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Operating System Fault Tolerance Support  

for Real-Time Embedded Applications 

 

Abstract 

Fault tolerance is a means of achieving high dependability for critical and high-

availability systems. Despite the efforts to prevent and remove faults during the 

development of these systems, the application of fault tolerance is usually required 

because the hardware may fail during system operation and software faults are very 

hard to eliminate completely.  

One of the difficulties in implementing fault tolerance techniques is the lack of 

support from operating systems and middleware.  In most fault tolerant projects, the 

programmer has to develop a fault tolerance implementation for each application. 

This strong customization makes the fault-tolerant software costly and difficult to 

implement and maintain. In particular, for small-scale embedded systems, the 

introduction of fault tolerance techniques may also have impact on their restricted 

resources, such as processing power and memory size. 

The purpose of this research is to provide fault tolerance support for real-time 

applications in small-scale embedded systems. The main approach of this thesis is to 

develop and integrate a customizable and extendable fault tolerance framework into a 

real-time operating system, in order to fulfill the needs of a large range of dependable 

applications. Special attention is taken to allow the coexistence of fault tolerance with 

real-time constraints. The utilization of the proposed framework features several 

advantages over ad-hoc implementations, such as simplifying application-level 

programming and improving the system configurability and maintainability. 

In addition, this thesis also investigates the application of aspect-oriented 

techniques to the development of real-time embedded fault-tolerant software. Aspect-

Oriented Programming (AOP) is employed to modularize all fault tolerant source 



vi 

code, following the principle of separation of concerns, and to integrate the proposed 

framework into the operating system.  

Two case studies are used to evaluate the proposed implementation in terms of 

performance and resource costs. The results show that the overheads related to the 

framework application are acceptable and the ones related to the AOP implementation 

are negligible. 
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Suporte do Sistema Operativo à Tolerância a Falhas em Aplicações 

Embebidas de Tempo-Real  

 

Resumo 

Tolerância a falhas é um meio de obter-se alta confiabilidade para sistemas 

críticos e de elevada disponibilidade. Apesar dos esforços para prevenir e remover 

falhas durante o desenvolvimento destes sistemas, a aplicação de tolerância a falhas é 

normalmente necessária, já que o hardware pode falhar durante a operação do sistema 

e falhas de software são muito difíceis de eliminar completamente. 

Uma das dificuldades na implementação de técnicas de tolerância a falhas é a 

falta de suporte por parte dos sistemas operativos e middleware. Na maioria dos 

projectos tolerantes a falhas, o programador deve desenvolver uma implementação de 

tolerância a falhas para cada aplicação. Esta elevada adaptação torna o software 

tolerante a falhas dispendioso e difícil de implementar e manter. Em particular, para 

sistemas embebidos de pequena escala, a introdução de técnicas de tolerância a falhas 

pode também ter impacto nos seus restritos recursos, tais como capacidade de 

processamento e tamanho da memória. 

O propósito desta tese é prover suporte à tolerância a falhas para aplicações de 

tempo real em sistemas embebidos de pequena escala. A principal abordagem 

utilizada nesta tese foi desenvolver e integrar uma framework tolerante a falhas, 

customizável e extensível, a um sistema operativo de tempo real, a fim de satisfazer às 

necessidades de uma larga gama de aplicações confiáveis. Especial atenção foi dada 

para permitir a coexistência de tolerância a falhas com restrições de tempo real. A 

utilização da framework proposta apresenta diversas vantagens sobre implementações 

ad-hoc, tais como simplificar a programação a nível da aplicação e melhorar a 

configurabilidade e a facilidade de manutenção do sistema. 

Além disto, esta tese também investiga a aplicação de técnicas orientadas a 

aspectos no desenvolvimento de software tolerante a falhas, embebido e de tempo 

real. A Programação Orientada a Aspectos (POA) é empregada para segregar em 
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módulos isolados todo o código fonte tolerante a falhas, seguindo o princípio da 

separação de interesses, e para integrar a framework proposta com o sistema 

operativo.  

Dois casos de estudo são utilizados para avaliar a implementação proposta em 

termos de desempenho e utilização de recursos. Os resultados mostram que os 

acréscimos de recursos relativos à aplicação da framework são aceitáveis e os 

relativos à implementação POA são insignificantes.  
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Chapter 1 

Introduction 

 

 

 

 

 

This chapter initially describes the thesis motivation and the main topics 

related to this work. The definition of the research problem and the 

formulation of the research questions are addressed next. Finally, the 

approach and contributions of this work are stated.  
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1.1 Motivation 

Embedded systems have a widespread use in several domains, such as consumer 

electronics, home/office automation, and the automotive industry.  A precise 

definition of the term embedded system does not exist. In general, embedded systems 

are defined as hardware-software systems that perform a specific function, usually 

being part of a larger system, which explains the “embedded” denomination. Besides 

being designed to execute a predefined function, as opposed to a general purpose 

computing system (mainframe, desktop, notebook, and so on), embedded systems 

usually have a particular method of software development called cross-platform 

development [96], in which the software is generated in other platform and then it is 

transferred to the embedded device.  

Most embedded systems have to react to the system environment in a timely 

fashion. Real-time systems must satisfy timing constraints, and therefore the correct 

response depends also on the time that it is produced. Examples of real-time 

embedded systems include portable media players and control systems. The 

consequences of not satisfying a timing constraint are severe in hard real time 

systems, in contrast with soft real time systems, in which there is some degree of 

tolerance to timing violations.  

Some embedded systems demand high reliability, availability or safety, as a 

system failure may endanger human lives or compromise the success of the entire 

system operation.  These are classified as safety-critical and mission-critical systems, 

respectively. Examples of these critical systems include drive-by-wire systems in 

automobiles, fly-by-wire systems in avionics, missile control systems and autonomous 

space systems.   

Critical systems are also termed high-dependability systems. Dependability is a 

wider concept that includes several attributes, such as reliability, safety, 

maintainability and security.  The reliability of high-dependability systems can be 

several orders of magnitude higher than for commercial systems. For instance, civil 

transport airplane critical equipments are designed to have less than 10-9 catastrophic 

failures per hour of operation (a failure in 114 thousand years) [71]. Similar 

requirements are applied in railway control systems. High-dependability systems are 
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also needed in satellites and space missions because most of these systems must 

operate without any maintenance at all.  

As critical embedded systems are composed by hardware and software, there is a 

strong need to reduce the number of failures related to these two domains. Hardware 

reliability has been constantly increasing over time. However, transient and 

permanent hardware faults may still occur, especially in environments subjected to 

high energy particles and radiation, such as space systems. In relation to software 

faults, the ever increasing functionality of the computer systems has a direct impact in 

the software complexity, which is the main cause of design faults in software. Despite 

the efforts taken at the several phases of software development, including the testing 

phase, various software faults are likely to remain unpredicted and undetected.  

Therefore, fault tolerance (FT) techniques are needed in order to maintain the system 

operational in the presence of hardware and software faults.     

Several fault tolerance techniques have been proposed in the last 30 years. 

However, the application of these techniques is expensive, in terms of resources and 

costs, and therefore they are normally only used in safety or mission-critical systems.  

Fault tolerance is usually applied by means of redundancy and diversity. 

Redundant hardware implies the establishment of a distributed system executing a set 

of fault tolerance strategies by software, and may also employ some form of diversity, 

by using different variants or versions for the same processing. Redundant hardware 

involves extra software coordination, which makes the software system more complex 

and error-prone. Software fault tolerance may be implemented by software re-

execution or multiple versions techniques, which also requires the application of 

additional control mechanisms. 

In many fault tolerant projects, the programmer has to address both application-

dependent and fault tolerance related concerns. This strong customization requires 

highly specialized design teams, thus making realistic fault-tolerant software costly 

and difficulty to implement and maintain. Therefore, there is an urgent need to 

provide a flexible support for fault-tolerant applications that is able to deliver some 

degree of transparency for the application developer and at the same time that 
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facilitates customizability across a broad range of applications, as well as diverse 

reliability requirements.  

One of the difficulties in implementing fault tolerance techniques is the lack of 

support from operating systems and middleware.  Operating systems are not designed 

with fault tolerance support in mind and even those that were extended to include 

some basic fault tolerance mechanisms did not provide support for a full fault tolerant 

implementation.  The same happens to middleware implementations, such as CORBA 

[90], which were meant originally to solve the distribution problem, and only a few 

years ago have specified basic mechanisms of fault tolerance [88].   

Another problem regarding the fault tolerance implementation is that it has a huge 

impact in the real-time behavior of an application. A fault tolerance implementation 

normally demands additional computations for fault detection, alternative 

implementations and replica coordination. These mechanisms change the application 

timing behavior and often violate real-time constraints. As an example of this issue, it 

can be mentioned the incompatibility of the FT-CORBA [88] and RT-CORBA [89] 

specifications [48, 85]. 

In particular, for small-scale embedded systems, the introduction of fault 

tolerance techniques may have impact on the restricted resources of these systems, 

such as processing power, memory size, power consumption, physical size and 

weight. These restrictions are considered in the requirements of many embedded 

projects, such as satellite systems. Most fault tolerance research developed so far 

focus on large-scale systems with no resource constraints, such as navy command and 

control systems and airline reservation systems. Most solutions proposed to that kind 

of systems are not applicable to small-scale embedded systems.  

1.2 Problem statement 

The purpose of this research is to provide fault tolerance support for real-time 

embedded applications by extending a real-time operating system. The focus of this 

research is on small-scale distributed embedded systems connected by local area 

networks or field buses. The emphasis of fault tolerance is on the computation (fault-
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tolerant computing) and not in the communication between nodes, which is assumed 

to be reliable. 

The main research questions are:  

• Is the approach described above feasible and acceptable in terms of performance 

and resource costs?  

• What benefits and drawbacks this approach brings to the embedded software 

development process? 

• Can Aspect-Oriented Programming (AOP) [62], a new technique for advanced 

separation of concerns [36, 91], be applied at the operating system and application 

level to support the implementation of embedded fault-tolerant systems? If so, 

what are the benefits? 

The operating system employed in this research was the BOSS operating system 

[81], developed by Fraunhofer Institute for Computer Architecture and Software 

Technology (FIRST). This operating system was written in C++, uses object-oriented 

technology extensively, and it includes a middleware for communication support 

based on a publish-subscriber protocol.  The BOSS operating system targets real-time 

high-dependability applications, such as satellite and medical systems.     

1.3 Approach and contributions 

The main approach taken in this research was to develop and integrate a 

customizable and extendable fault tolerance framework into a real-time operating 

system, in order to fulfill the needs of a large range of dependable applications.  This 

FT framework defines a set of collaborations between operating system basic classes 

and fault tolerance support classes in order to implement fault tolerance techniques 

with maximum transparency the application-level threads. Additionally, AOP was 

employed to provide a full modularization of the fault tolerance implementation. 

The contributions of this research are listed as follows: 
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• The proposal of a framework for developing real-time embedded fault-tolerant 

software. In contrast with previous works, we target the application thread level, 

based on a thread model which allows both state and stateless threads.  

• The development of several fault tolerance strategy implementations using the 

proposed framework in order to cover a wide range of fault tolerance 

requirements, supporting both hardware and software fault tolerance. 

• The development of new mechanisms for the BOSS middleware, namely for 

message identification, duplicate messages discarding and external messages 

handling. 

• The application of aspect-oriented techniques to the development of real-time 

embedded fault-tolerant software. In contrast with previous works, we applied 

AOP in order to provide fault tolerance to application threads. Additionally, we 

employed AOP to integrate the proposed FT framework into the original 

operating system and to implement fault tolerance mechanisms at the operating 

system level. 

• The evaluation and comparison of the proposed fault tolerance framework and the 

AOP implementation in terms of performance and resource costs based on two 

case studies: a sorting application and a radar filtering system. These case studies 

were developed using a PowerPC 823 based target board, in a similar 

configuration employed in a satellite computer system. Performances based on 

execution time, plus costs related to runtime overhead and memory footprint were 

measured for several FT configurations and implementations. 

• The evaluation of the proposed framework and the AOP implementation in terms 

of benefits to the embedded software development process, including 

maintenance and reusability issues.  

The approaches and contributions described in this thesis have been succinctly 

presented in research papers published by international conferences and workshops 

related to real-time systems, industrial embedded systems and aspect-oriented 

software development [2-6]. 
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1.4 Thesis organization 

This thesis is divided in eight chapters. The remaining chapters are described as 

follows: 

• Chapter 2 introduces the main definitions and concepts related to fault tolerance. 

It also presents the fault tolerance techniques applied in this work and reviews the 

related work about fault tolerance. 

• Chapter 3 presents the main concepts related to Aspect-Oriented Programming, 

describes the AspectC++ language extension and reviews the research results 

regarding the application of AOP in operating systems, middleware and fault-

tolerant systems.  

• Chapter 4 describes the main features of the BOSS operating system, including 

its kernel and middleware. A brief introduction about BOSS principles, history 

and applications is presented, followed by a detailed description of the kernel and 

the middleware. The middleware extensions developed for handling external 

messages are also described. 

• Chapter 5 describes the fault tolerance framework developed for supporting 

application-level fault tolerance, as an extension to the BOSS operating system 

and its middleware. The framework objectives and constraints are presented, as 

well as the thread model for FT introduction. The implemented fault tolerance 

strategies are described in detail. This chapter also discusses the benefits and 

drawbacks of the proposed FT framework. 

• Chapter 6 presents how AOP was applied to support the implementation of fault 

tolerance. It covers the application of AOP for three different purposes: (1) 

modularize the fault tolerance code at the application level; (2) integrate the FT 

framework into the operating system; and (3) implement fault tolerance at the 

operating system level. This chapter also discusses the benefits and drawbacks of 

the AOP application. 

• Chapter 7 presents the development and test environment applied in this work 

and describes the case studies developed to test the proposed FT framework, 

comparing performance and costs of several configurations and implementations.  
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• Chapter 8 concludes this thesis and indicates possible future directions for this 

research topic. 
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Chapter 2 

Fault tolerance 

 

 

 

 

 

This chapter introduces the main definitions and concepts related to fault 

tolerance. Besides, the main techniques and approaches to build fault-

tolerant systems are presented, as well as the related work regarding fault 

tolerance. 
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2.1 Faults, errors and failures 

In this section, the basic terminology in fault tolerance is introduced by explaining 

the difference between faults, errors and failures. These terms are frequently 

combined with others to classify fault tolerance concepts and techniques, and 

therefore a precise definition of these terms is required1.  

A failure is an event that ocurrs when a system’s delivered service deviates from 

the correct service [20]. The correct service is the one described in the system 

specification. An error is a part of the system state that may cause a subsequent 

failure. A fault is the cause of an error. 

Figure 2.1 shows the relationship between faults, error and failures in a multi-

component system [117]. A fault is active when it produces an error, otherwise it is 

dormant. A dormant fault may be activated (generates an error) after a system input or 

computational process. The failure of a component represents a fault for the system, 

and it can further generate a system error. Errors can propagate within a component or 

system. An error that has not been detected is a latent error. A system failure occurs 

when the error propagates to the system interface. In summary, a fault is a defect, an 

error is a corrupted state, and a failure is the event that we want to avoid.  

system

component

fault

error

failure

dormant fault

active fault

 

Figure 2.1: Faults, errors and failures. 

                                                 

1 For instance, error detection and error handling have a completely different meaning than fault 

detection and fault handling. 
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Faults can be classified according to many criteria. In relation to the domain, there 

are hardware or software faults. Design faults occur much more frequently in software 

than in hardware because of the difference in complexity of these two domains. This 

difference is explained by the fact that hardware machines have usually a smaller 

number of internal states than software programs [98].  

In relation to persistence, faults can be classified in permanent or transient. 

Hardware faults can be permanent or transient, but a software fault is always 

permanent. Apparent transient software faults are in fact permanent software faults 

with complex activation patterns. The ability to identify the activation pattern of a 

fault determines the fault activation reproducibility.  Faults can be categorized 

according their activation reproducibility as solid (or hard, or bohrbugs [49]), and 

elusive (or soft, or heisenbugs [49]). The activation of elusive faults is not 

systematically reproducible. Elusive faults activation can depend, for instance, on 

unusual combinations of internal states and external requests, system load, and timing. 

Most residual design faults in large and complex software are elusive faults. The 

similarity of the manifestation of elusive development faults and of transient physical 

faults leads to both classes being grouped together as intermittent faults. Errors 

produced by intermittent faults are termed soft errors [20].  

Failures can be classified in relation to the domain as content failures and timing 

failures. Content failures, also called value failures, present a deviation in the content 

of the information delivered by a system in regard to the system specification. In 

timing failures, the deviation is related to the arrival or duration of the information 

delivery. A failure can also be consistent or inconsistent. Consistent failures are 

perceived identically for all system users, while inconsistent failures are perceived 

differently by one or more users. Inconsistent failures are also called Byzantine 

failures.  
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2.2 Dependability and fault tolerance 

The dependability of a computer system is the ability to avoid system failures that 

are more frequent and more severe than acceptable [20]. The concept of dependability 

is strong connected with the concept of trust, and comprises the following attributes: 

• Reliability: continuity of the correct service. Reliability is the probability that a 

system will perform its intended function satisfactorily, for a specified period of 

time. It is usually expressed in terms of failure rate (λ), or its inverse, the mean 

time to failure (MTTF) [71]. The system reliability is dependent on the system 

environment. For instance, the activation of some types of faults can be triggered 

by specif input sequences [111]. A system can have many faults but still be 

reliable if the environment does not trigger any fault activation in its normal 

operation. 

• Availability: readiness for correct service. Availability is the probability that a 

system is performing its required function at a given point in time. To calculate 

the system availability it is necessary to include information about the mean time 

to repair (MTTR).  

• Safety: absence of catastrophic consequences on the user and the environment. A 

fail-safe system is one that cannot cause harm when it fails. A system can be fail-

safe but unreliable and vice-versa. For many systems, the fail-safe property 

cannot be guaranteed as, for instance, in airplane flight control systems [108]. 

Safety can also be defined as the reliability with respect to catastrophic failures.    

• Confidentiality: absence of unauthorized disclosure of information. 

• Integrity: absence of improper system state alterations. 

• Maintainability: the ability to undergo repairs and modifications. 

There are four basic means to achieve dependability: fault prevention, fault 

removal, fault forecasting and fault tolerance [20]. These techniques are described as 

follows: 

• Fault prevention:  to avoid or prevent the introduction of faults in the system 

design. Examples of software fault prevention include software design methods, 
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modularization and reusability. Many design faults are introduced because of an 

incorrect or incomplete system specification. 

• Fault removal: to detect and eliminate faults from system, both at development 

and operational phases. It includes verification, diagnosis and correction. 

Verification can be static, using for instance inspections and formal methods, or 

dynamic, with the application of fault injection and testing. 

• Fault forecasting: to predict and estimate the presence and activation of faults as 

well as their consequences. Fault forecasting techniques include failure mode and 

effects analysis (FMEA), Markov chains and fault-trees. Fault forecasting 

techniques may indicate the need for modifications in system design and the 

application of fault tolerance.  

• Fault tolerance: to preserve the delivery of a correct system service in the 

presence of active faults.  Fault tolerance is intended to prevent active faults from 

becoming failures. In order to achieve fault tolerance, the system must react to 

errors before they reach its boundaries. 

Figure 2.2 shows the relationship among the four means to achieve dependable 

systems. As represented in this figure, faults may be still present after system 

development and validation, when fault prevention and fault removal techiques are 

applied. The remaining faults must be taken care at operation time, by using fault 

tolerance techniques. Fault forecasting may be applied in all phases of the system 

lifecycle, using both prediction and estimation techniques regarding faults and 

failures.   

Fault
prevention

Fault
removal

Fault
 tolerance

Fault
forecasting

faults faults

fault/failure
prediction

fault/failure
estimation

fault/failure
estimation

development validation operation

 

Figure 2.2: Means to achieve dependable systems. 
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In particular, software design faults are very hard to eliminate completely through 

fault prevention and removal. Besides, hardware faults, either permanent or transient, 

may happen during system operation. Therefore, only fault tolerance can cope with 

software residual faults and hardware operational faults. 

Fault tolerance is directly related to system reliability, as its application increases 

the time between failures. Increasing system reliability will also result in larger 

system availability and safety. 

Fault-tolerant systems may be classified as follows [104, 111]: 

• Critical systems: require a high degree of reliability and safety. This category 

includes safety-critical systems, in which a failure can cause loss of lives, and 

mission-critical systems, in which a failure can cause damage in equipment, or the 

loss of efforts and the mission failure. Some safety-critical systems examples are 

flight control systems, nuclear plants and railway control systems. Commercial 

fly-by-wire systems, for instance, require a probability of failure per hour not 

greater than 10-9, considered as ultra-high reliability [71]. 

• Long life systems: require that a computer operates as intended when the time 

between maintenance is large or even without any maintenance at all. This 

includes, for instance, satellites and space systems. 

• High-availability systems: demand a very high probability that the system will 

be ready to provide the intended service when required, such as airline reservation 

systems. 

• General purpose systems: are the less demanding in terms of fault tolerance, 

generally providing only error detection capabilities. 

2.3 Basic techniques in fault tolerance 

Fault tolerance is implemented by means of error detection and system recovery. 

Error detection aims to spot errors within the system. Several methods may be applied 

to detect errors, such as replication checks, timing checks, reasonableness checks and 

structural checks [57]. System recovery must apply error handling for eliminating 
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the error from the system state and, additionally, may apply fault handling for 

diagnosing the fault and preventing it from being activated again. There are three 

general techniques for error handling: rollback, rollforward and compensation. 

In the rollback technique, also called backward recovery, the system is restored 

to a previous assumed error-free state.  This technique requires that the system state is 

stored periodically in predetermined recovery points, in a process called 

checkpointing. It is effective against transient faults because these faults may have 

disappeared after restarting from the last checkpoint.  For permanent faults, the use of 

rollback mechanisms must be associated with other techniques as, for instance, 

changing the algorithm in case of software faults. 

In the rollforward technique, also called forward recovery, the system is taken to 

a new state without errors. Using this technique, the system tries to make corrective 

actions to remove the error from the system state.  Therefore, it requires precise 

information about the error nature and extent. This diagnosis is application and system 

dependent.   

 In the compensation technique, the erroneous state contains enough redundant 

information to enable error elimination. Corrections codes such as Hamming code and 

multiple executions of the same computation are examples of error compensation. rror 

Compensation does not depend on error detection, and so it can be executed 

continuously.  This form of recovery is called fault masking. Alternatively, 

compensation can be executed only after some error detection. 

Error handling techniques eliminate errors from the system state, but they do not 

prevent new errors from occurring. For this reason, fault handling is needed. Fault 

handling involves four steps: 

• Fault diagnosis: identifies the fault type and location. 

• Fault isolation: performs physical or logic exclusion from future participation in 

service delivery. 

• System reconfiguration: switches to a spare component or task. 

• System reinitialization: updates system state and configuration information. 
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Some components and systems are designed to fail only in specific modes that 

preserve safety (fail-safe) or that do not produce incorrect results that may affect 

further processing (fail-silent).  Additionally, a system can be designed to provide a 

degraded functionality in case of failure, returning to full functionality after a system 

reconfiguration and reinitialization. These systems are termed failure-controlled 

systems. 

2.4 Redundancy 

 Fault tolerance implementation depends heavily on redundancy. Redundancy is 

the utilization of additional resources that are not required for normal system 

operation. 

 Hardware redundancy includes replicated and supplementary hardware to support 

fault tolerance, and is the most used form of redundancy in fault-tolerant systems. 

Software redundancy includes additional programs, modules and objects to support 

fault tolerance [94]. Information redundancy is the use of additional information with 

the aim of detecting or tolerating faults. Examples of information redundancy include 

the use of parity bits and error correcting codes. Temporal redundancy involves 

additional time for providing fault tolerance as, for instance, using multiple sequential 

computations, but it is only effective with transient faults.  

2.5 Design diversity 

Redundancy is not sufficient for tolerating solid design faults. A replicated 

hardware or software will fail identically for these faults, as they have the same 

design.  In order to tolerate solid design faults, it is necessary to make use of design 

diversity, which means the redundancy of design. 

Design diversity can be used in all forms of redundancy. In hardware systems it 

would involve using modules of different hardware design, whereas in software it 

would require different programs to implement the same function. For information 
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redundancy, diversity can be implemented by using different data structures and not 

just simple data copies.   

Design diversity may be applied in all phases of the software development, such 

as system requirements, design and implementation. Diverse specifications, 

programming languages, algorithms and software teams can contribute to increase the 

design diversity and therefore to reduce failures related to design faults.  

2.6 Hardware fault tolerance 

Hardware fault tolerance is generally defined as the kind of fault tolerance for 

dealing with hardware faults. Hardware faults were a main issue in the early ages of 

computing. Although the reliability of hardware systems has been improving steadily, 

hardware faults are still a problem for dependable systems. 

 Hardware faults can be permanent or transient. Transient hardware faults may be 

produced, for instance, by high energy subatomic particles, electromagnetic radiation 

and power fluctuations.  Bursts of radiation are responsible for permanent and 

transient failures in satellites.    

Hardware fault tolerance can be implemented by using hardware or software 

mechanisms. The application of extra hardware to detect and correct errors was the 

first successful method for achieving fault-tolerant systems and it is still applied in 

memories, disks and microprocessors. The Leon [45] and PPC-750FX boards [54], 

applied in high-dependability applications as aerospace, use multiple circuits in the 

processor to recover from hardware failures.  

The utilization of software techniques to recover from hardware failures is usually 

called software-based hardware fault tolerance [117].  In these systems, the system 

software is modified to implement error detection and handling in single or multiple 

computing units. Multiple computers are necessary to tolerate permanent hardware 

faults. 

Some software mechanisms designed for handling hardware transient faults, such 

as backward recovery, are also effective against software elusive faults. The study in 
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[49] relates an experiment in which only 1 out of 132 elusive software faults have 

manifested again after a second run.  

Hardware redundancy can be implemented in static, dynamic or hybrid 

configurations. Static redundancy techniques use compensation or masking to avoid 

system failures. A typical example is Triple Modular Redundancy (TMR), represented 

in Figure 2.3, in which three output channels (generated by hardware or software) are 

subjected to majority voting and consequently an error in one channel is tolerated. 

Static redundant systems are fast and simple to implement, but demand more 

hardware than other configurations. N-Modular Redundancy (NMR) is an extension 

of the TMR technique using “n” redundant modules, which are able to tolerate (n-1)/2 

faulty modules.  

Module 1

Module 2

Module 3

Voter
input output

 

Figure 2.3: Triple Modular Redundancy. 

Dynamic redundancy techniques use error detection followed by fault handling to 

isolate the faulty components. Two examples of dynamic redundancy are shown in 

Figure 2.4 [87]. In Figure 2.4(a) two self-checking modules are used, and the final 

output is chosen based on the error signals. In Figure 2.4(b), a self-checking unit is 

built by two modules that have their results compared. Other example of dynamic 

redundancy is the usage of standby sparing (hot, warm or cold). 
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Figure 2.4: Self-checking modules. 

Hybrid redundancy techniques combine elements of both static and dynamic 

redundancy as, for instance, the substitution of the faulty unit by a spare in the TMR 

technique.  

The additional functionality needed to implement static, dynamic or hybrid 

hardware redundancy (e.g. voters and comparators) can be provided by hardware or 

software mechanisms. A common architecture based on software mechanisms 

consists of a multi-computer system connected by a communication network, 

commonly referred as a distributed system.  

In distributed systems terminology, replication means the use of multiple 

hardware and software. The main replication techniques are: 

• Active replication (also termed the state machine approach). In this technique all 

replicas process the inputs and send the results concurrently.  This technique 

assumes that all replicas are deterministic and will reach the same results. For 

fail-silent nodes, the destination nodes are supposed to discard duplicated 

messages. The active replication technique may be extended to tolerate value 

failures [92], as TMR does, and even Byzantine failures [72] . 

• Passive replication (also termed the primary-backup approach). It is a centralized 

technique equivalent to standby sparing. In this technique all inputs are sent to a 

primary replica, which processes them and replies, updating the state of the 

backup replicas. If the primary replica fails, one of the backup replicas assume as 

primary. Passive replication can only be applied in fail-silent nodes.    
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2.7 Software fault tolerance 

Complexity is the root cause of software faults in computer systems [81, 111]. 

Software fault tolerance is needed because of our inability to produce error-free 

software. Fault tolerance can be applied to different software layers and software 

elements, such as at the operating system level, the application level, the process 

level, object level and function/method level.  

Software fault tolerance can be divided in two groups: single version or multiple 

version software techniques. Single version techniques aim to tolerate software faults 

with a single software implementation, or version. To accomplish this, single version 

software can use rollback and rollforward techniques, as well as time and information 

redundancy. Examples of single versions techniques include error detection, 

checkpoint and restart, exception handling, and input data re-expression. Although 

single version techniques such as exception handling cannot fully recover from errors, 

they can be used to produce fail-controlled systems. 

 In contrast, with multiple version techniques, two or more software versions are 

executed sequentially or concurrently. These versions are created using some kind of 

design diversity, such as different programming teams or different algorithms, in 

order to avoid design faults. Several strategies have been proposed to implement fault 

tolerance with multiple version software, although most of them use the same 

architectural principles used in hardware fault tolerance.   

Multiple version software is in general very expensive, but it has been used in 

safe-critical systems such as flight control systems, e.g. Airbus A340 [25], transport 

systems, e.g. Elektra Railway Signaling System [58], and space systems, e.g. NASA 

Space Shuttle [104]. The degree of design diversity utilization is variable. Full diverse 

software may use even different specifications for each software team, while in the 

other extreme diversity may be implemented by a single programmer, using different 

algorithms for each software version. 
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2.8 Fault tolerance strategies 

This section presents several fault tolerance strategies, both for hardware and 

software fault tolerance. A fault tolerance strategy, also termed technique or scheme, 

is usually a pattern for fault tolerance implementation, using a set of error detection, 

error handling, fault handling, redundancy and diversity mechanisms.  

2.8.1 Checkpoint and Restart 

The application of the Checkpoint and Restart technique started with computers in 

the late 1950´s [50]. As the reliability and availability of these systems were very low, 

it was common to save the state of a task in stable storage to avoid losing all the work 

after a system failure.  

Checkpoint and Restart is a strategy based on backward recovery [93]. After 

detecting an error, a system or component tries to reach a previous error-free state and 

then restarts processing again. Checkpointing can be taken periodically or at 

previously determined points as, for instance, before executing some operation. 

The application of Checkpoint and Restart is effective against transient hardware 

faults and elusive software faults because they probably will not be activated in a 

second execution under a slightly different context. Randell [98] states the following 

about the use of checkpointing mechanisms: “fault tolerance does not necessarily 

require diagnosing the cause of the fault, or even deciding whether it arises from the 

hardware or the software.” 

A checkpoint can be saved in memory or in stable storage, and is generally 

discarded after the next checkpoint is executed. Other mechanisms of recovery points 

include recovery cache and audit trail. In the recovery cache mechanism, only states 

that will be changed are saved. In contrast, in the audit trail mechanisms, all state 

changes are saved. 
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2.8.2 Recovery Blocks 

The Recovery Blocks (RB) strategy [55, 98] is an extension of the Checkpoint 

and Restart strategy for multiple version software. In this technique, two or more 

software variants are implemented. The main software variant, also called primary 

alternate, is executed first and then an acceptance test (AT) is performed. The AT is 

an application-dependent error detection mechanism, such as a reasonableness check.  

If the acceptance test detects an error, alternate versions are executed sequentially 

until one of them is successful. If all variants fail, the recovery block strategy ends in 

a failure condition, and the error must be treated using forward recovery.  

The general implementation of Recovery Blocks is shown in Figure 2.5. A 

checkpoint or other kind of recovery point is taken before starting the execution of 

alternates. After executing an alternate, an acceptance test is run and, in case of 

success, the checkpoint is discarded and the recovery block ends normally. If 

otherwise the acceptance test fails, the checkpoint is restored and a new alternate is 

executed, unless no alternates are available, which represents a failure. 
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      failure

entry

 

Figure 2.5: RB execution. 

Recovery Blocks may optionally use watchdog timers for establishing deadlines 

for the variants execution, as a way to detect an anormal behavior, such as infinite 

loops.  A watchdog timer may be configured with the worst case execution time of the 

alternate, before its execution. The watchdog timer activation acts as an exception 

signal to the execution control of the recovery blocks strategy. 

Typically, for primary alternate it is selected the more effective software version. 

For the second or further alternate versions, a degraded functionality may be 
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provided, as the primary version is expected to run correctly in future activations. The 

degree of diversity in recovery blocks is restricted to different algorithms because 

each alternate is implemented as a function or class method.  

The Recovery Blocks construct can be nested. This means that inside one 

alternate it should be possible to start another RB, and so several levels of recovery 

block could be running at the same time.  However, this feature demands a more 

complex checkpoint and control implementation.  

Most implementations of Recovery Blocks try to make the recovery point 

mechanism automatic, as for instance using recovery caches, either in hardware or 

software. Recovery caches save only global data accessed by alternates. However, in 

order to restore the previous state after an error has been detected by the acceptance 

test, all the operations taken by the software alternated have to be reverted. If an input 

or output has occurred after the last checkpoint, as for instance, by sending or 

receiving a message, this operation has to be reverted. Therefore, the implementation 

of recovery blocks in concurrent systems must take in account the coordination 

between recovery points in different processes or nodes to prevent system 

inconsistencies and the domino effect [98]. 

The acceptance test is unique for all alternates and it does not include any fault 

tolerance. Consequently it must be simple, effective and free from design faults. 

Besides, a complex acceptance test can introduce too much runtime overhead.  

An experiment using the RB strategy in a Naval Command and Control System 

showed a failure coverage of over 70% [97]. The cost of the fault-tolerant software 

was 60% greater than the original software cost, and the system presented a 40% 

runtime overhead. These apparent high costs were considered acceptable in face of the 

improvement in system reliability.  

2.8.3 Distributed Recovery Blocks 

The Recovery Blocks strategy does not establish any procedure for execution in 

distributed environments. The Distributed Recovery Blocks (DRB) strategy [64] 
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combines the Recovery Blocks concept with distributed processing in dual nodes to 

provide additional fault tolerance for permanent hardware faults.  

Figure 2.6 shows a block diagram of a DRB computing station. This scheme uses 

two computing nodes, two software variants (try blocks), and a common acceptance 

test. One of the nodes works as a primary node and the other as a shadow node.  
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Figure 2.6: DRB execution. 

In normal operation, only the primary node sends outputs to other computing 

stations. The nodes act in a two-phase mechanism. In the first phase, an input is 

selected for running, and in the second phase, an output is produced. The DRB 

operation is executed as follows. After an input selection, the two nodes start running 

different try blocks: the primary node runs try block A, while the shadow node runs 

try block B. After executing each try block, an acceptance test is performed. If the 
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primary node succeeds in try block A, it sends a message to the shadow node 

notifying its success and then outputs its results to the next computing station. 

However, if the primary node fails and the shadow node passes its test, the shadow 

node assumes the role of primary and sends its results. If both the primary and the 

shadow fail in the first try block, they try to execute the remaining try block. A correct 

execution of the second try block (A) in the shadow node will be a valid output. A 

correct execution of the second try block (B) in the primary node is necessary to keep 

state consistency between the nodes. 

The DRB strategy also depends on a recovery point mechanism as the RB 

strategy does, and can also have watchdogs to control the try blocks execution. A 

failure in keeping the try block deadline is considered a failure in a time acceptance 

test.  

The DRB strategy has the following major useful characteristics [66]:  

• Provides a uniform treatment for hardware and software faults.  

• The recovery time is reduced because concurrency is exploited between the 

primary and the shadow nodes. However, the timeout for failure detection of the 

primary node can affect this recovery time.  

•  In normal operation (no errors), the increase in processing time for the primary 

node is minimal because it does not have to wait for any message from the 

shadow node, although it has to send the AT success notification to the shadow 

node. 

• It is cost effective because only two software variants are needed and the second 

version can be simpler and provide a degraded functionality.  

The drawbacks of DRB are related to node coordination. First, it needs some 

mechanism for ensuring input data consistency, otherwise the two nodes will work in 

different computations and their state will become inconsistent. Second, it requires the 

communication of acceptance test results between the primary and the shadow node. 

A delay in receiving this result would make the shadow node change its role to 

primary, presuming it has failed. If that was not the case, both nodes would send their 

results and two primaries nodes would be active. Finally, a mechanism for detecting 
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role inconsistencies between nodes is required to avoid two primaries or two shadows 

at the same time (e.g. when both nodes fail in the try blocks).  

The DRB strategy assumes that the communication network is reliable [66].  Fault 

values messages are negligible by incorporating error correcting schemes. However, 

acknowledge messages by successor computing stations may be required to assure 

reliable communication. 

Some extensions to the DRB strategy have been proposed. The Extended 

Distributed Recovery Block (EDRB) [51] includes a supervisor station for confirming 

node crashes and misjudgments by DRB nodes about their partners. It also defines 

two networks: one for supervision and the other for working nodes communication.  

An approach for extending the DRB strategy for using more than two nodes and 

more than two try blocks is described in [65]. This approach is called Recursive 

Shadowing [66] because each additional shadow node interfaces with the previous 

DRB station which is considered as a primary for the new configuration. 

A Pair of Self-checking Processing Nodes (PSP) [70] consists of an 

implementation of a DRB station using only one software version.  It combines the 

application of the Checkpoint and Restart strategy with two self-checking units. This 

configuration does not tolerate solid software faults. 

2.8.4 N-Version Programming 

The N-Version Programming (NVP) strategy [27] combines the use of software 

design diversity with the compensation technique. It is equivalent to static redundancy 

(e.g. TMR) in hardware software tolerance. In NVP, two or more functionally 

equivalent programs are executed either concurrently or sequentially and their outputs 

are compared by a decision mechanism implemented by software. If only two 

versions are used, the comparison of results is called matching, and can only detect 

errors. If more than two versions are used, the comparison of results is called voting, 

and errors can be detected and corrected by masking.  

NVP includes a methodology for developing software versions with a high level 

of diversity, based on a common specification that should include all necessary 
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information for independent software teams [19]. It recommends the utilization of 

different algorithms, programming languages and compilers. The level of NVP 

application can be the entire program or single modules or functions. 

The decision mechanism is the most critical element of the NVP strategy, as only 

a single version is provided. Differently from the exact voters used in hardware, NVP 

voters often must deal with inexact values, generated by different algorithms and 

programming languages. Besides, the voter design is application-specific, similarly to 

the acceptance test in Recovery Blocks. Several types of voters exist as majority, 

mean, consensus and dynamic voters [94]. 

In comparison with Distributed Recovery Blocks, concurrent NVP has the 

advantage of not requiring checkpoint mechanisms and the acceptance test. However, 

it demands more hardware and software versions for tolerating the same number of 

faults. 

2.9 Fault-tolerant communication 

A distributed fault-tolerant system depends heavily in fault-tolerant 

communications. Fault tolerance strategies have to rely on network facilities to deliver 

inputs and outputs to and from software variants, and to allow the coordination in 

strategy execution. Furthermore, for systems with global state, missing an input 

message will lead to state inconsistency among distributed variants.       

 In order to obtain a fault-tolerant communication system, the following methods 

are used [117]: 

• Spatial masking – sending the same message by multiple links. 

• Temporal masking – sending the same message multiple times. 

• Detection/recovery – using acknowledgements, timeouts and retransmissions. 

The detection/recovery method may use positive or negative acknowledgements. 

In the positive acknowledgement method, if a receiver does not send an 

acknowledgment after a timeout, the message is retransmitted. This may be repeated 

for a fixed number of times. In the negative acknowledgement method, the receiver is 
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responsible to detect that a message was lost (or is corrupted) and to ask for 

retransmisson. This may be implemented by using sequence numbers, or by using a 

time-triggered technique. 

Multicast message transmission can use broadcast/multicast network facilities, or 

even point-to-point messages, where the same message is sent individually to all 

recipients. In that context and regarding sender resilience, multicast can be classified 

as [117]:  

• Unreliable multicast: no effort is made to overcome link failures. 

• Best-effort multicast: the sender makes some effort to deliver the message, such 

as performing retransmissions, but if the sender fails before delivering the 

message to all recipients no reliability can be guaranteed.  

• Reliable multicast: the participants coordinate to ensure that the message is 

delivered to all recipients, as long as it is delivered to at least one recipient.  

Even using broadcast/multicast network facilities, the sender may fail before the 

message is correctly received by all receivers. Possible reasons are electric noise or 

the lack of buffering space at the receiving node [61]. However, the implementation 

of reliable multicast involves several rounds of communication and large use of 

buffering, in order to guarantee atomicity in worst case scenarios. This high latency 

makes this method unsuitable for hard real-time systems. Therefore, many real time 

architectures use the best-effort approach, such as the Time-triggered Protocol (TTP) 

[71] and the Time-triggered Message-triggered Object Support Middleware 

(TMOSM) [70].   

Besides reliable communication, some distributed fault tolerance strategies such 

as DRB and NVP also demand input data consistency. Some communication systems 

are able to guarantee the delivery of messages in the same order for all receivers. If 

that is not the case, the fault tolerance strategy must include a mechanism for input 

synchronization. 
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2.10 Fault tolerance software structures 

In order to reduce the complexity of the fault-tolerant software and promote 

software reuse, several object-oriented patterns and frameworks have been proposed. 

These software structures generally translate fault tolerance concepts as variants and 

decision algorithms (also called abjudicators) into abstract classes that define 

interfaces for the implementation of fault tolerance techniques. A common approach 

is to separate the fault tolerance functionality from the application software, making it 

reusable. Additionally, the applications program becomes a user of the fault tolerance 

software, reducing system complexity. 

Xu, Randel, Rubira-Calsavara and Stroud [119] proposed an object-oriented 

structure for dealing with software fault tolerance. They suggested the application of 

idealized components with diverse design using classes to implement the control 

algorithm, the software variants and the abjudicator, as shown in the example of 

Figure 2.7.  

Controller

- pa:  Abjudicator *
- pv1:  Variant *
- pv2:  Variant *
- pv_n:  Variant *

+ recoveryBlocks(Abjudicator *, Variant **, ...) : status
+ nVersionProgramming(...) : status

Abjudicator Variant

Voter AT Variant1 Variant2 Variant_n

1*1

1

 

Figure 2.7: Xu,Randell, Rubira-Calsavara and Stroud´s framework example. 

Each fault tolerance technique is implemented by a method of the Controller 

class, using one Abjudicator and several Variant objects passed as arguments by the 

application program. In this architecture, the inclusion of a new fault tolerance 

strategy demands the addition of a new method to the Controller class. There is no 
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definition on how input data is passed for the variants and how the results are 

returned, but a general solution must be adopted, otherwise the Controller class would 

not be reusable.  Specialized abjudicators can be defined by deriving the Voter and 

AT classes.  

Variant classes can achieve design diversity by using diverse algorithms and 

internal data structures. This is termed class-level design redundancy. However, some 

mechanism must be provided for maintaining state consistency among Variant objects 

if they maintain their state between activations. Less general solutions to variant 

diversity include object-level design redundancy, in which variant objects belong to 

the same class but are initialized with slightly different data, and operation-level 

design redundancy, in which variant classes have diverse implementation algorithms 

but no class data.  

Tso, Shroki, Tai and Dziegiel [115] developed and implemented a framework of 

software tolerance components. Figure 2.8 shows the class diagram for their 

implementation of the Recovery Blocks technique.   

RBscheme

Executive

TryBlock

CheckPointMechanism

AcceptanceTest

SingleProcess Concurrent

SRB DRB PTC Conversation

Primary Alternate

CheckPoint RecoveryCache AuditTrail

Timing Reasonable

 

Figure 2.8: Tso, Shokri, Tai and Dziegiel´s class diagram for the RB technique. 

The RBscheme class is responsible for implementing the Recovery Blocks 

technique. It delegates the control algorithm to an Executive object, which is 

specialized by inheritance to cover several execution schemes, using single and 

concurrent processes. Primary and alternate variants are implemented as classes 

derived from the TryBlock class. Acceptance tests algorithms are defined by classes 

that inherit from the AcceptanceTest class. Checkpointing mechanisms, as recovery 
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caches and audit trails, are implemented by classes derived from the 

CheckPointMechanism class.  

The main drawback of this framework, comparing to Xu et al. framework, is the 

definition of a different class structure for each fault tolerance scheme. For instance, 

voter classes are added for NVP and data re-expression classes are added for data 

diversity techniques, such as Retry Block and N-Copy Programming [11].  

Daniels, Kim and Vouk [35] proposed the Reliable Hybrid pattern, which targets 

the design of fault tolerance applications. The focus of this pattern is on the decision 

mechanism, which can combine acceptance tests and voters in hybrid strategies, such 

as Concensus Recovery Blocks [102] and Acceptance Voting [18].  Figure 2.9 

presents the Reliable Hybrid pattern structure. 

Master

+ request()

Version

+ request()

Abjudicator

+ getResult()

Version1

+ request()

Version2

+ request()

Version_n

+ request()

Voter

+ getResult()
- vote()

AT

+ getResult()
- accTest()

Hybrid

+ getResult()

VoterImplem1

+ getResult()
- vote()

VoterImplem2

+ getResult()
- vote()

ATImplem1

+ getResult()
- accTest()

ATImplem2

+ getResult()
- accTest()

 

Figure 2.9: Reliable Hybrid pattern class diagram. 

The Reliable Hybrid pattern has a class diagram that is similar to Xu et al. 

framework. The improvement is related to the abjudicator, which includes the Hybrid 

class and implements the Composite pattern [47]. The Master class has a single 

association with one Abjudicator object, which may be a Voter, an AT or a Hybrid 

object. The Hybrid class possesses a list of Abjudicator objects (Voters, AT objects 

and other Hybrid objects) and its getResult method calls each Abjudicator object 

sequentially until a successful result is obtained.  
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In this pattern, the fault tolerance strategy is performed by the Master class, which 

calls the several Version objects and sends their results to the Abjudicator object. 

However, no specific mechanism is devised to change the control algorithm. 

Xu and Randell improved their previous framework and published it as the 

Generic Software Fault Tolerance (GSFT) pattern [121]. This pattern class diagram is 

shown in Figure 2.10.   

ExternalInterface

+ request()

FTObject

+ request()

GenericFTinterface

+ request()
FTController

NVPRB Other

Variant

+ request()

Variant1

+ request()

Variant2

+ request()

Variant_n

+ request()

Abjudicator

+ getResult()

Voter

+ getResult()

AT

+ getResult()

Combined

+ getResult()

 

Figure 2.10: The Generic Software Fault Tolerance pattern class diagram. 

A fault-tolerant class (FTObject) must implement ExternalInterface to conform to 

the interface characteristics of an idealized component. The FTObject class passes the 

user requests to the GenericFTInterface class, which actually executes the fault- 

tolerant processing, using FTController subclasses to implement the control 

algorithm. The abjudicator is implemented similarly to the Reliable Hybrid Pattern, 

including a Combined class that behaves as the Hybrid class in that pattern. The main 

difference of this pattern to the original framework proposed by the authors is the 

inclusion of the FTController hierarchy that implements the control algorithm by 

applying the Strategy pattern [47], similarly to the Tso et al. framework (Figure 2.8). 

The GSFT pattern is, to our knowledge, the most comprehensive framework for 

fault tolerance ever presented. However, it leaves undefined many issues. One is 

regarding data passing between variants, abjudicators and the user application. 
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Another issue is how to implement this pattern using processes or threads as units of 

fault tolerance. In Chapter 5 we propose a fault tolerance framework that addresses 

these issues.  

2.11 Fault tolerance application support 

Fault tolerance can be supported at different software layers, such as the operating 

system, the middleware and the application level. This section presents the related 

work in support fault tolerance at the application level. 

2.11.1 FT-RT-Mach and DEOS 

The FT-RT-Mach project of the FORTS group at University of Pittsburgh [44]  

consisted of the implementation of fault tolerance support for the RT-Mach, an 

operating system developed by the Carnegie Mellon University [110]. The project 

purpose is to tolerate transient faults by thread re-execution in case of error detection 

without modifying the original Rate Monotonic Scheduling (RMS) of periodic 

threads, using the Fault-Tolerant RMS (FTRMS) algorithm [40].  The algorithm 

affects the thread admission control of real-time periodic threads, as it takes into 

account the time needed for thread recovery [37]. A thread in FT-RT-Mach has its 

context information cleared at the end of each execution.  A fault flag is provided for 

each thread and it can be set by exception handlers or by application threads. This flag 

is tested at the end of each thread execution and may trigger error recovery 

mechanisms, such as Checkpoint and Restart or Recovery Blocks. Checkpointing in 

FT-RT-Mach is not provided by the operating system; therefore, it must be 

implemented by the application threads.  

The same mechanisms used in FT-RT-Mach were applied in the DEOS operating 

system, a commercial avionics operating system developed by Honeywell [37]. The 

FTRMS algorithm and the fault tolerance support were adapted to this operating 

system, which presents several differences in relation to FT-RT-Mach.  Threads in 

DEOS never have their context information cleared, and they usually run in an infinite 



Chapter 2. Fault tolerance 

34 

loop, calling a function to suspend itself after each execution. Additionally, periodic 

threads must be harmonic. Two periodic threads are harmonic if the larger period is an 

integer multiple of the smaller. The checkpoint mechanism is performed by the 

operating system, by defining and managing a backup state memory for each thread. 

However, in order to reduce the time and memory overhead, the application 

programmer has to define the set of variables that are considered as state information. 

Only those variables are saved by the operating system.  

2.11.2 Delta-4 

The Delta-4 [21, 92] was a collaborative project developed by a multinational 

team of companies and academic researchers. It started in 1986 and terminated in 

1992, aiming the definition of dependable distributed system architecture for real-time 

systems areas, such as computer integration manufacture. The system is meant to be 

used on local area networks communicating by message-passing between nodes. The 

architecture separates each node into a host computer and communication hardware 

called Network Attachment Controller (NAC). NACs use built-in hardware self-

checking to be fail-silent and are capable of reliable multi-point communication using 

an atomic multicast protocol. This protocol, implemented at the data-link layer of the 

Open System Interconnection (OSI) model, guarantees atomicity and ordering to all 

messages. As messages can be lost, it uses a message retry mechanism that tolerates a 

pre-defined number of successive omission failures. Replicas are application objects 

(processes) that can communicate using synchronous (equivalent to Remote 

Procedure Call - RPC) or asynchronous messages.  

Delta-4 supports the following fault-tolerant strategies: 

a) For hardware fault tolerance: 

• Active replication. 

• Passive replication. 

• Semi-active replication. 
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b) For software fault tolerance: 

• Recovery Blocks. 

• N-Version Programming. 

In the implementation of active replication, a system supplied voting mechanism 

may be used to compare message signatures and select the correct output. In NVP, the 

voting algorithm is application-dependent, as different software versions can find 

different correct answers.  

The system has mechanisms for cloning a new replica in order to replace a failed 

one. The cloning mechanism depends on whether the replica is stateless or not. 

Stateless replicas only require a standard initialization while state replicas require 

some form of acquiring the current state from other replicas via a standard interface.   

Unfortunately, the architecture proposed by Delta-4 was not applied in many field 

applications and in research area, probably because it needs a special hardware for the 

NAC.  

2.11.3 TMOSM and ROAFTS 

The DREAM laboratory at University of California - Irvine [38] has been 

working on real-time and fault tolerance computing in object-oriented distributed 

architectures.  Their work is based on the Time-Triggered Message-Triggered Object 

(TMO) structuring scheme, or model, formerly named RTO.k object scheme [67]. In 

this model, a real time object has both time-triggered methods, which are activated at 

predefined times and message-triggered methods, which are asynchronous and non-

blocking. Message-triggered methods have lower priority and are not allowed to 

execute if they can interfere with time-triggered methods. For both kinds of methods 

deadlines can be established and monitored.   

The execution of TMO objects is controlled by the TMO Support Middleware 

(TMOSM) [69].  This middleware has been ported to several operating systems as 

Windows NT, Solaris, Windows XP, Windows CE and Linux. The middleware 

requires clock synchronization between nodes and an operating system clock tick 
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service for triggering a top priority thread, called Watchdog Timer and Scheduler 

Thread (WTST). This thread is responsible for scheduling other middleware threads 

and the pool of threads that effectively run the TMO application methods. WTST 

reserves one time slice in three for the exclusive execution of application threads, 

while the other time slices are scheduled for middleware threads. For instance, in the 

Windows NT implementation described in [69], the time slice is set to 3 ms and, 

therefore, an application thread is scheduled to run freely for 3 ms in a 9 ms cycle. 

This mechanism is designed to reserve a minimum amount of CPU utilization for 

application threads. Additionally, unused time periods attributed to middleware 

threads are spent by application and operating system threads. In a defense prototype 

case study it was observed that deadlines of 20 ms were met for about 99.9 % of time. 

The failure in accomplishing the deadlines is reputed to overheads introduced by 

operating system threads that could not be disabled. 

Communication between TMO objects uses the concept of Data Field Channels 

that are logical multicast channels based on some ID, called content code. It supports 

two types of messages: state messages and event messages. State messages carry 

information to be stored at fixed memory locations and messages can overwrite data 

before being read by some process. Event based messages are normal messages that 

are stored in a buffer after being received.  

Fault tolerance was introduced by means of the Primary-Shadow RTO.k 

replication (PSRR) scheme [67], which executes TMO objects replicas using the DRB 

or PSP fault tolerance techniques.  In this scheme, the shadow node is supposed to 

receive several messages from the primary node, such as the acceptant test result and 

an output success confirmation. The PSRR scheme has later evolved to implement 

adaptive fault tolerance by means of the Real-Time Object-Oriented Adaptive Fault 

Tolerance Support (ROAFTS) middleware [68], which is able to switch between three 

basic modes: DRB/PSP (or parallel redundant mode), RB (or sequential backward 

recovery mode) and exception handling (or sequential forward recovery mode). The 

decision about changing FT modes is based on equipment availability, criticality and 

recovery time. The middleware configuration includes network surveillance and 

reconfiguration services in order to detect and confirm failures in working nodes. 

ROAFTS has been ported to the Solaris operating system and CORBA, using 100 ms 
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as time slice and satisfying deadlines from 40 to 100 ms [103].  The development of 

ROAFTS is still in early phases and no implementation is publicly available as occurs 

with the TMOSM [38]. 

2.11.4 Adaptive Fault Tolerance for Spacecraft 

Adaptive Fault Tolerance (AFT) for Spacecraft [52] is a middleware designed for 

space applications which can change the application fault tolerance configuration 

based on the mission phase, the failure history and the environment. It aims to cover 

hardware physical faults, rare conditions in software and unusual environment effects. 

It is based on a dual redundant system architecture which runs atop the VxWorks 

operating system. Tasks in this system are classified into critical and non-critical, 

periodic and aperiodic. The objective of the adaptive fault tolerance mechanism is to 

match redundancy and resource consumption with the mission phases and reliability 

requirements. The system runs in one of 8 possible modes, differing in node processor 

speeds and in the responsibilities of critical and non-critical tasks execution. Some 

modes involve replication of critical tasks only, others the replication of all tasks, and 

others no replication at all. For non-replication modes, transient faults can be detected 

and tolerated by using acceptance tests and backward recovery mechanisms. 

Replicated nodes use DRB or a Primary/Backup architecture using active replication. 

Non-replicated modes use exception handling and Recovery Blocks. 

The communication between nodes uses TCP or UDP socket primitives. 

Messages can be sent to logical channels and multicast. Each task can join or leave a 

channel dynamically. Both reliable and unreliable communications are provided. For 

reliable logical channels, the delivery mechanism is based on the concept of negative 

acknowledgement. Additionally, period cross-check messages circulate among the 

replicated processes to ensure that any broadcast or multicast message has not been 

lost. 

In redundant strategies, the middleware is responsible for checking the heartbeat 

of both replicas and to ensure that they have a consistent state. The replicated data 

management maintains consistent (synchronized) state data among replicated objects 

using several strategies such as processing input with uniformity (state updates 
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associated to incoming messages are made to all processes before a response is 

generated), processing without uniformity (a response is generated without ensuring 

that all processes have updated their state data) and periodic update (state update is 

sent by the primary process on a periodic basis). 

The middleware has a node state restoration service to restart a failed node or 

shutdown node and provide the startup configuration. State restoration can be 

performed as a single event or incrementally. The system does not need clock 

synchronization between computers. 

2.11.5 Fault Tolerant CORBA 

The Common Object Request Broker Architecture (CORBA) is a remote method 

invocation based middleware defined by the Object Management Group (OMG) [90]. 

It offers transparency in relation to objects location and programming language in 

which they are implemented, and hides operating systems, platforms, networks and 

protocols details from application programs. The Fault Tolerant CORBA (FT-

CORBA) specification [88] is part of the formal CORBA architecture that aims to 

provide fault tolerance support for applications that require high level of 

dependability. The fault tolerance mechanisms provided by FT-CORBA are based on 

entity redundancy, or the replication of CORBA objects. Besides, the specification 

defines mechanisms for error detection and recovery. The following replication styles 

are supported in FT-CORBA: 

• Stateless: the replicated objects maintain no state data and therefore no state 

consistency mechanism is performed. 

• Cold Passive Replication: only the primary replica responds to client requests. If 

the primary fails, then backup replica is selected and the state of the failed 

primary is loaded from a logging system.  

• Warm Passive Replication: similar to Cold Passive Replication, but the state of 

the primary is transferred periodically to the backup replicas during normal 

operation. This type of recovery provides faster recovery than Cold Passive 

Replication. 
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• Active Replication: all replicas execute the request simultaneously but only one 

reply is sent to the client. Duplicate messages are discarded automatically by the 

infrastructure. This mechanism provides faster recovery from failures, but 

requires replica determinism and total order message delivery to maintain state 

consistency among replicas. 

• Active Replication with Voting: this is a planned extension to the existing 

specification and adds a mechanism of exact majority voting before sending a 

reply to the client.   

The present FT-CORBA specification provides only fault tolerance to crash 

failures. Faulty objects are supposed to stop working without generating incorrect 

results. The fault detection mechanisms supported by FT-CORBA are based in 

heartbeats and timeouts only. The implementation of FT-CORBA requires the 

utilization of objects working as Replication Managers, Fault Detectors and Fault 

Notifiers. The creation and management of objects and object groups can be 

implemented by the FT-CORBA infrastructure or by the application program. 

The application of FT-CORBA in real-time system is limited because it can spend 

an unpredictable amount of time detecting faults and recovering from them [48]. In 

Passive Replication the recovery time needed to switch to a backup replica can be 

unacceptable for a real-time application and when using Active Replication too much 

time can be spent providing totally ordered reliable multicast. The Real-Time 

CORBA specification [89] targets systems with real time requirements, but this 

specification is not compatible with FT-CORBA [48, 85]. 

Several projects aimed the implementation of fault tolerance in CORBA, such as 

Aqua [99], DOORS [86] and MEAD [85].  

2.12 Summary 

Fault tolerance is a means of achieving high dependability for critical, long life 

and high-availability systems. Despite the efforts to prevent and remove faults in 

systems development, the application of fault tolerance is usually required because the 

hardware may fail during system operation and the software is rarely fault free.  
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The implementation of fault tolerance involves the application of error detection 

and system recovery. System recovery aims to eliminate the error from the system 

state, and additionally may diagnose the fault and preventing it from being activated 

again. Fault tolerance implementation depends on redundancy, the utilization of 

additional resources, and in design diversity in order to tolerate design faults. 

Several fault tolerance techniques have been described, both for hardware and 

software fault tolerance, using single or multiple version software. The emphasis was 

to present FT strategies that are applied in this work, such as RB, DRB and NVP. 

Fault-tolerant communication concepts have also been introduced.  

 The related work regarding software structures for fault tolerance have been 

presented. This includes frameworks and design patterns proposed by the research 

community in order to reduce the complexity of the fault-tolerant software and 

promote software reuse.  

Finally, the related work regarding application-level fault tolerance support has 

been presented. Some works introduce fault tolerance support by the operating 

system, e.g., FT-RT-Mach, while others by the middleware, such as ROAFTS and 

FT-CORBA.    
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Chapter 3 

Aspect-Oriented Programming 

 

 

 

 

 

Aspect-Oriented Programming (AOP) is a new programming technique 

that targets the modularization of crosscutting concerns. This chapter 

introduces the main concepts related to AOP, describes the AspectC++ 

language extension and presents the related work regarding the application 

of AOP in operating systems, middleware and fault-tolerant systems. 
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3.1 Separation of concerns 

Separation of concerns is a concept that has been applied in software engineering 

for a long time [36, 91] and involves the division of the software application in 

smaller functionalities or concerns. Separation of concerns leads to the development 

of systems in modules that could be developed largely independently from each other, 

reducing the system complexity and improving its reusability. The usage of 

procedural programming is the initial step into separation of concerns. Later, the 

concept of information hiding was introduced and contributed to Object-Oriented 

Programming (OOP) as a new mechanism of separation of concerns. 

The lack of separation of concerns in a system can be detected by inspecting its 

source code and looking for the existence of code tangling and code scattering. Code 

tangling happens when a module handles multiple concerns. For instance, the same 

source code can be dealing with business logic, persistence and distribution concerns. 

Code scattering happens when a concern implementation is spread in multiple 

modules. Figure 3.1 shows examples of code tangling and code scattering. 

 

Distribution

Persistence
Business logic

Distribution

Persistence

Business logic

Business logic

Distribution

Distribution

Distribution

(a) tangling (b) scattering  

Figure 3.1: Code tangling and code scattering. 

Some concerns are very hard to separate from others. The implementation of 

these concerns is often tangled with other concerns and is scattered throughout the 

code. Therefore, they are called crosscutting concerns. Examples of crosscutting 

concerns are distribution, fault tolerance, and security. Crosscutting concerns are also 
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called non-functional, as opposed to the functional concerns that implement the 

system’s main functionality.  

New mechanisms to provide advanced separation of concerns have been 

proposed. The work in [56] identifies and analyses some mechanisms for 

modularizing crosscutting concerns, such as Meta-level Programming [77] and 

Composition Filters [8].  

3.1.1 Meta-level Programming 

Meta-level Programming is based on meta-object protocols (MOP), which enable 

the modification of the language semantics and implementation. Meta-object 

protocols are the interface between the base-level program and the meta-model 

program. By intercepting the activation of methods in the base-level program, meta-

objects have the opportunity to execute other concerns. However, there is no special 

mechanism to separate crosscutting concerns from each other. An example of MOP 

for the C++ programming language is OpenC++ [28]. In OpenC++, the complete 

syntax tree is visible on the meta-level and arbitrary transformations are supported.  

The work in [120] evaluated OpenC++ to implement software fault tolerance 

techniques, such as RB and NVP, in a distributed sorting application. They concluded 

that the meta-object approach provides a cleaner and simpler interface to applications 

comparing with standard object-oriented implementations. Moreover, they measured a 

runtime overhead factor of about two between calling an OpenC++ operation and 

calling a C++ operation, but this overhead was considered small in comparison with 

the overhead imposed by the fault tolerance mechanism. 

3.1.2 Composition Filters 

Composition Filters extend object-oriented programming by adding filter classes. 

Messages between objects are processed by filters both before and after the normal 

method execution. More than one filter may be applied to a single message. 

Separation of concerns is achieved by defining a filter class for each crosscutting 
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concern. No research work concerning the application of Composition Filters to fault 

tolerance has been reported yet. The TRESE group at the University of Twente [114] 

has available implementations of Composition filters for C# and Java.  

3.1.3 Aspect-Oriented Programming 

Aspect-Oriented Programming is a programming technique proposed in [62].  In 

AOP, components are defined as properties of a system, for which the implementation 

can be cleanly encapsulated. In contrast, aspects are properties for which the 

implementation cannot be cleanly encapsulated in a generalized procedure. Aspects 

and components crosscut each other in the implementation of a system. The goal of 

AOP is to support the programmer in cleanly separating components and aspects from 

each other, by providing mechanisms that make it possible to abstract and compose 

them to produce the overall system. 

The process of composing components and aspects is performed by the aspect 

weaver. Essential to the weaver operation is the concept of join points, which are the 

elements of the components’ static structure or dynamic behavior that aspect 

programs are able to coordinate with. Join points can be method calls, variable 

accesses or any other point in the execution of a program where additional behavior 

can be attached. The kind of join points allowed for a given AOP implementation 

defines its join point model. The behavior introduced in a join point is named advice. 

A pointcut defines a set of join points. 

A difference between AOP and other separation of concern approaches is the 

definition of different abstraction and composition mechanisms for components and 

aspects [62]. The work in [42] proposes that the distinguishing properties of AOP are 

quantification and obliviousness. Quantification is the capacity of writing unitary 

and separate statements that have effect in many non-local places in a programming 

system. A quantification mechanism allows reaching several join points of the code 

with one declarative statement. Obliviousness means that the component code does 

not need to be prepared or aware of the additional behavior introduced by aspects. 

Therefore, programmers in the components side (or base code) do not have to expend 

any additional efforts to make the AOP mechanisms work.  
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Another definition of AOP was presented in [42]: 

“In program P, whenever condition C arises, perform action A”. 

In this definition, the program P represents the base component code. The 

condition C is defined by a pointcut in the aspect code, and the action A is the advice 

executed at the join points. The condition defined by C can be evaluated at compile-

time based on the static structure of the base code (e.g. method execution) or at 

runtime, based on the dynamic behavior of the program (e.g. calls to method X in the 

execution context of method Y). A single aspect usually defines a set of pairs (C, A).  

Most criticism against AOP is related to the obliviousness property. The base 

code can evolve and the original join points used by aspects can be modified. So, 

aspects can miss the desired join points or capture undesired join points. This problem 

has been called the AOSD (Aspect-Oriented Software Development) Evolution 

Paradox [112]. The inexistency of an explicit interface between the base code and the 

aspect code compromises the independent evolvability of the base code. On the other 

hand, the use of explicit interfaces in the base code (e.g. annotations) reintroduces the 

scattering that AOP was supposed to avoid [107]. Despite this and other drawbacks 

[34, 84], the acceptance of AOP by the researchers from academia and industry is 

high, possibly because AOP is very powerful and can solve real problems related to 

crosscutting concerns.  

The same team that proposed AOP has developed its first and most popular 

implementation to date: AspectJ [17]. The two existing implementations of AOP for 

C++ are AspectC++ [16] and XWeaver [122]. The AspectC++ implementation was 

applied in this work, and it will be described in the next section. 

3.2 AspectC++ 

AspectC++ is a general-purpose aspect-oriented language extension to C++ [16] 

[106]. It has been strongly influenced by the AspectJ language model, but supports 

additional concepts that are unique to the C++ domain. A primary design goal of 

AspectC++ was to keep the low runtime overhead of the C++ programming language, 
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aiming its application in resource-constrained environments such as embedded 

systems. 

3.2.1 Weaving 

The AspectC++ weaver composes the C++ base code and the aspect code in a 

source-to-source transformation, as shown in Figure 3.2. After the weaving process, 

the resulting source code can be compiled by any C++ compiler.  

 

Base code Aspects

AspectC++ 
weaving

Transformed 
source 

code

Compilation 
& linking

Executable 
code

 

Figure 3.2: AspectC++ weaving process. 

 Two weaving modes are available: Whole Program Transformation (WPT) and 

Single Translation Unit (STU). WPT transforms all files (header files and translation 

units) in the project directory tree and saves them in a new directory tree. The aspect 

code, normally using the “.ah” file extension, is also transformed and saved in the new 

directory tree. In the STU mode, the weaver transforms one file at a time, making 

easier to integrate the weaver with makefiles and Integrated Development 
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Environments (IDE). In this mode, all header files directives are expanded and saved 

together with the transformed translation unit.  

3.2.2 Join points, pointcuts and advices 

The following types of advices are supported in AspectC++: 

• Code advices: define a computation that can be executed before, after or around 

(instead of) a given join point. 

• Introductions: define new attributes, methods and parent classes to existing 

classes. 

• Order definitions: establish the order of application among aspects. 

Two types of join points are supported in AspectC++: name join points and code 

join points.  Name join points (or static join points) are named instances in the static 

program structure, such as a class name, function name or namespace. Code join 

points (or dynamic join points) represent events that happen during program 

execution, such as the calling or execution of a function. Code join points result from 

the application of pointcut functions to name join points. Four basic types of code 

join points exist: call, execution, construction and destruction. Call and execution join 

points are related to methods; construction and destructions join points are related to 

classes.  

Figure 3.3 presents a very simple example program using AspectC++ designed to 

debug some method activations in the base code. In this program, the aspect 

DebugClasses contains one pointcut (debug) and one code advice (a before advice). 

The debug pointcut is defined by a pointcut expression that combines an execution 

pointcut function with a call pointcut function using the algebraic “or” operation. The 

execution pointcut function will select the join points related to the execution of all 

methods of ClassA. If for instance this class has three methods, then three join points 

will be selected. The call pointcut function will select the join points related to the 

calling of ClassB methods whose names begin with the “set” string.  If, for instance, 

ClassB has only one method that matches this expression, the number of selected join 

points will depend on how many places this method is called in the entire application 
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code. The before advice defined in DebugClasses will be executed always before the 

selected join points. In this case, the advice code just prints the method signature (e.g. 

“void ClassA::methodA(int,short int)”), provided by AspectC++.  

aspect DebugClasses { 
   
  pointcut debug() = execution(“ClassA”) || 
                     call(“% ClassB::set%(...)”); 
   
  advice debug() : before() { 
    printf(“debug:before %s \n”, JoinPoint::signature() ); 
  } 
}; 

Figure 3.3: AspectC++ program example. 

In addition to the four pointcut function previously discussed, other pointcut 

functions are provided in order to filter or select join points with specific properties.   

A summary of AspectC++ pointcut functions is presented in Table 3.1.º  

Table 3.1: AspectC++ pointcut functions. 

Pointcut function Kind Application 
call(pointcut) function Selects calls to functions described by the 

pointcut parameter. 
execution(pointcut) function Selects functions implementations described by 

the pointcut parameter.  
construction(pointcut) class Selects class construction implementations 

described by the pointcut parameter. 
destructor(pointcut) class Selects class destruction implementations 

described by the pointcut parameter. 
within (pointcut) scope Filters all join points that are within the 

functions or classes in the pointcut. 
cflow(pointcut) ctrl flow Filters all join point inside the dynamic context 

of joint points in the pointcut. 
base(pointcut) type Returns all base classes of classes defined by the 

pointcut. 
derived(pointcut) type Returns all classes in the pointcut and all classes 

derived from them. 
that(type pattern) context Returns all join points where the C++ this 

pointer is related to the type pattern. 
target(type pattern) context Returns all join points where the target object of 

a call is related to the type pattern. 
result(type pattern) context Returns all join points where the result object of 

a call/execution is related to the type pattern. 
args(type pattern,…) context Returns all joint points which match the 

provided argument signature. 
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In Table 3.1 we can see that besides the normal pointcut functions related to 

functions and class construction/destruction, there are others related to scope, 

dynamic control flow, base and derived types and context matching. The type patterns 

defined as parameters of the that, target, result and args pointcut functions can be 

used to convey context information to code advices.  

Like C++ classes, aspects can have data members, constructors and member 

functions, and derive from classes or from other aspects. Pointcuts can be defined as 

virtual or pure virtual, which allows its redefinition in derived aspects. Aspects that 

contain pure virtual member functions or pure virtual named pointcuts are called 

abstract aspects. An aspect that inherits from an abstract aspect and defines all 

pending virtual member functions and virtual pointcuts is called a concrete aspect. 

Aspects can inherit only from ordinary C++ classes and abstract aspects. 

3.2.3 The JoinPoint API 

The aspect weaver creates a unique class for each join point affected by a code 

advice that needs context information.  This class is called the JoinPoint structure or 

JoinPoint API and provides the context information to the code advice, such as 

method parameters types and values, and method return type and value.  It also 

provides context information about calling and target objects, and other useful 

information as the method signature and the number of arguments. For each affected 

join point only the necessary context information is included in the JoinPoint 

structure. This feature is very important to keep a low memory footprint in embedded 

systems. 

If context information is needed, an object of the JoinPoint structure is created in 

each affected join point, and a pointer to this object (the tjp pointer) is passed to an 

inline template function which also receives the JoinPoint structure as a template 

argument (the JoinPoint type).  This inline function will call the real code advice, 

implemented as a template method of a class representing the aspect it belongs. In 

summary, each aspect will be transformed into a C++ class and each code advice 

related to this aspect will be transformed into a template member function. The aspect 

class member functions will be called by code inserted at the affected join points, 
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which will pass a pointer to an unique JoinPoint structure carrying the context 

information. Each non-abstract (concrete) aspect results in a singleton object. 

An example of how AspectC++ weaves is shown in Figure 3.4. This figure 

presents how the source code resembles if a before advice is applied at an execution 

join point. The source code was simplified and methods/classes created by AspectC++ 

were renamed and shortened.   

 //----------  base code after weaving 
 
struct TJP_XYZ { 
  //... 
  inline static const char *signature () { 
      return "void ClassA::methodA(int,short int)"; 
  } 
}; 
 
void ClassA::methodA ( int  arg0, short  arg1 ){ 
  TJP_XYZ jp; 
  //... here the jp object is initialized 
   
  AC::invoke_myAspect_ABC<TJP__XYZ> (&jp); 
 
  this->__exec_old_methodA(arg0, arg1); 
} 
 
inline void ClassA::__exec_old_methodA(int aa,short int zz){ 
   // original methodA implementation     
} 
//----------- aspect code after weaving 
 
class myAspect { 
public: 
  static myAspect *aspectof () { 
    static myAspect __instance; 
    return &__instance; 
  } 
 
  template<class JoinPoint> void ADVICE_1(JoinPoint *tjp){ 
     // advice code 
     // here the JoinPoint type and the tjp pointer are seen. 
  } 
}; 
 
namespace AC { 
  template <class JoinPoint> 
  inline void invoke_myAspect_ABC (JoinPoint *tjp) { 
    ::myAspect::aspectof()->ADVICE_1(tjp); 
  } 
} 

Figure 3.4: Example of source code transformation by AspectC++. 
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The upper part of Figure 3.4 presents the base code after weaving. The JoinPoint 

structure TJP_XYP is declared closer to the implementation of the affected method 

(methodA). An object of this type is created inside methodA and its data fields are 

initialized, if any. Then, the before advice is called, using an inline template function 

invoke_myAspect_ABC. After returning from the advice code, the original 

implementation of methodA is called, now renamed by the weaver to 

__exec_old_methodA.  

The aspect code after weaving, shown in the lower part of Figure 3.4, contains the 

definition of the inline template function called by methodA. This function redirects 

the call to ADVICE_1, a template method of the aspect class (myAspect), where the 

advice code is located.  

AspectC++ is not able to advice data member accesses as AspectJ does using the 

get and set pointcut functions. This design decision was made because of the 

possibility of accessing variables with pointers in C++, which cannot be captured as a 

join point by the aspect weaver. However, an extension of AspectC++ described in 

[78] offers this functionality, but without considering pointer accesses.  Another 

unimplemented feature of AspectC++ is template weaving. The weaver is able to 

parse C++ templates but weaving is restricted to non-templated code. However, 

support for template weaving is planned for future versions. 

3.2.4 Performance and memory footprint 

The work in [74] presents a series of micro-benchmarks for the main AspectC++ 

features, based on consumed CPU time (clock cycles), and memory (code/data and 

stack), in a Pentium 3 computer using the GNU g++ 3.3.5 compiler. The work in 

[106] extends the same experiment for the Intel C++ compiler icc 9.0. The results 

show that code advices (before, after or around) applied to parameterless functions 

have a very small runtime overhead (only 2 cycles) and no extra memory 

consumption. Considering functions with parameters and the application of the 

JointPoint pointer (tjp), there is an increase in stack consumption for the tjp pointer 

and the function parameters. However, the runtime overhead to retrieve join point 

specific context is quite low (0 to 6 cycles).  The overheads for dynamic pointcut 
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functions as cflow, that and target (see Table 3.1) are relatively high (6 to 10 cycles), 

as they require the testing of runtime conditions. They also consume more memory, 

with a maximum of 50 bytes in the worst scenario. All overhead data presented here 

was obtained using compiler optimization. The same test cases without compiler 

optimization lead to much worse results.  

Another work regarding AspectC++ performance and cost is presented in [75]. 

This paper reports an experiment comparing three different implementations of a 

weather station embedded software product line: C-based, OOP-based and AOP-

based. The results show that the OOP version requires significantly more memory 

space than its AOP counterpart (up to 138% more), and that AOP requires at most 

10% more memory space than the C version. Moreover, the runtime performance of 

AOP was the same as the C version, while the OOP version overhead was between 4 

and 6.6%. 

3.3 AOP for the operating system 

Coady et al. [29] reported the application of AOP in the FreeBSD operating 

system kernel to modularize the prefetching of virtual memory mapped files. The 

prefetching mechanism implementation was spread in several functions over three 

different layers of the operating system code. After refactoring, the prefetching modes 

were implementing by single aspects, using AspectC, a subset of the AspectJ 

language for the C language, developed by the authors at University of British 

Columbia. The AOP solution presented several advantages over the tangled 

implementation, such as configurability, independent development and better 

comprehensibility. In a follow up work [30], the authors implemented other 

crosscutting concerns in the FreeBSD code, such as page deamon wake up, disk quota 

management and device blocking, analyzing the evolvability of AOP implementations 

in several OS versions. They concluded that AOP brings several benefits, such as 

localized changeability and explicit configurability. Unfortunately, the AspectC 

weaver was not officially released.  
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PURE is an object-oriented (C++) operating system designed for embedded 

applications by the University of Magdeburg [23]. Several works have been reported 

with regard to the separation of crosscutting concerns in PURE using AspectC++. 

Mahrenholz et al. [80] described how aspects can be woven with the operating system 

kernel for monitoring task switches. The work in [79] presented the implementation of 

the interrupt synchronization strategy in PURE using AOP. The same concern was 

implemented in the PURE successor, named CiAO [73], as described in [76]. In this 

work, several interrupt synchronization strategies (e.g. hard synchronization and two-

phase synchronization) were implemented by aspects and could be selected at 

compile-time. The application of mutual exclusion mechanisms at PURE components 

using AOP was described in [105].  

A quantitative analysis of the application of AOP in the ECOS [39] operating 

system is reported by Lohmann et al. [74]. In this work, the ECOS kernel was 

refactored to implement as aspects the following crosscutting concerns: tracing, 

interrupt synchronization and kernel instrumentation. Additionally, the 

implementation of configuration options in the OS was changed from conditional 

compilation (ifdefs) to aspect-oriented mechanisms. Each configuration option was 

encapsulated into a single aspect that applies introductions or code advices to 

implement the optional functionality. The AOP version of the OS showed at average a 

0.9 % higher code size and a 1% better performance. The authors conclude that the 

application of AOP (using AspectC++) for the modularization of crosscutting 

concerns and the implementation of configuration options in operating systems does 

not induce intrinsic overheads.  

In Chapter 6, we describe the utilization of AOP to implement fault tolerance 

mechanisms such as executable assertions at the operating system level 

3.4 AOP for the middleware  

Zhang and Jacobson [124] studied the degree of separation of concerns in the 

internal implementation of CORBA middleware platforms and the advantages of AOP 

in refactoring these systems. They developed an aspect mining methodology 
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supported by a software tool, and reported several new concerns to the platforms 

chosen (JacOrb, ORBacus and OpenOrb), as the dynamic programming interface and 

the support for portable interceptors. They also measured the degree of scattering 

related to normal concerns like logging, synchronization, exception handling and 

pre/post-condition checking. Additionally, they reimplemented some concerns in the 

ORBacus middleware using AspectJ and applied a set of metrics to the original and 

the refactored implementation.  They concluded that AOP lowers the complexity of 

the middleware architecture, increases modularity, maintains the performance, and 

allows a higher level of adaptability and configurability, which is needed to customize 

platforms for particular domains such as real-time, embedded, and fault-tolerant 

systems. 

The application of AOP to a large-scale middleware product line was reported by 

Colyer and Clement [31, 32]. In this work, an IBM commercial middleware with 

more than one million lines of code and hundreds of developers had several of its 

concerns refactored using AspecJ, as tracing/logging, exception handling and 

performance monitoring. The general approach was to develop a single abstract aspect 

for each of these concerns, defining a common policy (when and how), and several 

concrete aspects for defining the scope of application (where). This approach changes 

the way the policy team work: instead of delivering policy documents, they can 

implement the policy by writing the abstract aspects. As a consequence, policy 

compliance is more accurate and any policy evolution can be implemented with less 

efforts.  

Colyer and Clement [32] also reported an experiment with AOP in an application 

that uses a middleware support extensively. They modified an application server 

software in order to separate the usage of Enterprise Java Beans (EJB) from the rest of 

the application. This problem could only be solved by heterogeneous aspects that 

impact on multiple places, but with different behavior in each of these places. The 

base code was refactored by the removal of EJB related code and the creation of hook 

methods that will be affected by advices. The woven application server software 

presented significant improvements in startup time and memory footprint. The main 

problem is that the aspect code is very dependent on the base code and cannot be 

reused in other projects. However, the refactoring simplifies the base code and allows 
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selecting or not EJB support at compile-time. The authors argue that a similar solution 

using plain OOP would be much more complex because of the huge number of 

variation points.  

Ceccato and Tonella [26] described how to migrate an existing non-distributed 

application in a Java Remote Method Invocation (RMI) distributed application, based 

on the AOP application. They state that making an application run in a distributed 

environment involves many modifications that are spread and intertwined with the 

original code. Their solution is able to keep the original application oblivious to the 

distribution concern, which is regarded as a clear advantage in code understandability 

and maintainability.  Aspects are created for the several Java RMI implementation 

issues, as remote interfaces, object factories, method invocation, parameter passing 

and exception handling. Code generation employs TXL [116] and AspectJ.  

An experiment on middleware specialization using AspectC++ was conducted by 

Kaul and Gokhale [59]. Their motivation was to increase the performance and reduce 

the memory footprint of middleware platforms by using aspects to include only the 

needed features and to perform its optimization. They carried out a case study 

involving different concurrency models in the ACE middleware [1]. AOP was used to 

define the thread model and to implement part of its functionality, aiming to improve 

the system performance. Their results show that the AOP version presented smaller 

latency (3 to 4%) and larger throughput (2 to 3%) than the original OOP 

implementation.  

In Chapter 6, we describe how to integrate a fault tolerance framework, which is 

considered an additional middleware, into the operating system code, using Aspect-

Oriented Programming. 

3.5 Fault tolerance using AOP 

This section describes the related work in implementing fault tolerance using 

Aspect-Oriented Programming. Although fault tolerance (fault handling and 

dependability) is considered a non-functional concern and it is commonly cited as one 
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of the problems that AOP can address [56, 62, 73], few works combining fault 

tolerance and AOP have been reported. 

Herrero et al. [53] created a replication model based on aspect-oriented 

techniques. The replication aspect can be defined by the JReplica language or by 

special UML extensions. A visual tool was being developed to generate JReplica code 

from UML. In this work, computational reflection is used to separate the functional 

level from the aspect level, but no information is given about how the final code is 

generated. Input messages to functional objects are intercepted and redirected to the 

aspect level. Output messages from objects are also intercepted and adapted to the 

right middleware (e.g. CORBA or JavaRMI). Only passive replication is supported.  

Replication mechanisms are implemented by aspects that define when state messages 

are exchanged, and the behavior for error detection, notification and recovery. The 

replication aspect can be composed with aspects developed for other concerns, as for 

instance synchronization. 

Gal et al. [46] proposed the use of aspect-orientation in real-time systems for the 

distribution, timeliness and dependability domains. An example of the application for 

each domain is given, using CORBA in a logging application as test case. Aspects are 

implemented in AspectC++. The example for timeliness is based on execution time 

surveillance using a watchdog timer, which raises an error condition if an execution 

time budget is exceeded. The example for fault tolerance is based on the replication of 

the logging messages to several stations, but no fault tolerance strategy is applied. 

Kienzle and Guerraoui [63] question if it is suitable to use AOP techniques to 

separate concurrency control and failure management concerns from the functional 

code. They conclude that the answer is no, because they feel that this separation is 

hard and potentially dangerous. They applied AspectJ in a case study based on 

transactions, analyzing three basic approaches: (1) aspectizing transactions uniformly 

in the whole program, (2) aspectizing transactions homogeneously in selected objects 

and methods, and (3) aspectizing transactions heterogeneously in selected objects and 

methods. They concluded that the first approach is impossible, the second approach 

yields poor performance and that applying the third, heterogeneous aspects result in 

functional code semantically coupled with the non-functional part, and consequently 

any maintenance in the functional code should trigger a modification on the 
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transaction aspects. A comment on this paper written by Kiczales [12] states that the 

AOP goal is not making a concern transparent, but instead making its implementation 

modular. In Kiczales opinion, the performance of critical concerns like distribution, 

failure handling and concurrency cannot be made totally transparent.   

Szentiványi and Nadjm-Tehrani [109] reported a work for improving the 

performance of a FT-CORBA implementation by applying AOP at the application 

level. In this work, the logging of method executions needed for passive replication 

was shifted from the FT middleware to applications using AspectJ. Synchronization 

and method logging aspects are woven with base code update methods. The capability 

of advising data field access (set join point) in AspectJ allows the synchronization of 

variable accesses within the update methods. Using AOP, the overhead for passive 

replication was reduced by around 40%. 

Alexandersson et al. [9] address the question of whether AOP can provide a base 

to implement fault tolerance mechanisms in non-distributed environments, termed 

“node level fault tolerance”. This work presents examples of aspects for single node 

computing, such as time-redundant execution, assertions and Recovery Blocks, using 

AspectJ. An AOP recovery cache mechanism, needed for backward error recovery, 

was implemented using the set join point of AspectJ.  The time-redundant mechanism 

applied in this work is a sequential software-implemented TMR. If the first execution 

results do not agree with the second execution results, a third execution is performed. 

The computation is defined by a class method and the results are the returning object. 

Assertions are implemented by application-specific aspects that check inputs and 

results of the selected methods and raise exceptions in case of failure. Recovery 

Blocks is implemented using one abstract aspect that defines the FT algorithm and 

application-specific concrete aspects that define the selected methods and introduce 

the new methods, such as the acceptance test and the alternative computation. 

Similarly to the time redundant mechanism, failures are handled by exceptions. The 

authors conclude that AOP is well suited to implement node level fault tolerance. 

 The work presented above was later reimplemented using AspectC++ because 

the authors’ research targets embedded safe-critical systems [10]. For using 

AspectC++ they developed some extensions to the official AspectC++ distribution, 

such as the inclusion of set and get join points for primitive data types and their 
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pointers. This extension does not cover object data types because the assignment 

operator can be overloaded or advised by an aspect.   

In Chapter 6, we propose the utilization of AOP to introduce fault tolerance at the 

application-level, based on the FT framework described in Chapter 5.  This approach 

differs from Alexandersson’ (reference) by defining the thread as the basic unit of 

fault tolerance and by targeting distributed environments. 

3.6 Summary 

The separation of concerns concept has been applied in software engineering for a 

long time. New techniques for dealing with crosscutting concerns have been proposed 

recently, such as meta-programming, composition filters and AOP.  

AOP is a new programming technique to support the programmer in cleanly 

separating the functional components from crosscutting concerns, which are 

implemented as aspects, providing a mechanism to compose them and produce the 

overall system. The key concepts in AOP are join points, pointcuts and advices.  

AspectC++ is a language extension to C++ that allows writing aspects and 

weaving them with the base code using source-code transformation. The main 

features of AspectC++ have been discussed, including the description on how aspects 

are composed to the main functionality. Additionally, the research work about 

AspectC++ performance and memory footprint has been presented.  

This chapter has also reviewed the related work regarding the application of AOP 

to operating systems, middleware and fault-tolerant systems. General purpose and 

embedded operating systems have been submitted to AOP implementations of 

crosscutting concerns, such as performance optimization and interrupt 

synchronization, with good results in maintainability and resource utilization. 

Middleware platforms and their applications are the main target of AOP so far. 

Several works have reported middleware refactoring with AOP with excellent results 

in reducing complexity and increasing configurability and maintainability. Finally, the 

few works published about the application of AOP for fault tolerance have been 

presented. 
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Chapter 4 

BOSS operating system 

 

 

 

 

 

This chapter describes the main features of the BOSS operating system. A 

brief introduction about BOSS principles, history and applications is 

presented, followed by a detailed description of the BOSS kernel and 

middleware. Finally, the middleware extensions developed in this work are 

presented.  
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4.1 Introduction 

Since 2004, the Embedded Systems Research Group (ESRG) [41] at University of 

Minho and the Fraunhofer Institute for Computer Architecture and Software 

Technology (FIRST) [43] have been cooperating in the field of dependable embedded 

systems, based on the joint research of efficient and adaptable fault tolerance 

technologies applied to real-time operating systems and middleware.  

BOSS is a real-time operating system (OS) developed by FIRST. Its main design 

principle is irreducible complexity, which means that the OS design aims to achieve 

the minimum complexity in delivering a basic set of functionalities [81]. The 

objective is to keep the OS simple and understandable, as complexity is the cause of 

most development faults in software. Another advantage of this approach is to make 

possible the validation of the OS critical parts by formal methods. BOSS targets high- 

dependability applications, such as satellite and medical systems.     

BOSS uses object-oriented technology in C++ extensively; it is fully preemptive 

and presents low interrupt latency and thread switching time. It has been ported to 

x86, PowerPC, Atmel AVR and ARM platforms. Additionally, an on-top-of-Linux 

implementation is available, and it is used mostly for early testing. BOSS simplicity 

makes easier the task of porting it to other platforms. Communication support is 

provided for Ethernet and CAN networks. Furthermore, a non-preemptive version of 

BOSS was developed, named TinyBOSS, targeting platforms with very limited 

resources. 

The BOSS microkernel has mechanisms for resource management and 

synchronization, such as semaphores and signal boxes; for inter-task communication, 

such as messages and mailboxes; for interrupt handling; and for input/output (I/O).  

The basic OS constructs are implemented in BOSS as classes that can be configured 

and extended by inheritance. This represents a great advantage over conventional 

operating systems developed in procedural languages, such as C, which are usually 

hard to understand and modify.  

Middleware communication in BOSS is performed using a publisher-subscriber 

protocol. Threads send messages locally or over the network by using a string as 

subject, or topic. Messages are delivered to all objects which subscribe to the same 
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subject. This loose coupling between senders and receivers makes fault tolerance 

implementation easier because the communication between threads is location- 

transparent and dynamically changeable.   

The main application of the BOSS operating system was in the BIRD (Bispectral 

Infrared Detector) satellite control system [81]. This micro satellite weights 92 kg and 

was launched in 2001 by the German Aerospace Agency (DLR) to detect fires larger 

than 12 m2. In this system, four processor boards (PowerPC 623) running BOSS 

applications are used. One node acts as a worker, doing all the required computation, 

while it is being constantly checked by a supervisor node. In case of failure in the 

worker node, the supervisor assumes as worker. If the failed node is unable to assume 

as supervisor after a re-initialization, one of the two spare nodes is activated and 

becomes the new supervisor node. The system proved its reliability in some bursts of 

solar activity that exposed the system to high energy radiation and particles [24], 

which generated transient faults.  

The BOSS operating system is also applied in CubeSat satellites. CubeSat is a 

standard for a research pico satellite with dimensions 10x10x10 cm3, weighing no 

more than one kilogram.  The Technical University of Berlin is developing a CubeSat 

project named BEESat [22]. TinyBOSS was selected as the operating system for the 

board computer [60, 82], which uses an ARM-7 processor at 60 Mhz.  

Another future application of BOSS is the HiPerCAR project [118].  This project 

is funded by ESA and aims to provide a dependable architecture for space 

autonomous robotics using limited resources. At the hardware level, HiPerCAR 

combines radiation hardened computers with commercial computers for achieving 

fault tolerance with high processing power. This system configuration includes one 

reliable master node and several COTS nodes acting as workers. Each system function 

can run in a worker node, in a nominal version, or in the master node, in the basic 

version. The nominal software version implements the full functionality, but the basic 

version only guarantees the safe operation of the system. After a failure in a worker 

node, the master node must assume his functions promptly and try to reboot the faulty 

node. In case of a permanent failure in the worker node, the master node must 

promote a system reconfiguration using spare worker nodes.  
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DLR has also plans for using BOSS in its new micro satellite bus architecture 

termed Standard Satellite Bus (SSB) [83].  The architecture will be similar to the 

BIRD architecture, using also four nodes and a worker/supervisor with spares scheme.  

4.2 Kernel services 

In this section the BOSS kernel will be described, following a subdivision based 

in related functionalities as task processing, synchronization, inter-task 

communication and timing.  

4.2.1 Task processing 

In BOSS, tasks are implemented by subclasses of the Thread class. Figure 4.1 

shows a class diagram with the main methods involved with task processing.   

BossObject

+ myName:  char*
+ myId:  long

Thread

- priority:  unsigned long
- waitingUntil:  Time
- lastTimeActivated:  Time
- currentNumberOfThreads:  long
- allThreads:  Thread* ([MAX_THREADS])

# run() : void
+ restart() : void
+ exit() : void
+ setPriority(unsigned long) : void
+ getPriority() : long
+ yield() : void
+ suspend() : void
+ suspendUntil(Time) : void
+ suspendFor(Time) : void
+ resume() : void

Scheduler

- runingNow:  Thread*

+ getRunner() : Thread*
+ dispatch() : void
+ disableDispatch() : void
+ enableDispatch() : void

TimeManager

- tickInterval:  Time

+ start() : void
+ timeEvent() : int
+ getTime() : Time

Application 
Thread

+ run() : void

-runningNow

 

Figure 4.1: Task processing related classes. 
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The Thread class, as well as most BOSS classes, inherits from the BossObject 

class, which provides an optional name and identification number. Application 

threads must inherit from the Thread class and implement the run method, which will 

define the thread behavior. 

BOSS uses priority-based preemptive scheduling. The priority attribute of the 

Thread class keeps the thread priority. Larger priority values represent higher priority 

levels. Thread priorities can be changed dynamically using the setPriority method. 

For threads of same priority, the scheduling policy selects the thread with oldest 

activation time, kept by the lastTimeActivated attribute. Time in BOSS is defined as a 

64 bit quantity representing the number of microseconds passed since the system has 

started. The Thread class maintains an array of pointers, named allTreads, to all 

existing threads in the system, including the Idle thread. This array is used by the 

Scheduler class to select the next thread to run after a call to the dispatch method. 

A thread can be in one of the following states: ready-to-run, running and 

suspended, as shown in Figure 4.2. After a thread object is created, the restart method 

prepares it for execution by setting up its stack and context information. The initial 

restart call for a thread is commanded by the operating system, but this method can 

also be called during the thread execution. After restarting a thread, all stack 

information is cleared and a call to the thread run method is performed. A ready-to-

run thread can be selected for execution after a call to the dispatch method of the 

Scheduler class. From the running state, a thread can return to the read-to-run state if 

another dispatch takes places or if it calls the yield method. The suspend method 

causes a thread to go to the suspended state, while the resume method allows a thread 

to be ready to run again.  

ready-to-run

running

suspended

restart

dispatch

yield

resume

suspend

suspend

dispatch

 

Figure 4.2: Thread states. 
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The mechanism of thread suspension or blocking in BOSS is implementing using 

a time variable (the waitingUntil attribute shown in Figure 4.1). If a thread needs to be 

suspended until a specific time, the suspendUntil method should be used. 

Alternatively, a thread can be suspended for a period of time, using the suspendFor 

method. The suspend method will suspend a thread forever, and it is in fact 

implemented by calling the suspendUntil method with the maximum possible value of 

time, which is never reached. The Scheduler class uses the getTime method of the 

TimeManager class to verify which threads are able to execute, depending on their 

time limit for suspension (waitingUntil). The resume method resets the thread 

suspension limit, making a thread ready for execution.  

The dispatch method is called whenever a context switch is needed as, for 

instance, after the execution of suspend, resume or yield. Additionally, the dispatch 

method is called after each system clock tick. The clock tick interval is defined by the 

tickInterval attribute of the TimeManager class, shown in Figure 4.1. Besides, other 

interruption sources may trigger a dispatch, depending on settings defined in the 

related interruption management routines. The scheduler dispatch may be disabled by 

calling the disableDispatch method of the Scheduler class.  

In BOSS, all threads share the same addressing space. Thread stacks are created 

in the system heap. However, the creation of kernel objects uses static memory 

allocation and these objects are never destroyed.  

4.2.2 Synchronization 

Synchronization can be classified into two categories: resource synchronization 

and activity synchronization [96]. Resource synchronization aims to achieve exclusive 

access to a shared resource, as a global variable, a data structure or an I/O device. 

Resource synchronization is also known as mutual exclusion. The section of the code 

that accesses a shared resource is termed critical section. In contrast, activity 

synchronization aims to ensure the correct execution order among cooperating tasks. 

Figure 4.3 contains a class diagram with all kernel classes related to synchronization 

in BOSS.  
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Thread
Scheduler

- runingNow:  Thread*

+ disableDispatch() : void
+ enableDispatch() : void

Semaphore

- counter:  int
- owner:  Thread*

+ enter() : void
+ leave() : void

SignalBox

- signalCounter:  long
- suspendedReceiver:  Thread*

+ getSignalCounter() : long
+ get(long) : bool
+ signal() : void
+ signalFromInterrupt() : void

«utility»
InterruptMng

+ beginAtomar() : void
+ endAtomar() : void

-runningNow

-suspendedReceiver

-owner

 

Figure 4.3: Synchronization related classes. 

The following methods for supporting mutual exclusion are provided:  

• Interrupt locking: this method consists of disabling system interrupts to 

synchronize exclusive accesses to shared resources between tasks and interrupt 

service routines (ISR).  Interrupt locking affects the system interrupt latency and 

can be used to protect small and fast critical sections. Interrupt locking is 

provided by the global functions beginAtomar and endAtomar, which must 

enclose a critical section. Interrupt locking nesting is implemented by 

incrementing a global variable in begingAtomar and decrementing it in 

endAtomar. Interrupts are enabled by endAtomar only when this variable reaches 

its original value. As represented in Figure 4.3, several kernel classes use interrupt 

locking in their implementations, such as the Scheduler and SignalBox.  

• Preemption locking: this method consists of disabling the task scheduler, or the 

dispatch mechanism.  The application of this feature makes the scheduler non-

preemptive as a low priority thread will no more be preempted by a higher 

priority task. However, preemptive locking does not synchronize resource 
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accesses between tasks and ISR. Preemptive locking is provided by the methods 

disableDispatch and enableDispatch of the Scheduler class. Similarly to interrupt 

locking, preemption locking allows nesting by using a global variable to control 

the nesting level. When this variable reaches the original value, the dispatch is 

executed and future dispatches are permitted. The Semaphore and the SignalBox 

classes use preemption locking in their implementation. The use of preemption 

locking for larger critical section affects high priority task reactions. 

• Semaphores: this method of mutual exclusion mechanism causes a thread to be 

suspended upon calling the enter method if there is no resource available. BOSS 

implements mutex semaphores by default. Semaphores have ownership and calls 

to the leave method are only accepted by the owner. No priority inversion 

avoidance mechanism is implemented. When several threads are blocked in the 

same semaphore, the higher priority thread is released first. For equal priority 

threads, the one with oldest activation time is unblocked first. 

The support for activity synchronization is provided by the SignalBox class. A 

signal box is a mechanism similar to a counting semaphore. Initially the signalCount 

attribute is set to zero, and its incremented each time the signal method is called and 

decremented when the get method is called. A thread will be suspended if it calls the 

get method when the signalCount attribute is zero. Differently than Semaphore 

objects, SignalBox objects can be used in synchronizations between ISR and threads. 

However, only threads are supposed to be signaled, as ISR must not be suspended. 

Furthermore, only one thread can be signaled, and a pointer to this thread is stored in 

the suspendedReceiver attribute of SignalBox. 

4.2.3 Communication 

 The communication services of the BOSS kernel consist of passive classes that 

support safe data transfers between tasks and also between ISR and tasks.  Figure 4.4 

shows the main BOSS classes involved in communication services. 
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MailBox

- suspendedReceiver:  Thread*
- messages:  SortedList

+ receive() : SortedChainable*
+ send(SortedChainable*) : void
+ getFirst() : SortedChainable*

SortedChainable

- next:  SortedChainable*
- currentList:  SortedList*

+ getSortField() : long long
+ getNext() : SortedChainable*

SortedList

- first:  SortedChainable*
- last:  SortedChainable*

+ append(SortedChainable*) : void
+ getRemoveFirst() : SortedChainable*

Thread

Application 
Msg

Type:class
len:int

AsyncCommFifo

- buf:  Type ([len+1])
- writeIndex:  int
- readIndex:  int

+ write(Type*) : int
+ read(Type*) : int

-currentList-last-first

-messages

-suspendedReceiver

 

Figure 4.4: Communication related classes. 

The MailBox class provides data communication between threads, similarly to a 

message queue. Several threads may send messages to a single receiver thread, which 

is suspended if it calls the receive method and no messages are available. Sending 

threads are never blocked and messages are stored in linked list data structure 

implemented by the SortedList class. The data message using MailBox, represented in 

Figure 4.4 as Application Msg, must be a subclass of the SortedChainable class, as it 

should have attributes and methods related to linked list node objects. Messages are 

delivered in a First in - First out (FIFO) basis, although SortedList objects are able to 

sort items using a priority field. Data objects sent to mail boxes are stored in a 

SortedList and no data copy is performed. Therefore, the sender and receiver threads 

are responsible for data objects creation and mutual exclusion. 

The AsyncCommFifo class provides FIFO asynchronous non-blocking data 

communication between one sender and one receiver using a producer-consumer 

protocol. Senders and receivers can be either threads or interrupt service routines as 

they are never blocked. AsyncCommFifo is a template class that receives the type of 

the data objects and the internal buffer size as template parameters. The read and 

write methods copy these data objects to and from the internal buffer, respectively.   
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4.2.4 Utility classes 

Besides the classes presented so far, the BOSS kernel provides several utility 

classes for supporting thread timing control, memory management and debugging. 

The main classes for timing control and memory management are presented in Figure 

4.5. 

t:class
poolSize:int

Pool

- freePtrs:  t* ([poolSize])
- vals:  t ([poolSize])

+ alloc() : t*
+ free(t*) : void

TimeControl

- programmedTime:  Time
- cycleTime:  Time

+ startAt(Time) : void
+ every(Time) : void
+ startAtEvery(Time, Time) : void
+ wait() : void

 

Figure 4.5: BOSS utility classes. 

A thread can use one or more TimeControl objects to support the implementation 

of its temporal behavior. Each TimeControl object defines a startup execution time 

(startAt method) and a cycle time (every method). When a thread calls the wait 

method of TimeControl, a new wake up time is calculated and passed to the 

suspendUntil method of the Thread class.   

The Pool class supports the creation and management of objects in static memory. 

It is a template class with two template parameters: the type and number of objects to 

be managed. The alloc method returns a pointer to an unused object, while the free 

method returns it to the pool. If the pool is empty the alloc method will return a null 

pointer. Multiple threads and ISR can share the same pool of objects as Pool methods 

are protected by mutual exclusion mechanisms.  

4.2.5 Hardware interface and management 

BOSS has a small Hardware Dependent Layer (HDL) which implements the 

platform-dependent functionality, as context switching and interrupts management. 

The interface between the BOSS kernel and the HDL is defined by C functions that 
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are implemented in one these layers. C functions are used to simplify calls from 

assembly code in the HDL to the kernel, and vice-versa. However, most HDL code is 

implemented in C and C++.  Figure 4.6 shows the basic layers of the BOSS 

architecture.  

Application

Kernel

HDL

Hardware

BOSS basic architecture

 

Figure 4.6: BOSS basic architecture. 

The main functions of the kernel/HDL interface are presented in Figure 4.7. The 

hwSetUp function is called by the kernel to perform platform specific initialization, as 

setting interrupt vectors and configuring memory management. The interruptsOn and 

interruptsOff functions provide assembly code to enable and disable interrupts. The 

initialization of the clock tick timer is implemented by the initTimer function, which 

receives the clock tick interval as a parameter. The getMicroSeconds function returns 

the time base in microseconds since the system startup. The setup function is called by 

the restart method of the Thread class to initialize the thread stack frame. The context 

switch is performed by the transfer function and the softReset function resets the node 

and it may be used if an irrecoverable error is detected.  

The kernel functions called by the HDL are described as follows. The 

ThreadStartUp function is the entry point of thread execution after stack initialization. 

This function calls the run method of the Thread class, which should not return; 

otherwise a node reset will take place. The interruptPropagator function is called by a 

general interrupt handler in the HDL to allow the execution of interrupt event services 

defined by application threads. The parameter interrutptID is used to identify the 

interrupt source and trigger the execution of the eventServer method of the Thread 
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class. Finally, the dispatchCaller function is called when leaving interrupt handlers if 

a dispatch is required. 

// Kernel --> HDL 

void hwSetUp(void); 

void interruptsOn(void); 

void interruptsOff(void); 

Time initTimer(Time interval); 

Time getMicroSeconds(void); 

long *setup(long *stack, long stackSize, void *classRef); 

void transfer(long **from, long *to); 

void softReset(void); 

 

// HDL --> Kernel 

void ThreadStartUp(void * thread); 

int interruptPropagator(int interruptID); 

void dispatchCaller(void); 

Figure 4.7: Kernel/HDL interface. 

In BOSS there is no provision of mechanisms for installing and managing device 

drivers. The application program can access the hardware directly, making use of 

kernel objects and interrupt management support as needed. 

4.3 Middleware services 

Single node applications can be developed with the BOSS kernel classes 

described so far. However, support for multiple node and distributed fault-tolerant 

applications is provided by extra classes which implement a common communication 

paradigm both for intern and extern threads. This new level of functionality is termed 

middleware. BOSS middleware is based on asynchronous message-oriented 

communication using the publisher-subscriber protocol. In this section, the original 

BOSS middleware implementation will be described.  
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4.3.1 Message to message communication 

The basic unit of middleware communication in BOSS is the Message class, 

shown in Figure 4.8.  

Message

+ send(char*) : void
+ sendLocal(char*) : void
+ listen(char*) : void
+ removeListener(char*) : void
+ copyDataFrom(Message*) : void
+ execute(char*) : void

NameEntry

+ name:  char*
+ object:  void*

NameServer

# entries:  NameEntry ([MAXOBJECTS])

+ registerObject(char*, void*) : int
+ removeEntry(char*, void*) : void
+ forEach(char*, void*) : int
+ iteratorExecute(void*, void*, char*) : void

MiddleWareReceivers

+ iteratorExecute(void*, void*, char*) : void

Application Message

+ copyDataFrom(Message*) : void
+ execute(char*) : void

#entries

 

Figure 4.8: Message class diagram. 

Application messages must inherit from the Message class and include data as 

class attributes. Besides, Message derived classes must implement the copyDataFrom 

method, which defines how the message data is updated with data from other 

message. In addition, it may optionally implement the execute method, which defines 

a specific behavior after message copying.  

Figure 4.9 presents how the publisher-subscriber data structures are implemented.  

A NameServer object maintains an array of NameEntry objects that relates subjects to 

receiving messages. In the Figure 4.9 example, Message1 and Message3 are 

subscribers of the subject1 subject.  The same subject name can be subscribed by 

more than one message. Furthermore, the same message can subscribe more than one 

subject, as Message3 does. 
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Message1

Message2

Message3

subject1

subject2

subject1

subject2

NameServer

name object

 

Figure 4.9: NameServer data structure. 

A message is sent, or published, using the methods send and sendLocal of the 

Message class. For sending a message it is necessary to pass the subject name as an 

argument. The message distribution is performed by copying the data attributes of the 

receiving message to all messages that have subscribed the related subject.  The 

distribution of messages is implemented by the MiddlewareReceivers class as shown 

the sequence diagram of Figure 4.10.  

receiver : Message : MiddlewareReceivers

listen(subject)

registerObject(subject, receiver)

sender : Message

sendLocal(subject)

forEach(subject, sender)

copyDataFrom(sender)

execute() iteratorExecute(...)

 

Figure 4.10: Middleware message distribution. 

Initially, the receiver message registers his subscription to a subject by calling the 

listen method. This is accomplished by the registerObject method of the 

MiddlewareReceivers class, which sets up one entry in the data structure of Figure 

4.9.   When the sendLocal method of the sender message is called, the forEach 
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method of MiddlewareReceivers is executed, starting a search in the NameServer data 

structure for entries with the same subject name.  When a match is found, 

iteratorExecute executes the copyDataFrom method of the receiving message, 

copying the data attributes from the sending message. Additionally, the execute 

method of the receiving message is activated, allowing the execution of the code 

related to message reception, as for instance, resuming a suspended thread.  

The mechanism of overwriting the data of one message with the data of another 

message is referred here as message to message communication. Using this 

mechanism, message data can be written without previous data utilization. This is 

ideal for transmitting state messages, in which only the most recent data is significant. 

However, this mechanism is not suitable for event messages, in which messages 

convey a system event, as events may be overwritten and lost.  

4.3.2 Message to thread communication 

In order to deliver event messages, a thread messaging mechanism is provided. 

This includes support for message buffering and thread synchronization in message 

reception. The IncommingMsgAdministrator class, shown in Figure 4.11, supplies 

mail box functionality for threads. It is a template class that receives as template 

parameters an application message class and the message buffer size. Internally, 

IncommingMsgAdministrator maintains a memory pool of application messages using 

a Pool object, and a MailBox object to provide the mail box functionality. 

The IncommingMessageAdministrator class derives from Message class, and 

therefore it can behave as a receiving Message, exactly as described in Figure 4.10.  

The implementation of its copyDataFrom method is presented in Figure 4.12. When 

this method is called, a pointer to a free message object is retrieved from the pool, a 

copy is performed using copyDataFrom, and the receiving message is sent to the 

MailBox. 



Chapter 4. BOSS operating system 

74 

BasicMsg:class
PoolLen:int

IncommingMessageAdministrator

- mbox:  MailBox
- pool:  Pool<BasicMsg, PoolLen>
- lastRead:  BasicMsg *

+ copyDataFrom(Message*) : void
+ execute(char*) : void
+ receive() : BasicMsg*
+ getFirst() : BasicMsg*

MailBox

- suspendedReceiver:  Thread*
- messages:  SortedList

+ receive() : SortedChainable*
+ send(SortedChainable*) : void

Message

t:class
poolSize:int

Pool

- freePtrs:  t* ([poolSize])
- vals:  t ([poolSize])

+ alloc() : t*
+ free(t*) : void

MiddleWareReceivers

+ iteratorExecute(void*, void*, char*) : void

application message and
size of message buffer

ApplicationThread

-pool

-mbox

 

Figure 4.11: IncommingMessageAdministrator class diagram. 

 

: MiddlewareReceivers: Thread : IncommingMsgAdministrator pool : Pool mbox : MailBox

copyDataFrom(sender)

newEntry : Message

newEntry := alloc()

copyDataFrom(sender)

send(newEntry)

newMessage := receive()

free(lastRead)

newMessage := receive()

 

Figure 4.12: IncommingMessageAdministrator sequence diagram. 

Threads receive messages by calling the receive method of 

IncommingMessageAdministrator, as shown in Figure 4.12. The previous read 

message is freed and sent back to the pool of message objects. Then, the receive 

method of the MailBox object is executed. If the mail box is empty, the thread will be 

suspended until a new message arrives. 
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4.4 Middleware extensions 

The original BOSS implementation received from FIRST did not provide a 

generic mechanism for sending and receiving network messages.  For instance, only 

the sendLocal method of the Message class was implemented by the kernel. The 

implementation of the send method, which is supposed to distribute a message both 

internally and externally, was application-dependent (an application function or 

method should be called).  The same applied for middleware message reception, 

which had to be implemented by an application thread.  

Additionally, the original implementation did not support message identification. 

Message identification is needed to discard duplicate messages and to implement 

voting algorithms. Figure 4.13 presents a TMR fault-tolerant configuration that will 

be used to discuss the reasons for providing message identification. In this 

configuration, three replicas of Task A receive the same input and send their results to 

three identical voters. The voter results are sent to three replicas of Task B. As voter 

output messages are redundant, Task B can process the first message received and 

discard the following messages. But for discarding messages it is necessary to 

recognize that they are related to the same input data. A possible solution is to include 

an identification number in the original input message and to retransmit this 

identification number in the output messages of Task A and Voter A. Besides, message 

identification is also useful for the voters because it provides information that can be 

used to detect if a new voting cycle has started.  

 

Task A

Task A

Task A

Voter A

Voter A

Voter A
input

Task B

Task B

Task B
 

Figure 4.13: TMR configuration. 
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In the following sections, the new extensions to the BOSS middleware developed 

in this work will be presented. 

4.4.1 Message identification and discarding 

The implementation of message identification and discarding of duplicate 

messages by the middleware demanded the modification of the Message and 

NameServer classes. For the Message class, it consisted of the inclusion of the msgID 

attribute. The listen method of the Message class now accepts a Boolean value as a 

parameter, to define whether duplicated messages must be discarded or not. The 

default value for this parameter is false, meaning that no message discard is required. 

This option will be stored in the discard flag of the new NameServer implementation, 

shown in Figure 4.14.  

Message1

Message2

subject1

subject2NameServer

name objectdiscard
flag last previous

msgID

true 15 14

false

 

Figure 4.14: NameServer extension for discarding duplicate messages. 

Besides the discard flag, two message identification attributes were added to each 

NameServer entry to store the last and the previous msgID.  In the example shown in 

Figure 4.14, Message1 was registered for discarding messages (discard flag equals 

true), the last delivered message had 15 as msgID and the previous delivered message 

had 14 as msgID. A new incoming message will only be delivered if it has a msgID 

different from 15 and 14. For instance, a new message with msgID of 16 will be 

delivered, and consequently the previous msgID attribute will receive the value of the 

last msgID attribute (15 in this case), and last msgID attribute will receive the msgID 

of the incoming message (16 in this case).  If however, the new message has msgID of 

15 or 14, it would be discarded and no modifications will be done to the last and 

previous msgID attributes.  



Chapter 4. BOSS operating system 

77 

Using the algorithm described above and considering the configuration presented 

in Figure 4.13, Task B would only receive the first message sent by a voter in each 

voting cycle. Any late arriving message from the previous voting cycle would also be 

discarded. 

Message identifications are defined as “unsigned short” variables (usually 16 bits) 

and can be generated sequentially by sending tasks just but incrementing them for 

each new message. No special care is needed when they reach the maximum value 

(e.g. 65535) and return to zero because the discarding algorithm is not based on 

ordering. The only restriction is to avoid start sending messages with the maximum 

identification value because that is the value used to initialize the last and previous 

msgID attributes.   

4.4.2 External messages handling 

This section will describe the middleware extension mechanism to support the 

delivery of external messages. The Message and MiddlewareReceivers classes were 

modified by the introduction of new variables, data structures and methods, as shown 

in Figure 4.15.   

MiddleWareReceivers

- sendMessageBuffer:  char ([SEND_BUFFER_SIZE])
- sendProtector:  Semaphore

+ iteratorExecute(void*, void*, char*) : void
+ sendNet(char*, Message*) : void
+ receiveNet(char*, int, unsigned long) : void

Message

+ msgID:  unsigned short
+ sendNode:  unsigned long
+ className:  char*
+ externalMessages:  Message* ([MAX_EXT_MESSAGES])

+ send(char*) : void
+ sendLocal(char*) : void
+ listen(char*) : void
+ removeListener(char*) : void
+ copyDataFrom(Message*) : void
+ execute(char*) : void
+ registerExternalMessage(Message*) : void
+ findRegisteredMessage(char*) : Message*
+ serialize(char*) : int
+ deserialize(char*) : void

Application Message

+ copyDataFrom(Message*) : void
+ execute(char*) : void
+ serialize(char*) : int
+ deserialize(char*) : void

«global functions»
HDL interface

+ sendPacket(char * , int) : void
+ getMyNode() : unsigned long

Misc

+ serializeShort(...) : void
+ serializeInt(...) : void
+ serializeFloat(...) : void
+ deserializeShort(...) : void
+ deserializeInt(...) : void
+ deserializeFloat(...) : void

 

Figure 4.15: Middleware extensions class diagram. 
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In addition to the msgID attribute, already discussed in the last section, the 

Message class has been augmented by the sendNode attribute, which identifies the 

origin node of a message (e.g. IP number); by the className attribute, which stores 

the name of the subclass of Message that will be sent to an external node; and by the 

static externalMessages array of message pointers, which references auxiliary 

messages used in message reception. The registerExternalMessage method inserts an 

entry in the externalMessages array and the findRegisteredMessage method searches 

for an auxiliary message with a given className attribute in the same array. Serialize 

and deserialize are new virtual functions that must be implemented by external 

messages for marshaling and unmarshaling the message data. These functions may 

use the utility functions of the Misc class in the serialization and deserialization 

process. 

The MiddlewareReceivers class has gained a data buffer named 

sendMessageBuffer to store the outgoing message data after serialization and a 

semaphore to protect it from multiple accesses from sending threads. Two new 

methods were added to MiddlewareReceivers: the sendNet method prepares the 

message for network transmission, eventually calling the sendPacket method of the 

HDL interface; and the receiveNet method distributes incoming messages, taking as 

input the data received by the HDL when a message arrives. 

The process of sending and receiving external messages is shown in Figure 4.16. 

In the sender node, a message is prepared and the send method is called, passing the 

message subject as an argument. After that, the sendNet method of 

MiddlewareReceivers is executed and takes care of the message marshaling, by 

preparing the sendMessageBuffer according to the sequence diagram shown in Figure 

4.17.  

The className information is taken from the sender message object, as well as 

the msgID. The marshaling of the data message is performed by the sender itself, 

using the serialize method. All data is sent in network byte order (big-endian). The 

serialization functions of the Misc class are able to change the byte order for little-

endian platforms. When the buffer is ready for transmission, a pointer to it, as well as 

its data size, are passed to the sendPacket function of the HDL interface, which 
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eventually will send the data over the network. Finally, the message is also sent 

locally using the sendLocal method. 

 

: MiddlewareReceiverssender: Message

send(subject)

sendNet(subject, sender)

serialize(buffer *)

HDL interface

sendPacket(buffer *, size)

receiveNet( ...)

Message

aux := findRegisteredMessage(className)

aux: Message

deserialize(data)

sendLocal(subject)

registerExternalMessage(aux)

receiver
node

sender
node

sendLocal(subject)

 

Figure 4.16: External messages processing. 

 

subject className msgID serialized message data

“temperature” “TempMsg” 245 temperature value

C string C string unsigned short byte array

Message

-myTemp : float
TempMsg

 

Figure 4.17: External message packet description. 

In receiver nodes, the following processing takes place (Figure 4.16). Initially, an 

auxiliary message object of the sender message class must be created and registered 

using the registerExternalMessage. When a message is received by HDL, the 

receiveNet method of MiddlewareReceivers is called. Then, a receiving buffer, passed 

as an argument, is scanned for removing the className information, which is then 
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passed to the findRegisteredMessage in order to retrieve a pointer to the auxiliary 

message object related to the incoming message. If no matching auxiliary message 

exists the incoming message is discarded, otherwise the receiving data is copied to the 

auxiliary message. The deserialize method of the auxiliary message executes the 

unmarshalling of the message data. At this point, the auxiliary message is a replica of 

the original sender message, and it can be sent locally using the sendLocal method. 

The mechanism described above provides fully transparent communication for 

applications. This means that the same application can run on different platforms 

(with possibly different byte ordering), and communicate with other applications 

without knowing in which platform they are running. Message objects can be sent 

locally and over the network using the send method, and only have to implement the 

serialize and deserialize methods. At the receiver’s side, an object of the same 

message class must be created and registered at initialization time. No further 

procedures are needed to handle external messages at the application level. All 

platform and network dependent code is implemented at the Hardware Dependent 

Layer.  

4.5 Summary 

The BOSS operating system is a real-time OS designed for small-scale embedded 

systems with high-dependability requirements. Its object-oriented design aims the 

reduction of the operating systems complexity, which is the cause of most design 

faults. However, it covers all basic functionality needed to develop embedded 

applications, including the communication between nodes, using a publisher-

subscriber protocol.  

This work has improved the BOSS middleware by adding mechanisms for 

message identification and discarding duplicate messages. Furthermore, support for 

handling external messages was developed, making intra-node and inter-node 

communication transparent for applications. The information provided in this chapter 

is necessary for understanding the fault tolerance framework described in the next 

chapter. 
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Chapter 5 

Fault tolerance framework 

 

 

 

 

 

This chapter describes the fault tolerance framework developed for 

supporting application fault tolerance atop the BOSS operating system and 

its middleware. As an introduction, the framework objectives and 

constraints are presented. Afterwards, the framework is described in 

various levels of detail ranging from the application programmer 

perspective to specific FT strategy implementations. Finally, the benefits 

and drawbacks of the proposed FT framework are discussed. 
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5.1 Introduction 

The FT framework designed for supporting application fault tolerance to the 

BOSS operating systems has several objectives and constraints. First, it has to be 

easily customizable and extensible, in order to support fault tolerance in a wide 

variety of projects with different dependability requirements and hardware 

availability. Therefore, it should provide mechanisms for hardware and software fault 

tolerance using single or redundant hardware systems with single or multiple software 

versions. Second, it has to be fully compatible with the BOSS operating system, using 

the basic features provided by this OS and the communication infrastructure provided 

by its middleware.  Finally, it has to be simple and efficient to run in small-scale real-

time embedded systems without incurring in too much resource consumption, such as 

processor and memory usage.  

The FT framework described here focus in fault-tolerant computing and does not 

include mechanisms for tolerating communication network errors. In this work, it is 

assumed that the underneath communication is reliable and ordered. 

As seen in Section 2.10, several object-oriented fault tolerance patterns and 

frameworks have been proposed and developed by the research community. In 

general, the unit of fault tolerance is an application object with behavior defined by a 

subclass of an abstract “variant” class. Considering objects as units of fault tolerance 

has also been applied in fault tolerance supporting systems such as FT-CORBA [88] 

implementations, although using replication without diversity. Other systems such as 

ROAFTS [68] use virtual objects (TMO objects in that case) as units of redundancy, 

but method calls are implemented as threads.  

The chosen approach is to use BOSS threads as units of fault tolerance because 

threads and processes are the real units of computation in a multitasking system. 

Consequently, thread restarting can be employed as an effective mechanism of system 

recovery. The same mechanism can not be applied by object methods if, for instance, 

an error condition leads to an infinite loop execution. Besides, using objects (virtual or 

real) as units of fault tolerance increases system implementation complexity, reduces 

performance, and increases memory usage. The same approach was used in FT-RT-

Mach [40] and in the AFT for Spacecraft work [52]. 
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5.2 Fault tolerance thread model  

Not all kinds of application threads can be used as units of fault-tolerant 

computing in the proposed framework. A fault-tolerant thread must comply with a 

specific fault tolerance thread model, shown in Figure 5.1.  

 

Figure 5.1: Fault tolerance thread model. 

Fault-tolerant threads are supposed to read from input devices or receive input 

messages from other threads, process the inputs and generate an output either by 

writing to an output device or by sending a result message to other threads. The model 

supports both state threads and stateless threads. For state threads, the output result 

will depend both on the input data and on the previous state data. The input phase is 

optional, as a thread can be activated by a timing mechanism and may use no external 

data in the processing phase. However, the ordering of the input, processing, and 

output phases should be preserved.  A thread performing inputs and outputs during the 

processing phase is non-compliant and can not be made fault-tolerant using this 

framework. 

An example of a candidate thread for fault tolerance implementation is presented 

in Figure 5.2. In this example, ExampleThread runs cyclically, reading messages from 

an IncommingMessageAdministrator object, which consists of a mailbox for messages 

of the Msg class. The process method is executed next, and implements some 

computing algorithm using data from the incoming message and possibly from an 

internal state (attributes not shown). Finally the output method prepares the output 

message and sends it locally and over the network, using the string “exampleResult” 

as subject.  
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class ExampleThread : public Thread { 
  Msg* recMsg; 
  Msg outMsg; 
  IncommingMessageAdministrator<Msg,20> inMessages; 
public: 
  ExampleThread(){ ... // init code} 
   
  void run () { 
    while(1) { 
      recMsg = inMessages.receive(); 
      process(); 
      output(); 
    } 
  } 
 
  void process(){ 
    ... // uses msg data and state data 
  } 
 
  void output(){ 
    ... // prepares output message 
    outMsg.send("exampleResult"); 
  } 
}; 

Figure 5.2: Example of candidate thread for FT implementation. 

The thread model explained above is commonly adopted in the design of fault-

tolerant systems [7, 101]. Threads in this model behave like state machines, receiving 

events/data as inputs and, in consequence, changing their internal state and sending 

events/data as outputs. FT threads are not allowed to interact with other threads or to 

perform any input/output during the processing phase.  

5.3 Framework general description 

In this section the fault tolerance framework will be described in the perspective 

of the application programmer. The description approach is based on presenting how 

the framework can be used to modify an existing non-fault-tolerant application thread 

to make it fault-tolerant. The original non-fault-tolerant thread must comply with the 

fault-tolerant thread model presented in the previous section.  
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5.3.1 Framework structure 

Figure 5.3 shows a simplified class diagram of the FT framework. A fault-tolerant 

application thread (e.g. FTApplicationThread) must inherit from the FTThread class 

and select an FTStrategy object that will implement the fault tolerance functionality. 

Three FT strategies have been implemented: RB, DRB and NVP, but others can be 

developed and integrated to the framework.  

Thread

VoterThread

# myVoterType:  VoterType
- maxResponseTime:  Time

# initVoting(VoterType, Time) : void
# executeVoting(unsigned short) : void
# storeSolution() : void
# findEqualSolution() : bool
# sendResult() : void

FTStrategy

+ ftThread:  FTThread*
+ maxResponseTime:  Time

+ setFTThread(FTThread*) : void
+ setMaxResponseTime(Time) : void
+ executeFT() : void

BasicMsg:class

StdVoter

- outputSubject:  char*
- inputSubject:  char*

RBStrategy

FTThread

+ ftStrategy:  FTStrategy*

+ setFTStrategy(FTStrategy*) : void
+ variant1() : void
+ variant2() : void
+ variant3() : void
+ saveCheckpoint() : void
+ restoreCheckpoint() : void
+ acceptanceTest() : bool
+ sendResult() : void
+ onFailure() : void
+ getState(char*) : int
+ setState(int, char*) : void

MiddlewareScheduler

DRBStrategy NVPStrategy

VoterApplicationThread FTApplicationThread

Used for the NVP 
strategy only

 

Figure 5.3: Simplified FT framework class diagram. 

Differently from software structures presented in Section 2.10, where variants and 

adjudicators are represented by classes, here these functionalities are implemented as 

methods of the FTThread hierarchy.  The FTThread class declares several virtual 

functions which must be implemented by the FT application thread, depending on the 

selected FT strategy, such as software variants, checkpointing support functions and 

the acceptance test. This approach has several advantages: (a) it simplifies the 

framework class structure; (b) it allows direct access from these procedures to class 

attributes defined by the application thread; and (c) it reduces runtime and memory 

costs. 

The VoterThread class supports the development of voters, which are required by 

the NVP strategy. A voter application thread (e.g. VoterApplicationThread) must 

inherit from VoterThread and define some virtual functions, such as 
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findEqualSolution. Additionally, a standard voter class (StdVoter) is supplied. This 

predefined voter thread provides exact voting (bit-by-bit comparison) when both 

inputs and outputs are implemented by message passing.  

The MiddlewareScheduler (MS) class controls all FT and voter threads. This 

thread periodically searches for active FT/voter threads and executes part of the 

required control algorithm. Besides, this thread triggers periodic middleware 

messages to perform role definitions and thread state synchronization. 

5.3.2 Fault tolerance introduction 

The modifications required to make an application thread fault-tolerant include: 

• Instantiation and registration of an FTStrategy object that will implement the 

desired fault tolerance strategy, as RB, DRB or NVP. 

• Execution of the executeFT method of the FTStrategy object after the thread 

activation. 

• Implementation of application-specific methods related to the selected fault 

tolerance strategy (as the acceptance test in RB and DRB). Some of them consist 

of new functionality but others will contain the code originally defined in the 

processing and output methods. 

Figure 5.4 shows an example of fault-tolerant implementation for ExampleThread 

of Figure 5.2, using the DRB strategy. The main differences between this version and 

the original code in Figure 5.2 are highlighted. The application thread now inherits 

from the FTThread class, instead of the Thread class. A concrete FTStrategy is 

instantiated as a DRBStrategy (myDRB). In the class constructor, the maximum 

response time for execution is set to 20,000 microseconds and the setFTStrategy 

method is called, assigning the address of the DRBSstrategy object to the ftStrategy 

pointer (see Figure 5.3). In the run method, the original process and output methods 

are replaced by a call to the executeFT method of the FTStrategy class. This method is 

responsible for executing the particular strategy and for activating the application 

specific methods defined in the application thread, as for example, variant1 (primary 

block) and acceptanceTest. Some of these methods correspond to original 
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implementations, but others, like variant2 (recovery block) and saveCheckpoint 

should be defined to allow the execution of the DRB strategy. 

In this example, ExampleThread is stateless; otherwise FTExampleThread should 

also implement the methods getState and setState. These methods are needed to 

provide state initialization between the primary and the shadow nodes in DRB. None 

of these methods are necessary in the original version, as only one ExampleThread 

instance runs in a single node. 

class FTExampleThread : public FTThread { 
   
  DRBStrategy myDRB; 
  Msg* recMsg; 
  Msg outMsg; 
  IncommingMessageAdministrator<Msg, 20> inMessages; 
public: 
 
  FTExampleThread(){ 
    ... // init code 
    myDRB.setMaxResponseTime(20000);  
    setFTStrategy(&myDRB); 
  } 
 
  void run () { 
    while(1) { 
      recMsg = inMessages.receive(); 
      ftStrategy->executeFT();  
    } 
  } 
 
  void variant1(){ 
    ... // same code of original process method  
  } 
 
  void sendResult(){ 
    ... // same code of original output method 
  } 
  // to be defined 
  void variant2(){ ... } 
  void saveCheckpoint(){ ... } 
  void restoreCheckpoint(){ ... } 
  bool acceptanceTest(){ ... } 
}; 

Figure 5.4: Example of FT application thread. 

5.3.3 Application-specific entities 

Each FT strategy instantiation and usage demands the definition of strategy 

attributes and application specific behavior. These requirements are summarized in 
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Table 5.1, Table 5.2 and Table 5.3. Table 5.1 presents requirements for multiple 

version software, Table 5.2 for single version software and Table 5.3 for voters. 

Single version strategies use the same FTStrategy classes used for multiple 

version software, but do not implement their full functionality. If some application 

thread does not implement a given method, a default implementation is inherited. For 

example, the default implementation for save/restoreCheckpoint is empty and for 

acceptanceTest is to return true (success). 

Table 5.1: Multiple version strategies requirements. 

Definition Requirements 
Entity Type 

RB DRB NVP 

FT Strategy  object RBStrategy DRBStrategy NVPStrategy 
Response  time parameter Yes Yes Yes 
variant 1 method Yes Yes Yes 
variant 2 method Yes Yes Yes 
variant 3 method - - Yes 
saveCheckpoint method Yes Yes - 
restoreCheckpoint method Yes Yes - 
acceptanceTest method Yes Yes - 
sendResult method Yes Yes Yes 
onFailure method Optional Optional Optional 
Voter Thread object - - Yes 
getState method - state threads 

only 
state threads 

only 
setState method - state threads 

only 
state threads 

only 

Table 5.2: Single version strategies requirements. 

Definition Requirements 
Entity Type 

Restart  Checkpoint 
and Restart 

PSP TMR 

FT Strategy  object RBStrategy RBStrategy DRBStrategy NVPStrategy 
Response  time parameter Yes Yes Yes Yes 
variant 1 method Yes Yes Yes Yes 
variant 2 method - - - - 
variant 3 method - - - - 
saveCheckpoint method - Yes Yes - 
restoreCheckpoint method - Yes Yes - 
acceptanceTest method - Yes Yes - 
sendResult method Yes Yes Yes Yes 
onFailure method Optional Optional Optional Optional 
Voter Thread object - - - Yes 
getState method - - state threads 

only 
state threads 

only 
setState method - - state threads 

only 
state threads 

only 
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Table 5.3: Voter requirements. 

Definition Requirements 
Entity Type 

Application 
Specific Voter 

Standard Voter 
(StdVoter) 

Thread name parameter Yes Yes 
Coordination method parameter Yes Yes 
Response Time parameter Yes Yes 
Input subject parameter - Yes 
Output subject parameter - Yes 
storeSolution method Yes - 
findEqualSolution method Yes - 
sendResult method Yes - 

 

The simplest single version FT strategy is the Restart strategy. In this technique 

only one variant is defined, and the acceptance test is not implemented. Therefore, the 

only possible error detection mechanism is deadline expiration, which is set by the 

Response time parameter. The Checkpoint and Restart strategy can be implemented as 

a single version simplification of the RB strategy. In this case, only one real variant is 

defined, and the body of variant2 should contain a call to the variant1 method. In a 

similar way, PSP is implemented with the DRB strategy and TMR with the NVP 

strategy. 

The onFailure method in Table 5.1 and Table 5.2 is always optional. It can be 

used to define application-dependent fault handling mechanisms when a failure in the 

strategy execution occurs. After running the code defined in the onFailure method, 

the thread will be restarted by the operating system.  

Table 5.3 displays the requirements for voting threads. These threads are only 

needed when using TMR or NVP. In the general case, a voter is application-specific 

and this thread must implement the VoterThread methods shown in Table 5.3. The 

Coordination method parameter defines if all replica voters will execute the 

sendResult method or if only a master voter will do it. The definition of the master 

voter in a coordinated voting is performed by the FT framework. The Response time 

of a voter is the maximum time allowed for a voting cycle. A cycle begins when the 

voter receives the first solution. Voters try to find a match between two solutions (2 

out of 3), but if only one solution is received and the voting cycle period has finished, 

that solution is considered correct and it is sent as a result.  
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In Table 5.3, the column labed “Standard Voter” lists the requirements for the 

initialization of StdVoter objects. This class provides exact voting using messages for 

receiving solutions and sending the results. Using this standard voter, other 

parameters must be defined, as the subject of input and output messages.  

5.4 Framework general implementation  

This section describes the general FT framework implementation, which consists 

of patterns and mechanisms used in all FT strategy development.  

5.4.1 Timing behavior  

The MiddlewareScheduler (MS) thread runs at the beginning of every clock tick 

interval (e.g. 1ms; see Section 4.2.1 ) and controls the behavior and execution of each 

FT thread and voter. Besides, this thread is also responsible for activating the 

middleware thread that delivers external incoming messages.   

Figure 5.5 shows an example of the execution of a Recovery Blocks (RB) 

strategy. The MS thread runs periodically and releases the message reception thread 

each two activation periods. The message reception thread is not executed in every 

cycle in order to reduce CPU utilization and to provide at least one cycle in two for 

FT threads free execution. In the first cycle, the FTThread receives a message and 

starts the FT execution. This example shows a failure in the primary block and a 

success in the recovery block. 



Chapter 5. Fault tolerance framework 

91 

 

Figure 5.5: RB execution timing example. 

Figure 5.6 contains an activity diagram that shows the interaction between the 

FTThread and the MiddlewareScheduler thread in the execution of the RB strategy. 

After being activated, an FT thread sets up a deadline for execution, based on the 

actual time and the maximum allowed response time, the thread suspends. In 

subsequent MS activations, this thread restarts the FTThread if the deadline has 

expired. This situation represents a failure in delivering the correct response on time, 

but after restarting the FTThread is ready to receive the next request. If the deadline 

has not expired, the MS thread commands the next actions to be performed by the 

FTThread thread and schedules it for execution. After executing the right operations 

(save/restore state, run primary/recovery block, run acceptance test) the RB thread 

suspends again and the MS thread checks the acceptance test (AT) result. If the 

FTThread succeeds in the AT, the MS thread allows it to send its results and the 

interaction finishes. If the FTThread fails in both blocks, it is restarted by the MS 

thread. 
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Figure 5.6: RB execution activity diagram. 

5.4.2 Class structure 

Any FT strategy is executed in the context of two separate threads: the FTthread 

and the MiddlewareScheduler thread.  The FTThread executes methods in response to 

the control algorithm performed by the MiddlewareScheduler thread. However, all the 

code related to a given FT strategy is defined by its FTStrategy concrete class. Figure 

5.7 shows a class diagram describing the main methods involved in the execution of 

an FT strategy. 

MiddlewareScheduler

+ sendMiddlewareMsg(...) : void

FTThread

+ ftStrategy:  FTStrategy*

FTStrategy

+ ftThread:  FTThread*

+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

Thread

+ myFTType:  FTType
+ isRunningFT:  bool
+ isVoting:  bool

«enumeration»
FTType

+ NONE:  int
+ FT:  int
+ VOTER:  int

VoterThread

+ executeVoting(unsigned short) : void
+ checkTimeoutVoting() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

 

Figure 5.7: FT strategy execution class diagram. 

Every FTStrategy subclass must implement the executeFT method, which 

performs the FT control algorithm that runs in the context of the FT thread (upper part 

of Figure 5.6, excluding message reception). It must also implement the 



Chapter 5. Fault tolerance framework 

93 

executeMSControl method, which performs the MS control algorithm for that stategy 

(botton part of Figure 5.6). Using this approach, the MiddlewareScheduler class does 

not depend on any FT strategy implementation, and FT strategies can be added to the 

framework transparently. 

The MS thread controls the execution of the voter threads in a similar way. 

However, the MS control is simpler, as it only have to detect if the voting deadline 

has elapsed. The executeVoting method is executed by the VoterThread, while the 

checkTimeoutVoting method is called by the MS thread. 

In contrast with the RB strategy presented so far, other FT strategies involve the 

utilization of multiples instances of the FT thread, running in different nodes. These 

FT threads have to communicate in order to coordinate, establish roles and initialize 

states. In this framework, the required communication between FT threads is executed 

by message passing between the MiddlewareScheduler threads of each node. If an FT 

thread needs to send a message, it calls the sendMiddlewareMessage method of MS.  

The sending message is broadcasted to all other nodes and their MS threads will 

distribute it to the related FT threads in their nodes, if any, by calling the 

processMiddlewareMessage method of the corresponding FT strategy. The same 

applies to VoterThreads that can communicate using the same methods described 

above.  

Another feature performed by MiddlewareScheduler is the activation of the 

startPeriodicMsg of FTStrategy and VoterThreads periodically (e.g. 300ms), in order 

to trigger the execution of periodic tasks as, for instance, role conflicts detection in the 

DRB strategy.  

Finally, the MiddlewareScheduler thread is responsible for changing the FT 

threads priorities according to the Earliest Deadline First (EDF) scheduling. 

Therefore, in each MS activation the FT thread with earliest deadline is found and its 

priority is raised to a maximum among application threads. This feature can be 

enabled or disabled in the framework. 

Figure 5.8 contains a sequence diagram that describes the activities performed by 

MiddlewareScheduler each time it runs. First it reads messages coming from other 

MiddlewareScheduler objects in other nodes. These messages are sent by external 
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FTThreads and VoterThreads and must be delivered to internal objects of the same 

type and name, if any. Therefore, MiddlewareScheduler checks if there is any local 

thread with the name received in the incoming message.  If there is, it determines if it 

is an FT thread or voter, based on the myFTType attribute of the Thread class, and 

calls the processMiddlewareMsg method of the related class (FTStrategy or 

VoterThread). Next, if a predefined number of MiddlewareScheduler activations have 

been executed; periodic messages of FT threads and voters are triggered, using the 

startPeriodicMsg method.  Finally, the control algorithm of active FT threads is 

performed by running the executeMSControl method. Similarly, MS checks the 

timeout for active voting threads by calling the checkTimeoutVoting method. Active 

FT threads and voters are represented by a true value in the isRunningFT and isVoting 

Boolean attributes of the Thread class.  

 

:MiddlewareScheduler :FTStrategy

[myFTType==FT]: processMiddlewareMsg

:VoterThread

[myFTType==VOTER]: processMiddlewareMsg

reads message & finds thread by name
While there are
 new messages

* [myFTType==FT]: startPeriodicMsg

* [myFTType=VOTER]: startPeriodMsg
Each n

 activations

* [isRunningFT]: executeMSControl

* [isVoting]: checkTimeoutVoting
 

Figure 5.8: MiddewareScheduler thread sequence diagram. 

 

Figure 5.8 does not represent FT thread scheduling, but this operation is 

performed, if selected, at the end of each MS activation. 
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5.5 FT strategies implementation 

This section describes the implementation of the fault tolerance strategies which 

were provided by the FT framework: RB, DRB and NVP. These strategies are 

described in Section 2.8. The implementation of an FT strategy consists basically in 

developing an FTStrategy class that contains the algorithm performed by the FT 

technique. Each strategy may also define algorithms for role definitions and state 

coordination. The implementation of these operations is supported by the 

MiddlewareScheduler thread, as presented in the previous section.  

5.5.1 Recovery Blocks strategy 

The Recovery Blocks (RB) strategy, described in Section 2.8.2, consists of the 

sequential execution of software variants, or alternates, using an acceptance test as 

adjudicator. The implementation of RB in this framework is limited to two software 

variants because it is the minimum configuration that is able to tolerate one active 

fault. The utilization of more software variants would require additional development 

efforts and it would increase the memory consumption. 

Figure 5.9 shows a class diagram that only presents classes, attributes and 

methods directly related to the RB strategy operation. The Recovery Blocks technique 

is implemented by the RBStrategy class. This class derives from FTStrategy and 

implements the executeFT method, which defines the FT thread behavior, and the 

executeMSControl method, which defines the MiddlewareScheduler thread behavior. 

Other virtual functions defined in FTStrategy are not implemented, as this strategy 

runs in a single node and does not send messages to other replicas. The waitingForMS 

attribute is used to indicate to the MS thread that the FT thread is waiting for further 

commands.  The passedAT attribute contains the result of the last acceptance test and 

it is used by the MS to define the next commands. These commands are issued 

through the following class attributes: tryBlock, which defines the next variant to run 

and mustSendResult, which defines if a result can be sent.  An example of the RB 

strategy execution has been shown in Figure 5.5 and the coordination between the FT 

thread and MS has been shown in Figure 5.6. 
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RBStrategy

+ waitingForMS:  bool
+ passedAT:  bool
+ tryBlock:  short
+ mustSendResult:  bool

+ executeFT() : void
+ executeMSControl() : void

FTStrategy

+ maxResponseTime:  Time

+ setMaxResponseTime(Time) : void
+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

FTThread

+ variant1() : void
+ variant2() : void
+ saveCheckpoint() : void
+ restoreCheckpoint() : void
+ acceptanceTest() : bool
+ sendResult() : void
+ onFailure() : void

 

Figure 5.9: RB strategy class diagram. 

The execution of the RB strategy is presented in Figure 5.10. Two software 

versions or alternates are applied, defined by the variant1 and variant2 methods. The 

entry point is the execution of the executeFT method of RBStrategy, which sets the 

deadline based on the maxResponseTime attribute and suspends. The MS resumes the 

FT thread, which then executes the checkpointing (saveCheckpoint method), the 

primary block (variant1 method), and the acceptance test (acceptanceTest method); 

after that, the FT Thread suspends again. In the next activation, the MS checks the AT 

result and, if it succeeded, commands the execution of the sendResult method and 

finishes the strategy operation. Otherwise, it will command the checkpoint restoration 

(restoreCheckpoint method), the execution of an alternate block (variant2 method), 

and the reexecution of the acceptance test. If both variant executions fail in the 

acceptance test, or if deadline expiration is detected by the MS thread, no results will 

be sent and the onFailure method will be called (see description in Section 5.3.3). 

After returning from the onFailure method, the thread will be restarted. 
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Figure 5.10: RB strategy execution. 

The maximum response time parameter (maxResponseTime) must include the 

extra time needed to execute the second variant if the first variant fails. The minimum 

value for this parameter is equal to three times the clock tick interval, as shown in 

Figure 5.11, in which the clock tick interval is represented by 20 time units. In the 

first period the FT thread only sets the deadline, in the second period it executes the 

first variant, and in the third period it executes the second variant. When the FT thread 

is sending the results the deadline verification is already disabled.  

The checkpointing mechanism is application-dependent and it must save all static 

variables, global variables and class attributes that can be modified by the first variant, 

in order to be restored to their original values before running the second variant. This 

might include state data and input data that is overwritten during the computation 

process (see Figure 5.1).  Non-static local variables and variables initialized by the 

software variants do not need to be saved. For stateless threads with unmodified input 

data no checkpoint is required, and the application thread may use the default empty 
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implementation defined in the FTThread class. The acceptance test, implemented by 

the acceptanceTest method, is also application-dependent and should return true in 

case of success and false in case of failure. The default implementation of this method 

returns true. 
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Figure 5.11: RB timing example. 

The RBStrategy class can also be applied to implement single version software 

techniques, as described in Table 5.2. The Checkpoint and Restart strategy only 

differs to RB because the second variant is equal to the first. Therefore, the 

implementation of the variant2 method should consist of a call to the variant1 

method. As discussed in Section 2.8.1, the Checkpoint and Restart strategy has 

limited software fault tolerance capability. 

The Restart strategy is the simplest configuration.  In that strategy, the default 

acceptanceTest method it used, and therefore, the only error detection mechanism is 

deadline expiration, which causes a thread restart. Despite recovering the faulty thread 

and allowing it to respond to further activations, this strategy can not avoid failures. 

The RB strategy described here is based in sequential execution in a single node. 

Therefore, state consistency mechanisms are not provided. However, it is possible to 

implement fault-tolerant configurations applying multiple replicas of RB threads, if 

these threads are stateless, as shown in Figure 5.12.  
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Figure 5.12: Stateless RB threads configuration example. 

In this configuration, both RBThreads receive messages with the string “data_in” 

as subject from SenderThread, and send their results in a message with the string 

“data_out” as subject. The ReceiverThread subscribes to “data_out” messages but sets 

the option for discarding duplicate messages (see Section 4.4.1). Therefore, only the 

first message from RBThreads will be delivered. The RB strategy provides software 

fault tolerance while its redundant execution provides hardware fault tolerance. If the 

RB threads were not stateless, the output messages of the two RBThreads would 

diverge in case of failure in one of them.  

5.5.2 Distributed Recovery Blocks strategy 

The Distributed Recovery Blocks (DRB) strategy, described in Section 2.8.3, 

coordinates the execution of two RB-like threads in distinct nodes, using a 

primary/shadow configuration, in which only the primary thread sends its results. 

Although not defined by the DRB strategy [64], the implementation of DRB in this 

framework provides a mechanism for maintaining the state consistency between 

replicas, in order to support state threads. 

Figure 5.13 shows a class diagram that only presents classes, attributes and 

methods directly related to the DRB strategy operation.  The DRB technique is 

implemented by the DRBStrategy class, which derives from FTStrategy. The class 

structure differences from RBStrategy to DRBStrategy are: 
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• DRBStrategy implements the processMiddlewareMsg method to handle messages 

received from the other replica. 

• DRBStrategy implements the startPeriodicMsg method to trigger the transmission 

of messages used to detect role conflicts between replicas. 

• DRBStrategy contains an enumeration object called myDRBRole to define the 

thread role: primary or shadow. 

• DRBStrategy uses the isPrimaryDone and isShadowDone attributes to keep track 

whether the primary and shadow threads have succeeded in the acceptance test. 

• DRBStrategy uses the isFirstActivation and hasFinishedInitialization attributes to 

support the implementation of state initialization. 

FTStrategy

+ maxResponseTime:  Time

+ setMaxResponseTime(Time) : void
+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

FTThread

+ hasState:  bool

+ variant1() : void
+ variant2() : void
+ saveCheckpoint() : void
+ restoreCheckpoint() : void
+ acceptanceTest() : bool
+ sendResult() : void
+ onFailure() : void
+ getState(char *) : int
+ setState(int, char *) : void DRBStrategy

+ waitingForMS:  bool
+ passedAT:  bool
+ tryBlock:  short
+ mustSendResult:  bool
+ myDRBRole:  DRBRole
+ isPrimaryDone:  bool
+ isShadowDone:  bool
+ isFirstActivation:  bool
+ hasFinishedInitialization:  bool

+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

«enumeration»
DRBStrategy::

DRBRole

+ PRIMARY:  int
+ SHADOW:  int

+myDRBRole

 

Figure 5.13: DRB strategy class diagram. 

The execution of the DRBStrategy is presented in Figure 5.14. The primary thread 

runs variant1 as primary block and variant2 as an alternate.  The shadow thread runs 

these variants in the reverse order.  
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Figure 5.14: DRB strategy execution. 
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At the entry point, the thread checks the need for state initialization based on the 

hasState attribute of FTThread and the isFirstActivation attribute of DRBStrategy, 

which is reset at startup. If state initialization is needed, the thread aborts operation 

and will only execute in the next activation. In the meanwhile, a state message from a 

previously initialized DRB thread should be received. If this message is not received, 

the thread assumes that no other node has been running previously, and therefore the 

default initialization values are taken. In both cases, the deadline is set and the thread 

begins its normal RB-like execution. 

There are different control algorithms for primary and shadow DRB threads. A 

primary thread executes as if it were alone, similarly to the RB strategy execution 

shown in Figure 5.10. However, if it misses the deadline it will be restarted as a 

shadow thread. Additionally, a primary thread sends a message indicating success in 

the acceptance test, and also a state message just after sending its results.  

The shadow thread behaves differently, as it must execute the second variant, 

perform the acceptance test, and wait for the acceptance test message from the 

primary thread. In this implementation, the timeout for waiting this message is equal 

to the execution deadline. Therefore, when this deadline expires, the MS thread in the 

shadow node verifies the isPrimaryDone and isShadowDone variables to decide one 

of the possible outcomes:  

• exit the shadow execution silently, if both threads have succeeded; 

• restart the shadow thread, if it has failed; or 

• change the role of the shadow thread to primary and allow it to send its results, if 

only the former primary has failed. 

As shown in Figure 5.14, three types of messages are exchanged between DRB 

replicas: 

• AT success message: this message is generated by the primary thread to inform 

the shadow thread about the success in executing an acceptance test.  

• State message: this message contains state data needed to initialize a state thread. 

The getState method of FTThread must be implemented for state threads. This 

method serializes the state data that is assembled in the state message. The 
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returning value of getState is the state data size. In the receiving side, the setState 

method deserializes this data to the proper variables. A stateless FT thread should 

not implement the getState and setState methods. In that case, the default 

implementation of getState will return zero as state data size, which will set the 

hasState attribute of FTThread to false. This is accomplished just at initialization 

time. 

• Role message: this message is sent periodically by both the primary and shadow 

nodes to allow the detection and correction of role conflicts (primary/shadow 

definitions). The receiving thread checks if the other replica role is equal to its 

own, and if so, executes a role conflict resolution algorithm based on the node 

identification number (see Section 4.4.2). The priority used in role conflicts is 

inversely proportional to the node identification number. A DRB thread always 

starts executing as shadow and therefore two DRB threads starting at the same 

time will have the same role. That situation will be corrected as soon as the higher 

priority thread receives the first role message from the lower priority thread, and 

changes its role to primary. The period of the role message is defined by the 

MiddlewareScheduler, as described in Section 5.4.2.  Another role conflict 

situation occurs when both the primary and shadow threads fail, and consequently 

are restarted as shadow.  

Figure 5.15 shows a DRB strategy configuration example similar to the one 

presented in Figure 5.12 for the RB strategy. This configuration uses middleware 

messages with subject “FTStatus” to send role, state and AT success messages as 

explained above. Note that only the primary DRBThread sends its results to 

ReceiverThread. 

The minimum value for maximum response time (maxResponseTime parameter) 

in the DRB strategy depends on many factors, such as the message transmission time 

from the primary to the shadow node. Figure 5.16 shows a timing diagram that 

presents the worst situation, in which the primary node starts executing after the 

shadow node and fails in the execution of the first variant. In this figure, one clock 

tick interval is represented by ten units of time. 
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Figure 5.15: DRB strategy configuration example. 
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Figure 5.16: DRB timing diagram. 

If we consider a small computing time for each variant execution and the worst 

possible timing between nodes, as they are not synchronized, the following time 

delays should be considered: 

• Difference between DRB threads start times. The starting time of each thread 

depends on the input message delivery to the FT threads, which happens once in 

two MS activations. In the worst scenario, the time difference between FT thread 

activations is equal to two clock tick intervals (2 ∆ck). 

• DRB primary thread execution time. If the computation time of the variants is 

small (e.g. half of a clock tick interval), the total execution time, excluding the 

time spent in sending the results, is equal to three clock tick intervals (3 ∆ck). 
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• Message transmission time. This is the delay in transmitting the AT success 

message between the primary and the shadow node. This time is called ∆M.  

• Message delivery time. This is the time delay between receiving a message in the 

shadow node and delivering it to the MS thread mailbox. In worst case scenario 

this delay is equal to two clock tick intervals (2 ∆ck).  

• Shadow exit delay. This is the time spent from the message delivery to the MS 

mail box to the moment when the FT thread runs again after this AT message is 

read by the MS thread. This delay is about one clock tick interval (∆ck). 

The sum of all the delays described above is equal to 8 ∆ck + ∆M. This represents 

the minimum value of maxResponseTime for DRB execution. For example, if the 

clock tick interval is 2 ms, and the network transmission delay is 10 ms, then 

maxResponseTime should be at least 26 ms. 

The DRBStrategy class can be applied to implement the PSP single version 

software technique, as described in Table 5.2. In that case, the variant2 

implementation should call the variant1 method. As explained in Section 2.8.3, this 

configuration has limited software fault tolerance capability, but is effective against 

hardware permanent and transient faults. 

5.5.3 N-Version Programming strategy 

The N-Version Programming (NVP) strategy, described in Section 2.8.4, consists 

of the concurrent execution of software variants followed by a decision mechanism, 

usually implemented by majority voting. The implementation of NVP in this 

framework is limited to three software variants because it is the minimum 

configuration needed to mask one active fault. The utilization of more software 

versions would require additional hardware resources that are usually not available for 

small-scale embedded systems. 

Figure 5.13 shows a class diagram that only presents classes, attributes and 

methods directly related to the NVP strategy operation.  The NVP technique is 

implemented by the NVPStrategy class, which derives from FTStrategy. This class 

implements the executeFT method, which defines the FT thread behavior and the 
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executeMSControl method, which defines the MiddlewareScheduler thread behavior. 

Additionally, this class also implements the processMiddlewareMsg method for 

processing state messages received from NVP threads in other nodes.  

FTStrategy

+ maxResponseTime:  Time

+ setMaxResponseTime(Time) : void
+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void
+ startPeriodicMsg() : void

FTThread

+ hasState:  bool

+ variant1() : void
+ variant2() : void
+ variant3() : void
+ sendResult() : void
+ onFailure() : void
+ getState(char *) : int
+ setState(int, char *) : void

NVPStrategy

+ variantNumber:  short
+ isFirstActivation:  bool
+ hasFinishedInitialization:  bool

+ setVariant(short) : void
+ executeFT() : void
+ executeMSControl() : void
+ processMiddlewareMsg(...) : void

 

Figure 5.17: NVP strategy class diagram. 

The NVPStrategy class has an attribute to define the variant that should be 

executed (variantNumber). This attribute is set at initialization time by the setVariant 

method, and it is not supposed to change at runtime. The advantage of having three 

software variants in the same class, instead of defining three different application 

threads, is to smooth the process of deployment. Using this design solution, the same 

software can be loaded in all embedded systems, and the definition about which 

variant a node will execute can be taken at runtime. A possible implementation is to 

define the variant to execute based on some node identification (e.g. IP number).  

Similarly to DRBStrategy, NVPStrategy uses the isFirstActivation and 

hasFinishedInitialization attributes to support the implementation of state 

initialization. 
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If only one software version is available, the NVPStrategy can be used to 

implement a TMR strategy. In that case, only the variant1 method must be 

implemented and the variantNumber attribute must be set to one.  

The execution of the NVP strategy is presented in Figure 5.18.  At the entry point, 

the thread checks the need for state initialization based on the hasState attribute of 

FTThread and the isFirstActivation attribute of NVPStrategy, which is reset at startup. 

If state initialization is needed, the thread aborts operation and will only execute in the 

next activation. In the meanwhile, a state message from a previously initialized NVP 

thread should be received. Then, the deadline is set and the thread selects one variant 

for execution based on the variantNumber attribute. At the end of the variant 

execution, a result message is sent to one or more voter threads. Besides, a state 

message is sent if the hasState attribute is set. 

 

Figure 5.18: NVP strategy execution. 

In this strategy, the MiddlewareScheduler thread only verifies if the deadline has 

expired. If the deadline expires, the onFailure method is called and the thread is 

restarted. 
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The state initialization mechanism is exemplified in Figure 5.19. In this situation, 

the NVP thread #1 was already running when NVP threads #2 and #3 started. In the 

first activation after starting, the joining NVP threads skip any processing and wait for 

a state message to initialize state data. In the next activation they start their normal 

execution. If the joining threads do not receive any state message they still start 

running in the next activation, but in that case they use the default state data. That 

situation happens if all threads start at the same time. This means that state threads 

loose one activation event to perform state initialization.  
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Figure 5.19: NVP state initialization example. 

The NVPStrategy class only takes care of the computation process. The NVP 

technique also depends on one or more voter threads that receive result messages from 

the FT threads and select a result based on majority voting. Figure 5.20 presents three 

possible voting configurations. NVP threads subscribe to the “input_data” subject and 

send their results using “unvoted-data” as subject. One or more voter threads receive 

the result messages and select one result which is sent using “voted_data” as subject. 

The communication between NVP threads (state messages) and voter threads (role 

messages) are not shown in these figures. In Figure 5.20a, only one voter is used and 

therefore a failure in the node where the voter is running will lead to a system failure. 

Figure 5.20b contains a configuration that uses one voter for each NVP thread, usually 

running in the same node. That configuration tolerates permanent failures in one or 

two nodes. The configuration in Figure 5.20c is similar to the one in Figure 5.20c, but 
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only the master voter sends the selected result. That mechanism is termed 

coordinated voting, while the configuration in Figure 5.20b is termed free voting.  
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Figure 5.20: Voting configurations. 

The implementation of voters depends on the middleware support for message 

identification, as described in Section 4.4.1, in order to define when a new voting 

problem or cycle begins. Therefore, NVP threads must send a common identification 

number in their result messages for each voting cycle. One possible solution is to 

include this identification in the input message. However, the activation of NVP 

threads and the output of voter threads can be performed without messages. NVP 

threads can be activated by a timing mechanism but they must agree in the generation 

of the message identification number sent to voter threads. This can be accomplished 

by the state data coordination mechanism provided by the NVP strategy. Similarly, 

voter threads can send or use the selected result by other means, as for instance, 

sending data to hardware devices. If the outputs of the voter threads are sent to 

another BOSS thread, there is no need for coordinated voting, as the middleware is 

able to discard duplicate messages. If otherwise only one message must be sent to the 

successor task or if only one voter must drive a hardware device, then coordinated 

voting should be used.   
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  Voter threads are implemented by means of the VoterThread class, shown in 

Figure 5.21. VoterThread derives from thread and defines the following virtual 

functions that must be implemented by application voters: 

• storeSolution: saves result data (also called “solution”) received from a NVP 

thread. 

• fingEqualSolution: compares the last received data from a NVP thread with 

previous received and stored data, trying to find a match (“equal” solution) using 

an application-specific procedure.  

• sendResult: outputs the selected result. 

The nextSolIndex attribute is initialized with zero at the beginning of a voting 

cycle and should be used by application voters as an index to store and compare result 

data.   

Thread

VoterThread

# nextSolIndex:  short
# myVoterType:  VoterType
# myVoterRole:  VoterRole
- maxResponseTime:  Time
- currentMsgID:  unsigned short
- previousMsgID:  unsigned short
- hasStartedElection:  bool
- higherSlaveCandidate:  bool

# initVoting(VoterType, Time) : void
# executeVoting(unsigned short) : void
# storeSolution() : void
# findEqualSolution() : bool
# sendResult() : void
+ checkTimeoutVoting() : void
+ startPeriodicMsg() : void
+ processMiddlewareMsg(...) : void

«enumeration»
VoterThread::VoterType

+ FREE:  int
+ COORDINATED:  int

«enumeration»
VoterThread::VoterRole

+ MASTER:  int
+ SLAVE:  int

BasicMsg:class

StdVoter

+ inMsg:  IncommingMessageAdministrator<BasicMsg, 20>
- resultData:  char ([MAXSOL][MAX_SERIALIZE_SIZE])
- inputSubject:  char*
- outputSubject:  char*

+ StdVoter(...)
+ run() : void
+ storeSolution() : void
+ findEqualSolution() : bool
+ sendResult() : void

ApplicationVoter

# run(void) : void
# storeSolution() : void
# findEqualSolution() : bool
# sendResult() : void

 

Figure 5.21: VoterThread class diagram. 
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VoterThreads can run free or coordinated, as defined by the myVoterType 

attribute. In coordinated voting, the myVoterRole keeps the role definition: master or 

slave. The maximumResponseTime attribute is used to define the deadline for each 

voting cycle. Both the coordination method and the response time are initialized by 

the initVoting method. The executeVoting method must be called after each voter 

activation (e.g. after receiving a message) and it must receive an identification number 

as a parameter. The currentMsgID and previousMsgID attributes keep track of the 

recent identification numbers and are used to detect a new voting cycle and also late 

arriving messages from previous cycles. The hasStartedElection and 

higherSlaveCandidate attributes are used to perform the master election in 

coordinated voting. The deadline of a voting cycle is verified periodically by the 

MiddlewareScheduler thread, using the checkTimeoutVoting method. Other methods 

called by the MS thread are startPeriodicMsg, which triggers a role message 

transmission in case of coordinated voting and processMiddlewareMsg, which 

processes incoming role messages. 

The StdVoter class defines a standard application voter that performs inputs and 

outputs using messages and executes exact voting, as described in Section 5.3.3. This 

class embeds a mail box for receiving messages of a type defined by a template 

parameter (BasicMsg). The memory used to store incoming results from NVP threads 

is defined by the resultData attribute. The subjects of the input and output messages is 

kept by the inputSubject and ouputSubject attributes. The initialization of these 

attributes, as well as others, as coordination method and response time is performed 

by the class constructor. 

A voting execution diagram is presented in Figure 5.22.  The entry point is the 

execution of the executeVoting method of VoterThread. The detection of a new voting 

cycle is performed by comparing the received identification number of the current and 

previous cycle’s identification numbers. If a new voting cycle is detected, the 

storeSolution method is called and a deadline is set. If otherwise, the received 

identification is compared to the previous cycle’s identification to detect a late 

arriving message, which will cause the discarding of the result data. The result data is 

also discarded if a result has been previously selected by the voter. If none of these 

discarding situations occur, the storeSolution and findEqualSolution methods are 
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called. If the findEqualSolution method return true, indicating that a match between 

different stored result data (“equal” solution) was found, and the voter is allowed to 

send outputs (free voter or master), the sendResult method is called.  

 

Figure 5.22: Voting execution diagram. 

While a voting cycle is still running (no result has been selected), the MS thread 

keeps checking the VoterThread deadline. When this deadline expires, two situations 

could have happened: 

• Only one result data have been received – in that case this solution is considered 

correct, and the voter selects it for output. 

• Two or three solutions have been received but they haven’t matched – in that case 

no output is produced by the voter.  

The master election algorithm used in coordinated voting is represented by the 

state diagram in Figure 5.23.  At the beginning of an election process in a voter, the 

initial state of the algorithm will be Master or Master Candidate, depending on the 

present role of the voter, master or slave, respectively.  
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Figure 5.23: Master election state diagram. 

 Transitions in this state diagram are triggered by the reception of role messages 

from other nodes that satisfy the conditions shown in the figure. For instance, if a 

slave voter starts the election as a Master Candidate and further receives a message 

from a master voter or from a higher priority slave voter, then it changes its state to 

Slave. A voter priority is inversely proportional to its node identification number. 

Role messages are sent periodically, triggered by the MS thread, as described in 

Section 5.4.2.  The duration of an election process is twice as big as the role message 

period. At the end of the election, the final state of a voter determines its role. A role 

change is performed if one of the following situations occurs: 

• A master voter ends the election in the Slave state; or  

• A slave voter ends the election in the Master Candidate state.  

When a voter thread starts it assumes a slave role. Therefore, a lower priority 

master voter will keep its role regardless of the arriving of new higher priority voters. 

This design decision aims to minimize role changes between coordinated voters.  

The master election algorithm is executed continuously, meaning that a new 

election period starts immediately after the previous election finishes. If a master 

voter fails, the worst possible scenario occurs when it happens just after sending its 
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role message and when this message arrives to the highest priority slave at the 

beginning of an election period, as shown in Figure 5.24.   

Election k Election k+1 Election k+2

mastermastermaster

Election k+3

slave slave slave slave slave slave master master master

failure

 

Figure 5.24: Master voter failure worst scenario. 

Figure 5.24 presents a sequence of elections carried out by the higher priority 

slave voter. The last master voter role message is received at the beginning of the k+1 

election. Therefore, this voter only detects the master failure and assumes as master at 

the end of the k+2 election. The worst case recovery time from a master failure is 

equal to two election periods. For example, in a system with clock tick interval of 2 

milliseconds and running periodic messages each 100 MiddlewareScheduler 

activations, the election period would be equal to 400 milliseconds, and so the worst 

case recovery time would be equal to 800 milliseconds.  

5.6 Discussion 

The utilization of the proposed FT framework for the development of embedded 

fault-tolerant systems has several benefits: 

• It simplifies the application level programming, as programmers don’t have to 

implement fault tolerance mechanisms, but just have to provide application- 

specific parameters and procedures. The same happens regarding other distributed 

mechanisms, such as state initialization and output coordination. 

• The application program follows a standard structure in which changing the FT 

strategy becomes easy and straightforward.  This reduces efforts in strategy 

selection, configuration and testing. 
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• It facilitates the creation and integration of new fault tolerance strategies. The 

proposed framework is easily extendable by adding new FTStrategy and 

VoterThread derived classes, as described in Section 5.4.  

• Provides a means of implementing adaptive fault tolerance [52], as changing the 

FT strategy can be performed at runtime by simply calling the setStrategy 

method. The strategy can be modified based on the reliability requirements of 

each mission phase, or even for other factors as resource availability and power 

consumption. 

The drawback of the proposed FT framework is the increase in the OS memory 

footprint and runtime overhead. The FT framework is fully integrated into the 

operating system code. Therefore, even for non-fault tolerant applications some extra 

resources will be used, as it will be presented in Chapter 7. A possible solution to this 

problem is providing two versions of the operating system: with and without the FT 

framework. However, this solution demands the utilization of more than one version 

of some operating system classes, which makes software development and 

maintenance more difficult. In Chapter 6 it will be presented a solution to this 

problem using AOP. 

5.7 Summary 

A framework to support application-level fault tolerance was designed and 

implemented. This framework is easily customizable and extensible, providing 

mechanisms for hardware and software fault tolerance. The design goals were 

simplicity and efficiency, in order to run in small-scale real-time embedded systems. 

 The units of fault tolerance in this framework are the BOSS threads. This 

approach provides better mechanisms for system recovery, such as thread restarting. 

The thread model for fault-tolerant threads supports both state threads and stateless 

threads, and it is commonly used in the design of fault-tolerant systems. 

The application of fault tolerance in an existing system is straightforward. An FT 

object must be created and registered. Additionally, some parameters and methods 

must be provided by the application program. The framework is responsible for 
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executing the selected FT strategy and for exchanging messages needed in the 

implemention of these strategies, such as the ones related to role definitions and state 

consistency.  

Three main fault tolerance strategies were implemented: RB, DRB and NVP, but 

other single version strategies may be derived from them. Detailed descriptions of 

each strategy class structure and execution algorithm were presented. Furthermore, 

worst case scenarios in terms of execution times for each FT strategy have been 

exhibited. The development and integration of new FT strategies into the framework 

is simple and do not imply modifications in other framework classes.  

The utilization of the proposed FT framework featured several advantages over 

ad-hoc implementations, simplifying the application-level programming and 

improving the system configurability and extensibility.  
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Chapter 6 

Applying AOP for fault tolerance 

 

 

 

 

 

This chapter describes the application of AOP to support the 

implementation of fault tolerance. In this work, AOP was applied for three 

different purposes: (1) modularize the fault tolerance code at the 

application level; (2) integrate the FT framework into the operating 

system; and (3) implement fault tolerance at the operating system level. 
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6.1 Application-level fault tolerance 

The FT framework described in the last chapter can be used to convey fault 

tolerance to an existing application. In order to build a fault-tolerant application, the 

source code of critical threads must be modified. For instance, the source code shown 

in Figure 6.1 presents a non fault-tolerant thread, while Figure 6.2 shows the source 

code of the same thread after fault tolerance introduction. The main differences 

between these source codes are highlighted. This modification can lead to the 

introduction of coding errors and also can make maintenance more difficult, as two 

software versions now exist: the original and the fault-tolerant. These versions should 

remain compatible throughout their evolution, aiming to allow configurability and 

reuse. As a mean to improve fault tolerance integration and maintenance, AOP 

techniques were applied to modularize all fault-tolerant code, keeping the original 

source code intact. In this work, AOP was mainly used to automatically generate the 

source code of fault tolerant threads (e.g. Figure 6.2) by weaving the original non 

fault-tolerant thread source code (e.g. Figure 6.1) with FT aspects.  

 
class ExampleThread : public Thread { 
  Msg* recMsg; 
  Msg outMsg; 
  IncommingMessageAdministrator<Msg,20> inMessages; 
public: 
  ExampleThread(){ ... // init code} 
   
  void run () { 
    while(1) { 
      recMsg = inMessages.receive(); 
      process(); 
      output(); 
    } 
  } 
 
  void process(){ 
    ... // uses msg data and state data 
  } 
 
  void output(){ 
    ... // prepares output message 
    outMsg.send("exampleResult"); 
  } 
}; 

Figure 6.1: Example of thread source code before fault tolerance introduction.  
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class FTExampleThread : public FTThread { 
   
  DRBStrategy myDRB; 
  Msg* recMsg; 
  Msg outMsg; 
  IncommingMessageAdministrator<Msg, 20> inMessages; 
public: 
 
  FTExampleThread(){ 
    ... // init code 
    myDRB.setMaxResponseTime(20000);  
    setFTStrategy(&myDRB); 
  } 
 
  void run () { 
    while(1) { 
      recMsg = inMessages.receive(); 
      ftStrategy->executeFT();  
    } 
  } 
 
  void variant1(){ 
    ... // same code of original process method  
  } 
 
  void sendResult(){ 
    ... // same code of original output method 
  } 
  // to be defined 
  void variant2(){ ... } 
  void saveCheckpoint(){ ... } 
  void restoreCheckpoint(){ ... } 
  bool acceptanceTest(){ ... } 
}; 

Figure 6.2: Example of thread source code after fault tolerance introduction. 

6.1.1 Code generation 

The process of generating the executable code using this approach is shown in 

Figure 6.3. Inputs and outputs of weavers, compilers and linkers are represented by 

continuous lines, while application source code dependencies are represented by 

dashed lines. The operating system, already integrated to the fault tolerance 

framework, is compiled and an OS library is generated. Abstract Strategy Aspects are 

developed for each FT strategy in the system. They define virtual pointcuts and 

standard advices used for all related Concrete Strategy Aspects. A concrete aspect 

must be defined for advising each future fault-tolerant application thread, as it will be 
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later discussed. The weaving process using AspectC++ generates a fault-tolerant 

application that is eventually compiled and linked to the OS code. 

Non-FT 
Application

Abstract 
Strategy 
Aspects

Concrete 
Strategy 
Aspects

AspectC++ 
weaving

FT 
Application

BOSS OS 
& FT 

Framework

Compilation 
& linking

Executable 
code

Compilation 
& library 
creation

OS library

 

Figure 6.3: Code generation process using AOP at the application level. 

Using this process, all fault-tolerant code is defined inside the aspect code, and 

the non-FT application remains unchanged. The fault tolerance concern is 

consequently separated from the main functionality. 

6.1.2 AspectC++ restriction 

AspectC++ has a restriction related to the introduction of base classes that had an 

impact on this work. In AspectC++, base classes can be included but they can never 

replace an existing base class (as AspectJ does). The introduction of a base class in 

AspectC++ can lead to multiple inheritance if the target class of the introduction has 

already one base class. In Figure 6.4 we can see that the application of a base class 

introduction in the original code of Figure 6.1 does not result in the FT code of Figure 

6.2. Instead, it adds FTThread as a base class of ExampleThread in a multiple 

inheritance mechanism. 
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Strategy 
Aspects

AspectC++ 
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FT 
Application

// Figure 6.1
class ExampleThread : public Thread {
  ...
}

// what we get 
class ExampleThread : public Thread, public FTThread {
  ...
}

aspect SomeAspect {
   advice "ExampleThread": slice class: public FTThread;
  ...
}

// what we need (Figure 6.2)
class ExampleThread : public FTThread {
  ...
}

 

Figure 6.4: AspectC++ base class introduction example. 

In AspectJ, the introduction of a base class by an aspect is always performed by 

substitution, as Java does not allow multiple inheritance. As C++ allows both single 

and multiple inheritance, AspectC++ should provide support for two kinds of base 

class introduction: by substitution and by addition. The suggestion to include the base 

class substitution functionality in AspectC++ has been sent to the AspectC++ mailing 

list [14, 15] in January and April of 2007. We hope that new versions of AspectC++ 

can support that feature.  

Some workarounds can be applied to deal with this AspectC++ restriction, but all 

involve modifications in the FT framework and cause performance or memory 

footprint penalties. The selected solution was to eliminate the FTThread class from 

the FT framework and include all its attributes and methods into the Thread class, as 
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shown in Figure 6.5 (compare with Figure 5.3). This solution avoids the usage of the 

base class introduction shown in Figure 6.4, and consequently does not incur in the 

performance overheads related to multiple or virtual inheritance. However, it 

increases the memory footprint of the final application, as non-FT threads have their 

memory size enlarged.  

VoterThread

# myVoterType:  VoterType
- maxResponseTime:  Time

# initVoting(VoterType, Time) : void
# executeVoting(unsigned short) : void
# storeSolution() : void
# findEqualSolution() : bool
# sendResult() : void

FTStrategy

+ ftThread:  Thread*
+ maxResponseTime:  Time

+ setFTThread(FTThread*) : void
+ setMaxResponseTime(Time) : void
+ executeFT() : void

BasicMsg:class

StdVoter

- outputSubject:  char*
- inputSubject:  char*

RBStrategy

Thread

+ ftStrategy:  FTStrategy*

+ setFTStrategy(FTStrategy*) : void
+ variant1() : void
+ variant2() : void
+ variant3() : void
+ saveCheckpoint() : void
+ restoreCheckpoint() : void
+ acceptanceTest() : bool
+ sendResult() : void
+ onFailure() : void
+ getState(char*) : int
+ setState(int, char*) : void

MiddlewareScheduler

DRBStrategy NVPStrategy

VoterApplicationThread

FTApplicationThread

 

Figure 6.5: FT framework modified for AOP application. 

6.1.3 AOP implementation 

This section describes the implementation of abstract and concrete aspects that 

introduce fault tolerance to threads. As an example, the ExampleThread class shown 

in Figure 6.1 will be made fault-tolerant, using the DRB and NVP strategies.  

Figure 6.6 shows the abstract aspect related to the DRB strategy. This aspect is 

general and can be applied by all threads using this strategy and other single version 

strategies related to it. Similar abstract aspects were developed for the RB and NVP 

strategies. Initially this aspect declares three virtual pointcuts (lines 2-4) that will be 
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defined by concrete aspects. These pointcuts represent the thread class under 

modification (DRBClass) and the original methods for processing (ProcessMethod) 

and output (OutputMethod). The integer maxResponseTime (line 5) keeps the 

maximum response time for execution, which must be defined by concrete aspects. 

The introduction of the DRBStrategy object definition is carried out using the 

AspectC++ slice construction (line 7), which is used to extend the static structure of a 

program. The initialization of this object, as well as its registration, is performed by 

the advice in line 13, which uses the constr pointcut (line 11), similarly as done in the 

constructor code of the non-AOP version in Figure 6.2. 
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aspect DRBStrategyAbstract { 
  pointcut virtual DRBClass() = 0; 
  pointcut virtual ProcessMethod() = 0; 
  pointcut virtual OutputMethod() = 0; 
  int maxResponseTime; 
 
  advice DRBClass(): slice class {   
    private: 
      DRBStrategy myDRB;             
  }; 
  pointcut constr() = construction(DRBClass()); 
 
  advice constr(): after(){ 
    tjp->target()->myDRB.setMaxResponseTime( maxResponseTime ); 
    tjp->target()->setFTStrategy(&(tjp->target()->myDRB)); 
  } 
 
  pointcut compute()= call(ProcessMethod()) && 
     target( DRBClass() ) && !within( "% ...::variant%(...)" ); 
 
  advice compute(): around(){ 
    tjp->target()->ftStrategy->executeFT(); 
  }  
  pointcut result()= call(OutputMethod()) && 
   target( DRBClass() ) && !within( "% ...::sendResult(...)" ); 
 
  advice result(): around(){ 
  }  
}; 

Figure 6.6: DRB strategy abstract aspect. 

The compute pointcut (line 18) defines a condition in which the processing 

method of the non-FT thread is called in the original code.  The around advice related 

to this pointcut (line 21) will replace this call by the activation of the executeFT 

method of the FTStrategy class. Similarly, the result pointcut (line 24) defines a 

condition in which the output method of the non-FT thread is called in the original 
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code. The around advice related to this pointcut (line 28) will just suppress this call, as 

the activation of the thread output is going to be controlled by the FTStrategy object. 

The concrete aspect to make ExampleThread fault-tolerant is shown in Figure 6.7. 

The aspect inherits from the DRBStrategyAbstract aspect and initially defines its 

virtual pointcuts (lines 3-5). In this case, the target thread is “ExampleThread”, the 

processing method is “process” and the output method is “output”, as seen in Figure 

6.1. 
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aspect DRBExampleConcrete: public DRBStrategyAbstract { 
 
  pointcut DRBClass() = "ExampleThread"; 
  pointcut ProcessMethod()= "% ...::process()"; 
  pointcut OutputMethod() = "% ...::output()"; 
 
  DRBExampleConcrete(){ 
    maxResponseTime = 20000; 
  } 
 
  advice DRBClass() : slice class {   
    public: 
      void variant1(){ process(); } 
      void sendResult(){output(); } 
      
      // methods to be defined 
      void variant2(){ ... } 
      void saveCheckpoint(){ ... } 
      void restoreCheckpoint(){...} 
      bool acceptanceTest(){...} 
  } 
}; 

Figure 6.7: DRB strategy concrete aspect example. 

The maximum response time for this strategy is set to 20.000 microseconds in the 

aspect constructor (line 8), by initializing a base abstract variable. After that, several 

methods are introduced in the target thread. The virtual method variant1 (line 13) is 

responsible for running the primary block in DRB, and in this case it must execute the 

original processing of ExampleThread. Similarly, the virtual method sendResult (line 

14) must call the original output method. Here it can be noticed that the calls to 

process and output in the introduced methods variant1 and sendResult will not trigger 

the execution of the advices defined by the compute and result pointcuts in the 

DRBStrategyAbstract aspect of Figure 6.6 because the within scope pointcut function 

is being applied. Finally, the application-specific methods are defined for this strategy 

(lines 17-20), such as variant2 (recovery block) and saveCheckpoint. After the 
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weaving process, the new ExampleThread code becomes functionally equivalent as 

the non-AOP version of Figure 6.2. 

Figure 6.8 presents the abstract aspect to implement the NVP strategy using a 

StdVoter class. The differences to the abstract aspect for the DRB strategy of Figure 

6.6 are highlighted.  
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aspect NVPstdStrategyAbstract { 
  pointcut virtual NVPClass() = 0; 
  pointcut virtual ProcessMethod() = 0; 
  pointcut virtual OutputMethod() = 0; 
  int maxResponseTime; 
  int variant; 
  char inputSubject[20]; 
 
  advice NVPClass(): slice class {   
    private: 
      NVPStrategy myNVP;             
  }; 
  pointcut constr() = construction(NVPClass()); 
 
  advice constr(): after(){ 
    tjp->target()->myNVP.setMaxResponseTime( maxResponseTime ); 
    tjp->target()->myNVP.setVariant(variant); 
    tjp->target()->setFTStrategy(&(tjp->target()->myNVP)); 
  } 
 
  pointcut compute()= call(ProcessMethod()) && 
     target( NVPClass() ) && !within( "% ...::variant%(...)" ); 
 
  advice compute(): around(){ 
    tjp->target()->ftStrategy->executeFT(); 
  }  
  pointcut result()= call(OutputMethod()) && 
   target( NVPClass() ) && !within( "% ...::sendResult(...)" ); 
 
  advice result(): around(){}  
 
  pointcut sendMessage()= call(“%Message::send(...)”) && 
    that( NVPClass() ) && within ( OutputMethod() ); 
 
  advice sendMessage(): before(){ 
    *tjp->arg<0>() = inputSubject; 
  } 
}; 

Figure 6.8: NVP strategy with StdVoter abstract aspect. 

The variant attribute (line 6) keeps the variant number executed by this node, and 

it is defined by the concrete aspect. The variant number is set in NVPStrategy object 

in line 17, inside the advice of the target thread constructor. The most remarking 

difference to the DRB strategy is the need to advise the call to the send method of the 
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Message class inside the output method of the target thread, as defined by the 

sendMessage pointcut (line 32). This happens because the fault-tolerant thread now 

has to send its results to a voter thread instead of the final destinations, and so the 

subject of the output message has to change. In the advice in line 35, the input 

argument to the Message::send method is changed to the subject of input messages to 

the voter (line 7), which is defined by the concrete aspect. 

An example of NVP concrete aspect (using StdVoter) applied to the same 

ExampleThread of Figure 6.1 is shown in Figure 6.9.  The main differences to the 

DRB concrete aspect of Figure 6.7 are highlighted.  
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aspect NVPExampleConcrete: public 
                             NVPstdStrategyAbstract { 
 
  pointcut NVPClass() = "ExampleThread"; 
  pointcut ProcessMethod()= "% ...::process()"; 
  pointcut OutputMethod() = "% ...::output()"; 
  StdVoter<Msg> myVoter; 
 
  NVPExampleConcrete() 
    : myVoter(“voter”, VoterThread::COORDINATED, 15000, 
            “toTheVoter”, “exampleResult”) 
  { 
    maxResponseTime = 20000; 
    variant = defineMyVariant(); 
  } 
 
  advice NVPClass() : slice class {   
    public: 
      void variant1(){ process(); } 
      void sendResult(){output(); } 
      
      // methods to be defined 
      void variant2(){ ... } 
      void variant3(){ ... } 
  } 
}; 

Figure 6.9: NVP strategy with StdVoter concrete aspect example. 

The StdVoter object is defined in line 7. This object cannot be an attribute of the 

abstract aspect because it depends on the type of the Message object used to exchange 

the results (e.g. Msg), and this is application-dependent. The StdVoter constructor is 

called by the aspect constructor (line 10). The parameters taken by this constructor are 

described in Table 5.3. In this example, coordinated voting is selected and the 

maximum response time for a voting cycle is set to 15.000 microseconds. The subject 

of input messages to the voter is defined arbitrarily as “toTheVoter” and the subject of 
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output messages from the voter is defined compulsorily as “exampleResult”, the same 

used by the output method of ExampleThread. 

The variant attribute set in line 14 will define which variant method (1, 2, or 3) 

will be called for processing. In this example, all nodes will be able to run any variant, 

and the definition about what variant they will run will be taken at runtime, using the 

defineMyVariant function. A possible implementation of this function can be to define 

the variant based on some non-volatile identification of the node. Finally, the 

application-specific methods are defined for this strategy (lines 23-24). The NVP 

strategy requires an extra variant in relation to the DRB strategy (line 24), but in 

contrast does not require the implementation of checkpointing or acceptance tests. If 

only TMR is implemented, there is no need to define variant2 and variant3, and the 

variant attribute should be set to 1(one) in line 14. 

6.1.4 Discussion 

The basic goal of the AOP implementation shown in the previous sections was to 

modularize all fault tolerant code used at the application thread level, keeping the 

original code unchanged. The advantages of this approach are: 

• It is less prone to errors in porting a non-FT system to a FT one. The task of 

changing an existing system to introduce fault tolerance capabilities may insert 

software faults in the original code. Using AOP the original code is preserved. 

• The programmer can initially write applications without fault tolerance in mind, 

and concentrate his efforts in the development of the functional code. Using AOP, 

fault tolerance can be applied in a second stage, after validating the core 

functionality. 

• It facilitates the evaluation and comparison of several FT configurations, as the 

developer may easily select what set of application threads will be made fault 

tolerant and on which strategy.  

• It contributes to product line development, as single or redundant systems may be 

generated by introducing or not fault tolerant aspects. 
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• It contributes to code reuse because the same functional code can be applied in 

other projects with different dependability requirements. 

Using this approach, the base code remains oblivious to the fault tolerant concern, 

but on the other hand, the aspect code is very dependent on the base code it applies to. 

This fact is related to the nature of fault tolerance domain, where for each FT 

instantiation we may need to define specific deadlines, error detection, alternative 

procedures, checkpoints, state coordination, voting specifications, and so on. For that 

reason, concrete aspects are normally heterogeneous and can target only one 

application thread. However, depending on the characteristics of the application 

process and the selected fault tolerant strategy, less application-specific code may be 

needed. In our opinion, a complete homogeneous fault tolerance injection is very hard 

to achieve.  

The main drawback of using AOP for application-level fault tolerance 

introduction is related to the very limited availability of aspect-oriented weavers and 

tools for embedded development. The AspectC++ compiler used in this work is still in 

beta testing and has some restrictions, such as the one described in Section 6.1.2. In 

Section 6.4 we discuss the need to use special configuration tools for AOP 

development. 

We conclude that AOP is very useful in the fault tolerance domain because it 

reduces efforts and errors in making a legacy system fault-tolerant, simplifies system 

development by allowing the validation of the functional part in advance, facilitates 

the evaluation and comparison of various FT configurations, and contributes to 

product line development and code reuse. 

6.2 FT framework integration 

The FT framework implementation is intertwined with some of the BOSS 

operating system classes. For instance, the Thread class of BOSS includes additional 

attributes and methods related to the fault tolerance implementation, as seen in Figure 
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6.5. Even in the former implementation of the FT framework2, the original BOSS 

Thread class had to be modified to include some attributes, as seen in Figure 5.7.  

Ideally, the utilization of an FT framework should not affect the OS development. 

The application of AOP techniques can provide the complete physical separation of 

the FT framework from the OS code. Therefore, the development of these concerns 

can be made separately and be composed, if needed, at weaving/compilation time. 

6.2.1 Code generation 

The process of weaving the FT framework with the operating system and further 

generation of the executable code is shown in Figure 6.10.  
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Figure 6.10: Code generation process when using AOP at the OS level. 

The weaving process now also applies to the original operating system code. The 

weaving process at the application level occurs simultaneously with the weaving 

                                                 

2 The former implementation of the FT framework is the one presented in Chapter 5. The current 

implementation of the FT framework is the one shown in Figure 6.5, which avoids multiple inheritance 

when using AspectC++, as described in Section 6.1.2. 
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process at the operating sytem level. The FT framework is injected into the OS by one 

or more aspects. There are no modifications in abstract and concrete FT aspects used 

at the application level. Using this approach it is possible to reduce the code size for 

non-FT implementations and also to apply aspects for other concerns at the operating 

system level, as logging, synchronization and middleware customization.  

Figure 6.11 shows an alternative code generation process, where two executions 

of AspectC++ weaving are performed: the first for weaving at the OS code and the 

second for weaving at the application code. This configuration avoids the regeneration 

of the OS library each time the application code is changed. However, it can not be 

applied if the same aspect has to advice both the OS and the application.  AspectC++ 

was designed to allow weaving on a pre-woven source code, which is the case in this 

configuration, as the include files related to the OS were modified by the first weaving 

process. 

 

Non-FT 
Application

Application 
Aspects

AspectC++ 
weaving

FT 
Application

BOSS OS 
& FT 

Framework

Compilation 
& linking

Executable 
code

Compilation 
& library 
creation

OS library

BOSS OS

FT 
Framework

OS 
Aspects

AspectC++ 
weaving

 

Figure 6.11: Alternative code generation process with double weaving. 
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6.2.2 AOP implementation 

This section describes the AOP implementation that integrates the FT framework 

into the BOSS operating system. Two aspects were used. The first one, shown in 

Figure 6.12, modifies the TimeManager class to activate the MiddlewareScheduler 

(MS) thread at the beginning of each clock tick interval. The timeEvent method is 

called from the clock tick ISR. This aspect adds an after advice to this method 

execution (line 5), which resumes the MS thread (resetting waitingUntil) if this thread 

is not waiting a resource (e.g. semaphore). 
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aspect FTFramework_1: { 
  pointcut MSActivation()=  
         execution(“%...:: TimeManager::timeEvent()”); 
 
  advice MSActivation(): after(){ 
     if(middlewareScheduler.waitingForSignalFrom == NULL){ 
        middlewareScheduler.waitingUntil=0; 
  } 
}; 

Figure 6.12: MiddlewareScheduler activation aspect. 

The second aspect is presented in Figure 6.13. This aspect introduces FT 

attributes and methods to the Thread class, and also advises its constructor (line 33). 

The named slice class FTThreadSlice defines a set of data members and member 

functions that will be added to the Thread class (line 31). Most methods are virtual 

functions and have empty or default implementations (see Table 5.1). Others, such as 

initFTThread and setFTStrategy are non-inline functions whose implementations are 

defined in lines 26 and 27.  

As a result of the aspect code defined in Figure 6.13, AspectC++ will append 

FTThreadSlice to the Thread class declaration (in Thread.h), but the implementation 

of initFTThread and setFTStrategy will be added to the Thread implementation file 

(Thread.cc). 
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slice class FTThreadSlice { 
public: 
  enum FTType{NONE, FT, VOTER}; 
  FTType myFTType; 
  bool isRunningFT;  
  bool isVoting;   
 
  FTStrategy * ftStrategy; 
  bool hasState; 
 
  virtual void variant1(){}   
  virtual void variant2(){} 
  virtual void variant3(){}   
  virtual void saveCheckpoint(){} 
  virtual void restoreCheckpoint(){}  
  virtual bool acceptanceTest(){return true;}  
  virtual void sendResult(){} 
  virtual void onFailure(){} 
  virtual int getState(char * stateBuff) {return 0;} 
  virtual void setState(int size, char * stateBuff){} 
 
  void initFTThread(); 
  void setFTStrategy();   
}; 
 
slice void FTThreadSlice::initFTThread() {...}; 
slice void FTThreadSlice::setFTStrategy() {...}; 
 
aspect FTFramework_2{ 
 
  advice “Thread” : slice FTThreadSlice; 
 
  advice construction(“Thread”): after() {  
    tjp->target()->initFTThread();  
  } 
}; 

Figure 6.13: Aspect for introducing FT attributes and methods in the Thread class. 

6.2.3 Discussion 

The application of AOP to integrate the FT framework into the operating system 

allows a complete physical separation of the FT framework from the OS code. This 

approach solves the problem described in Section 5.6 in regard to the maintainance of 

more than one version of the same operating system class, in order to optionally build 

the operating system without FT support.   
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6.3 Operating system fault tolerance 

The application of fault tolerance at the operating system level requires the 

implementation of error detection mechanisms, as presented in Section 2.3. These 

mechanisms involve the execution of extra processing at pre-defined points of the OS 

code, also termed executable assertions. Assertions can check if preconditions and 

post conditions are fulfilled when performing a given OS functionality. Error 

detection mechanisms can also apply structural checks to detect errors in variables 

and data structures. Information redundancy is commonly used in order to allow the 

detection of errors in data structures.  

The application of error detection mechanisms at the operating system level 

results in resource costs, such as memory size and runtime overhead. Therefore, fault 

tolerance at the OS level is normally avoided in resource constrained embedded 

systems. However, for systems demanding high level of dependability, such as safety-

critical applications, the implementation of FT mechanisms in the OS can be of great 

importance.  

In this section we presented how to implement error detection mechanisms at the 

operating system level using AOP. The examples shown are inspired by the work with 

fault containment wrappers [13, 100]. Wrappers are used to implement the interface 

between the application code and the OS, monitoring the flow of information and 

applying error detection and error handling mechanisms. The proposed wrappers were 

meant to be used to detect errors in off-the-shelf microkernels whose source code is 

not available for modifications. However, the application of wrapper with no 

information on the internal OS state has limited error detection capability. 

Consequently, the proposed wrappers require access to some selected internal OS data 

by means of a meta-interface, which is accessed by meta-level programming.  The 

same predicates, or invariants, defined in [100] for semaphore error detection are 

implemented here in the BOSS operating system using AOP.  
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6.3.1 Semaphore error detection 

Semaphores in BOSS were described in Section 4.2.2. As shown in Figure 4.3, 

the Semaphore class has two main methods (enter and leave) and a counter attribute 

to keep track of the number of resources available.  

Two predicates are defined for the semaphore operation [100]. The first predicate 

defines a condition in which the counter attribute is consistent with the number of 

calls to the enter and leave methods, as stated in equation (1). The current value of the 

counter attribute should be equal to the its initial value minus the number of calls to 

method enter and plus the number of calls to method leave: 

counter = init_value - #enter + #leave    (1) 

The implementation of this predicate as an execution assertion demands the 

introduction of three new attributes to the Semaphore class (init_value, #enter and 

#leave).     

The second predicate defines a condition in which the value of the counter 

attribute is consistent with the number of suspended threads waiting for the 

semaphore.  This predicate is represented by Equation (2), where the number of 

suspended threads should be equal to the maximum between zero and the negated 

value of the current counter attribute. For instance, if the counter attribute is -3 there 

should be 3 suspended threads waiting for this semaphore, but if the counter attribute 

is greater or equal than zero no thread is suspended. 

#Suspended = max(0, -counter)  (2)  

The implementation of this predicate as an execution assertion demands the 

implementation of a search procedure for counting the number of suspended threads 

waiting for the semaphore. 

The predicates described above can be applied as preconditions or post-conditions 

of the semaphore operation in calls to the methods enter and leave. 

In Section 6.3.3 we present how to implement the verification of the above 

predicates in the Semaphore class of the BOSS operating system, using Aspect-

Oriented Programming.  
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6.3.2 Code generation 

The code generation process applied to introduce fault tolerance at the OS level is 

the same described in Section 6.2.1. The aspects used for OS fault tolerance are 

represented in Figure 6.10 and Figure 6.11 as “OS Aspects”, similarly to the aspects 

for integrating the FT framework into the OS. 

6.3.3 AOP implementation  

Figure 6.14 shows the aspect code to implement the first predicate for semaphore 

error detection, described by Equation (1) in Section 6.3.1.  
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slice class CounterSlice { 
  int initialCounter;   
  int enterCounter; 
  int leaveCounter;  
  void checkCounter(); 
}; 
 
slice void CounterSlice::checkCounter(){ 
  int calculatedCounter = initialCounter  
                          - enterCounter + leaveCounter; 
    
  if(counter != calculatedCounter) 
     doErrorHandling(); 
} 
 
aspect SemaErrorDetect1{ 
 
  advice "Semaphore": slice CounterSlice; 
 
  advice construction("Semaphore"): after(){ 
    tjp->target()->initialCounter = tjp->target()->counter; 
    tjp->target()->enterCounter = 0; 
    tjp->target()->leaveCounter = 0; 
  } 
 
  advice execution("% Semaphore::enter(...)") : before()  { 
    tjp->target()->checkCounter(); 
    tjp->target()->enterCounter += 1; 
  } 
 
  advice execution("% Semaphore::leave(...)") : before()  { 
    tjp->target()->checkCounter(); 
    tjp->target()->leaveCounter += 1; 
  } 
}; 

Figure 6.14: Semaphore error detection aspect for the first predicate. 
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CounterSlice defines the new attributes (lines 2-4) for the Semaphore class that 

are needed for the execution of the first predicate, as well as the checkCounter method 

(line 4), which implements Equation (1) in lines 9-10 and calls an error handling 

routine if the assertion fails (line 13). As it is hard to diagnose and correct the system 

state after this kind of error, a possible error handling procedure can be to reset the 

node. The SemaErrorDetect1 aspect applies CounterSlice to the Semaphore class (line 

18) and defines three advices. The fist advice (line 20), initializes the introduced 

attributes at the Semaphore class constructor. The second advice (line 26), checks the 

predicate before the execution of the enter method and then increments the 

enterCounter attribute. The third advice (line 31) checks the predicate before the 

execution of the leave method and then increments the leaveCounter attribute.  

The implementation of the predicate in Equation (2) is presented in Figure 6.15. 

This aspect code uses a slice (SuspendedSlice) that defines two new methods to the 

Semaphore class: checkSuspended and numberOfSuspended. The first method 

implements the predicate (line 6) using the second method (line 13) as a utility 

function that returns the number of threads suspended by the semaphore. The 

implementation of the numberOfSuspended method is not shown. The 

SemaErrorDetect2 aspect introduces SuspendedSlice into the Semaphore class and 

defines advices to execute checkSuspended before the execution of the enter and leave 

methods. 

The AOP implementations presented in Figure 6.14 and Figure 6.15 apply the 

predicates as preconditions to the semaphore operations. Implementations considering 

the predicates as post-conditions can be performed by using after advices. 

The configuration of the semaphore functionality, i.e., if no fault tolerance is 

used, or if one or more error detection mechanisms are used, can be decided at 

compile time, by including or not the above aspects. AOP allows a complete 

modularization of the fault tolerance code, keeping the original semaphore 

implementation unchanged. 

However, the AOP implementations presented to this point have a serious flaw: 

there is no mutual exclusion between the error detection procedure and the semaphore 

normal operation. A race condition can occur, for instance, if a thread is suspended 
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during the execution of an error detection procedure and another running thread 

executes an operation in the same semaphore. In this situation it is possible that the 

error detection mechanism results in a false indication. In order to solve this problem, 

synchronization primitives must be employed in the aspect code. 
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slice class SuspendedSlice{ 
  void checkSuspended(); 
  int numberOfSuspended(); 
}; 
 
slice void SuspendedSlice::checkSuspended(){ 
  int calculatedSuspended =(counter >= 0 ? 0 : counter*(-1)); 
   
  if( mumberOfSuspended != calculatedSuspended) 
     doErrorHandling(); 
} 
 
slice int SuspendedSlice::numberOfSuspended(){...} 
 
aspect SemaErrorDetect2{ 
 
  advice "Semaphore": slice SuspendedSlice; 
 
  advice execution("% Semaphore::enter(...)") : before()  { 
    tjp->target()->checkSuspended(); 
  } 
 
  advice execution("% Semaphore::leave(...)") : before()  { 
    tjp->target()->checkSuspended(); 
  } 
}; 

Figure 6.15: Semaphore error detection aspect for the second predicate. 

 The aspect shown in Figure 6.16 solves the synchronization problem described 

above. This aspect injects the mutual exclusion mechanism (disabling dispatching) in 

the semaphore implementation.  In preparation for the application of this aspect, the 

Semaphore methods enter and leave were modified in order to expose their critical 

sections, which were enclosed by the new methods enter_in and leave_in. 

Additionally, the original calls to mutual exclusion procedures were removed. The 

SemaSyncronize aspect defines the execution of enter_in and leave_in as a pointcut 

for synchronization advices (lines 3-4). The before advice in line 6 disables the 

dispatch of other threads, by calling the disableDispatch method of Scheduler (see 

Section 4.2.2), while the after advice in line 10 enables the dispatch again by calling 

enableDispatch. The SemaErrorDetect1 (Figure 6.14) and SemaErrorDetect2 (Figure 



Chapter 6. Applying AOP for fault tolerance 

138 

6.15 ) aspects must be modified to advise over methods enter_in and leave_in, instead 

of methods enter and leave. 
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aspect SemaSyncronize{ 
 
  pointcut sync()= execution(% ...::Semaphore::enter_in(...) || 
                   execution(% ...::Semaphore::leave_in(...); 
 
  advice sync(): before() { 
    scheduler.disableDispatch(); 
  } 
 
  advice sync(): after() { 
    scheduler.enableDispatch(); 
  } 
 
  advice sync(): order(“SemaSyncronize”, “SemaErrorDetect1”); 
  advice sync(): order(“SemaSyncronize”, “SemaErrorDetect2”); 
  advice sync(): order(“SemaErrorDetect1”, “SemaErrorDetect2”); 
}; 

Figure 6.16: Synchronization aspect applied to the Semaphore class. 

The precedence of the several before advices that affect the sync pointcut is 

defined by advice ordering declarations in lines 14-15. Three aspects can inject code 

at these join points (execution of the enter_in and leave_in methods): 

SemaErrorDetect1, SemaErrorDetect2 and SemaSyncronize, all them advising before 

the join points. The given ordering declarations establish the following precedence, 

from higher to lower:  SemaSyncronize, SemaErrorDetect1 and SemaErrorDetect2. 

Therefore, the synchronization aspect is the first before advice to be executed and 

disables dispatch for the whole period concerning error detection and critical 

semaphore operation. The after advice restoring the dispatch mechanism is executed 

after the exit of the semaphore critical section.   

A sequence diagram representing the enter method behavior after weaving is 

shown in Figure 6.17. In this example of operating system FT implementation, we 

could see how AOP was able to compose three crosscutting concerns: semaphore 

basic functionality, fault tolerance and synchronization. In special, the 

synchronization aspect SemaSyncronize can be modified to apply this kind of mutual 

exclusion mechanism in other operating system functionalities, just by adding the 

desired join points to the sync pointcut in Figure 6.16.  This experiment has been 

performed in the context of this work and has been reported in [4].  
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:Semaphore : SemaSyncronize

enter()

before advice

: SemaErrorDetect1 : SemaErrorDetect2

before advice

before advice

enter_in()

after advice

return

dispatch
disabled

 

Figure 6.17: Semaphore enter method sequence diagram. 

6.3.4 Discussion 

The examples presented in the previous section show that AOP can be used 

effectively to introduce fault tolerance at the operating system level. In the context of 

this work, this approach has not been further explored, as our main target of fault 

tolerance introduction was the application level.  The examples shown here were 

inspired in fault containment wrappers, but other fault tolerance mechanisms can be 

applied. 

6.4 Project configuration using AOP  

As discussed in the previous sections, the application of AOP in projects 

involving an operating system, frameworks and applications can make use of diverse 

code generation processes. Additionally, using AOP the project configuration depends 

on the set of aspects to be woven into the base code, which must be defined prior to 

code generation. AspectC++ only considers in the weaving process the aspects 

contained in files with the .ah extension. Thus, the simpler way to disable an aspect is 

to rename the aspect file with a different extension (e.g. .ah_off). Other option is to 

copy the selected aspect files from a repository to the project directory. 



Chapter 6. Applying AOP for fault tolerance 

140 

An important project configuration issue is dealing with two or more versions of a 

base source code. The following types of base code software versions can coexist in a 

project: 

• The original version. This version may have one or more functionalities that can 

be introduced by aspects.  An example of this situation is the original version of 

the Semaphore class in BOSS, which uses synchronization features, as described 

in Section 6.3.3.  

• A refactored version for applying AOP functionality. Some refactoring in the 

source code may be needed to allow the AOP application, as for instance, the 

creation of new methods to expose joint points to the aspect code, as described for 

the Semaphore class in Section 6.3.3. 

• A modified version without a previous implemented functionality. This consists 

of a modified version that had some functionality removed from the base code in 

order to be introduced by aspects. 

Therefore, if a project can be configured to implement a given feature with or 

without AOP, more than one version of the base source code must be maintained, 

which impacts software maintenance and evolution. Possible related scenarios include 

projects where AOP is being evaluated as an alternative implementation or projects 

where AOP is applied just for debugging and is not employed in final versions. In 

these cases, the management of more than one version of the same source code file 

may be required.  

In the context of this work, project configuration had to be very flexible, in order 

to evaluate AOP implementations against pure OOP implementations. The 

configuration was entirely based on bash scripts running from the Linux’s command 

line. Scripts were used to: (a) define if AOP is applied; (b) define the AOP code 

generation process; (c) enable or disable individual aspects; and (d) select base source 

code files to be used in the code generation process. Ideally, aspect-oriented projects 

should have its configuration supported by special graphic tools used for product line 

software development, such as pure::variants [95]. An alternative approach might be 

the adoption of the configuration language used for building the Linux kernel and a 

buildroot system with graphical support like xconfig and gconfig. 
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6.5 Summary 

This chapter has described how to apply Aspect-Oriented Programming to 

support the implementation of fault tolerance at various software levels and purposes.  

The main target of AOP application is the introduction of fault tolerance at the 

application level, using the FT framework described in the previous chapter. This 

approach can be used to convey fault tolerance to an existing application without 

modifying its source code. Additionally, it modularizes the fault-tolerant code with 

advantages in flexibility and maintenance. The implementation is based on the 

definition of general abstract aspects for each FT strategy and application-specific 

concrete aspects that define the target thread and the required parameters and 

additional methods for the FT strategy execution. Abstract and concrete aspects have 

been explained based on an example of FT application using DRB and NVP. 

The utilization of AOP to apply fault tolerance at the application level has several 

benefits: it reduces errors in introducing fault tolerance to legacy systems; it allows 

the validation of the functional part in advance; and it contributes to product line 

development and code reuse. The main drawback of AOP application for embedded 

systems development is the limited support in terms of aspect weavers and tools. 

The integration of the FT framework into the operating system has also been 

discussed. Previously integrated to the operating system, the FT framework has been 

completely separated from the OS code, allowing its optional integration to be 

postponed to weaving/compilation time.  This modularization reflects in easier 

software maintenance and reduced memory footprint for non-FT applications. 

This chapter has also described the application of AOP to implement fault 

tolerance in the OS, by adding fault tolerance error detection mechanisms 

implemented as executable assertions that verify predicates or invariants related to the 

OS basic functionality. The FT functionality is introduced by aspects that can be 

optionally selected. The application of AOP for this purpose, as well as the 

relationship between the fault tolerance and the synchronization concerns has been 

exemplified using the semaphore functionality in BOSS. 
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Although AOP aims to simplify software maintenance, there may be projects in 

which AOP and pure OOP versions must coexist. In this situation several versions of 

the base code should be maintained, impacting software maintenance and evolution 

and increasing the complexity of the project configuration process; therefore the 

utilization of a graphic product line configuration tool is recommended.  
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Chapter 7 

Case studies and evaluation 

 

 

 

 

 

This chapter describes the case studies developed to test the proposed FT 

framework and compares performance and costs of several configurations 

and implementations. Two case studies are presented: a sorting application 

and a radar filtering application. The description of the development and 

test environment applied in this work is initially presented.  
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7.1 Development and test environment 

This section describes the development and test environment, including the target 

and host systems and related software tools.  

7.1.1 Target systems 

The target board selected for the testing environment was the STK823L starter kit 

board from TQ Components [113]. The board uses a MPC823 microprocessor, which 

integrates a high performance PowerPC embedded processor with a Communication 

Processor Module (CPM) and a System Interface Unit (SIU).  This microprocessor 

has a 32-bits RISC architecture with 2 KB instruction cache and 1 KB data cache. The 

CPM provides support for Ethernet, serial communications including USB, I2C and 

SPI. The SIU contains a memory controller, a real-time clock and a PCMCIA 

interface. The microprocessor is mounted in a TMQ823L module that provides 8 MB 

of flash memory and 16 MB of SDRAM. A clock of 80 MHz is used in this module, 

which results in a processing power of about 100 MIPS. This module is connected to 

the STK823L main board that provides power DC conversion and several connectors 

for I/O and debugging.  

The communication among PowerPC boards in the testing environment was 

performed using an Ethernet network.  Figure 7.1 shows a testing configuration using 

three PowerPC 823 boards and a notebook computer connected by Ethernet 

interfaces.  

As mentioned in Section 4.1, the BOSS operating system has a version that runs 

on top of the Linux operating system. Therefore, any hardware running Linux is a 

potential target for BOSS applications. In fact, notebooks and desktop computers were 

used extensively as targets in the development and testing phases of this work. In 

order to improve the real-time behavior of the BOSS applications running over Linux, 

a modification in Linux version of BOSS was implemented, changing the scheduling 

priority of the BOSS process to the highest in the system.  In the configurations of the 

case studies presented later in this chapter, a notebook computer was used to act as a 

sensor or actuator. However, the utilization of personal computers (PC) to implement 
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fault-tolerant applications was avoided, because this work aims to deliver fault 

tolerance to embedded systems.   

 

 

Figure 7.1: Test environment. 

7.1.2 Host system 

The host system used in this work consisted of a PC running Linux and a cross- 

compiler based on GNU gcc versions 3.2.3 or higher. Several Linux distributions 

were used, such as Fedora Core 3/4/5, and Ubuntu 5.04. The AspectC++ weaver 

version was 1.0pre3. 

The cross-compiler toolchain received from FIRST uses an old version of GNU 

gcc (2.9) that is not compatible with current AspectC++ versions. Therefore, in this 

work, several other toolchains were tested, including a built from scratch. Eventually, 

the MPC8xx POMP cross-compiler toolchain [33] was selected because of its better 

compatibility with the PowerPC libraries received from FIRST.  
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7.1.3 Porting BOSS to the target board 

The BOSS operating system had been previously ported to a PowerPC 823 based 

board (transCON module from Yacoub Automation [123]) by the FIRST institute. 

However, the TQ board selected as target had a different configuration in terms of 

clock frequencies and memory configuration. Consequently, the initialization code 

and the PowerPC libraries received from FIRST had to be modified in order to run in 

the new board. Differently from the original port, in this port the monitor program 

received from the board vendor is kept in flash memory and starts the board 

initialization, transferring control to the OS code in a specific flash memory position 

(if a jumper is removed).  The OS initialization code concludes the board initialization 

and finally loads the OS and application code to SDRAM and jumps to it. This 

configuration allows the utilization of the board supplier’s monitor software for 

loading programs in SDRAM or flash memory if the mentioned jumper is not 

removed.  The interface to the target board for loading and debugging programs is 

based on EIA-232 communication at 115 kbps. 

7.2 Case study I: sorting application 

The first case study developed to evaluate the application of the FT framework 

was a sorting application. This application aims to sort an array of integer numbers 

generated at random using different algorithms as variants: Insertion Sort, Selection 

Sort and Bubble Sort. We chose a sorting application because they are commonly 

used as test cases for software fault tolerance strategies, such as the one described in 

[120].   

7.2.1 Testing configurations 

In this case study the following configurations were employed: non-fault-tolerant 

(non-FT), RB, DRB and NVP. Figure 7.2, Figure 7.3 and Figure 7.4 show these 

configurations for Non-FT/RB, DRB and NVP respectively. In these figures, 

broadcast messages are represented by buses with the message subject on top. 
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Figure 7.2: Case study I - non-FT or RB configuration. 
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Figure 7.3: Case study I - DRB configuration. 

The Producer thread is a BOSS thread that runs over Linux in the notebook 

computer and generates 200 integer numbers that are sent by an external message to 

the network using the string “unsorted” as subject.  The Producer thread sends this 

message periodically (each 2 seconds).  

The Sorter thread is a BOSS thread that runs in the PowerPC boards and sorts the 

incoming numbers using different sorting algorithms. In the non-FT configuration, 

only one algorithm is executed and no FT mechanism is applied. In RB and DRB 

configurations, Insertion Sorts runs as the primary block and Selection Sort runs as 

the recovery block. In the NVP configuration, each node runs a different algorithm: 
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Insertion Sort as variant 1, Selection Sort as variant 2 and Bubble Sort as variant 3.  

The sorted array of integers is sent out by a message using “sorted” as subject in all 

configurations except NVP, in which the subject “unvoted” is used. In case of the 

NVP configuration, each node has an additional Voter thread that defines the final 

result based on incoming “unvoted” messages. For this particular NVP configuration 

free voting is applied, and therefore all voters send theirs results concurrently.  
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Producer Consumer

«NVP var 1»
Sorter

«NVP var 2»
Sorter

«NVP var 3»
Sorter

Voter

Voter
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unsorted sortedunvoted

 

Figure 7.4: Case study I  - NVP configuration. 

The Consumer thead is a BOSS thread that runs over Linux in the notebook. It 

receives messages with “sorted” as subject and displays its data on the computer 

screen for verification. Additionally, it computes the total execution time of the 

sorting application, considering the time interval from the moment that the Producer 

thread is about to send a message to the moment that the resulting message is received 

by this thread.  As discussed in Section 4.4.1, redundant messages from voters can be 

discarded automatically by the BOSS middleware based on message identification 

generated by the Producer thread and propagated by Sorter and Voter threads.  
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In this case study, Sorter threads are stateless, and therefore the FT versions of 

these threads do not need to implement the getState and setState methods described in 

Section 5.3.3 and referred to in Table 5.1. 

7.2.2 Execution time measurements 

In this experiment, the execution times of the configurations described in the 

previous section were measured. A total execution time is defined as the time 

interval between sending a message with “unsorted” subject (by the Producer thread) 

and receiving the message with “sorted” subject (at the Consumer thread). A local 

execution time is defined as the time interval between receiving a message with 

“unsorted” subject (at a Sorter thread) and sending the message with “sorted” subject 

(by a Sorter or Voter thread).  Consequently, local execution times exclude any 

communication overhead between the notebook computer and the PowerPC boards. 

The execution times for several configurations and failure conditions are shown in 

Table 7.1 and Table 7.2. Table 7.1 presents local execution times, while Table 7.2 

presents total execution times. The results shown in these tables consist of an average 

of 10 executions. Table 7.3 presents the time settings used in this case study for the 

several configurations, as they have effect in some measured execution times. 

Table 7.1: Case study I - local execution time. 

Failure conditions 
Configuration 

No failure Failure in 
variant 1 

Failure in 
one node 

Failure in 
two nodes 

Insertion sort 1743 - - - 

Selection sort 3511 3511 - - 

Bubble sort 3123 3123 - - 

RB 4250 8249 - - 

DRB 4781 8701 20375  - 

NVP 9444 12716 10792 24175  
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Table 7.2: Case study I - total execution time. 

Failure conditions 
Configuration 

No failure Failure in 
variant 1 

Failure in 
one node 

Failure in 
two nodes 

Insertion sort 9704 - - - 

Selection sort 12495 12495 - - 

Bubble sort 10918 10918 - - 

RB 12353 17105 - - 

DRB 12690 17339 27932 - 

NVP 18815 21345 19907 32504  

Table 7.3: Case study I - time settings. 

Setting  Value (microseconds) 

Clock tick interval  2,000 

RB maximum response time 10,000 

DRB maximum response time 20,000 

NVP maximum response time 6,000 

Voter maximum response time 20,000 
 

For each configuration, four failure conditions were applied. The first one was a 

condition with no failures in any variant or node.  The Insertion Sort algorithm 

presents the shortest execution time, and therefore it was selected to run as variant 1 

(primary block in RB/DRB). As seen in these tables, the FT configurations have 

longer executions times because of the coordination with the MiddlewareScheduler 

thread, as described in Chapter 5. The clock tick interval definition, set in this case 

study to 2,000 microseconds, affects the execution time of all FT strategies. This 

setting also affects the communication times between nodes, as the distribution of 

external incoming messages to threads are performed with a period of two clock ticks 

(4,000 microseconds). In special, the NVP configuration is supposed to be the 

slowest, as additional time for results dissemination and voting is needed. 

Consequently, the maximum response time in a NVP configuration is bound to the 

sum of the maximum response time of NVP and Voter threads.  
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Figure 7.5 presents a graphical comparison of the several configurations for the 

no-failure condition. The left part of the graph is related to local execution times while 

the right part of the graph is related to total execution times. The lines above the bars 

represent the standard deviation in 10 measurements. Configurations that depend on 

message communications present the largest standard deviations. 

 

Figure 7.5: Case study I - no-failure condition. 

The second failure condition presented in Table 7.1 and Table 7.2 is related to the 

failure of variant 1. An error was simulated by introducing an out of order integer to 

the results of the Insertion Sort algorithm. The error is detected by the acceptance tests 

of the RB/DRB strategies, which triggers the execution of variant 2 (Selection Sort). 

This error is masked by the voting mechanism in NVP, as variants 2 and 3 generate 

identical results. Figure 7.6 shows a comparison of local execution times between the 

no-failure condition and the variant 1 failure condition. The extra time spent by 

RB/DRB configurations is due to the execution of the second variant, while the longer 

execution time for NVP is explained by the fact that local execution times are 

measured in the node that runs variant 1, and therefore the voting decision was taken 

only after receiving the results of the other two nodes.  
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Figure 7.6: Case study I – comparison between no-failure and variant 1 failure conditions. 

The third failure condition presented in Table 7.1 and Table 7.2 is related to a 

silent failure of a node. In that case, non-FT configurations fail as well single node FT 

configurations as RB. This failure was simulated by switching off the first node (the 

one running variant 1). Before turning it off, this node is acting as a primary node in 

the DRB configuration. Measurements of local execution times were taken in the 

second node (running variant 2).  

A comparison of local execution times between the no-failure condition and the 

one node failure condition is shown in Figure 7.7. The NVP execution time is not 

affected much, as the voter in the second node will get to a decision after receiving a 

message from the local NVP thread and the external message from the NVP thread of 

the third node. However, for the DRB configuration, the failure of the primary node 

has to be detected by the shadow node and consequently the DRB maximum response 

time of 20,000 microseconds is taken into account (see Table 7.3). This larger 

execution time for the DRB configuration only applies for the first activation after a 

primary node failure because the shadow node will change its role to primary and the 

execution time will drop to the same value of the no-failure condition. The RB 

configuration does not survive to a node failure and consequently its execution time is 

not represented in Figure 7.7 for this condition. 
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Figure 7.7: Case study I - comparison between no-failure and one node failure conditions. 

Finally, the last failure condition presented in Table 7.1 and Table 7.2 is related to 

the silent failure of two nodes. If that situation occurs, only the NVP configuration 

succeeds. In that case, the NVP execution time depends on the deadline for voting, 

which is determined by the maximum response time of the Voter thread (see Table 

7.3).  

7.2.3 Runtime costs 

The execution times results achieved in this case study are in accordance with the 

FT framework implementation details described in Figure 5.5 and validate the correct 

functionality of the framework. However, a more demanding configuration was 

defined in order to measure runtime overheads imposed by the FT framework, 

considering different version implementations, using or not AOP (Section 6.1) and FT 

scheduling (Section 5.4.2).  

The measurement of runtime overheads in these experiments is based on CPU 

utilization. The BOSS idle thread computes the sum of CPU utilization of all other 

threads (including OS and application threads) based on its inactive periods. 

This test configuration consisted of the same sorting application, but now being 

executed concurrently by 8 Sorter threads in a single target board as shown in Figure 

7.8.  The Producer thread runs periodically in the target board and generates 5 
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random integer numbers that are sent to the Sorter thread using a local message. Two 

versions of Sorter threads are implemented: non-FT and RB. In both versions, no 

error is simulated and these versions always execute the Insertion Sort algorithm. At 

the end of their processing, the Sorter threads prepare the output message with the 

sorting results, but this message is not sent so as to decrease the CPU utilization.     

PowerPC 823  

«#1»
Sorter 

«#2»
Sorter 

«#8»
Sorter 

Producer

...

unsorted
 

Figure 7.8: Case study I - CPU utilization configuration. 

In this experiment, five different software versions were evaluated: 

• Non-FT #1: in this version the Sorter threads do not apply any fault tolerance and 

the application program was linked to a version of the OS without the FT 

framework. 

• Non-FT #2: same as above, but linked to a version of the OS integrated to the FT 

framework. 

• FT: in this version the Sorter threads apply the RB strategy. 

• FT-AOP: same as FT, but using AOP to implement fault tolerance. 

• FT-Sched: same as FT, but implementing FT scheduling. 

The CPU utilization results related to each version for several activation 

frequencies of the Producer thread are shown in Figure 7.9 and represent an average 

CPU utilization over a period of one minute, using maximum compiler optimization 

(O2).  
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Figure 7.9: Case study I - CPU utilization results. 

In Figure 7.9, a zero frequency indicates a condition where the Producer thread is 

always suspended and therefore no sorting is performed. Other frequencies plotted in 

this graph correspond to the following activation periods of the Producer thread: 46, 

22, 10 and 6 milliseconds. As it can be noticed, CPU utilization is directly 

proportional to the activation frequency. The minimum activation frequency selected 

for this experiment was 6 ms, which is a multiple of the clock tick interval of 2 ms. It 

has been verified that this period is sufficient for delivering all input messages to the 

Sorter threads in the first clock tick period, to execute the sorting/acceptance test in 

the second period and to prepare the results for sending in the last period.     

The difference in CPU utilization between the Non-FT #1 and Non-FT #2 

versions ranges from 3 to 4.3%.  This overhead is related to the activation of the 

MiddlewareScheduler (MS) thread at the beginning of each clock tick period, even if 

no FT threads exist. The CPU utilization spent by MS is similar to the utilization of 

the Non-FT #1 version with no application threads running (about 3%).  In this no-

load condition, the only BOSS thread running is the one that checks for new external 

messages, which is activated each two clock tick periods. If this thread is released in 

every clock tick period, the no-load utilization for the Non-FT #1 version rises to 6%. 
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As can be noticed in Figure 7.9, the FT version has a higher CPU utilization than 

Non-FT versions. This overhead is caused by the acceptance test executed at the end 

of the sorting algorithm and also by the coordination between the MS thread and the 

FT thread, as described in Section 5.4.1.  

The FT-AOP version introduces a small overhead compared to the FT version 

(non-AOP). The same happens with the FT scheduling version. These overheads are 

dependent on the activation frequency and the number of FT threads. In the worst case 

scenario, a large number of FT threads execute with a high activation frequency, 

which in this experiment corresponds to 8 FT threads and 167 Hz (6ms period). 

Figure 7.10 presents a graphical representation of the CPU utilization results for such 

situation, considering two different compiler optimizations: O2 (maximum) and O0 

(none). As it can be noticed, the optimized code reduces CPU utilization, especially in 

the case of AOP implementation (about 11%).   

 

Figure 7.10: CPU utilization comparison for AOP and FT scheduling versions. 

In comparison with the FT version, the FT-AOP version implies in a higher 

runtime overhead of 0.34% per FT thread for non-optimized programs and 0.11% per 

FT thread for optimized programs. This corresponds to an extra runtime of 21 and 6 

microseconds respectively, in each FT thread activation.  
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The comparison of the version using FT scheduling with the standard FT version 

shows a higher runtime overhead per FT thread of 0.30% for non-optimized programs 

and 0.42% for optimized programs.  

It should be noticed that the runtime overheads presented above are directly 

dependent on the activation frequency and this experiment was conducted as a worst 

case scenario. Consequently, real applications will probably have smaller overheads 

as usually lower activation frequencies are employed.  

7.2.4 Memory costs 

The same configuration used to measure runtime costs was applied to determine 

memory costs. The results were obtained using the size utility. Table 7.4 shows the 

memory footprint sizes in bytes for code (text), data and unitialized data (bss), 

considering the O2 compiler optimization option. Besides considering the program 

versions described in the previous section, this table also includes the memory 

footprint of the original BOSS operating system and the BOSS version integrated to 

the FT framework. The results for these two versions were obtained by compiling an 

empty application using the corresponding versions of the OS library. 

Table 7.4: Memory footprint results. 

version text data bss total 

BOSS  53,795 3420 158,888 216,103 

BOSS + FT framework 61,047 4020 183,568 248,635 

Non-FT #1 57,027 3708 177,664 238,399 

Non-FT #2 64,263 4428 202,504 271,195 

FT 64,863 4440 202,952 272,255 

FT-AOP 65,067 4440 202,968 272,475 

FT-Scheduling 65,247 4440 203,080 272,767 
 

Figure 7.11 compares total memory sizes of the two operating system versions 

(with and without FT framework) and their respective sorting applications (with and 

without FT), based on data from Table 7.4. The application footprint is much smaller 
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than the operating system footprint in both cases (about 10%). The inclusion of the FT 

framework into the OS code increases its total memory footprint in 32KB (15%). 

Besides, the introduction of fault tolerance into the application code increases its 

memory footprint in 1.3KB (6%). The total memory cost of the FT implementation in 

relation to the non-FT implementation in this experiment is 34KB (14.2%).  

 

Figure 7.11: Comparison of FT and non-FT memory footprints. 

Figure 7.12 presents a graphical representation of memory footprints related to 

the several sorting application versions described in the previous section.  

 

Figure 7.12: Case study I - detailed comparison of memory footprint. 
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In Figure 7.12 we can notice that the memory footprint differences among the 

versions are very small, with exception to the Non-FT #1 version, which does not 

include any fault tolerance at the OS and application levels. That difference is about 

14.2% for the total memory size, as presented earlier. 

Table 7.5 shows the additional memory costs of the AOP version and the FT 

scheduling version in relation to the standard FT version.  The FT-AOP 

implementation consumes more 204 bytes of code and 16 bytes of unitialized data 

than the normal FT implementation. This increase in code size is caused by inlining  

after and around advices that make use of the AspectC++ jointpoint data structure. 

The extra memory for bss is related to the creation of aspect objects and pointers, and 

is not affected by the number of FT threads in use. 

Table 7.5: Additional memory costs for AOP and FT scheduling versions. 

 

The FT scheduling implementation also demands additional code and unitialized 

data memory: 384 and 128 bytes respectively. The extra code is due to 

implementation of the EDF scheduling by the MS thread. The additional data is 

related to the inclusion of new attributes in the Thread and MiddlewareScheduler 

classes. The memory cost of FT scheduling related to bss depends on the number of 

application threads. The results shown in Table 7.5 consider 8 FT threads. If only one 

FT thread is used the additional bss memory for FT scheduling reduces to 72 bytes. In 

contrast, the code memory cost is not affected by the number of application threads. 

7.2.5 FT scheduling tests  

The test configurations described in the previous sections were designed to run 

without deadline violations even when not applying the FT scheduling mechanism 

provided by the FT framework. For instance, the configuration used to measure 

runtime overhead described in Section 7.2.3, despite having 8 RB threads with equal 

differences text data bss total 

FT-AOP to FT 204 0 16 220 

FT-Scheduling to FT 384 0 128 512 
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priority and high activation frequencies, was able to finish all computations within the 

maximum response time of 4,000 microseconds, as each FT thread had a small 

processing time and no errors were simulated in the primary variant.  

In order to test the outcomes and benefits of FT scheduling, two special test 

configurations were designed. These configurations were also based on a single board 

target running concurrent sorting applications, as shown in Figure 7.8, but using a 

small number of FT threads with different processing times and deadlines.  

Table 7.6 presents the settings for these configurations. The first configuration has 

two FT threads and the second has three FT threads. Both configurations run the RB 

strategy. The number of integers sorted by each thread, as well its maximum response 

time is shown in this table. The measured processing time for variants 1 and 2 

(primary and recovery blocks) in each thread is also shown. 

The configurations presented in Table 7.6 were implemented in two software 

versions: with and without FT scheduling. The FT scheduling version was successful 

in meeting the deadlines in both configurations, even when a failure in variant 1 of all 

threads is simulated. In contrast, the standard FT version only is able to meet the 

deadlines for all threads if no failures are simulated. The results are summarized in 

Table 7.7. 

Table 7.6: FT scheduling test configurations. 

Settings Configuration # 1 Configuration # 2 
Number of RB threads 2 3 

200 200 
100 100 Number of integers 

- 100 
1,840 3,242 1,840 3,242 
441 885 441 885 

Variants 1 and 2 
processing times 
(microseconds) - - 441 885 

10,000 14,000 
6,000 8,000 Maximum response 

time (microseconds) 
- 6,000 
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Table 7.7: FT scheduling test results. 

Version Failure 
condition 

FT 
Thread

Config 
#1 

Config 
#2 

1 OK OK 
2 OK OK No failures

 3 - OK 
1 OK OK 
2 failure failure 

FT 
Failure in 
variant 1 3 - failure 

1 OK OK 
2 OK OK No failures

 3 - OK 
1 OK OK 
2 OK OK 

FT scheduling 
Failure in 
variant 1 3 - OK 

 

This test results show that the FT scheduling mechanism can be useful for 

eliminating deadline violations in situations where multiple FT threads with different 

computing times and deadlines are activated simultaneously. 

7.3 Case study II: radar filtering application 

The second case study developed to evaluate the application of the FT framework 

was a radar filtering application. Radar filtering is a real-time application commonly 

used in Command and Control (C2) systems. In contrast with case study I, this case 

study applies single version fault tolerance techniques and FT state threads.  

In this application a notebook computer simulates a radar system and periodically 

generates detection data of several planes. The data generation includes simulated 

errors in bearing and distance, typical of this kind of equipment. The radar data is sent 

to the target systems, which filter the planes’ position, using an alpha-beta filter, and 

calculate the planes’ course and speed.  
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7.3.1 Testing configurations 

Three configurations were applied, as shown by the UML deployment diagrams 

of Figure 7.13, Figure 7.14 and Figure 7.15. The first configuration uses a single node 

version of the filtering application, without any fault tolerance mechanism. The other 

configurations implement the PSP and TMR strategies.  In these figures, broadcast 

messages are represented by buses with the message subject on top. 

Notebook
Radar Display

radar_data filter_data

PowerPC 823  

Filter

 

Figure 7.13: Case study II - non-FT configuration. 

Notebook

PowerPC 823  

PowerPC 823 

Radar Display

«PSP primary»
Filter

«PSP Shadow»
Filter

radar_data filter_data

FTStatus

 

Figure 7.14: Case study II - PSP configurtion. 
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Notebook

PowerPC 823

PowerPC 823

PowerPC 823 

Radar Display

«TMR»
Filter

«TMR»
Filter

«TMR»
Filter

«Master»
Voter

«Slave»
Voter

«Slave»
Voter

radar_data filter_dataunvoted_data

 

Figure 7.15: Case study II - TMR configuration. 

 The Radar thread is a BOSS thread that runs in the notebook computer. It 

generates radar simulated detection data (bearing and distance) of 4 planes, including 

typical radar measuring errors, and periodically sends this data using the string 

“radar_data” as subject. The period of this message depends on the selected antenna 

rotation period of the simulated radar. In this case study, a period of 2 seconds was 

selected (30 RPM). The planes have initial courses generated at random, but all have 

the same speed of 100 m/s. When they reach a given distance from the simulated 

radar its course is reverted, so as to keep them at a 10 kilometers range.  

Filter is the BOSS thread that runs in a PowerPC board and filters the radar data, 

removing the measurement errors in plane’s position and also calculating its course 

and speed. The filtering algorithm is an alpha-beta filter using two variable parameters 

that depend on the number of planes positions received previously. This case study 

uses a single version of the filtering algorithm, even when executing fault-tolerant 

configurations. 
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The planes’ filtered position, as well as its course and speed are sent back to the 

notebook computer using “filter_data” as subject. Then, they are presented in the 

command line by the Display thread. Additionally, a graphical display program 

written in Java was developed. Figure 7.16 shows an example of display output for 

the TMR configuration. In the left part of the screen four airplanes are represented. 

Planes positions received from radar are plotted as small circles, while filtered 

positions are plotted as squares. A line associated with each filtered position indicates 

the plane’s course (line direction) and speed (line size). The current values of course 

and speed are displayed on the right of each plane’s position, as well as an 

identification number. On the right side of the screen several data are presented, as the 

IP numbers of nodes sending unvoted data (for TMR only) and result data. A table 

containing information about all planes (course, speed, bearing and distance) is also 

presented. 

 

 

Figure 7.16: Case study II - display output example. 
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7.3.2 Fault tolerance implementations and testing 

For the PSP configuration in Figure 7.14, both Filter threads receive the radar data 

and execute the computation, but only the primary thread sends its results. In the 

TMR configuration of Figure 7.15, all Filter threads send their results with 

“unvoted_data” as subject, which are received by the voter threads. In this particular 

configuration, coordinated voting is used and so only the master voter thread sends 

the final results to the Display thread. Status and coordination messages exchanged 

among FT threads and voters are sent with “FTStatus” as subject, as shown in Figure 

7.14 (omitted in Figure 7.15).  

In FT configurations, hardware faults were simulated by turning PowerPC boards 

off and software faults were simulated by introducing value errors in the filter 

calculation.  In the PSP configuration, a hardware fault in a board running as primary 

causes a switch to primary in the other node. A software fault is detected by the 

acceptance test, and a rollback and retry is performed with the same algorithm. If the 

simulated fault is still present, the PSP thread will restart. For the TMR configuration, 

a hardware fault in the board with the master voter will imply in a new master voter 

board after the next master election. A software fault in one of the boards will be 

masked by the voter mechanism. 

If a board is initialized, or if an FT thread is restarted, a state initialization is 

needed, as the filter output depends on the planes’ last position and alpha-beta 

parameters. This initialization algorithm is performed by the corresponding 

FTStrategy object, transparently to the application program, which has only to define 

the getState and setState methods, as described in Section 5.3.2.  

7.3.3 AOP implementations 

The non-FT version of the Filter thread was modified using AOP to create the FT 

implementations using PSP and TMR. The definition on what version of the Filter 

thread (non-FT, PSP and TMR) will be applied is taken at compile time, using the 

same original non-FT version as the base code, and enabling the appropriate set of 

aspects, as described in Section 6.1.1.  
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AOP versions of the PSP and TMR filters have been tested in the same conditions 

as their respective plain object-oriented versions, performing identically and 

demonstrating the same functionality. A comparison of execution times between AOP 

and non-AOP versions led to equal outcomes.  

7.3.4 Runtime costs 

The radar simulation periodically sends planes’ data every 2 seconds. This 

corresponds to the rotation period of the radar antenna. In order to test the system 

under more severe timing conditions and compare the runtime overhead of the test 

configurations the radar simulation period was reduced by factors of two. Figure 7.17 

shows performance results in terms of CPU utilization for several configurations and 

simulation frequencies ranging from 0.5 Hz (2 seconds) to 32 Hz (31.25 ms). 

 

Figure 7.17: Case study II – CPU utilization results. 

The curves labeled “Non-FT” are related to the non-fault tolerant single node 

version shown in Figure 7.13. The “Non-FT #1” version employed the original BOSS 

operating system with no FT framework, while in the “Non-FT #2” version the FT 

framework was integrated. We can notice that the utilization of the FT framework in 
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this case study implies a runtime cost ranging from 3.8 to 5.2%. These results are 

similar to the ones presented in Section 7.2.3 for case study I.  

The PSP and TMR configurations resulted in higher runtime overhead than non-

FT configurations as expected. The reason is the extra processing time associated with 

FT coordination, application-specific procedures and message communication. The 

TMR configuration achieved the worst results as it demands more threads for voting 

and more message exchanges.  

7.4 Evaluation 

This section evaluates the application of the FT framework, described in Chapter 

5, and the AOP implementation, described in Section 6.1, based on the results 

obtained in case studies I and II.  

7.4.1 FT framework  

The utilization of the FT framework for application-level fault tolerance results in 

costs in time performance (execution time), runtime overhead (CPU utilization) and 

memory.  In case study I, the execution time of non-FT configuration was compared 

to the execution time of several FT configurations (Section 7.2.2). The results 

presented in Figure 7.5 (no-failure condition) show that FT implementations have 

much longer execution times than their non-FT counterpart. For instance, the NVP 

implementation of the sorting application has a local execution time 5 times bigger. 

The execution time of FT configurations is affected by the coordination between the 

MS thread and the FT thread. Additionally, for the NVP strategy, the execution time 

is affected by the extra communication between NVP and voter threads. 

In terms of runtime overhead, Figure 7.9 (case study I) and Figure 7.17 (case 

study II) show that difference of CPU utilization between non-FT and FT 

configurations depends linearly on the activation frequency. For low activation 

frequencies, the runtime overhead introduced by an FT configuration may have no 

significance while for high activation frequencies it may have a huge impact. The 
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utilization of FT scheduling also imposes a small runtime overhead, although not 

greater than 0.5% per FT thread.  

Concerning memory costs, it was verified in case study I (Section 7.2.4) that the 

memory footprint of the FT version is about 15% bigger than the corresponding non-

FT version. This difference is mostly due to the memory size of the FT framework 

rather than to the increase in memory size of the application.  

We conclude that the performance penalties and resource costs of the proposed 

fault tolerance framework are still acceptable, considering the benefits in system 

dependability. However, for systems demanding very short execution times or already 

presenting a high CPU utilization or a reduced free memory, the introduction of fault 

tolerance might be a problem, and special care must be taken, including in the 

selection of the FT strategy. 

7.4.2 Aspect-oriented implementation 

The utilization of AOP for introducing fault tolerance at the application level does 

not increase the application execution time, as described in Section 7.3.3.   

Regarding runtime overhead, the extra processing time related to the AOP 

implementation depends on the activation period of the FT thread. In Section 7.2.3, 

this overhead was measured for a high activation frequency (167 Hz – 6 ms) and it 

resulted in a 0.11% higher CPU utilization per FT thread for optimized programs. 

This overhead corresponds to an additional runtime of 6 microseconds for each FT 

thread activation. 

The increase in memory footprint of the AOP implementation is very low. In case 

study I it consumed more 204 bytes of code and 16 bytes of unitialized data than the 

normal FT implementation, which correspond to less than 0.1% of the total memory 

footprint. 

Based on these experiments we conclude that the utilization of AOP for 

application-level fault tolerance implementation does not imply a significant increase 

in runtime overhead or memory footprint. 
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7.5 Summary 

This chapter presented two case studies designed to evaluate the fault tolerance 

introduction at the application level. The first case study was a sorting application 

using stateless multiple version fault tolerance. The second case study was a radar 

filtering system using single version fault tolerance and state threads.  

Both non-fault-tolerant and fault-tolerant configurations were applied in the two 

case studies. Fault-tolerant configurations made use of several FT strategies, such as 

RB, DRB, PSP, TMR and NVP.  Non-fault tolerant configurations employed 

operating systems versions with and without the proposed FT framework.  

The performance in terms of execution time, plus the costs related to runtime 

overhead and memory footprint were measured for these configurations.  The results 

show that the application of the FT framework causes significant costs, but those are 

still acceptable for embedded systems aiming high dependability.  In contrast, the 

extra costs imposed by the AOP implementation proved to be negligible.  
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Chapter 8 

Conclusions 

 

 

 

 

 

This chapter sumarizes the objectives, contributions and conclusions of 

this thesis. It also proposes possible directions for future research. 
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8.1 Conclusions 

The objective of this work is to provide fault-tolerance support for real-time 

embedded applications by integrating a fault tolerance framework into the operating 

system. Using this approach, the application software can be made fault-tolerant with 

a high degree of transparency regarding fault tolerance strategies and their associated 

mechanisms, such as state initialization and replica coordination.  Special attention 

was taken to allow the coexistence of fault tolerance with real-time constraints, by 

providing an additional scheduling mechanism for FT threads.  

The proposed fault tolerance framework employs the application thread as the 

unit of fault-tolerant computing. This solution uses a thread model which allows both 

state and stateless threads running in a distributed environment. Several FT strategies 

were implemented as RB, DRB and NVP. The inclusion of new FT strategies or the 

modification of the existing strategies can be easily performed by creating new 

FTStrategy classes or deriving classes from the existing ones.  

As this work targets small-scale embedded systems, the proposed solution was 

tested using embedded PowerPC boards, similar to the previously used in the BIRD 

satellite. The resource costs in terms of execution time, runtime overhead and memory 

usage were measured and compared for several configurations in two case studies 

presented in Chapter 7. These case studies were selected to allow the application of a 

wide range of fault tolerance strategies using single and multiple version software. 

The results of these tests showed that this approach is feasible, but that the resource 

costs are significant, especially in terms of execution time and runtime overhead. 

However, these costs are considered acceptable for systems demanding high 

dependability. 

The fault tolerance support described in this thesis presents several benefits. The 

main benefit is to simplify the application level programming because fault tolerance 

mechanisms are implemented at the operating system level. The application program 

merely has to define parameters and method implementations required by the chosen 

FT strategy. Other benefits include easiness of configuration and high flexibility both 

at compile and runtime.  
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  In addition to the proposal and evaluation of a FT framework integrated into a 

real-time operating system, this work also evaluated the application of aspect-oriented 

techniques to the development of fault-tolerant software. In this work, AOP was 

applied for three different purposes: (1) integrate the FT framework into the operating 

system; (2) implement fault tolerance at the operating system level; and (3) 

modularize the fault tolerance code at the application level. 

The integration of the FT framework into the operating system using AOP 

enables a complete separation of the FT framework from the OS code. It allows an 

optional integration of the framework into the operating system at 

weaving/compilation time. This modularization reflects in easier software 

maintenance and reduced memory footprint for non-FT applications. 

The introduction of fault tolerance in the operating system using AOP adds fault 

tolerance error detection mechanisms. These mechanisms are implemented as 

executable assertions that verify predicates or invariants related to the OS basic 

functionality. This kind of FT functionality may be introduced selectively by aspects 

at weaving time.  

The main target of AOP application was the introduction of fault tolerance at the 

application level. This approach was used to convey fault tolerance to existing 

applications without modifying their source code. The modularization of the fault 

tolerance code at the application level using AOP has several benefits. First, it reduces 

efforts and errors in making a legacy system fault-tolerant. It also simplifies system 

development by allowing the validation of the functional part in advance. 

Additionally, it facilitates the evaluation and comparison of various FT 

configurations, and contributes to product line development and code reuse. However, 

the availability of aspect-oriented weavers and tools for embedded systems 

development is very limited. The AspectC++ compiler used in this work is still in beta 

testing and has some restrictions as described in Section 6.1.2. 

Regarding resource costs, implementations using application-level fault tolerance 

introduced by AOP were submitted to the same case studies described in Chapter 7. 

The results show that the extra costs imposed by AOP techniques are insignificant. 
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In summary, we conclude that the provision of operating system support to fault 

tolerance by means of an integrated FT framework is feasible and acceptable, bringing 

many benefits to the development of fault-tolerant embedded systems. Futhermore, 

our experiments indicate that the application of Aspect-Oriented Programming to 

introduce fault tolerance at the application level is advantageous and cost effective. 

8.2 Future work 

There are two possible diretions of future work regarding fault tolerance 

framework design: inwards or outwards the operating system. The inwards approach 

would be to promote a further integration between the fault tolerance framework and 

the operating sytem. An example of evolution regarding this approach is the 

modification of the operating system scheduler to include the assessment of FT thread 

deadlines. In the current implementation, this task is performed by the 

MiddlewareScheduler thread, and consists in a second scheduling algorithm. This 

work could improve the systems’ real-time behavior and reduce the scheduling 

runtime overhead. However, as the interconnection between the OS and the FT 

framework increases, it would become harder to keep their development apart and just 

combine them, if needed, by applying AOP.  

The second direction, the outward approach, would be to completely separate the 

FT framework from the OS. Using this approach, it could be designed a standard 

service interface between the OS layer and the FT framework, in order to facilitate the 

porting of the framework to other real-time operating systems. In this case, the 

operating system should be able to provide a minimum number of services to the FT 

framework, such as precise thread activation, thread priority management and basic 

communication mechanisms. The FT framework would have to implement the 

publisher-subscriber protocol to exchange FT related messages. This approach 

improves the framework portability but may have impact on real-time performance 

and resource costs. 

Another possible future work is to include new fault tolerance strategies to the FT 

framework as, for instance, sequential NVP/TMR [7]. In addition, the fault tolerance 
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strategies currently implemented could be improved. The following improvements are 

suggested: 

• The implementation of a mechanism for correcting state divergencies in FT 

threads running the NVP strategy. 

• The implementation of a recovery cache for the RB and DRB strategies, using 

aspect-oriented techniques [10]. 

• The modification of the coordination behavior between the MS thread and the FT 

threads, in order to reduce the execution times.  This can be performed by 

modifying the implementations of FTStrategy derived classes and does not 

depend on the MiddlewareScheduler class implementation.  

Regarding the application of AOP in the fault tolerance domain, a possible 

research work is to execute more experiments with the introduction of fault tolerance 

at the operating system level. This work should include the definition of predicates for 

most operating system functionalities and the implementation of error detection 

mechanisms based on these predicates. The fault coverage of these mechanisms 

should be assessed using fault injection. It should also be evaluated if this approach is 

cost effective for embedded applications. 

A future research may also include the application of AOP for middleware 

customization. In this work, the communication between the nodes employed UDP 

and broadcast. Other middleware versions could include point-to-point 

communication and different transport protocols. The configuration of what kind of 

middleware facility as well as other features such as fault tolerant communication can 

be defined selectively by aspects.   

Further investigation on the combination of operating system object-oriented 

design, framework technologies and aspect-oriented techniques can lead to 

development of more customizable, evolvable and dependable embedded systems.  
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