure 5.13 shows a class diagram that only presents classes, attributes and

methods directly related to the NVP strategy operation. The NVP technique is

implemented by the NVPStrategy class, which derives from FTStrategy. This class

implements the executeFT method, which defines the FT thread behavior and the

Chapter 5. Fault tolerance framework

106

executeMSControl method, which defines the MiddlewareScheduler thread behavior.

Additionally, this class also implements the processMiddlewareMsg method for

processing state messages received from NVP threads in other nodes.

FTStrategy

+ maxResponseTime: Time

+ setMaxResponseTime(Time) : void
+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

FTThread

+ hasState: bool

+ variant1() : void
+ variant2() : void
+ variant3() : void
+ sendResult() : void
+ onFailure() : void
+ getState(char *) : int
+ setState(int, char *) : void

NVPStrategy

+ variantNumber: short
+ isFirstActivation: bool
+ hasFinishedInitialization: bool

+ setVariant(short) : void
+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void

Figure 5.17: NVP strategy class diagram.

The NVPStrategy class has an attribute to define the variant that should be

executed (variantNumber). This attribute is set at initialization time by the setVariant

method, and it is not supposed to change at runtime. The advantage of having three

software variants in the same class, instead of defining three different application

threads, is to smooth the process of deployment. Using this design solution, the same

software can be loaded in all embedded systems, and the definition about which

variant a node will execute can be taken at runtime. A possible implementation is to

define the variant to execute based on some node identification (e.g. IP number).

Similarly to DRBStrategy, NVPStrategy uses the isFirstActivation and

hasFinishedInitialization attributes to support the implementation of state

initialization.

Chapter 5. Fault tolerance framework

107

If only one software version is available, the NVPStrategy can be used to

implement a TMR strategy. In that case, only the variant1 method must be

implemented and the variantNumber attribute must be set to one.

The execution of the NVP strategy is presented in Figure 5.18. At the entry point,

the thread checks the need for state initialization based on the hasState attribute of

FTThread and the isFirstActivation attribute of NVPStrategy, which is reset at startup.

If state initialization is needed, the thread aborts operation and will only execute in the

next activation. In the meanwhile, a state message from a previously initialized NVP

thread should be received. Then, the deadline is set and the thread selects one variant

for execution based on the variantNumber attribute. At the end of the variant

execution, a result message is sent to one or more voter threads. Besides, a state

message is sent if the hasState attribute is set.

Figure 5.18: NVP strategy execution.

In this strategy, the MiddlewareScheduler thread only verifies if the deadline has

expired. If the deadline expires, the onFailure method is called and the thread is

restarted.

Chapter 5. Fault tolerance framework

108

The state initialization mechanism is exemplified in Figure 5.19. In this situation,

the NVP thread #1 was already running when NVP threads #2 and #3 started. In the

first activation after starting, the joining NVP threads skip any processing and wait for

a state message to initialize state data. In the next activation they start their normal

execution. If the joining threads do not receive any state message they still start

running in the next activation, but in that case they use the default state data. That

situation happens if all threads start at the same time. This means that state threads

loose one activation event to perform state initialization.

input

Variant 1 SR

state
msg

input

Variant 1 SR

state
msg

input

start

input

Variant 2 SR

state
msginput

start

input

Variant 3 SR

state
msg

inic

inic

NVP
Thread #1

NVP
Thread #2

NVP
Thread #3

Figure 5.19: NVP state initialization example.

The NVPStrategy class only takes care of the computation process. The NVP

technique also depends on one or more voter threads that receive result messages from

the FT threads and select a result based on majority voting. Figure 5.20 presents three

possible voting configurations. NVP threads subscribe to the “input_data” subject and

send their results using “unvoted-data” as subject. One or more voter threads receive

the result messages and select one result which is sent using “voted_data” as subject.

The communication between NVP threads (state messages) and voter threads (role

messages) are not shown in these figures. In Figure 5.20a, only one voter is used and

therefore a failure in the node where the voter is running will lead to a system failure.

Figure 5.20b contains a configuration that uses one voter for each NVP thread, usually

running in the same node. That configuration tolerates permanent failures in one or

two nodes. The configuration in Figure 5.20c is similar to the one in Figure 5.20c, but

Chapter 5. Fault tolerance framework

109

only the master voter sends the selected result. That mechanism is termed

coordinated voting, while the configuration in Figure 5.20b is termed free voting.

NVP thread
variant 1

NVP thread
variant 3

NVP thread
variant 2

Voter

Voter

Voter

input_data unvoted_data voted_data

NVP thread
variant 1

NVP thread
variant 3

NVP thread
variant 2

Voter

input_data unvoted_data voted_data

NVP thread
variant 1

NVP thread
variant 3

NVP thread
variant 2

Voter
(master)

Voter
(slave)

Voter
(slave)

input_data unvoted_data voted_data

(a) (b)

(c)

Figure 5.20: Voting configurations.

The implementation of voters depends on the middleware support for message

identification, as described in Section 4.4.1, in order to define when a new voting

problem or cycle begins. Therefore, NVP threads must send a common identification

number in their result messages for each voting cycle. One possible solution is to

include this identification in the input message. However, the activation of NVP

threads and the output of voter threads can be performed without messages. NVP

threads can be activated by a timing mechanism but they must agree in the generation

of the message identification number sent to voter threads. This can be accomplished

by the state data coordination mechanism provided by the NVP strategy. Similarly,

voter threads can send or use the selected result by other means, as for instance,

sending data to hardware devices. If the outputs of the voter threads are sent to

another BOSS thread, there is no need for coordinated voting, as the middleware is

able to discard duplicate messages. If otherwise only one message must be sent to the

successor task or if only one voter must drive a hardware device, then coordinated

voting should be used.

Chapter 5. Fault tolerance framework

110

 Voter threads are implemented by means of the VoterThread class, shown in

Figure 5.21. VoterThread derives from thread and defines the following virtual

functions that must be implemented by application voters:

• storeSolution: saves result data (also called “solution”) received from a NVP

thread.

• fingEqualSolution: compares the last received data from a NVP thread with

previous received and stored data, trying to find a match (“equal” solution) using

an application-specific procedure.

• sendResult: outputs the selected result.

The nextSolIndex attribute is initialized with zero at the beginning of a voting

cycle and should be used by application voters as an index to store and compare result

data.

Thread

VoterThread

nextSolIndex: short
myVoterType: VoterType
myVoterRole: VoterRole
- maxResponseTime: Time
- currentMsgID: unsigned short
- previousMsgID: unsigned short
- hasStartedElection: bool
- higherSlaveCandidate: bool

initVoting(VoterType, Time) : void
executeVoting(unsigned short) : void
storeSolution() : void
findEqualSolution() : bool
sendResult() : void
+ checkTimeoutVoting() : void
+ startPeriodicMsg() : void
+ processMiddlewareMsg(...) : void

«enumeration»
VoterThread::VoterType

+ FREE: int
+ COORDINATED: int

«enumeration»
VoterThread::VoterRole

+ MASTER: int
+ SLAVE: int

BasicMsg:class

StdVoter

+ inMsg: IncommingMessageAdministrator<BasicMsg, 20>
- resultData: char ([MAXSOL][MAX_SERIALIZE_SIZE])
- inputSubject: char*
- outputSubject: char*

+ StdVoter(...)
+ run() : void
+ storeSolution() : void
+ findEqualSolution() : bool
+ sendResult() : void

ApplicationVoter

run(void) : void
storeSolution() : void
findEqualSolution() : bool
sendResult() : void

Figure 5.21: VoterThread class diagram.

Chapter 5. Fault tolerance framework

111

VoterThreads can run free or coordinated, as defined by the myVoterType

attribute. In coordinated voting, the myVoterRole keeps the role definition: master or

slave. The maximumResponseTime attribute is used to define the deadline for each

voting cycle. Both the coordination method and the response time are initialized by

the initVoting method. The executeVoting method must be called after each voter

activation (e.g. after receiving a message) and it must receive an identification number

as a parameter. The currentMsgID and previousMsgID attributes keep track of the

recent identification numbers and are used to detect a new voting cycle and also late

arriving messages from previous cycles. The hasStartedElection and

higherSlaveCandidate attributes are used to perform the master election in

coordinated voting. The deadline of a voting cycle is verified periodically by the

MiddlewareScheduler thread, using the checkTimeoutVoting method. Other methods

called by the MS thread are startPeriodicMsg, which triggers a role message

transmission in case of coordinated voting and processMiddlewareMsg, which

processes incoming role messages.

The StdVoter class defines a standard application voter that performs inputs and

outputs using messages and executes exact voting, as described in Section 5.3.3. This

class embeds a mail box for receiving messages of a type defined by a template

parameter (BasicMsg). The memory used to store incoming results from NVP threads

is defined by the resultData attribute. The subjects of the input and output messages is

kept by the inputSubject and ouputSubject attributes. The initialization of these

attributes, as well as others, as coordination method and response time is performed

by the class constructor.

A voting execution diagram is presented in Figure 5.22. The entry point is the

execution of the executeVoting method of VoterThread. The detection of a new voting

cycle is performed by comparing the received identification number of the current and

previous cycle’s identification numbers. If a new voting cycle is detected, the

storeSolution method is called and a deadline is set. If otherwise, the received

identification is compared to the previous cycle’s identification to detect a late

arriving message, which will cause the discarding of the result data. The result data is

also discarded if a result has been previously selected by the voter. If none of these

discarding situations occur, the storeSolution and findEqualSolution methods are

Chapter 5. Fault tolerance framework

112

called. If the findEqualSolution method return true, indicating that a match between

different stored result data (“equal” solution) was found, and the voter is allowed to

send outputs (free voter or master), the sendResult method is called.

Figure 5.22: Voting execution diagram.

While a voting cycle is still running (no result has been selected), the MS thread

keeps checking the VoterThread deadline. When this deadline expires, two situations

could have happened:

• Only one result data have been received – in that case this solution is considered

correct, and the voter selects it for output.

• Two or three solutions have been received but they haven’t matched – in that case

no output is produced by the voter.

The master election algorithm used in coordinated voting is represented by the

state diagram in Figure 5.23. At the beginning of an election process in a voter, the

initial state of the algorithm will be Master or Master Candidate, depending on the

present role of the voter, master or slave, respectively.

Chapter 5. Fault tolerance framework

113

Master

Master Candidate

higher priority
master

any other

any other

master
higher priority

slave

any other

Slave

Master initial
state

Slave initial
state

Figure 5.23: Master election state diagram.

 Transitions in this state diagram are triggered by the reception of role messages

from other nodes that satisfy the conditions shown in the figure. For instance, if a

slave voter starts the election as a Master Candidate and further receives a message

from a master voter or from a higher priority slave voter, then it changes its state to

Slave. A voter priority is inversely proportional to its node identification number.

Role messages are sent periodically, triggered by the MS thread, as described in

Section 5.4.2. The duration of an election process is twice as big as the role message

period. At the end of the election, the final state of a voter determines its role. A role

change is performed if one of the following situations occurs:

• A master voter ends the election in the Slave state; or

• A slave voter ends the election in the Master Candidate state.

When a voter thread starts it assumes a slave role. Therefore, a lower priority

master voter will keep its role regardless of the arriving of new higher priority voters.

This design decision aims to minimize role changes between coordinated voters.

The master election algorithm is executed continuously, meaning that a new

election period starts immediately after the previous election finishes. If a master

voter fails, the worst possible scenario occurs when it happens just after sending its

Chapter 5. Fault tolerance framework

114

role message and when this message arrives to the highest priority slave at the

beginning of an election period, as shown in Figure 5.24.

Election k Election k+1 Election k+2

mastermastermaster

Election k+3

slave slave slave slave slave slave master master master

failure

Figure 5.24: Master voter failure worst scenario.

Figure 5.24 presents a sequence of elections carried out by the higher priority

slave voter. The last master voter role message is received at the beginning of the k+1

election. Therefore, this voter only detects the master failure and assumes as master at

the end of the k+2 election. The worst case recovery time from a master failure is

equal to two election periods. For example, in a system with clock tick interval of 2

milliseconds and running periodic messages each 100 MiddlewareScheduler

activations, the election period would be equal to 400 milliseconds, and so the worst

case recovery time would be equal to 800 milliseconds.

5.6 Discussion

The utilization of the proposed FT framework for the development of embedded

fault-tolerant systems has several benefits:

• It simplifies the application level programming, as programmers don’t have to

implement fault tolerance mechanisms, but just have to provide application-

specific parameters and procedures. The same happens regarding other distributed

mechanisms, such as state initialization and output coordination.

• The application program follows a standard structure in which changing the FT

strategy becomes easy and straightforward. This reduces efforts in strategy

selection, configuration and testing.

Chapter 5. Fault tolerance framework

115

• It facilitates the creation and integration of new fault tolerance strategies. The

proposed framework is easily extendable by adding new FTStrategy and

VoterThread derived classes, as described in Section 5.4.

• Provides a means of implementing adaptive fault tolerance [52], as changing the

FT strategy can be performed at runtime by simply calling the setStrategy

method. The strategy can be modified based on the reliability requirements of

each mission phase, or even for other factors as resource availability and power

consumption.

The drawback of the proposed FT framework is the increase in the OS memory

footprint and runtime overhead. The FT framework is fully integrated into the

operating system code. Therefore, even for non-fault tolerant applications some extra

resources will be used, as it will be presented in Chapter 7. A possible solution to this

problem is providing two versions of the operating system: with and without the FT

framework. However, this solution demands the utilization of more than one version

of some operating system classes, which makes software development and

maintenance more difficult. In Chapter 6 it will be presented a solution to this

problem using AOP.

5.7 Summary

A framework to support application-level fault tolerance was designed and

implemented. This framework is easily customizable and extensible, providing

mechanisms for hardware and software fault tolerance. The design goals were

simplicity and efficiency, in order to run in small-scale real-time embedded systems.

 The units of fault tolerance in this framework are the BOSS threads. This

approach provides better mechanisms for system recovery, such as thread restarting.

The thread model for fault-tolerant threads supports both state threads and stateless

threads, and it is commonly used in the design of fault-tolerant systems.

The application of fault tolerance in an existing system is straightforward. An FT

object must be created and registered. Additionally, some parameters and methods

must be provided by the application program. The framework is responsible for

Chapter 5. Fault tolerance framework

116

executing the selected FT strategy and for exchanging messages needed in the

implemention of these strategies, such as the ones related to role definitions and state

consistency.

Three main fault tolerance strategies were implemented: RB, DRB and NVP, but

other single version strategies may be derived from them. Detailed descriptions of

each strategy class structure and execution algorithm were presented. Furthermore,

worst case scenarios in terms of execution times for each FT strategy have been

exhibited. The development and integration of new FT strategies into the framework

is simple and do not imply modifications in other framework classes.

The utilization of the proposed FT framework featured several advantages over

ad-hoc implementations, simplifying the application-level programming and

improving the system configurability and extensibility.

117

Chapter 6

Applying AOP for fault tolerance

This chapter describes the application of AOP to support the

implementation of fault tolerance. In this work, AOP was applied for three

different purposes: (1) modularize the fault tolerance code at the

application level; (2) integrate the FT framework into the operating

system; and (3) implement fault tolerance at the operating system level.

Chapter 6. Applying AOP for fault tolerance

118

6.1 Application-level fault tolerance

The FT framework described in the last chapter can be used to convey fault

tolerance to an existing application. In order to build a fault-tolerant application, the

source code of critical threads must be modified. For instance, the source code shown

in Figure 6.1 presents a non fault-tolerant thread, while Figure 6.2 shows the source

code of the same thread after fault tolerance introduction. The main differences

between these source codes are highlighted. This modification can lead to the

introduction of coding errors and also can make maintenance more difficult, as two

software versions now exist: the original and the fault-tolerant. These versions should

remain compatible throughout their evolution, aiming to allow configurability and

reuse. As a mean to improve fault tolerance integration and maintenance, AOP

techniques were applied to modularize all fault-tolerant code, keeping the original

source code intact. In this work, AOP was mainly used to automatically generate the

source code of fault tolerant threads (e.g. Figure 6.2) by weaving the original non

fault-tolerant thread source code (e.g. Figure 6.1) with FT aspects.

class ExampleThread : public Thread {
 Msg* recMsg;
 Msg outMsg;
 IncommingMessageAdministrator<Msg,20> inMessages;
public:
 ExampleThread(){ ... // init code}

 void run () {
 while(1) {
 recMsg = inMessages.receive();
 process();
 output();
 }
 }

 void process(){
 ... // uses msg data and state data
 }

 void output(){
 ... // prepares output message
 outMsg.send("exampleResult");
 }
};

Figure 6.1: Example of thread source code before fault tolerance introduction.

Chapter 6. Applying AOP for fault tolerance

119

class FTExampleThread : public FTThread {

 DRBStrategy myDRB;
 Msg* recMsg;
 Msg outMsg;
 IncommingMessageAdministrator<Msg, 20> inMessages;
public:

 FTExampleThread(){
 ... // init code
 myDRB.setMaxResponseTime(20000);
 setFTStrategy(&myDRB);
 }

 void run () {
 while(1) {
 recMsg = inMessages.receive();
 ftStrategy->executeFT();
 }
 }

 void variant1(){
 ... // same code of original process method
 }

 void sendResult(){
 ... // same code of original output method
 }
 // to be defined
 void variant2(){ ... }
 void saveCheckpoint(){ ... }
 void restoreCheckpoint(){ ... }
 bool acceptanceTest(){ ... }
};

Figure 6.2: Example of thread source code after fault tolerance introduction.

6.1.1 Code generation

The process of generating the executable code using this approach is shown in

Figure 6.3. Inputs and outputs of weavers, compilers and linkers are represented by

continuous lines, while application source code dependencies are represented by

dashed lines. The operating system, already integrated to the fault tolerance

framework, is compiled and an OS library is generated. Abstract Strategy Aspects are

developed for each FT strategy in the system. They define virtual pointcuts and

standard advices used for all related Concrete Strategy Aspects. A concrete aspect

must be defined for advising each future fault-tolerant application thread, as it will be

Chapter 6. Applying AOP for fault tolerance

120

later discussed. The weaving process using AspectC++ generates a fault-tolerant

application that is eventually compiled and linked to the OS code.

Non-FT
Application

Abstract
Strategy
Aspects

Concrete
Strategy
Aspects

AspectC++
weaving

FT
Application

BOSS OS
& FT

Framework

Compilation
& linking

Executable
code

Compilation
& library
creation

OS library

Figure 6.3: Code generation process using AOP at the application level.

Using this process, all fault-tolerant code is defined inside the aspect code, and

the non-FT application remains unchanged. The fault tolerance concern is

consequently separated from the main functionality.

6.1.2 AspectC++ restriction

AspectC++ has a restriction related to the introduction of base classes that had an

impact on this work. In AspectC++, base classes can be included but they can never

replace an existing base class (as AspectJ does). The introduction of a base class in

AspectC++ can lead to multiple inheritance if the target class of the introduction has

already one base class. In Figure 6.4 we can see that the application of a base class

introduction in the original code of Figure 6.1 does not result in the FT code of Figure

6.2. Instead, it adds FTThread as a base class of ExampleThread in a multiple

inheritance mechanism.

Chapter 6. Applying AOP for fault tolerance

121

Non-FT
Application

Concrete
Strategy
Aspects

AspectC++
weaving

FT
Application

// Figure 6.1
class ExampleThread : public Thread {
 ...
}

// what we get
class ExampleThread : public Thread, public FTThread {
 ...
}

aspect SomeAspect {
 advice "ExampleThread": slice class: public FTThread;
 ...
}

// what we need (Figure 6.2)
class ExampleThread : public FTThread {
 ...
}

Figure 6.4: AspectC++ base class introduction example.

In AspectJ, the introduction of a base class by an aspect is always performed by

substitution, as Java does not allow multiple inheritance. As C++ allows both single

and multiple inheritance, AspectC++ should provide support for two kinds of base

class introduction: by substitution and by addition. The suggestion to include the base

class substitution functionality in AspectC++ has been sent to the AspectC++ mailing

list [14, 15] in January and April of 2007. We hope that new versions of AspectC++

can support that feature.

Some workarounds can be applied to deal with this AspectC++ restriction, but all

involve modifications in the FT framework and cause performance or memory

footprint penalties. The selected solution was to eliminate the FTThread class from

the FT framework and include all its attributes and methods into the Thread class, as

Chapter 6. Applying AOP for fault tolerance

122

shown in Figure 6.5 (compare with Figure 5.3). This solution avoids the usage of the

base class introduction shown in Figure 6.4, and consequently does not incur in the

performance overheads related to multiple or virtual inheritance. However, it

increases the memory footprint of the final application, as non-FT threads have their

memory size enlarged.

VoterThread

myVoterType: VoterType
- maxResponseTime: Time

initVoting(VoterType, Time) : void
executeVoting(unsigned short) : void
storeSolution() : void
findEqualSolution() : bool
sendResult() : void

FTStrategy

+ ftThread: Thread*
+ maxResponseTime: Time

+ setFTThread(FTThread*) : void
+ setMaxResponseTime(Time) : void
+ executeFT() : void

BasicMsg:class

StdVoter

- outputSubject: char*
- inputSubject: char*

RBStrategy

Thread

+ ftStrategy: FTStrategy*

+ setFTStrategy(FTStrategy*) : void
+ variant1() : void
+ variant2() : void
+ variant3() : void
+ saveCheckpoint() : void
+ restoreCheckpoint() : void
+ acceptanceTest() : bool
+ sendResult() : void
+ onFailure() : void
+ getState(char*) : int
+ setState(int, char*) : void

MiddlewareScheduler

DRBStrategy NVPStrategy

VoterApplicationThread

FTApplicationThread

Figure 6.5: FT framework modified for AOP application.

6.1.3 AOP implementation

This section describes the implementation of abstract and concrete aspects that

introduce fault tolerance to threads. As an example, the ExampleThread class shown

in Figure 6.1 will be made fault-tolerant, using the DRB and NVP strategies.

Figure 6.6 shows the abstract aspect related to the DRB strategy. This aspect is

general and can be applied by all threads using this strategy and other single version

strategies related to it. Similar abstract aspects were developed for the RB and NVP

strategies. Initially this aspect declares three virtual pointcuts (lines 2-4) that will be

Chapter 6. Applying AOP for fault tolerance

123

defined by concrete aspects. These pointcuts represent the thread class under

modification (DRBClass) and the original methods for processing (ProcessMethod)

and output (OutputMethod). The integer maxResponseTime (line 5) keeps the

maximum response time for execution, which must be defined by concrete aspects.

The introduction of the DRBStrategy object definition is carried out using the

AspectC++ slice construction (line 7), which is used to extend the static structure of a

program. The initialization of this object, as well as its registration, is performed by

the advice in line 13, which uses the constr pointcut (line 11), similarly as done in the

constructor code of the non-AOP version in Figure 6.2.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

aspect DRBStrategyAbstract {
 pointcut virtual DRBClass() = 0;
 pointcut virtual ProcessMethod() = 0;
 pointcut virtual OutputMethod() = 0;
 int maxResponseTime;

 advice DRBClass(): slice class {
 private:
 DRBStrategy myDRB;
 };
 pointcut constr() = construction(DRBClass());

 advice constr(): after(){
 tjp->target()->myDRB.setMaxResponseTime(maxResponseTime);
 tjp->target()->setFTStrategy(&(tjp->target()->myDRB));
 }

 pointcut compute()= call(ProcessMethod()) &&
 target(DRBClass()) && !within("% ...::variant%(...)");

 advice compute(): around(){
 tjp->target()->ftStrategy->executeFT();
 }
 pointcut result()= call(OutputMethod()) &&
 target(DRBClass()) && !within("% ...::sendResult(...)");

 advice result(): around(){
 }
};

Figure 6.6: DRB strategy abstract aspect.

The compute pointcut (line 18) defines a condition in which the processing

method of the non-FT thread is called in the original code. The around advice related

to this pointcut (line 21) will replace this call by the activation of the executeFT

method of the FTStrategy class. Similarly, the result pointcut (line 24) defines a

condition in which the output method of the non-FT thread is called in the original

Chapter 6. Applying AOP for fault tolerance

124

code. The around advice related to this pointcut (line 28) will just suppress this call, as

the activation of the thread output is going to be controlled by the FTStrategy object.

The concrete aspect to make ExampleThread fault-tolerant is shown in Figure 6.7.

The aspect inherits from the DRBStrategyAbstract aspect and initially defines its

virtual pointcuts (lines 3-5). In this case, the target thread is “ExampleThread”, the

processing method is “process” and the output method is “output”, as seen in Figure

6.1.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

aspect DRBExampleConcrete: public DRBStrategyAbstract {

 pointcut DRBClass() = "ExampleThread";
 pointcut ProcessMethod()= "% ...::process()";
 pointcut OutputMethod() = "% ...::output()";

 DRBExampleConcrete(){
 maxResponseTime = 20000;
 }

 advice DRBClass() : slice class {
 public:
 void variant1(){ process(); }
 void sendResult(){output(); }

 // methods to be defined
 void variant2(){ ... }
 void saveCheckpoint(){ ... }
 void restoreCheckpoint(){...}
 bool acceptanceTest(){...}
 }
};

Figure 6.7: DRB strategy concrete aspect example.

The maximum response time for this strategy is set to 20.000 microseconds in the

aspect constructor (line 8), by initializing a base abstract variable. After that, several

methods are introduced in the target thread. The virtual method variant1 (line 13) is

responsible for running the primary block in DRB, and in this case it must execute the

original processing of ExampleThread. Similarly, the virtual method sendResult (line

14) must call the original output method. Here it can be noticed that the calls to

process and output in the introduced methods variant1 and sendResult will not trigger

the execution of the advices defined by the compute and result pointcuts in the

DRBStrategyAbstract aspect of Figure 6.6 because the within scope pointcut function

is being applied. Finally, the application-specific methods are defined for this strategy

(lines 17-20), such as variant2 (recovery block) and saveCheckpoint. After the

Chapter 6. Applying AOP for fault tolerance

125

weaving process, the new ExampleThread code becomes functionally equivalent as

the non-AOP version of Figure 6.2.

Figure 6.8 presents the abstract aspect to implement the NVP strategy using a

StdVoter class. The differences to the abstract aspect for the DRB strategy of Figure

6.6 are highlighted.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

aspect NVPstdStrategyAbstract {
 pointcut virtual NVPClass() = 0;
 pointcut virtual ProcessMethod() = 0;
 pointcut virtual OutputMethod() = 0;
 int maxResponseTime;
 int variant;
 char inputSubject[20];

 advice NVPClass(): slice class {
 private:
 NVPStrategy myNVP;
 };
 pointcut constr() = construction(NVPClass());

 advice constr(): after(){
 tjp->target()->myNVP.setMaxResponseTime(maxResponseTime);
 tjp->target()->myNVP.setVariant(variant);
 tjp->target()->setFTStrategy(&(tjp->target()->myNVP));
 }

 pointcut compute()= call(ProcessMethod()) &&
 target(NVPClass()) && !within("% ...::variant%(...)");

 advice compute(): around(){
 tjp->target()->ftStrategy->executeFT();
 }
 pointcut result()= call(OutputMethod()) &&
 target(NVPClass()) && !within("% ...::sendResult(...)");

 advice result(): around(){}

 pointcut sendMessage()= call(“%Message::send(...)”) &&
 that(NVPClass()) && within (OutputMethod());

 advice sendMessage(): before(){
 *tjp->arg<0>() = inputSubject;
 }
};

Figure 6.8: NVP strategy with StdVoter abstract aspect.

The variant attribute (line 6) keeps the variant number executed by this node, and

it is defined by the concrete aspect. The variant number is set in NVPStrategy object

in line 17, inside the advice of the target thread constructor. The most remarking

difference to the DRB strategy is the need to advise the call to the send method of the

Chapter 6. Applying AOP for fault tolerance

126

Message class inside the output method of the target thread, as defined by the

sendMessage pointcut (line 32). This happens because the fault-tolerant thread now

has to send its results to a voter thread instead of the final destinations, and so the

subject of the output message has to change. In the advice in line 35, the input

argument to the Message::send method is changed to the subject of input messages to

the voter (line 7), which is defined by the concrete aspect.

An example of NVP concrete aspect (using StdVoter) applied to the same

ExampleThread of Figure 6.1 is shown in Figure 6.9. The main differences to the

DRB concrete aspect of Figure 6.7 are highlighted.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

aspect NVPExampleConcrete: public
 NVPstdStrategyAbstract {

 pointcut NVPClass() = "ExampleThread";
 pointcut ProcessMethod()= "% ...::process()";
 pointcut OutputMethod() = "% ...::output()";
 StdVoter<Msg> myVoter;

 NVPExampleConcrete()
 : myVoter(“voter”, VoterThread::COORDINATED, 15000,
 “toTheVoter”, “exampleResult”)
 {
 maxResponseTime = 20000;
 variant = defineMyVariant();
 }

 advice NVPClass() : slice class {
 public:
 void variant1(){ process(); }
 void sendResult(){output(); }

 // methods to be defined
 void variant2(){ ... }
 void variant3(){ ... }
 }
};

Figure 6.9: NVP strategy with StdVoter concrete aspect example.

The StdVoter object is defined in line 7. This object cannot be an attribute of the

abstract aspect because it depends on the type of the Message object used to exchange

the results (e.g. Msg), and this is application-dependent. The StdVoter constructor is

called by the aspect constructor (line 10). The parameters taken by this constructor are

described in Table 5.3. In this example, coordinated voting is selected and the

maximum response time for a voting cycle is set to 15.000 microseconds. The subject

of input messages to the voter is defined arbitrarily as “toTheVoter” and the subject of

Chapter 6. Applying AOP for fault tolerance

127

output messages from the voter is defined compulsorily as “exampleResult”, the same

used by the output method of ExampleThread.

The variant attribute set in line 14 will define which variant method (1, 2, or 3)

will be called for processing. In this example, all nodes will be able to run any variant,

and the definition about what variant they will run will be taken at runtime, using the

defineMyVariant function. A possible implementation of this function can be to define

the variant based on some non-volatile identification of the node. Finally, the

application-specific methods are defined for this strategy (lines 23-24). The NVP

strategy requires an extra variant in relation to the DRB strategy (line 24), but in

contrast does not require the implementation of checkpointing or acceptance tests. If

only TMR is implemented, there is no need to define variant2 and variant3, and the

variant attribute should be set to 1(one) in line 14.

6.1.4 Discussion

The basic goal of the AOP implementation shown in the previous sections was to

modularize all fault tolerant code used at the application thread level, keeping the

original code unchanged. The advantages of this approach are:

• It is less prone to errors in porting a non-FT system to a FT one. The task of

changing an existing system to introduce fault tolerance capabilities may insert

software faults in the original code. Using AOP the original code is preserved.

• The programmer can initially write applications without fault tolerance in mind,

and concentrate his efforts in the development of the functional code. Using AOP,

fault tolerance can be applied in a second stage, after validating the core

functionality.

• It facilitates the evaluation and comparison of several FT configurations, as the

developer may easily select what set of application threads will be made fault

tolerant and on which strategy.

• It contributes to product line development, as single or redundant systems may be

generated by introducing or not fault tolerant aspects.

Chapter 6. Applying AOP for fault tolerance

128

• It contributes to code reuse because the same functional code can be applied in

other projects with different dependability requirements.

Using this approach, the base code remains oblivious to the fault tolerant concern,

but on the other hand, the aspect code is very dependent on the base code it applies to.

This fact is related to the nature of fault tolerance domain, where for each FT

instantiation we may need to define specific deadlines, error detection, alternative

procedures, checkpoints, state coordination, voting specifications, and so on. For that

reason, concrete aspects are normally heterogeneous and can target only one

application thread. However, depending on the characteristics of the application

process and the selected fault tolerant strategy, less application-specific code may be

needed. In our opinion, a complete homogeneous fault tolerance injection is very hard

to achieve.

The main drawback of using AOP for application-level fault tolerance

introduction is related to the very limited availability of aspect-oriented weavers and

tools for embedded development. The AspectC++ compiler used in this work is still in

beta testing and has some restrictions, such as the one described in Section 6.1.2. In

Section 6.4 we discuss the need to use special configuration tools for AOP

development.

We conclude that AOP is very useful in the fault tolerance domain because it

reduces efforts and errors in making a legacy system fault-tolerant, simplifies system

development by allowing the validation of the functional part in advance, facilitates

the evaluation and comparison of various FT configurations, and contributes to

product line development and code reuse.

6.2 FT framework integration

The FT framework implementation is intertwined with some of the BOSS

operating system classes. For instance, the Thread class of BOSS includes additional

attributes and methods related to the fault tolerance implementation, as seen in Figure

Chapter 6. Applying AOP for fault tolerance

129

6.5. Even in the former implementation of the FT framework2, the original BOSS

Thread class had to be modified to include some attributes, as seen in Figure 5.7.

Ideally, the utilization of an FT framework should not affect the OS development.

The application of AOP techniques can provide the complete physical separation of

the FT framework from the OS code. Therefore, the development of these concerns

can be made separately and be composed, if needed, at weaving/compilation time.

6.2.1 Code generation

The process of weaving the FT framework with the operating system and further

generation of the executable code is shown in Figure 6.10.

Non-FT
Application

Application
Aspects

AspectC++
weaving

FT
Application

BOSS OS
& FT

Framework

Compilation
& linking

Executable
code

Compilation
& library
creation

OS library

BOSS OS

FT
Framework

OS
Aspects

Figure 6.10: Code generation process when using AOP at the OS level.

The weaving process now also applies to the original operating system code. The

weaving process at the application level occurs simultaneously with the weaving

2 The former implementation of the FT framework is the one presented in Chapter 5. The current

implementation of the FT framework is the one shown in Figure 6.5, which avoids multiple inheritance

when using AspectC++, as described in Section 6.1.2.

Chapter 6. Applying AOP for fault tolerance

130

process at the operating sytem level. The FT framework is injected into the OS by one

or more aspects. There are no modifications in abstract and concrete FT aspects used

at the application level. Using this approach it is possible to reduce the code size for

non-FT implementations and also to apply aspects for other concerns at the operating

system level, as logging, synchronization and middleware customization.

Figure 6.11 shows an alternative code generation process, where two executions

of AspectC++ weaving are performed: the first for weaving at the OS code and the

second for weaving at the application code. This configuration avoids the regeneration

of the OS library each time the application code is changed. However, it can not be

applied if the same aspect has to advice both the OS and the application. AspectC++

was designed to allow weaving on a pre-woven source code, which is the case in this

configuration, as the include files related to the OS were modified by the first weaving

process.

Non-FT
Application

Application
Aspects

AspectC++
weaving

FT
Application

BOSS OS
& FT

Framework

Compilation
& linking

Executable
code

Compilation
& library
creation

OS library

BOSS OS

FT
Framework

OS
Aspects

AspectC++
weaving

Figure 6.11: Alternative code generation process with double weaving.

Chapter 6. Applying AOP for fault tolerance

131

6.2.2 AOP implementation

This section describes the AOP implementation that integrates the FT framework

into the BOSS operating system. Two aspects were used. The first one, shown in

Figure 6.12, modifies the TimeManager class to activate the MiddlewareScheduler

(MS) thread at the beginning of each clock tick interval. The timeEvent method is

called from the clock tick ISR. This aspect adds an after advice to this method

execution (line 5), which resumes the MS thread (resetting waitingUntil) if this thread

is not waiting a resource (e.g. semaphore).

01
02
03
04
05
06
07
08
09

aspect FTFramework_1: {
 pointcut MSActivation()=
 execution(“%...:: TimeManager::timeEvent()”);

 advice MSActivation(): after(){
 if(middlewareScheduler.waitingForSignalFrom == NULL){
 middlewareScheduler.waitingUntil=0;
 }
};

Figure 6.12: MiddlewareScheduler activation aspect.

The second aspect is presented in Figure 6.13. This aspect introduces FT

attributes and methods to the Thread class, and also advises its constructor (line 33).

The named slice class FTThreadSlice defines a set of data members and member

functions that will be added to the Thread class (line 31). Most methods are virtual

functions and have empty or default implementations (see Table 5.1). Others, such as

initFTThread and setFTStrategy are non-inline functions whose implementations are

defined in lines 26 and 27.

As a result of the aspect code defined in Figure 6.13, AspectC++ will append

FTThreadSlice to the Thread class declaration (in Thread.h), but the implementation

of initFTThread and setFTStrategy will be added to the Thread implementation file

(Thread.cc).

Chapter 6. Applying AOP for fault tolerance

132

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

slice class FTThreadSlice {
public:
 enum FTType{NONE, FT, VOTER};
 FTType myFTType;
 bool isRunningFT;
 bool isVoting;

 FTStrategy * ftStrategy;
 bool hasState;

 virtual void variant1(){}
 virtual void variant2(){}
 virtual void variant3(){}
 virtual void saveCheckpoint(){}
 virtual void restoreCheckpoint(){}
 virtual bool acceptanceTest(){return true;}
 virtual void sendResult(){}
 virtual void onFailure(){}
 virtual int getState(char * stateBuff) {return 0;}
 virtual void setState(int size, char * stateBuff){}

 void initFTThread();
 void setFTStrategy();
};

slice void FTThreadSlice::initFTThread() {...};
slice void FTThreadSlice::setFTStrategy() {...};

aspect FTFramework_2{

 advice “Thread” : slice FTThreadSlice;

 advice construction(“Thread”): after() {
 tjp->target()->initFTThread();
 }
};

Figure 6.13: Aspect for introducing FT attributes and methods in the Thread class.

6.2.3 Discussion

The application of AOP to integrate the FT framework into the operating system

allows a complete physical separation of the FT framework from the OS code. This

approach solves the problem described in Section 5.6 in regard to the maintainance of

more than one version of the same operating system class, in order to optionally build

the operating system without FT support.

Chapter 6. Applying AOP for fault tolerance

133

6.3 Operating system fault tolerance

The application of fault tolerance at the operating system level requires the

implementation of error detection mechanisms, as presented in Section 2.3. These

mechanisms involve the execution of extra processing at pre-defined points of the OS

code, also termed executable assertions. Assertions can check if preconditions and

post conditions are fulfilled when performing a given OS functionality. Error

detection mechanisms can also apply structural checks to detect errors in variables

and data structures. Information redundancy is commonly used in order to allow the

detection of errors in data structures.

The application of error detection mechanisms at the operating system level

results in resource costs, such as memory size and runtime overhead. Therefore, fault

tolerance at the OS level is normally avoided in resource constrained embedded

systems. However, for systems demanding high level of dependability, such as safety-

critical applications, the implementation of FT mechanisms in the OS can be of great

importance.

In this section we presented how to implement error detection mechanisms at the

operating system level using AOP. The examples shown are inspired by the work with

fault containment wrappers [13, 100]. Wrappers are used to implement the interface

between the application code and the OS, monitoring the flow of information and

applying error detection and error handling mechanisms. The proposed wrappers were

meant to be used to detect errors in off-the-shelf microkernels whose source code is

not available for modifications. However, the application of wrapper with no

information on the internal OS state has limited error detection capability.

Consequently, the proposed wrappers require access to some selected internal OS data

by means of a meta-interface, which is accessed by meta-level programming. The

same predicates, or invariants, defined in [100] for semaphore error detection are

implemented here in the BOSS operating system using AOP.

Chapter 6. Applying AOP for fault tolerance

134

6.3.1 Semaphore error detection

Semaphores in BOSS were described in Section 4.2.2. As shown in Figure 4.3,

the Semaphore class has two main methods (enter and leave) and a counter attribute

to keep track of the number of resources available.

Two predicates are defined for the semaphore operation [100]. The first predicate

defines a condition in which the counter attribute is consistent with the number of

calls to the enter and leave methods, as stated in equation (1). The current value of the

counter attribute should be equal to the its initial value minus the number of calls to

method enter and plus the number of calls to method leave:

counter = init_value - #enter + #leave (1)

The implementation of this predicate as an execution assertion demands the

introduction of three new attributes to the Semaphore class (init_value, #enter and

#leave).

The second predicate defines a condition in which the value of the counter

attribute is consistent with the number of suspended threads waiting for the

semaphore. This predicate is represented by Equation (2), where the number of

suspended threads should be equal to the maximum between zero and the negated

value of the current counter attribute. For instance, if the counter attribute is -3 there

should be 3 suspended threads waiting for this semaphore, but if the counter attribute

is greater or equal than zero no thread is suspended.

#Suspended = max(0, -counter) (2)

The implementation of this predicate as an execution assertion demands the

implementation of a search procedure for counting the number of suspended threads

waiting for the semaphore.

The predicates described above can be applied as preconditions or post-conditions

of the semaphore operation in calls to the methods enter and leave.

In Section 6.3.3 we present how to implement the verification of the above

predicates in the Semaphore class of the BOSS operating system, using Aspect-

Oriented Programming.

Chapter 6. Applying AOP for fault tolerance

135

6.3.2 Code generation

The code generation process applied to introduce fault tolerance at the OS level is

the same described in Section 6.2.1. The aspects used for OS fault tolerance are

represented in Figure 6.10 and Figure 6.11 as “OS Aspects”, similarly to the aspects

for integrating the FT framework into the OS.

6.3.3 AOP implementation

Figure 6.14 shows the aspect code to implement the first predicate for semaphore

error detection, described by Equation (1) in Section 6.3.1.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

slice class CounterSlice {
 int initialCounter;
 int enterCounter;
 int leaveCounter;
 void checkCounter();
};

slice void CounterSlice::checkCounter(){
 int calculatedCounter = initialCounter
 - enterCounter + leaveCounter;

 if(counter != calculatedCounter)
 doErrorHandling();
}

aspect SemaErrorDetect1{

 advice "Semaphore": slice CounterSlice;

 advice construction("Semaphore"): after(){
 tjp->target()->initialCounter = tjp->target()->counter;
 tjp->target()->enterCounter = 0;
 tjp->target()->leaveCounter = 0;
 }

 advice execution("% Semaphore::enter(...)") : before() {
 tjp->target()->checkCounter();
 tjp->target()->enterCounter += 1;
 }

 advice execution("% Semaphore::leave(...)") : before() {
 tjp->target()->checkCounter();
 tjp->target()->leaveCounter += 1;
 }
};

Figure 6.14: Semaphore error detection aspect for the first predicate.

Chapter 6. Applying AOP for fault tolerance

136

CounterSlice defines the new attributes (lines 2-4) for the Semaphore class that

are needed for the execution of the first predicate, as well as the checkCounter method

(line 4), which implements Equation (1) in lines 9-10 and calls an error handling

routine if the assertion fails (line 13). As it is hard to diagnose and correct the system

state after this kind of error, a possible error handling procedure can be to reset the

node. The SemaErrorDetect1 aspect applies CounterSlice to the Semaphore class (line

18) and defines three advices. The fist advice (line 20), initializes the introduced

attributes at the Semaphore class constructor. The second advice (line 26), checks the

predicate before the execution of the enter method and then increments the

enterCounter attribute. The third advice (line 31) checks the predicate before the

execution of the leave method and then increments the leaveCounter attribute.

The implementation of the predicate in Equation (2) is presented in Figure 6.15.

This aspect code uses a slice (SuspendedSlice) that defines two new methods to the

Semaphore class: checkSuspended and numberOfSuspended. The first method

implements the predicate (line 6) using the second method (line 13) as a utility

function that returns the number of threads suspended by the semaphore. The

implementation of the numberOfSuspended method is not shown. The

SemaErrorDetect2 aspect introduces SuspendedSlice into the Semaphore class and

defines advices to execute checkSuspended before the execution of the enter and leave

methods.

The AOP implementations presented in Figure 6.14 and Figure 6.15 apply the

predicates as preconditions to the semaphore operations. Implementations considering

the predicates as post-conditions can be performed by using after advices.

The configuration of the semaphore functionality, i.e., if no fault tolerance is

used, or if one or more error detection mechanisms are used, can be decided at

compile time, by including or not the above aspects. AOP allows a complete

modularization of the fault tolerance code, keeping the original semaphore

implementation unchanged.

However, the AOP implementations presented to this point have a serious flaw:

there is no mutual exclusion between the error detection procedure and the semaphore

normal operation. A race condition can occur, for instance, if a thread is suspended

Chapter 6. Applying AOP for fault tolerance

137

during the execution of an error detection procedure and another running thread

executes an operation in the same semaphore. In this situation it is possible that the

error detection mechanism results in a false indication. In order to solve this problem,

synchronization primitives must be employed in the aspect code.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

slice class SuspendedSlice{
 void checkSuspended();
 int numberOfSuspended();
};

slice void SuspendedSlice::checkSuspended(){
 int calculatedSuspended =(counter >= 0 ? 0 : counter*(-1));

 if(mumberOfSuspended != calculatedSuspended)
 doErrorHandling();
}

slice int SuspendedSlice::numberOfSuspended(){...}

aspect SemaErrorDetect2{

 advice "Semaphore": slice SuspendedSlice;

 advice execution("% Semaphore::enter(...)") : before() {
 tjp->target()->checkSuspended();
 }

 advice execution("% Semaphore::leave(...)") : before() {
 tjp->target()->checkSuspended();
 }
};

Figure 6.15: Semaphore error detection aspect for the second predicate.

 The aspect shown in Figure 6.16 solves the synchronization problem described

above. This aspect injects the mutual exclusion mechanism (disabling dispatching) in

the semaphore implementation. In preparation for the application of this aspect, the

Semaphore methods enter and leave were modified in order to expose their critical

sections, which were enclosed by the new methods enter_in and leave_in.

Additionally, the original calls to mutual exclusion procedures were removed. The

SemaSyncronize aspect defines the execution of enter_in and leave_in as a pointcut

for synchronization advices (lines 3-4). The before advice in line 6 disables the

dispatch of other threads, by calling the disableDispatch method of Scheduler (see

Section 4.2.2), while the after advice in line 10 enables the dispatch again by calling

enableDispatch. The SemaErrorDetect1 (Figure 6.14) and SemaErrorDetect2 (Figure

Chapter 6. Applying AOP for fault tolerance

138

6.15) aspects must be modified to advise over methods enter_in and leave_in, instead

of methods enter and leave.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

aspect SemaSyncronize{

 pointcut sync()= execution(% ...::Semaphore::enter_in(...) ||
 execution(% ...::Semaphore::leave_in(...);

 advice sync(): before() {
 scheduler.disableDispatch();
 }

 advice sync(): after() {
 scheduler.enableDispatch();
 }

 advice sync(): order(“SemaSyncronize”, “SemaErrorDetect1”);
 advice sync(): order(“SemaSyncronize”, “SemaErrorDetect2”);
 advice sync(): order(“SemaErrorDetect1”, “SemaErrorDetect2”);
};

Figure 6.16: Synchronization aspect applied to the Semaphore class.

The precedence of the several before advices that affect the sync pointcut is

defined by advice ordering declarations in lines 14-15. Three aspects can inject code

at these join points (execution of the enter_in and leave_in methods):

SemaErrorDetect1, SemaErrorDetect2 and SemaSyncronize, all them advising before

the join points. The given ordering declarations establish the following precedence,

from higher to lower: SemaSyncronize, SemaErrorDetect1 and SemaErrorDetect2.

Therefore, the synchronization aspect is the first before advice to be executed and

disables dispatch for the whole period concerning error detection and critical

semaphore operation. The after advice restoring the dispatch mechanism is executed

after the exit of the semaphore critical section.

A sequence diagram representing the enter method behavior after weaving is

shown in Figure 6.17. In this example of operating system FT implementation, we

could see how AOP was able to compose three crosscutting concerns: semaphore

basic functionality, fault tolerance and synchronization. In special, the

synchronization aspect SemaSyncronize can be modified to apply this kind of mutual

exclusion mechanism in other operating system functionalities, just by adding the

desired join points to the sync pointcut in Figure 6.16. This experiment has been

performed in the context of this work and has been reported in [4].

Chapter 6. Applying AOP for fault tolerance

139

:Semaphore : SemaSyncronize

enter()

before advice

: SemaErrorDetect1 : SemaErrorDetect2

before advice

before advice

enter_in()

after advice

return

dispatch
disabled

Figure 6.17: Semaphore enter method sequence diagram.

6.3.4 Discussion

The examples presented in the previous section show that AOP can be used

effectively to introduce fault tolerance at the operating system level. In the context of

this work, this approach has not been further explored, as our main target of fault

tolerance introduction was the application level. The examples shown here were

inspired in fault containment wrappers, but other fault tolerance mechanisms can be

applied.

6.4 Project configuration using AOP

As discussed in the previous sections, the application of AOP in projects

involving an operating system, frameworks and applications can make use of diverse

code generation processes. Additionally, using AOP the project configuration depends

on the set of aspects to be woven into the base code, which must be defined prior to

code generation. AspectC++ only considers in the weaving process the aspects

contained in files with the .ah extension. Thus, the simpler way to disable an aspect is

to rename the aspect file with a different extension (e.g. .ah_off). Other option is to

copy the selected aspect files from a repository to the project directory.

Chapter 6. Applying AOP for fault tolerance

140

An important project configuration issue is dealing with two or more versions of a

base source code. The following types of base code software versions can coexist in a

project:

• The original version. This version may have one or more functionalities that can

be introduced by aspects. An example of this situation is the original version of

the Semaphore class in BOSS, which uses synchronization features, as described

in Section 6.3.3.

• A refactored version for applying AOP functionality. Some refactoring in the

source code may be needed to allow the AOP application, as for instance, the

creation of new methods to expose joint points to the aspect code, as described for

the Semaphore class in Section 6.3.3.

• A modified version without a previous implemented functionality. This consists

of a modified version that had some functionality removed from the base code in

order to be introduced by aspects.

Therefore, if a project can be configured to implement a given feature with or

without AOP, more than one version of the base source code must be maintained,

which impacts software maintenance and evolution. Possible related scenarios include

projects where AOP is being evaluated as an alternative implementation or projects

where AOP is applied just for debugging and is not employed in final versions. In

these cases, the management of more than one version of the same source code file

may be required.

In the context of this work, project configuration had to be very flexible, in order

to evaluate AOP implementations against pure OOP implementations. The

configuration was entirely based on bash scripts running from the Linux’s command

line. Scripts were used to: (a) define if AOP is applied; (b) define the AOP code

generation process; (c) enable or disable individual aspects; and (d) select base source

code files to be used in the code generation process. Ideally, aspect-oriented projects

should have its configuration supported by special graphic tools used for product line

software development, such as pure::variants [95]. An alternative approach might be

the adoption of the configuration language used for building the Linux kernel and a

buildroot system with graphical support like xconfig and gconfig.

Chapter 6. Applying AOP for fault tolerance

141

6.5 Summary

This chapter has described how to apply Aspect-Oriented Programming to

support the implementation of fault tolerance at various software levels and purposes.

The main target of AOP application is the introduction of fault tolerance at the

application level, using the FT framework described in the previous chapter. This

approach can be used to convey fault tolerance to an existing application without

modifying its source code. Additionally, it modularizes the fault-tolerant code with

advantages in flexibility and maintenance. The implementation is based on the

definition of general abstract aspects for each FT strategy and application-specific

concrete aspects that define the target thread and the required parameters and

additional methods for the FT strategy execution. Abstract and concrete aspects have

been explained based on an example of FT application using DRB and NVP.

The utilization of AOP to apply fault tolerance at the application level has several

benefits: it reduces errors in introducing fault tolerance to legacy systems; it allows

the validation of the functional part in advance; and it contributes to product line

development and code reuse. The main drawback of AOP application for embedded

systems development is the limited support in terms of aspect weavers and tools.

The integration of the FT framework into the operating system has also been

discussed. Previously integrated to the operating system, the FT framework has been

completely separated from the OS code, allowing its optional integration to be

postponed to weaving/compilation time. This modularization reflects in easier

software maintenance and reduced memory footprint for non-FT applications.

This chapter has also described the application of AOP to implement fault

tolerance in the OS, by adding fault tolerance error detection mechanisms

implemented as executable assertions that verify predicates or invariants related to the

OS basic functionality. The FT functionality is introduced by aspects that can be

optionally selected. The application of AOP for this purpose, as well as the

relationship between the fault tolerance and the synchronization concerns has been

exemplified using the semaphore functionality in BOSS.

Chapter 6. Applying AOP for fault tolerance

142

Although AOP aims to simplify software maintenance, there may be projects in

which AOP and pure OOP versions must coexist. In this situation several versions of

the base code should be maintained, impacting software maintenance and evolution

and increasing the complexity of the project configuration process; therefore the

utilization of a graphic product line configuration tool is recommended.

143

Chapter 7

Case studies and evaluation

This chapter describes the case studies developed to test the proposed FT

framework and compares performance and costs of several configurations

and implementations. Two case studies are presented: a sorting application

and a radar filtering application. The description of the development and

test environment applied in this work is initially presented.

Chapter 7. Case studies and evaluation

144

7.1 Development and test environment

This section describes the development and test environment, including the target

and host systems and related software tools.

7.1.1 Target systems

The target board selected for the testing environment was the STK823L starter kit

board from TQ Components [113]. The board uses a MPC823 microprocessor, which

integrates a high performance PowerPC embedded processor with a Communication

Processor Module (CPM) and a System Interface Unit (SIU). This microprocessor

has a 32-bits RISC architecture with 2 KB instruction cache and 1 KB data cache. The

CPM provides support for Ethernet, serial communications including USB, I2C and

SPI. The SIU contains a memory controller, a real-time clock and a PCMCIA

interface. The microprocessor is mounted in a TMQ823L module that provides 8 MB

of flash memory and 16 MB of SDRAM. A clock of 80 MHz is used in this module,

which results in a processing power of about 100 MIPS. This module is connected to

the STK823L main board that provides power DC conversion and several connectors

for I/O and debugging.

The communication among PowerPC boards in the testing environment was

performed using an Ethernet network. Figure 7.1 shows a testing configuration using

three PowerPC 823 boards and a notebook computer connected by Ethernet

interfaces.

As mentioned in Section 4.1, the BOSS operating system has a version that runs

on top of the Linux operating system. Therefore, any hardware running Linux is a

potential target for BOSS applications. In fact, notebooks and desktop computers were

used extensively as targets in the development and testing phases of this work. In

order to improve the real-time behavior of the BOSS applications running over Linux,

a modification in Linux version of BOSS was implemented, changing the scheduling

priority of the BOSS process to the highest in the system. In the configurations of the

case studies presented later in this chapter, a notebook computer was used to act as a

sensor or actuator. However, the utilization of personal computers (PC) to implement

Chapter 7. Case studies and evaluation

145

fault-tolerant applications was avoided, because this work aims to deliver fault

tolerance to embedded systems.

Figure 7.1: Test environment.

7.1.2 Host system

The host system used in this work consisted of a PC running Linux and a cross-

compiler based on GNU gcc versions 3.2.3 or higher. Several Linux distributions

were used, such as Fedora Core 3/4/5, and Ubuntu 5.04. The AspectC++ weaver

version was 1.0pre3.

The cross-compiler toolchain received from FIRST uses an old version of GNU

gcc (2.9) that is not compatible with current AspectC++ versions. Therefore, in this

work, several other toolchains were tested, including a built from scratch. Eventually,

the MPC8xx POMP cross-compiler toolchain [33] was selected because of its better

compatibility with the PowerPC libraries received from FIRST.

Chapter 7. Case studies and evaluation

146

7.1.3 Porting BOSS to the target board

The BOSS operating system had been previously ported to a PowerPC 823 based

board (transCON module from Yacoub Automation [123]) by the FIRST institute.

However, the TQ board selected as target had a different configuration in terms of

clock frequencies and memory configuration. Consequently, the initialization code

and the PowerPC libraries received from FIRST had to be modified in order to run in

the new board. Differently from the original port, in this port the monitor program

received from the board vendor is kept in flash memory and starts the board

initialization, transferring control to the OS code in a specific flash memory position

(if a jumper is removed). The OS initialization code concludes the board initialization

and finally loads the OS and application code to SDRAM and jumps to it. This

configuration allows the utilization of the board supplier’s monitor software for

loading programs in SDRAM or flash memory if the mentioned jumper is not

removed. The interface to the target board for loading and debugging programs is

based on EIA-232 communication at 115 kbps.

7.2 Case study I: sorting application

The first case study developed to evaluate the application of the FT framework

was a sorting application. This application aims to sort an array of integer numbers

generated at random using different algorithms as variants: Insertion Sort, Selection

Sort and Bubble Sort. We chose a sorting application because they are commonly

used as test cases for software fault tolerance strategies, such as the one described in

[120].

7.2.1 Testing configurations

In this case study the following configurations were employed: non-fault-tolerant

(non-FT), RB, DRB and NVP. Figure 7.2, Figure 7.3 and Figure 7.4 show these

configurations for Non-FT/RB, DRB and NVP respectively. In these figures,

broadcast messages are represented by buses with the message subject on top.

Chapter 7. Case studies and evaluation

147

Notebook
Producer Consumer

unsorted sorted

PowerPC 823

«Non-FT or RB»
Sorter

Figure 7.2: Case study I - non-FT or RB configuration.

Notebook

PowerPC 823

PowerPC 823

Producer Consumer

«DRB primary»
Sorter

«DRB shadow»
Sorter

unsorted sorted

FTStatus

Figure 7.3: Case study I - DRB configuration.

The Producer thread is a BOSS thread that runs over Linux in the notebook

computer and generates 200 integer numbers that are sent by an external message to

the network using the string “unsorted” as subject. The Producer thread sends this

message periodically (each 2 seconds).

The Sorter thread is a BOSS thread that runs in the PowerPC boards and sorts the

incoming numbers using different sorting algorithms. In the non-FT configuration,

only one algorithm is executed and no FT mechanism is applied. In RB and DRB

configurations, Insertion Sorts runs as the primary block and Selection Sort runs as

the recovery block. In the NVP configuration, each node runs a different algorithm:

Chapter 7. Case studies and evaluation

148

Insertion Sort as variant 1, Selection Sort as variant 2 and Bubble Sort as variant 3.

The sorted array of integers is sent out by a message using “sorted” as subject in all

configurations except NVP, in which the subject “unvoted” is used. In case of the

NVP configuration, each node has an additional Voter thread that defines the final

result based on incoming “unvoted” messages. For this particular NVP configuration

free voting is applied, and therefore all voters send theirs results concurrently.

Notebook

PowerPC 823

PowerPC 823

PowerPC 823

Producer Consumer

«NVP var 1»
Sorter

«NVP var 2»
Sorter

«NVP var 3»
Sorter

Voter

Voter

Voter

unsorted sortedunvoted

Figure 7.4: Case study I - NVP configuration.

The Consumer thead is a BOSS thread that runs over Linux in the notebook. It

receives messages with “sorted” as subject and displays its data on the computer

screen for verification. Additionally, it computes the total execution time of the

sorting application, considering the time interval from the moment that the Producer

thread is about to send a message to the moment that the resulting message is received

by this thread. As discussed in Section 4.4.1, redundant messages from voters can be

discarded automatically by the BOSS middleware based on message identification

generated by the Producer thread and propagated by Sorter and Voter threads.

Chapter 7. Case studies and evaluation

149

In this case study, Sorter threads are stateless, and therefore the FT versions of

these threads do not need to implement the getState and setState methods described in

Section 5.3.3 and referred to in Table 5.1.

7.2.2 Execution time measurements

In this experiment, the execution times of the configurations described in the

previous section were measured. A total execution time is defined as the time

interval between sending a message with “unsorted” subject (by the Producer thread)

and receiving the message with “sorted” subject (at the Consumer thread). A local

execution time is defined as the time interval between receiving a message with

“unsorted” subject (at a Sorter thread) and sending the message with “sorted” subject

(by a Sorter or Voter thread). Consequently, local execution times exclude any

communication overhead between the notebook computer and the PowerPC boards.

The execution times for several configurations and failure conditions are shown in

Table 7.1 and Table 7.2. Table 7.1 presents local execution times, while Table 7.2

presents total execution times. The results shown in these tables consist of an average

of 10 executions. Table 7.3 presents the time settings used in this case study for the

several configurations, as they have effect in some measured execution times.

Table 7.1: Case study I - local execution time.

Failure conditions
Configuration

No failure Failure in
variant 1

Failure in
one node

Failure in
two nodes

Insertion sort 1743 - - -

Selection sort 3511 3511 - -

Bubble sort 3123 3123 - -

RB 4250 8249 - -

DRB 4781 8701 20375 -

NVP 9444 12716 10792 24175

Chapter 7. Case studies and evaluation

150

Table 7.2: Case study I - total execution time.

Failure conditions
Configuration

No failure Failure in
variant 1

Failure in
one node

Failure in
two nodes

Insertion sort 9704 - - -

Selection sort 12495 12495 - -

Bubble sort 10918 10918 - -

RB 12353 17105 - -

DRB 12690 17339 27932 -

NVP 18815 21345 19907 32504

Table 7.3: Case study I - time settings.

Setting Value (microseconds)

Clock tick interval 2,000

RB maximum response time 10,000

DRB maximum response time 20,000

NVP maximum response time 6,000

Voter maximum response time 20,000

For each configuration, four failure conditions were applied. The first one was a

condition with no failures in any variant or node. The Insertion Sort algorithm

presents the shortest execution time, and therefore it was selected to run as variant 1

(primary block in RB/DRB). As seen in these tables, the FT configurations have

longer executions times because of the coordination with the MiddlewareScheduler

thread, as described in Chapter 5. The clock tick interval definition, set in this case

study to 2,000 microseconds, affects the execution time of all FT strategies. This

setting also affects the communication times between nodes, as the distribution of

external incoming messages to threads are performed with a period of two clock ticks

(4,000 microseconds). In special, the NVP configuration is supposed to be the

slowest, as additional time for results dissemination and voting is needed.

Consequently, the maximum response time in a NVP configuration is bound to the

sum of the maximum response time of NVP and Voter threads.

Chapter 7. Case studies and evaluation

151

Figure 7.5 presents a graphical comparison of the several configurations for the

no-failure condition. The left part of the graph is related to local execution times while

the right part of the graph is related to total execution times. The lines above the bars

represent the standard deviation in 10 measurements. Configurations that depend on

message communications present the largest standard deviations.

Figure 7.5: Case study I - no-failure condition.

The second failure condition presented in Table 7.1 and Table 7.2 is related to the

failure of variant 1. An error was simulated by introducing an out of order integer to

the results of the Insertion Sort algorithm. The error is detected by the acceptance tests

of the RB/DRB strategies, which triggers the execution of variant 2 (Selection Sort).

This error is masked by the voting mechanism in NVP, as variants 2 and 3 generate

identical results. Figure 7.6 shows a comparison of local execution times between the

no-failure condition and the variant 1 failure condition. The extra time spent by

RB/DRB configurations is due to the execution of the second variant, while the longer

execution time for NVP is explained by the fact that local execution times are

measured in the node that runs variant 1, and therefore the voting decision was taken

only after receiving the results of the other two nodes.

Chapter 7. Case studies and evaluation

152

Figure 7.6: Case study I – comparison between no-failure and variant 1 failure conditions.

The third failure condition presented in Table 7.1 and Table 7.2 is related to a

silent failure of a node. In that case, non-FT configurations fail as well single node FT

configurations as RB. This failure was simulated by switching off the first node (the

one running variant 1). Before turning it off, this node is acting as a primary node in

the DRB configuration. Measurements of local execution times were taken in the

second node (running variant 2).

A comparison of local execution times between the no-failure condition and the

one node failure condition is shown in Figure 7.7. The NVP execution time is not

affected much, as the voter in the second node will get to a decision after receiving a

message from the local NVP thread and the external message from the NVP thread of

the third node. However, for the DRB configuration, the failure of the primary node

has to be detected by the shadow node and consequently the DRB maximum response

time of 20,000 microseconds is taken into account (see Table 7.3). This larger

execution time for the DRB configuration only applies for the first activation after a

primary node failure because the shadow node will change its role to primary and the

execution time will drop to the same value of the no-failure condition. The RB

configuration does not survive to a node failure and consequently its execution time is

not represented in Figure 7.7 for this condition.

Chapter 7. Case studies and evaluation

153

Figure 7.7: Case study I - comparison between no-failure and one node failure conditions.

Finally, the last failure condition presented in Table 7.1 and Table 7.2 is related to

the silent failure of two nodes. If that situation occurs, only the NVP configuration

succeeds. In that case, the NVP execution time depends on the deadline for voting,

which is determined by the maximum response time of the Voter thread (see Table

7.3).

7.2.3 Runtime costs

The execution times results achieved in this case study are in accordance with the

FT framework implementation details described in Figure 5.5 and validate the correct

functionality of the framework. However, a more demanding configuration was

defined in order to measure runtime overheads imposed by the FT framework,

considering different version implementations, using or not AOP (Section 6.1) and FT

scheduling (Section 5.4.2).

The measurement of runtime overheads in these experiments is based on CPU

utilization. The BOSS idle thread computes the sum of CPU utilization of all other

threads (including OS and application threads) based on its inactive periods.

This test configuration consisted of the same sorting application, but now being

executed concurrently by 8 Sorter threads in a single target board as shown in Figure

7.8. The Producer thread runs periodically in the target board and generates 5

Chapter 7. Case studies and evaluation

154

random integer numbers that are sent to the Sorter thread using a local message. Two

versions of Sorter threads are implemented: non-FT and RB. In both versions, no

error is simulated and these versions always execute the Insertion Sort algorithm. At

the end of their processing, the Sorter threads prepare the output message with the

sorting results, but this message is not sent so as to decrease the CPU utilization.

PowerPC 823

«#1»
Sorter

«#2»
Sorter

«#8»
Sorter

Producer

...

unsorted

Figure 7.8: Case study I - CPU utilization configuration.

In this experiment, five different software versions were evaluated:

• Non-FT #1: in this version the Sorter threads do not apply any fault tolerance and

the application program was linked to a version of the OS without the FT

framework.

• Non-FT #2: same as above, but linked to a version of the OS integrated to the FT

framework.

• FT: in this version the Sorter threads apply the RB strategy.

• FT-AOP: same as FT, but using AOP to implement fault tolerance.

• FT-Sched: same as FT, but implementing FT scheduling.

The CPU utilization results related to each version for several activation

frequencies of the Producer thread are shown in Figure 7.9 and represent an average

CPU utilization over a period of one minute, using maximum compiler optimization

(O2).

Chapter 7. Case studies and evaluation

155

Figure 7.9: Case study I - CPU utilization results.

In Figure 7.9, a zero frequency indicates a condition where the Producer thread is

always suspended and therefore no sorting is performed. Other frequencies plotted in

this graph correspond to the following activation periods of the Producer thread: 46,

22, 10 and 6 milliseconds. As it can be noticed, CPU utilization is directly

proportional to the activation frequency. The minimum activation frequency selected

for this experiment was 6 ms, which is a multiple of the clock tick interval of 2 ms. It

has been verified that this period is sufficient for delivering all input messages to the

Sorter threads in the first clock tick period, to execute the sorting/acceptance test in

the second period and to prepare the results for sending in the last period.

The difference in CPU utilization between the Non-FT #1 and Non-FT #2

versions ranges from 3 to 4.3%. This overhead is related to the activation of the

MiddlewareScheduler (MS) thread at the beginning of each clock tick period, even if

no FT threads exist. The CPU utilization spent by MS is similar to the utilization of

the Non-FT #1 version with no application threads running (about 3%). In this no-

load condition, the only BOSS thread running is the one that checks for new external

messages, which is activated each two clock tick periods. If this thread is released in

every clock tick period, the no-load utilization for the Non-FT #1 version rises to 6%.

Chapter 7. Case studies and evaluation

156

As can be noticed in Figure 7.9, the FT version has a higher CPU utilization than

Non-FT versions. This overhead is caused by the acceptance test executed at the end

of the sorting algorithm and also by the coordination between the MS thread and the

FT thread, as described in Section 5.4.1.

The FT-AOP version introduces a small overhead compared to the FT version

(non-AOP). The same happens with the FT scheduling version. These overheads are

dependent on the activation frequency and the number of FT threads. In the worst case

scenario, a large number of FT threads execute with a high activation frequency,

which in this experiment corresponds to 8 FT threads and 167 Hz (6ms period).

Figure 7.10 presents a graphical representation of the CPU utilization results for such

situation, considering two different compiler optimizations: O2 (maximum) and O0

(none). As it can be noticed, the optimized code reduces CPU utilization, especially in

the case of AOP implementation (about 11%).

Figure 7.10: CPU utilization comparison for AOP and FT scheduling versions.

In comparison with the FT version, the FT-AOP version implies in a higher

runtime overhead of 0.34% per FT thread for non-optimized programs and 0.11% per

FT thread for optimized programs. This corresponds to an extra runtime of 21 and 6

microseconds respectively, in each FT thread activation.

Chapter 7. Case studies and evaluation

157

The comparison of the version using FT scheduling with the standard FT version

shows a higher runtime overhead per FT thread of 0.30% for non-optimized programs

and 0.42% for optimized programs.

It should be noticed that the runtime overheads presented above are directly

dependent on the activation frequency and this experiment was conducted as a worst

case scenario. Consequently, real applications will probably have smaller overheads

as usually lower activation frequencies are employed.

7.2.4 Memory costs

The same configuration used to measure runtime costs was applied to determine

memory costs. The results were obtained using the size utility. Table 7.4 shows the

memory footprint sizes in bytes for code (text), data and unitialized data (bss),

considering the O2 compiler optimization option. Besides considering the program

versions described in the previous section, this table also includes the memory

footprint of the original BOSS operating system and the BOSS version integrated to

the FT framework. The results for these two versions were obtained by compiling an

empty application using the corresponding versions of the OS library.

Table 7.4: Memory footprint results.

version text data bss total

BOSS 53,795 3420 158,888 216,103

BOSS + FT framework 61,047 4020 183,568 248,635

Non-FT #1 57,027 3708 177,664 238,399

Non-FT #2 64,263 4428 202,504 271,195

FT 64,863 4440 202,952 272,255

FT-AOP 65,067 4440 202,968 272,475

FT-Scheduling 65,247 4440 203,080 272,767

Figure 7.11 compares total memory sizes of the two operating system versions

(with and without FT framework) and their respective sorting applications (with and

without FT), based on data from Table 7.4. The application footprint is much smaller

Chapter 7. Case studies and evaluation

158

than the operating system footprint in both cases (about 10%). The inclusion of the FT

framework into the OS code increases its total memory footprint in 32KB (15%).

Besides, the introduction of fault tolerance into the application code increases its

memory footprint in 1.3KB (6%). The total memory cost of the FT implementation in

relation to the non-FT implementation in this experiment is 34KB (14.2%).

Figure 7.11: Comparison of FT and non-FT memory footprints.

Figure 7.12 presents a graphical representation of memory footprints related to

the several sorting application versions described in the previous section.

Figure 7.12: Case study I - detailed comparison of memory footprint.

Chapter 7. Case studies and evaluation

159

In Figure 7.12 we can notice that the memory footprint differences among the

versions are very small, with exception to the Non-FT #1 version, which does not

include any fault tolerance at the OS and application levels. That difference is about

14.2% for the total memory size, as presented earlier.

Table 7.5 shows the additional memory costs of the AOP version and the FT

scheduling version in relation to the standard FT version. The FT-AOP

implementation consumes more 204 bytes of code and 16 bytes of unitialized data

than the normal FT implementation. This increase in code size is caused by inlining

after and around advices that make use of the AspectC++ jointpoint data structure.

The extra memory for bss is related to the creation of aspect objects and pointers, and

is not affected by the number of FT threads in use.

Table 7.5: Additional memory costs for AOP and FT scheduling versions.

The FT scheduling implementation also demands additional code and unitialized

data memory: 384 and 128 bytes respectively. The extra code is due to

implementation of the EDF scheduling by the MS thread. The additional data is

related to the inclusion of new attributes in the Thread and MiddlewareScheduler

classes. The memory cost of FT scheduling related to bss depends on the number of

application threads. The results shown in Table 7.5 consider 8 FT threads. If only one

FT thread is used the additional bss memory for FT scheduling reduces to 72 bytes. In

contrast, the code memory cost is not affected by the number of application threads.

7.2.5 FT scheduling tests

The test configurations described in the previous sections were designed to run

without deadline violations even when not applying the FT scheduling mechanism

provided by the FT framework. For instance, the configuration used to measure

runtime overhead described in Section 7.2.3, despite having 8 RB threads with equal

differences text data bss total

FT-AOP to FT 204 0 16 220

FT-Scheduling to FT 384 0 128 512

Chapter 7. Case studies and evaluation

160

priority and high activation frequencies, was able to finish all computations within the

maximum response time of 4,000 microseconds, as each FT thread had a small

processing time and no errors were simulated in the primary variant.

In order to test the outcomes and benefits of FT scheduling, two special test

configurations were designed. These configurations were also based on a single board

target running concurrent sorting applications, as shown in Figure 7.8, but using a

small number of FT threads with different processing times and deadlines.

Table 7.6 presents the settings for these configurations. The first configuration has

two FT threads and the second has three FT threads. Both configurations run the RB

strategy. The number of integers sorted by each thread, as well its maximum response

time is shown in this table. The measured processing time for variants 1 and 2

(primary and recovery blocks) in each thread is also shown.

The configurations presented in Table 7.6 were implemented in two software

versions: with and without FT scheduling. The FT scheduling version was successful

in meeting the deadlines in both configurations, even when a failure in variant 1 of all

threads is simulated. In contrast, the standard FT version only is able to meet the

deadlines for all threads if no failures are simulated. The results are summarized in

Table 7.7.

Table 7.6: FT scheduling test configurations.

Settings Configuration # 1 Configuration # 2
Number of RB threads 2 3

200 200
100 100 Number of integers

- 100
1,840 3,242 1,840 3,242
441 885 441 885

Variants 1 and 2
processing times
(microseconds) - - 441 885

10,000 14,000
6,000 8,000 Maximum response

time (microseconds)
- 6,000

Chapter 7. Case studies and evaluation

161

Table 7.7: FT scheduling test results.

Version Failure
condition

FT
Thread

Config
#1

Config
#2

1 OK OK
2 OK OK No failures

 3 - OK
1 OK OK
2 failure failure

FT
Failure in
variant 1 3 - failure

1 OK OK
2 OK OK No failures

 3 - OK
1 OK OK
2 OK OK

FT scheduling
Failure in
variant 1 3 - OK

This test results show that the FT scheduling mechanism can be useful for

eliminating deadline violations in situations where multiple FT threads with different

computing times and deadlines are activated simultaneously.

7.3 Case study II: radar filtering application

The second case study developed to evaluate the application of the FT framework

was a radar filtering application. Radar filtering is a real-time application commonly

used in Command and Control (C2) systems. In contrast with case study I, this case

study applies single version fault tolerance techniques and FT state threads.

In this application a notebook computer simulates a radar system and periodically

generates detection data of several planes. The data generation includes simulated

errors in bearing and distance, typical of this kind of equipment. The radar data is sent

to the target systems, which filter the planes’ position, using an alpha-beta filter, and

calculate the planes’ course and speed.

Chapter 7. Case studies and evaluation

162

7.3.1 Testing configurations

Three configurations were applied, as shown by the UML deployment diagrams

of Figure 7.13, Figure 7.14 and Figure 7.15. The first configuration uses a single node

version of the filtering application, without any fault tolerance mechanism. The other

configurations implement the PSP and TMR strategies. In these figures, broadcast

messages are represented by buses with the message subject on top.

Notebook
Radar Display

radar_data filter_data

PowerPC 823

Filter

Figure 7.13: Case study II - non-FT configuration.

Notebook

PowerPC 823

PowerPC 823

Radar Display

«PSP primary»
Filter

«PSP Shadow»
Filter

radar_data filter_data

FTStatus

Figure 7.14: Case study II - PSP configurtion.

Chapter 7. Case studies and evaluation

163

Notebook

PowerPC 823

PowerPC 823

PowerPC 823

Radar Display

«TMR»
Filter

«TMR»
Filter

«TMR»
Filter

«Master»
Voter

«Slave»
Voter

«Slave»
Voter

radar_data filter_dataunvoted_data

Figure 7.15: Case study II - TMR configuration.

 The Radar thread is a BOSS thread that runs in the notebook computer. It

generates radar simulated detection data (bearing and distance) of 4 planes, including

typical radar measuring errors, and periodically sends this data using the string

“radar_data” as subject. The period of this message depends on the selected antenna

rotation period of the simulated radar. In this case study, a period of 2 seconds was

selected (30 RPM). The planes have initial courses generated at random, but all have

the same speed of 100 m/s. When they reach a given distance from the simulated

radar its course is reverted, so as to keep them at a 10 kilometers range.

Filter is the BOSS thread that runs in a PowerPC board and filters the radar data,

removing the measurement errors in plane’s position and also calculating its course

and speed. The filtering algorithm is an alpha-beta filter using two variable parameters

that depend on the number of planes positions received previously. This case study

uses a single version of the filtering algorithm, even when executing fault-tolerant

configurations.

Chapter 7. Case studies and evaluation

164

The planes’ filtered position, as well as its course and speed are sent back to the

notebook computer using “filter_data” as subject. Then, they are presented in the

command line by the Display thread. Additionally, a graphical display program

written in Java was developed. Figure 7.16 shows an example of display output for

the TMR configuration. In the left part of the screen four airplanes are represented.

Planes positions received from radar are plotted as small circles, while filtered

positions are plotted as squares. A line associated with each filtered position indicates

the plane’s course (line direction) and speed (line size). The current values of course

and speed are displayed on the right of each plane’s position, as well as an

identification number. On the right side of the screen several data are presented, as the

IP numbers of nodes sending unvoted data (for TMR only) and result data. A table

containing information about all planes (course, speed, bearing and distance) is also

presented.

Figure 7.16: Case study II - display output example.

Chapter 7. Case studies and evaluation

165

7.3.2 Fault tolerance implementations and testing

For the PSP configuration in Figure 7.14, both Filter threads receive the radar data

and execute the computation, but only the primary thread sends its results. In the

TMR configuration of Figure 7.15, all Filter threads send their results with

“unvoted_data” as subject, which are received by the voter threads. In this particular

configuration, coordinated voting is used and so only the master voter thread sends

the final results to the Display thread. Status and coordination messages exchanged

among FT threads and voters are sent with “FTStatus” as subject, as shown in Figure

7.14 (omitted in Figure 7.15).

In FT configurations, hardware faults were simulated by turning PowerPC boards

off and software faults were simulated by introducing value errors in the filter

calculation. In the PSP configuration, a hardware fault in a board running as primary

causes a switch to primary in the other node. A software fault is detected by the

acceptance test, and a rollback and retry is performed with the same algorithm. If the

simulated fault is still present, the PSP thread will restart. For the TMR configuration,

a hardware fault in the board with the master voter will imply in a new master voter

board after the next master election. A software fault in one of the boards will be

masked by the voter mechanism.

If a board is initialized, or if an FT thread is restarted, a state initialization is

needed, as the filter output depends on the planes’ last position and alpha-beta

parameters. This initialization algorithm is performed by the corresponding

FTStrategy object, transparently to the application program, which has only to define

the getState and setState methods, as described in Section 5.3.2.

7.3.3 AOP implementations

The non-FT version of the Filter thread was modified using AOP to create the FT

implementations using PSP and TMR. The definition on what version of the Filter

thread (non-FT, PSP and TMR) will be applied is taken at compile time, using the

same original non-FT version as the base code, and enabling the appropriate set of

aspects, as described in Section 6.1.1.

Chapter 7. Case studies and evaluation

166

AOP versions of the PSP and TMR filters have been tested in the same conditions

as their respective plain object-oriented versions, performing identically and

demonstrating the same functionality. A comparison of execution times between AOP

and non-AOP versions led to equal outcomes.

7.3.4 Runtime costs

The radar simulation periodically sends planes’ data every 2 seconds. This

corresponds to the rotation period of the radar antenna. In order to test the system

under more severe timing conditions and compare the runtime overhead of the test

configurations the radar simulation period was reduced by factors of two. Figure 7.17

shows performance results in terms of CPU utilization for several configurations and

simulation frequencies ranging from 0.5 Hz (2 seconds) to 32 Hz (31.25 ms).

Figure 7.17: Case study II – CPU utilization results.

The curves labeled “Non-FT” are related to the non-fault tolerant single node

version shown in Figure 7.13. The “Non-FT #1” version employed the original BOSS

operating system with no FT framework, while in the “Non-FT #2” version the FT

framework was integrated. We can notice that the utilization of the FT framework in

Chapter 7. Case studies and evaluation

167

this case study implies a runtime cost ranging from 3.8 to 5.2%. These results are

similar to the ones presented in Section 7.2.3 for case study I.

The PSP and TMR configurations resulted in higher runtime overhead than non-

FT configurations as expected. The reason is the extra processing time associated with

FT coordination, application-specific procedures and message communication. The

TMR configuration achieved the worst results as it demands more threads for voting

and more message exchanges.

7.4 Evaluation

This section evaluates the application of the FT framework, described in Chapter

5, and the AOP implementation, described in Section 6.1, based on the results

obtained in case studies I and II.

7.4.1 FT framework

The utilization of the FT framework for application-level fault tolerance results in

costs in time performance (execution time), runtime overhead (CPU utilization) and

memory. In case study I, the execution time of non-FT configuration was compared

to the execution time of several FT configurations (Section 7.2.2). The results

presented in Figure 7.5 (no-failure condition) show that FT implementations have

much longer execution times than their non-FT counterpart. For instance, the NVP

implementation of the sorting application has a local execution time 5 times bigger.

The execution time of FT configurations is affected by the coordination between the

MS thread and the FT thread. Additionally, for the NVP strategy, the execution time

is affected by the extra communication between NVP and voter threads.

In terms of runtime overhead, Figure 7.9 (case study I) and Figure 7.17 (case

study II) show that difference of CPU utilization between non-FT and FT

configurations depends linearly on the activation frequency. For low activation

frequencies, the runtime overhead introduced by an FT configuration may have no

significance while for high activation frequencies it may have a huge impact. The

Chapter 7. Case studies and evaluation

168

utilization of FT scheduling also imposes a small runtime overhead, although not

greater than 0.5% per FT thread.

Concerning memory costs, it was verified in case study I (Section 7.2.4) that the

memory footprint of the FT version is about 15% bigger than the corresponding non-

FT version. This difference is mostly due to the memory size of the FT framework

rather than to the increase in memory size of the application.

We conclude that the performance penalties and resource costs of the proposed

fault tolerance framework are still acceptable, considering the benefits in system

dependability. However, for systems demanding very short execution times or already

presenting a high CPU utilization or a reduced free memory, the introduction of fault

tolerance might be a problem, and special care must be taken, including in the

selection of the FT strategy.

7.4.2 Aspect-oriented implementation

The utilization of AOP for introducing fault tolerance at the application level does

not increase the application execution time, as described in Section 7.3.3.

Regarding runtime overhead, the extra processing time related to the AOP

implementation depends on the activation period of the FT thread. In Section 7.2.3,

this overhead was measured for a high activation frequency (167 Hz – 6 ms) and it

resulted in a 0.11% higher CPU utilization per FT thread for optimized programs.

This overhead corresponds to an additional runtime of 6 microseconds for each FT

thread activation.

The increase in memory footprint of the AOP implementation is very low. In case

study I it consumed more 204 bytes of code and 16 bytes of unitialized data than the

normal FT implementation, which correspond to less than 0.1% of the total memory

footprint.

Based on these experiments we conclude that the utilization of AOP for

application-level fault tolerance implementation does not imply a significant increase

in runtime overhead or memory footprint.

Chapter 7. Case studies and evaluation

169

7.5 Summary

This chapter presented two case studies designed to evaluate the fault tolerance

introduction at the application level. The first case study was a sorting application

using stateless multiple version fault tolerance. The second case study was a radar

filtering system using single version fault tolerance and state threads.

Both non-fault-tolerant and fault-tolerant configurations were applied in the two

case studies. Fault-tolerant configurations made use of several FT strategies, such as

RB, DRB, PSP, TMR and NVP. Non-fault tolerant configurations employed

operating systems versions with and without the proposed FT framework.

The performance in terms of execution time, plus the costs related to runtime

overhead and memory footprint were measured for these configurations. The results

show that the application of the FT framework causes significant costs, but those are

still acceptable for embedded systems aiming high dependability. In contrast, the

extra costs imposed by the AOP implementation proved to be negligible.

171

Chapter 8

Conclusions

This chapter sumarizes the objectives, contributions and conclusions of

this thesis. It also proposes possible directions for future research.

Chapter 8. Conclusions

172

8.1 Conclusions

The objective of this work is to provide fault-tolerance support for real-time

embedded applications by integrating a fault tolerance framework into the operating

system. Using this approach, the application software can be made fault-tolerant with

a high degree of transparency regarding fault tolerance strategies and their associated

mechanisms, such as state initialization and replica coordination. Special attention

was taken to allow the coexistence of fault tolerance with real-time constraints, by

providing an additional scheduling mechanism for FT threads.

The proposed fault tolerance framework employs the application thread as the

unit of fault-tolerant computing. This solution uses a thread model which allows both

state and stateless threads running in a distributed environment. Several FT strategies

were implemented as RB, DRB and NVP. The inclusion of new FT strategies or the

modification of the existing strategies can be easily performed by creating new

FTStrategy classes or deriving classes from the existing ones.

As this work targets small-scale embedded systems, the proposed solution was

tested using embedded PowerPC boards, similar to the previously used in the BIRD

satellite. The resource costs in terms of execution time, runtime overhead and memory

usage were measured and compared for several configurations in two case studies

presented in Chapter 7. These case studies were selected to allow the application of a

wide range of fault tolerance strategies using single and multiple version software.

The results of these tests showed that this approach is feasible, but that the resource

costs are significant, especially in terms of execution time and runtime overhead.

However, these costs are considered acceptable for systems demanding high

dependability.

The fault tolerance support described in this thesis presents several benefits. The

main benefit is to simplify the application level programming because fault tolerance

mechanisms are implemented at the operating system level. The application program

merely has to define parameters and method implementations required by the chosen

FT strategy. Other benefits include easiness of configuration and high flexibility both

at compile and runtime.

Chapter 8. Conclusions

173

 In addition to the proposal and evaluation of a FT framework integrated into a

real-time operating system, this work also evaluated the application of aspect-oriented

techniques to the development of fault-tolerant software. In this work, AOP was

applied for three different purposes: (1) integrate the FT framework into the operating

system; (2) implement fault tolerance at the operating system level; and (3)

modularize the fault tolerance code at the application level.

The integration of the FT framework into the operating system using AOP

enables a complete separation of the FT framework from the OS code. It allows an

optional integration of the framework into the operating system at

weaving/compilation time. This modularization reflects in easier software

maintenance and reduced memory footprint for non-FT applications.

The introduction of fault tolerance in the operating system using AOP adds fault

tolerance error detection mechanisms. These mechanisms are implemented as

executable assertions that verify predicates or invariants related to the OS basic

functionality. This kind of FT functionality may be introduced selectively by aspects

at weaving time.

The main target of AOP application was the introduction of fault tolerance at the

application level. This approach was used to convey fault tolerance to existing

applications without modifying their source code. The modularization of the fault

tolerance code at the application level using AOP has several benefits. First, it reduces

efforts and errors in making a legacy system fault-tolerant. It also simplifies system

development by allowing the validation of the functional part in advance.

Additionally, it facilitates the evaluation and comparison of various FT

configurations, and contributes to product line development and code reuse. However,

the availability of aspect-oriented weavers and tools for embedded systems

development is very limited. The AspectC++ compiler used in this work is still in beta

testing and has some restrictions as described in Section 6.1.2.

Regarding resource costs, implementations using application-level fault tolerance

introduced by AOP were submitted to the same case studies described in Chapter 7.

The results show that the extra costs imposed by AOP techniques are insignificant.

Chapter 8. Conclusions

174

In summary, we conclude that the provision of operating system support to fault

tolerance by means of an integrated FT framework is feasible and acceptable, bringing

many benefits to the development of fault-tolerant embedded systems. Futhermore,

our experiments indicate that the application of Aspect-Oriented Programming to

introduce fault tolerance at the application level is advantageous and cost effective.

8.2 Future work

There are two possible diretions of future work regarding fault tolerance

framework design: inwards or outwards the operating system. The inwards approach

would be to promote a further integration between the fault tolerance framework and

the operating sytem. An example of evolution regarding this approach is the

modification of the operating system scheduler to include the assessment of FT thread

deadlines. In the current implementation, this task is performed by the

MiddlewareScheduler thread, and consists in a second scheduling algorithm. This

work could improve the systems’ real-time behavior and reduce the scheduling

runtime overhead. However, as the interconnection between the OS and the FT

framework increases, it would become harder to keep their development apart and just

combine them, if needed, by applying AOP.

The second direction, the outward approach, would be to completely separate the

FT framework from the OS. Using this approach, it could be designed a standard

service interface between the OS layer and the FT framework, in order to facilitate the

porting of the framework to other real-time operating systems. In this case, the

operating system should be able to provide a minimum number of services to the FT

framework, such as precise thread activation, thread priority management and basic

communication mechanisms. The FT framework would have to implement the

publisher-subscriber protocol to exchange FT related messages. This approach

improves the framework portability but may have impact on real-time performance

and resource costs.

Another possible future work is to include new fault tolerance strategies to the FT

framework as, for instance, sequential NVP/TMR [7]. In addition, the fault tolerance

Chapter 8. Conclusions

175

strategies currently implemented could be improved. The following improvements are

suggested:

• The implementation of a mechanism for correcting state divergencies in FT

threads running the NVP strategy.

• The implementation of a recovery cache for the RB and DRB strategies, using

aspect-oriented techniques [10].

• The modification of the coordination behavior between the MS thread and the FT

threads, in order to reduce the execution times. This can be performed by

modifying the implementations of FTStrategy derived classes and does not

depend on the MiddlewareScheduler class implementation.

Regarding the application of AOP in the fault tolerance domain, a possible

research work is to execute more experiments with the introduction of fault tolerance

at the operating system level. This work should include the definition of predicates for

most operating system functionalities and the implementation of error detection

mechanisms based on these predicates. The fault coverage of these mechanisms

should be assessed using fault injection. It should also be evaluated if this approach is

cost effective for embedded applications.

A future research may also include the application of AOP for middleware

customization. In this work, the communication between the nodes employed UDP

and broadcast. Other middleware versions could include point-to-point

communication and different transport protocols. The configuration of what kind of

middleware facility as well as other features such as fault tolerant communication can

be defined selectively by aspects.

Further investigation on the combination of operating system object-oriented

design, framework technologies and aspect-oriented techniques can lead to

development of more customizable, evolvable and dependable embedded systems.

177

Bibliography

1. ACE. The Adaptive Communication Environment Douglas C. Schmidt's home

page. http://www.cs.wustl.edu/~schmidt/ACE.html.

2. Afonso, F., Silva, C., Montenegro, S. and Tavares, A. Implementation of

middleware fault tolerance support for real-time embedded applications. In

Proceedings of the Work-in-progress Session of the 18th Euromicro

Conference on Real-Time Systems - ECRTS (Dresden, Germany, 2006).

3. Afonso, F., Silva, C., Montenegro, S. and Tavares, A. Middleware Fault

Tolerance Support for the BOSS Embedded Operating System. In Proceeding

of the International Workshop on Intelligent Solutions in Embedded Systems

(Vienna, Austria, 2006), 1-12.

4. Afonso, F., Silva, C., Montenegro, S. and Tavares, A. Applying aspects to a

real-time embedded operating system. In Proceedings of the 6th workshop on

Aspects, components, and patterns for infrastructure software - ACP4IS

(Vancouver, British Columbia, Canada, 2007), ACM.

5. Afonso, F., Silva, C., Brito, N., Montenegro, S. and Tavares, A. Aspect-

oriented fault tolerance for real-time embedded systems. In Proceedings of the

AOSD workshop on Aspects, components, and patterns for infrastructure

software - ACP4IS (Brussels, Belgium, 2008), ACM, 1-8.

6. Afonso, F., Silva, C., Tavares, A. and Montenegro, S. Application-level fault

tolerance in real-time embedded systems. In Proceeding of the International

Symposium on Industrial Embedded Systems - SIES (Montpelier, France,

2008), 126-133.

7. Aidemark, J., Folkesson, P. and Karlsson, J. A framework for node-level fault

tolerance in distributed real-time systems. In Proceedings of the International

Bibliography

178

Conference on Dependable Systems and Networks (2005), IEEE Computer

Society, 656-665.

8. Aksit, M., Wakita, K., Bosch, J., Bergmans, L. and Yonezawa, A. Abstracting

Object Interactions Using Composition Filters. In Proceedings of the

Workshop on Object-Based Distributed Programming (1994), Springer-

Verlag, 142-184.

9. Alexandersson, R., Ohman, P. and Ivarsson, M. Aspect oriented software

implemented node level fault tolerance. Nineth IASTED International

Conference on Software Engineering and Applications - SEA, Phoenix, AZ,

USA, 2005.

10. Alexandersson, R. and Ohman, P. Implementing Fault Tolerance Using Aspect

Oriented Programming. In Proceeding of the Third Latin American

Symposium on Dependable Computing (Morelia, Mexico, 2007), Springer-

Verlag, 57-74.

11. Ammann, P.E. and Knight, J.C. Data diversity: an approach to software fault

tolerance. IEEE Transactions on Computers, 37 (4): 418-425, 1988.

12. AOSD. Aspect Oriented and Fault Tolerance (aosd-discuss mailing list).

http://aosd.net/pipermail/discuss_aosd.net/2004-May/000953.html.

13. Arlat, J., Fabre, J.C. and Rodriguez, M. Dependability of COTS microkernel-

based systems. IEEE Transactions on Computers, 51 (2): 138-163, 2002.

14. AspectC++. User mailing list - Base class substitution, April 2007.

http://p15111082.pureserver.info/pipermail/aspectc-user/2007-

April/001146.html.

15. AspectC++. User mailing list - Base class substitution, January 2007.

http://p15111082.pureserver.info/pipermail/aspectc-user/2007-

January/001101.html.

Bibliography

179

16. AspectC++. http://www.aspectc.org/.

17. AspectJ. http://www.eclipse.org/aspectj/.

18. Athavale, A. Performance evaluation of hybrid voting schemes. M.S. Thesis.

Department of Computer Science, North Carolina State University, 1990.

19. Avizienis, A. The Methodology of N-Version Programming. In Lyu, M.R. ed.

Software fault tolerance, Wiley, 1995, 23-46.

20. Avizienis, A., Laprie, J.C., Randell, B. and Landwehr, C.A.L.C. Basic

concepts and taxonomy of dependable and secure computing. IEEE

Transactions on Dependable and Secure Computing, 1 (1): 11-33, 2004.

21. Barret, P.A. and Speirs, N.A. Towards an integrated approach to fault

tolerance in Delta-4. In Distributed Systems Engineering, Institute of Physics

Publishing, 1993, 59-66.

22. BeeSat. Technical University of Berlin. http://www.beesat.de.

23. Beuche, D., Guerrouat, A., Papajewski, H., Schroder-Preikschat, W.,

Spinczyk, O. and Spinczyk, U. The PURE family of object-oriented operating

systems for deeply embedded systems. In Proceedings of the 2nd IEEE

International Symposium on Object-Oriented Real-Time Distributed

Computing - ISORC (1999), 45-53.

24. Brie, K., Barwald, W., Gill, E., Kayal, H., Montenbruck, O., Montenegro, S.,

Halle, W., Skrbek, W., Studemund, H., Terzibaschian, T. and Venus, H.

Technology demonstration by the BIRD-mission. Acta Astronautica, 56 (1-2):

57-63, 2005.

25. Briere, D. and Traverse, P. AIRBUS A320/A330/A340 electrical flight

controls - A family of fault-tolerant systems. In Proceedings of the Twenty-

Bibliography

180

Third International Symposium on Fault-Tolerant Computing - FTCS-23

(Toulouse, France, 1993), 616-623.

26. Ceccato, M. and Tonella, P. Adding distribution to existing applications by

means of aspect oriented programming. In Proceedings of the fourth IEEE

International Workshop on Source Code Analysis and Manipulation (2004),

107-116.

27. Chen, L. and Avizienis, A. N-Version Programming: A fault-tolerance

approach to reliability of sotware operation. In Proceedings of FTCS-8

(Tolouse, France, 1978), 3-9.

28. Chiba, S. A metaobject protocol for C++. ACM SIGPLAN Notices, 30 (10):

285-299, 1995.

29. Coady, Y., Kiczales, G., Feeley, M. and Smolyn, G. Using aspectC to improve

the modularity of path-specific customization in operating system code. In

Proceedings of the 8th European Software Engineering Conference (Vienna,

Austria, 2001), ACM, 88 - 98.

30. Coady, Y. and Kiczales, G. Back to the future: a retroactive study of aspect

evolution in operating system code. In Proceedings of the 2nd international

conference on aspect-oriented software development (Boston, Massachusetts,

2003), ACM, 50-59.

31. Colyer, A., Clement, A., Bodkin, R. and Hugunin, J. Using AspectJ for

component integration in middleware. In Proceedings of the Conference on

Object Oriented Programming Systems Languages and Applications

(Anaheim, CA, USA, 2003), ACM, 339 - 344.

32. Colyer, A. and Clement, A. Large-scale AOSD for middleware. In

Proceedings of the 3rd international conference on aspect-oriented software

development (Lancaster, UK, 2004), ACM, 56 - 65.

Bibliography

181

33. Connotech. Free Software C/C++ Cross-Compiler Suite for the Motorola

MPC8xx.

http://www.connotech.com/gcc_mpc8xx/powerpc_eabi_mpc850.htm.

34. Constantinides, C., Skotiniotis, T. and Stoerzer, M. AOP considered harmful.

First European Interactive Workshop on Aspect Systems - EIWAS, 2004.

35. Daniels, F., Kim, K. and Vouk, M.A. The reliable hybrid pattern: a

generalized software fault tolerant design pattern. In Proceedings of PLOP

conference (Monticelo, Illinois, USA, 1997).

36. Dijkstra, E.W. On the role of scientific thought In Selected writings on

computing: a personal perspective, Springer-Verlag New York, Inc., 1982,

60-66.

37. Dong, L., Melhem, R., Mosse, D., Ghosh, S., Heimerdinger, W. and Larson,

A. Implementation of a transient-fault-tolerance scheme on DEOS. In

Proceedings of the Fifth IEEE Real-Time Technology and Applications

Symposium (1999), IEEE Computer Society, 56-65.

38. DREAM. University of California, Irvine. http://dream.eng.uci.edu/.

39. ECOS. http://ecos.sourceware.org/.

40. Egan, A., Kutz, D., Mikulin, D., Melhem, R. and Moss, D. Fault-tolerant RT-

Mach (FT-RT-Mach) and an application to real-time train control. Software

Practice and Experience, 29 (4): 379-395, 1999.

41. ESRG. Embedded Systems Research Group, Department of Industrial

Electronics, University of Minho. http://esrg.dei.uminho.pt/.

42. Filman, R.E. and Friedman, D.P. Aspect-Oriented Programming is

Quantification and Obliviousness. Technical report nº 46, Research Institute

for Advanced Computer Science (RIACS), 2000.

Bibliography

182

43. FIRST. Fraunhofer Institute for Computer Architecture and Software

Technology. http://www.first.fhg.de/en/home.

44. FORTS. Fault Tolerant Real-Time Systems. University of Pittsburgh.

http://www.cs.pitt.edu/FORTS/.

45. Gaisler, J. A portable and fault-tolerant microprocessor based on the SPARC

v8 architecture. In Proceedings of the International Conference on

Dependable Systems and Networks - DSN (2002), 409-415.

46. Gal, A., Spinczyk, O. and Schroder-Preiskchat, W. On aspect-orientation in

distributed real-time dependable systems. In Proceedings of the Seventh

International Workshop on Object-Oriented Real-Time Dependable Systems -

WORDS (2002), 261-267.

47. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1995.

48. Gokhale, A., Natarajan, B., Schmidt, D.C. and Cross, K.C. Towards Real-

Time Fault-Tolerant CORBA Middleware. Cluster Computing, 7 (4): 331-346,

2004.

49. Gray, J. Why do computers stop and what can be done about It? Technical

Report 85-7, Tandem Computers, Cupertino, CA, 1985.

50. Gray, J. and Siewiorek, D.P. High-availability computer systems. Computer,

24 (9): 39-48, 1991.

51. Hecht, M., Agron, J., Hecht, H. and Kim, K.H. A distributed fault tolerant

architecture for nuclear reactor and other critical process control applications.

In Proceedings of the 21st International Symposium of Fault-Tolerant

Computing - FTCS-21 (1991), 462-498.

Bibliography

183

52. Hecht, M., Hecht, H. and Shokri, E. Adaptive fault tolerance for spacecraft. In

Proceedings of the IEEE Aerospace Conference (2000), 521-533.

53. Herrero, J.L., Sanchez, F. and Toro, M. Fault tolerance as an aspect using

JReplica. In Proceedings of the Eighth IEEE Workshop on Future Trends of

Distributed Computing Systems - FTDCS (2001), 201-207.

54. Hillman, R., Swift, G., Layton, P., Conrad, M.A.C.M., Thibodeau, C.A.T.C.

and Irom, F.A.I.F. Space processor radiation mitigation and validation

techniques for an 1,800 MIPS processor board. In Proceedings of the 7th

European Conference on Radiation and Its Effects on Components and

Systems - RADECS (2003), 347-352.

55. Horning, J.J., Lauer, H.C., Melliar-Smith, P.M. and Randell, B. A program

structure for error detection and recovery. In Proceedings of an International

Symposium Operating Systems (1974), Springer-Verlag, 171 - 187

56. Hursch, W. and Lopes, C. Separation of concerns, College of Computer

Science, Northeastern University, 1995.

57. Jalote, P. Fault tolerance in distributed systems. Prentice-Hall, Inc., 1994.

58. Kantz, H. and Koza, C. The ELEKTRA railway signalling system: field

experience with an actively replicated system with diversity. In Proceedings of

the 21st International Symposium on Fault-Tolerant Computing - FTCS

(1995), 453-458.

59. Kaul, D. and Gokhale, A. Middleware specialization using aspect oriented

programming. In Proceedings of the 44th annual Southeast regional

conference (Melbourne, Florida, 2006), ACM, 319 - 324.

60. Kayal, H., Baumann, F., Briess, K. and Montenegro, S. BEESAT: A Pico

Satellite for the On Orbit Verification of Micro Wheels. In Proceeding of 3rd

Bibliography

184

International Conference in Recent Advances in Space Technology - RAST

(Istanbul, Turkey, 2007), 487-502.

61. Kenneth, P.B. Building secure and reliable network applications. Manning

Publications Co., 1997.

62. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier,

J.-M. and Irwin, J. Aspect-Oriented Programming. In Proceedings European

Conference on Object-Oriented Programming (1997), Springer-Verlag, 220--

242.

63. Kienzle, J. and Guerraou, R. AOP: Does It Make Sense? The Case of

Concurrency and Failures. In Lecture Notes in Computer Science, Springer-

Verlag, 2002, 113-121.

64. Kim, K.H. and Welch, H.O. Distributed execution of recovery blocks: an

approach for uniform treatment of hardware and software faults in real-time

applications. IEEE Transactions on Computers, 38 (5): 626-636, 1989.

65. Kim, K.H. and Min, B.J. Approaches to implementation of multiple DRB

stations in tightly-coupled computer networks. In Proceedings of the Fifteenth

Annual International Computer Software and Applications Conference -

COMPSAC (1991), 550-557.

66. Kim, K.H. The distributed recovery block scheme. In Lyu, M.R. ed. Software

Fault Tolerance, Wiley, 1995, 189-209.

67. Kim, K.H. and Subbaraman, C. Fault-tolerant real-time objects.

Communications of the ACM, 40 (1): 75-82, 1997.

68. Kim, K.H. ROAFTS: a middleware architecture for real-time object-oriented

adaptive fault tolerance support. In Proceedings of theThird IEEE

International High-Assurance Systems Engineering Symposium (1998), 50-57.

Bibliography

185

69. Kim, K.H., Ishida, M. and Juqiang, L. An efficient middleware architecture

supporting time-triggered message-triggered objects and an NT-based

implementation. In Proceedings of the 2nd IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing - ISORC (1999), 54-63.

70. Kim, K.H. Toward Integration Of Major Design Techniques For Real-Time

Fault-Tolerant Computer Systems. Journal of Integrated Design & Process

Science 6(1): 83-101, 2002.

71. Kopetz, H. Real-Time Systems: Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers, 1997.

72. Lala, J.H. and Harper, R.E. Architectural principles for safety-critical real-time

applications. Proceedings of the IEEE, 82 (1): 25-40, 1994.

73. Lohmann, D., Scheler, F., Schroder-Preikschat, W. and Spinczyk, O. PURE

Embedded Operating Systems - CiAO. In International Workshop on

Operating System Platforms for Embedded Real-Time Applications - OSPERT

(Dresden, Germany 2006).

74. Lohmann, D., Scheler, F., Tartler, R., Spinczyk, O. and Schroder-Preiskchat,

W. A quantitative analysis of aspects in the eCos kernel. SIGOPS Operating

Systems Review, 40 (4): 191-204, 2006.

75. Lohmann, D., Spinczyk, O. and Schroder-Preiskchat, W. Lean and Efficient

System Software Product Lines - Where Aspects Beat Objects. Transaction of

Aspect-Oriented Software Development II (TAOSD), Springer LNCS (4242):

227-255, 2006.

76. Lohmann, D., Streicher, J., Spinczyk, O. and Schroder-Preikschat, W.

Interrupt synchronization in the CiAO operating system: experiences from

implementing low-level system policies by AOP. In Proceedings of the 6th

workshop on Aspects, components, and patterns for infrastructure software -

ACP4IS (Vancouver, British Columbia, Canada, 2007), ACM, Article No. 6.

Bibliography

186

77. Maes, P. Concepts and experiments in computational reflection. ACM

SIGPLAN Notice, 22 (12): 147-155, 1987.

78. Magnusson, J. Set and Get in AspectC++. M.S. Thesis. Department of

Computer Science and Engineering, Chalmers University of Tecnology,

Goteborg, 2006.

79. Mahrenholz, D., Spinczyk, O., Gal, A. and Schroder-Preikschat, W. An

Aspect-Oriented Implementation of Interrupt Syncronization in the PURE

Operating System Family. In Proceedings of the Fifth ECOOP Workshop on

Object Orientation and Operating Systems (Malaga, Spain, 2002), 49-54.

80. Mahrenholz, D., Spinczyk, O. and Schroder-Preikschat, W. Program

instrumentation for debugging and monitoring with AspectC++. In

Proceedings of the Fifth IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing - ISORC (2002), 249-256.

81. Montenegro, S. and Zolzky. BOSS/EVERCONTROL OS /Middleware Target

Ultra High Dependability In Proceedings of Data Systems In Aerospace -

DASIA (Edinburgh, Scotland, 2005).

82. Montenegro, S., Briess, K. and Kayal, H. Dependable Software (BOSS) for

the BEESat Pico Sattelite. In Proceedings of the Data Systems on Aerospace

Conference (Berlin, Germany, 2006).

83. Montenegro, S. and Dittrich, L. Architecture of the SSB Core Avionics

System. Data Systems in Aerospace - DASIA Palma de Mallorca, 2008.

84. Muñoz, F., Barais, O. and Baudry, B. Vigilant usage of Aspects. Workshop on

Aspects, Dependencies, and Interactions at ECOOP 2007, Berlin, Germany,

2007.

85. Narasimhan, P., Dumitra, T.A., Paulos, A.M., Pertet, S.M., Reverte, C.F.,

Slember, J.G. and Srivastava, D. MEAD: support for Real-Time Fault-

Bibliography

187

Tolerant CORBA. Concurrency and Computation : Practice and Experience,

17 (12): 1527-1545, 2005.

86. Natarajan, B., Gokhale, A., Yajnik, S. and Schmidt, D.C. DOORS: towards

high-performance fault tolerant CORBA. In Proceedings of the International

Symposium on Distributed Objects and Applications - DOA (2000), 39-48.

87. Nelson, V.P. Fault-tolerant computing: fundamental concepts. Computer, 23

(7): 19-25, 1990.

88. OMG. CORBA Core Specification version 3.0.3 chapter 23.

http://www.omg.org/cgi-bin/doc?formal/2004-03-12.

89. OMG. Real-Time CORBA specification version 1.2 http://www.omg.org/cgi-

bin/doc?formal/05-01-04.

90. OMG. Object Management Group. http://www.omg.org/.

91. Parnas, D.L. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15 (12): 1053-1058, 1972.

92. Powell, D. Distributed fault tolerance - lessons learnt from Delta-4. In Papers

of the workshop on hardware and software architectures for fault tolerance

(Le Mont Saint Michel, France, 1994), Springer-Verlag, 199 - 217

93. Pradhan, D.K. (ed.), Fault-tolerant computer system design. Prentice-Hall,

Inc., 1996.

94. Pullum, L.L. Software fault tolerance techniques and implementation. Artech

House, Inc., 2001.

95. Pure-Systems. Pure::variants. http://www.pure-systems.com/.

Bibliography

188

96. Qing, L. and Caroline, Y. Real-Time Concepts for Embedded Systems. CMP

Books, 2003.

97. Randel, B. and Jie, X. The evolution of the recovery block concept. In Lyu,

M.R. ed. Software fault tolerance, Wiley, 1995, 1-21.

98. Randell, B. System structure for software fault tolerance. In Proceedings of

the International Conference on Reliable Software (Los Angeles, California,

1975), ACM, 437 - 449

99. Ren, Y., Bakken, D.E., Courtney, T., Cukier, M., Karr, D.A., Rubel, P.,

Sabnis, C., Sanders, W.H., Schantz, R.E. and Seri, M. AQuA: an adaptive

architecture that provides dependable distributed objects. IEEE Transactions

on Computers, 52 (1): 31-50, 2003.

100. Salles, F., Rodriguez, M., Fabre, J.C. and Arlat, J. MetaKernels and fault

containment wrappers. In Proceedings of the 29th Annual International

Symposium on Fault-Tolerant Computing (1999), 22-29.

101. Schneider, F. Implementing fault-tolerant services using the state machine

approach: a tutorial. ACM Computing Surveys, 22 (4): 299-319, 1990.

102. Scott, R.K., Gault, J.W. and McAllister, D.F. Fault-Tolerant Software

Reliability Modeling. IEEE Transactions on Software Engineering, 13 (5):

582-592, 1987.

103. Shokri, E., Crane, P., Kim, K.H. and Subbaraman, C. Architecture of

ROAFTS/Solaris: a Solaris-based middleware for real-time object-oriented

adaptive fault tolerance support. In Proceedings of the 22nd Annual

InternationalComputer Software and Applications Conference - COMPSAC

(1998), 90-98.

104. Siewiorek, D.P. Architecture of fault-tolerant computers: an historical

perspective. Proceedings of the IEEE, 79 (12): 1710-1734, 1991.

Bibliography

189

105. Spinczyk, O. and Lohmann, D. Using AOP to develop architectural-neutral

operating system components. In Proceedings of the 11th workshop on ACM

SIGOPS European workshop (Leuven, Belgium, 2004), ACM, Article No. 34

106. Spinczyk, O. and Lohmann, D. The design and implementation of AspectC++.

Knowledge Based Systems, 20 (7): 636-651, 2007.

107. Steimann, F. The paradoxical success of aspect-oriented programming. In

Proceedings of the OOPSLA Conference (Portland, Oregon, USA, 2006),

ACM, 481 - 497

108. Storey, N. Safety Critical Computer Systems. Addison-Wesley Longman

Publishing Co., Inc., 1996.

109. Szentivanyi, D. and Nadjm-Tehrani, S. Aspects for improvement of

performance in fault-tolerant software. In Proceedings of the 10th IEEE

Pacific Rim International Symposium on Dependable Computing (2004), 283-

291.

110. Tokuda, H., Nakajima, T. and Rao, P. Real-time Mach: towards a predictable

real-time system. In Proceedings of USENIX Mach Workshop (1990), 73-82.

111. Torres, W. Software Fault Tolerance: A Tutorial, NASA Langley Technical

Report Server, 2000.

112. Tourwé, T., Brichau, J. and Gybels, K. On the existence of the AOSD-

evolution paradox. Workshop on Software Engineering Properties of

Languages for Aspect Tecnologies - SPLAT- AOSD, Boston, 2003.

113. TQ. TQ Components. http://www.tqc.de/.

114. TRESE group, U.o.T. Composition Filters implementation project. University

of Twente. http://trese.cs.utwente.nl/.

Bibliography

190

115. Tso, K.S., Shokri, E.H., Tai, A.T. and Dziegiel Jr., R.J. A reuse framework for

software fault tolerance. In Proceedings of the 10th AIAA Computing in

Aerospace Conference (San Antonio, TX, 1995), 490-500.

116. TXL. http://www.txl.ca/.

117. Verissimo, P. and Rodrigues, L. Distributed Systems for System Architects.

Kluwer Academic Publishers, 2001.

118. Vitulli, R. and Montenegro, S. High performance ultra high dependable

architecture for autonomous robotics in space. Nineth ESA Workshop on

Advanced Space Technologies for Robotics and Automation, Noordwijk, The

Netherlands, 2006.

119. Xu, J., Randell, B., Rubira-Calsavara, C.M.F. and Stroud, R.J.A.S.R.J. Toward

an object-oriented approach to software fault tolerance. In Proceedings of

IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems (1994),

226-233.

120. Xu, J., Randel, B. and Zorzo, A.F. Implementing Software Fault Tolerance in

C++ and OpenC++: an object-oriented and reflective approach. In

Proceedings of the International Workshop on Computer-Aided Design, Test

and Evalution for Dependability (Beijing, China, 1996), pp. 224-229.

121. Xu, J., Randell, B. and Romanovsky, A. A generic approach to structuring and

implementing complex fault-tolerant software. In Proceedings of the Fifth

IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing - ISORC (2002), 207-214.

122. XWeaver. http://www.xweaver.org/.

123. Yacoub. Yacoub Automation GmdH. http://www.yacoub.de/e_frame.htm.

Bibliography

191

124. Zhang, C. and Jacobsen, H.A. Refactoring middleware with aspects. IEEE

Transactions on Parallel and Distributed Systems, 14 (11): 1058-1073, 2003.

