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Abstract

It is clear that the trend towards higher levels of abstraction in programming methods, as well as the

effort to make software design more of a scientific, engineering discipline, has led to the development of

various programming paradigms and the use of rigorous proof methods to ensure the reliability and safety

of critical software systems. However, the implementation of these formal methods can be challenging

due to their reliance on inductive proofs following the invent-and-verify method. Despite this, some in

the field continue to seek out and use these theoretical foundations in an attempt to produce high-quality

software. Therefore, this study presents the potential for the correct-by-construction method, using Galois

Connections and theoretical concepts from computer science to develop a methodology for constructing

practically applicable software systems whose correctness is guaranteed from the outset.

Keywords software engineering, formal methods, correct-by-construction

vii



viii



Resumo

É clara a tendência em direção a níveis mais elevados de abstração nos métodos de programação, bem

como o esforço para tornar o design de software mais uma disciplina científica e de engenharia, levando

ao desenvolvimento de vários paradigmas de programação e ao uso de métodos rigorosos de prova para

garantir a confiabilidade e segurança de sistemas de software críticos. No entanto, a implementação

desses métodos formais pode ser desafiadora devido à sua dependência de provas indutivas uma vez

seguido o método de “inventar-e-verificar”. Apesar disso, alguns na área continuam a procurar e a utilizar

tais fundamentos teóricos numa tentativa de produzir software de alta qualidade. Assim, este estudo

apresenta o potencial do método “correção-por-construção”, utilizando conexões de Galois e conceitos

teóricos das ciências da computação para desenvolver uma metodologia para construção de sistemas de

software praticamente aplicáveis e cuja correção é garantida desde o início.

Palavras-chave engenharia de software, métodos formais, correção-por-construção
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Chapter 1

Introduction

How sound has Software Engineering proved to be as a body of knowledge since 1968, the year regarded

as its birthdate? The term was coined in a conference supported by NATO that took place in October, 1968,

in Garmisch, Germany, with the purpose of suggesting that software manufacture should be based on the

types of theoretical foundations and practical disciplines, that are traditional in the established branches

of engineering (Naur and Randell, 1969). However, how well established are such theoretical foundations

and practical disciplines in the Software Engineering branch?

These last 50 years have shown that only a few have taken these concerns seriously (Dijkstra, 1976; Jones,

1980; Gonthier, 2008). As a consequence, software lacks much in quality still in our days. Development

costs are high, teams are too big, with inefficient methods that lead to an uncontrolled increase of com-

plexity, all leading to bad software products. This is not engineering at all (Bogost, 2015). Still, there is

hope.

1.1 Context and aims

The evolution of software engineering has been characterized by a trend towards higher levels of ab-

straction in programming methods. In the early days of computing, programmers would manually input

machine code. Eventually, tools such as assemblers, linkers, compilers, and interpreters for high-level

languages were developed to make the programming process easier. This led to the emergence of various

programming paradigms, including imperative and object-oriented programming, which aimed to provide

programmers with ways to more clearly express the desired behavior of a software system.

Simultaneously, there was a push to make software design more of a scientific, engineering discipline,

leveraging the connection between mathematical proofs and computer programs — known as the Curry-

Howard correspondence (Sørensen and Urzyczyn, 2006) — to guide the creation of large software systems,

i.e., the aforementioned theoretical foundations that any branch of engineering requires. This led to the
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development of functional and logic programming paradigms, which advocate a more declarative style of

programming, in which the programmer only specifies what a system should do rather than how it should

do it (Cohen, 1995).

The reliability and safety of critical software systems, such as those used in life-critical applications, de-

pend on the use of rigorous proof methods to guarantee the complete correctness of the software. Many

researchers and engineers have been eager to find and use such theoretical foundations. However, these

formal methods can be challenging to implement due to their reliance on inductive proofs. In fact, were

it easy and all software producers would use these methods and produce great quality products. But this

is not the case: formal methods end up having to be based on inductive proofs that hinder widespread

acceptance.

Despite this, some in the field of software engineering continue to seek out and use these theoretical

foundations in an effort to produce high-quality products. While the difficulties inherent in these proof

methods may hinder their widespread adoption in industry, they remain essential for ensuring the safety

and reliability of critical software systems. Unfortunately, most prefer to take the easy way out. As the

Verification stage in the software construction line

Specification → Modeling → Implementation → Verification

tends to be quite complex, most software producers eventually replace it with a Testing phase. However,

tests do not prove the correctness of software. Tests only prove the existence of errors, never their absence.

This is because it is impossible to test every possible input and scenario that a piece of software may

encounter. As a result, it is possible for a piece of software to pass all tests but still contain defects

that have not been discovered. Thus, ensuring correctness always requires use of formal methods in the

Verification phase, with the inductive proof methods already mentioned. In this approach, known as invent

& verify (Roggenbach et al., 2022), a system is designed and implemented based on a specification or set

of requirements and then verified or validated to ensure that it meets the intended specification.

But — what if one could, from the specification, immediately derive by calcu-

lation its correct implementation? Software would be ensured to be “correct

inside” by mere construction, the implementation becoming a direct result

of the specification. This would ensure that the software is correctly imple-

mented according to its specification, as the process of calculation would

eliminate any potential errors or deviations from the intended behavior. In other words, the software would

be correct by construction because it would have been constructed according to a precise and error-free

process.
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This methodology — known as correct-by-construction (CbC) — emphasizes the importance of designing

and developing systems in such a manner as to ensure their correctness from the outset (Bordis et al.,

2022). It advocates the integration of verification techniques during the design and development process,

rather than relying on post-deployment validation methods. This can be achieved through the use of spe-

cific formal methods that, in the end, ensure a well-established implementation fulfilling the specification.

Of course, both approaches provide a high level of assurance that a system is error-free and meets its spec-

ifications since they ensure that a system is designed and implemented according to a precise, formally-

specified set of requirements, and can provide a rigorous, mathematical proof of the system’s correctness.

This can be particularly important for safety-critical systems, such as those used in aviation, healthcare,

or transportation, where the consequences of errors can be severe. However, the verification phase in

the invent & verify approach relies, in the majority of cases, on inductive proofs, which are quite complex.

Inductive proofs often involve reasoning about countably infinite sets, being challenging to understand and

manipulate. Even an engineer with the expertise and a deep understanding of the underlying mathemati-

cal concepts and with a significant training and practice on proof assistants would consider these proofs

quite difficult and long in real applications.

Therefore, correct-by-construction approaches are highly desirable in the field of software engineering.

These approaches align with the methodology employed in traditional engineering disciplines, such as

civil engineering, in which the integrity of a structure is established through the utilization of sound design

principles, and subsequently validated through rigorous analysis, as opposed to trial and error. The disci-

pline of software engineering seeks to apply these principles of engineering to the development of software

systems. The implementation of the correct-by-construction methodology represents a significant step to-

wards the realization of software engineering as a bona-fide engineering discipline. What evidence have

proponents of the correct-by-construction method presented in support of its effectiveness?

It has been shown how certain recursive computations could be formally specified using Galois connections

in an induction-free manner (Mu and Oliveira, 2012). Furthermore, relation algebra (Bird and de Moor,

1997) can be used to derive functionally correct implementations from such specifications, dispensing

with inductive proofs. However, this technique is not easily accessible because it requires extensive knowl-

edge of the relation calculus (Bird and de Moor, 1997) and, in particular, of a non-trivial operation called

“shrinking” (Mu and Oliveira, 2012). Meanwhile, the same principle was explored in a more accessible

way that does not require such technical knowledge (Silva and Oliveira, 2008). However, such experiments

did not go beyond the exploratory phase.

Therefore, the main aim of this dissertation is to start from such exploratory research and work it out

5



extensively with as many case-studies as possible to assess its practicality. Such case-study portfolio

should include examples beyond classical functional programming libraries, possibly reaching dynamic

programming and encompassing specification patterns that might extend the strict GC layout. The ultimate

goal is to deliver a system able to support this kind of formal program derivation using the “Galculator”,

a proof-assistant developed in a doctoral dissertation some time ago (Silva, 2009) that is primarily based

on Galois connections.

This work can be framed in the broad discipline of formal methods applied to software design, stepping

up the paradigm of deriving correct-by-construction programs from logic specifications.

1.2 Structure of the dissertation

Chapter 2 begins by introducing the concept of a Galois connection with a well-known example, the problem

of integer division, along with its application in computer science. The chapter further delves into the study

of Galois connections, focusing on aspects most pertinent to this thesis.

Chapter 3 provides the foundational principles of the algebra of programming, pointfree calculus with func-

tions and relations, culminating in a critical juncture: the expression of Galois connections in a pointfree

manner. This is regarded as crucial for automating the strategy proposed in the thesis.

Chapter 4 introduces programming based on Galois connections, initially addressing partial orders in two

significant algebras — the Peano algebra of the natural numbers and the algebra of lists. Furthermore,

it expounds on the process of integrating Galois connections with predicates, as many functions in their

specification involve the use of predicates and filters based on such predicates. The chapter concludes

with two pivotal sections: a repertoire of functions from the Haskell Standard Prelude calculated through

Galois connections and the study of functions that, despite appearing to be Galois connections, are not.

In Chapter 5, three carefully selected functions from the repertoire are re-calculated, this time at the

pointfree level. This style of calculation is essential to the final chapter, which addresses the use of

the Galculator proof assistant. Since the Galculator exclusively operates with relational equalities (at the

pointfree level), understanding how to proceed in calculating a function from its specification as a Galois

connection under relational equality is crucial. Thus, Chapter 6 explains how to launch the Galculator and

how to replicate Galois-connection-based proofs in this proof assistant.

6



Chapter 2

Background

This chapter focuses on the state of the art related to Galois connections. Given the paramount objective

of this thesis, particular attention is devoted to exploring the applications of GCs. This focus allows for the

examination of the contrasting perspective inherent in GCs, specifically within the context of the easy/hard

dichotomy of (Mu and Oliveira, 2012; Oliveira, 2023). The discussion culminates with a presentation of

GCs equivalent definitions and algebraic properties.

2.1 Introducing Galois connections and its applications

In general, a Galois connection (GC) is a pair of functions f and g satisfying

f z ⩽ x ≡ z⊑ g x (2.1)

for all z and x, given preorders (⩽) and (⊑) (which can be the same). It expresses a “shunting” rule

which enables one to exchange between function g in the upper side of a preorder (⊑) and a function

f in the lower side of a preorder (⩽), in a way very similar to handling (in)equations in school algebra.

Functions f and g are said to be adjoints of each other where f is the lower adjoint and g the upper adjoint,

with the (conventional) notation f ⊣ g. But are Galois connections a novelty for the software designer?

In primary school, integer division is taught according to the following specification:

x÷ y is the largest natural number that, when multiplied by y, is at most x.

An algorithm for calculating the division is also taught, where one finds not just the result but also the

remainder, which is as follows1

x y

r z
x÷ y = z∗ y+ r

1 The symbol ∗ is used to denote multiplication in order to distinguish it from ×, which is used to denote Cartesian products.
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Thus, when questioned how to formally specify integer division, one may recur to that same algorithm and

write

z = x÷ y ≡ ⟨∃ r : 0 ⩽ r< y : x = z∗ y+ r ⟩ (2.2)

which is adequate. However, the remainder r is not even mentioned in the specification. This addition

only results in increased complexity. In fact, the existential quantifier makes reasoning a bit difficult.

So, let us try to rewrite it using only the known facts in the specification:

z∗ y ⩽ x ≡ z ⩽ x÷ y (2.3)

This is precisely (2.1) instantiated with natural number inequality preorder (⩽), f = (∗y) and g = (÷y).

z (∗y)︸︷︷︸
f

⩽ x ≡ z ⩽ x(÷y)︸︷︷︸
g

But is this formal specification adequate? Split the equivalence into two implications:

• z ⩽ x÷ y⇒ z∗ y ⩽ x

This one tells what is needed for z to be a candidate solution of x÷y — it is required that z∗y ⩽ x.

But there is only one solution, the largest one, which is given by the other implication:

• z∗ y ⩽ x⇒ z ⩽ x÷ y

On the other hand, this one tells that, among all the candidates z (if z satisfies z∗ y ⩽ x, therefore

being a candidate solution), z ⩽ x÷ y. So, x÷ y is the largest of the candidates.

How good is this way of specifying integer division? Note that it is an equivalence universally quantified

in all its variables, it is closest to the natural language specification, and it is tremendously generous with

respect to inference of properties. Some of these arise from mere instantiation, as is the case of e.g.

0 ⩽ x÷ y, (z :=0)

y ⩽ x ≡ 1 ⩽ x÷ y, (z :=1)

Other properties, for instance

x÷1 = x,

call for properties of the lower adjoint (multiplication). Let us check its proof:

z ⩽ x÷1
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≡ { GC (2.3) }

z∗1 ⩽ x

≡ { 1 is the unit of multiplication }

z ⩽ x

That is, every natural number z which is at most x÷1 is also at most x and vice versa. So x÷1 and x are

the same. The logic behind this style of reasoning is known as the principle of indirect equality (Dijkstra,

2001): 2

a = b ≡ ⟨∀ x :: x ⩽ a ≡ x ⩽ b⟩ (2.4)

Using this principle, x÷ x = 1 (for x>0) can be derived as follows:

z ⩽ x÷ x

≡ { GC (2.3) }

z∗ x ⩽ x

≡ { 1 is the unit of multiplication }

z∗ x ⩽ 1∗ x

≡ { operation (∗x) is injective }

z ⩽ 1

:: { indirect equality (2.4) }

x÷ x = 1

□

More elaborate properties can be inferred from (2.3) together with indirect equality and basic properties

of the “easy” adjoint (multiplication), for instance (for m,d>0):

(n÷m)÷d = n÷ (d ∗m) (2.5)

Again, blending GC (2.3) with indirect equality, one delivers and elegant and easy proof:

z ⩽ (n÷m)÷d

≡ { GC (2.3) }

z∗d ⩽ n÷m

2 This applies to any reflexive and antisymmetric order, which encompasses of course the partial order (⩽) on the real numbers.
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≡ { GC (2.3) }

(z∗d)∗m ⩽ n

≡ { multiplication is associative }

z∗ (d ∗m)⩽ n

≡ { GC (2.3) }

z ⩽ n÷ (d ∗m)

:: { indirect equality (2.4) }

(n÷m)÷d = n÷ (d ∗m)

□

Simple (non-inductive) proofs of this kind show the calculational power of Galois connections used as

specifications and operated via indirect equality. Alternative proofs would require induction, given the

recursive implementation of x÷y, which would be a mess for more complex proofs. This strategy can be

used to solve complex problems as long as solutions can be ranked using a partial order such as (⩽).

Next, let us try to calculate the recursive implementation of x÷ y itself. For that, the following GC is

needed,

a−b ⩽ c ≡ a ⩽ c+b (2.6)

which explains subtraction over the integers (another operator used in the algorithm). This connection can

be put together with the connection (2.3) restricted to non-negative integers and keeping y ̸≡ 0. Heading

for a 2-case algorithm, one for x ⩾ y and another for x< y, we split the reasoning as follows:

• case x ⩾ y

z ⩽ x÷ y

≡ { GC (2.3) assuming x ⩾ 0, y>0 }

z∗ y ⩽ x

≡ { operation (−y) is injective }

z∗ y− y ⩽ x− y

≡ { distribution law }

(z−1)∗ y ⩽ x− y

≡ { again GC (2.3) assuming x ⩾ y }
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z−1 ⩽ (x− y)÷ y

≡ { GC (2.6) }

z ⩽ (x− y)÷ y+1

:: { indirect equality (2.4) }

x÷ y = (x− y)÷ y+1

□

• otherwise (x< y):

z ⩽ x÷ y

≡ { GC (2.3) and transitivity, since x< y }

z∗ y ⩽ x ∧ z∗ y< y

≡ { y ̸≡ 0 }

z∗ y ⩽ x ∧ z ⩽ 0

≡ { z ⩽ 0 entails z∗ y ⩽ x, since 0 ⩽ x }

z ⩽ 0

:: { indirect equality (2.4) }

x÷ y = 0

□

Finally, putting these together, one obtains a correct-by-construction implementation of the integer division

function, which can be written in Haskell as follows:

x÷ y = if x< y then 0 else (x− y)÷ y+1

Clearly, the whole strategy seems worthwhile. Thus let us see another (and more complex) example.

Example with finite sequences Consider the following specification of the function take which yields

the longest prefix of a sequence up to some given length n. For this, we shall use the prefix partial order

(≼) defined point-wise as follows 3 s ≼ [ ] ⇔ s = [ ]

s ≼ (h : t) ⇔ ⟨∃ y : s = (h : y) : y ≼ t ⟩ ∨ s = [ ]
(2.7)

3 Subsection 4.1.2 will expound upon the implementation of the prefix ordering, as well as other orders on finite sequences.
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Some warming-up examples of take:

> take 2 [1,2,3]
[1,2]
> take 10 [1,2,3]
[1,2,3]
> take 0 [1,2,3]
[]

For reasons that will become clear later on, we will be working with the uncurried 4 version of take. Thus,

let us write the given specification “t̂ake (n,x) yields the longest prefix of a sequence up to some given

length n” in terms of a GC.

length z ⩽ n ∧ z ≼ x ≡ z ≼ t̂ake (n,x) (2.8)

First of all, can we identify the lower adjoint? Let us rewrite (2.8) in the following way to make it easier to

identify the orders and the adjoints f and g:

⟨length, id⟩︸ ︷︷ ︸
f

z P (n,x) ≡ z ≼ t̂ake︸︷︷︸
g

(n,x)

where5

⟨f ,g⟩ x = (f x,g x)

(P) = (⩽)× (≼)

Again one asks: is this specification adequate? Let us work it out by using (2.8) and, again, splitting the

equivalence into two implications:

• length z ⩽ n ∧ z ≼ x ⇐ z ≼ t̂ake (n,x)

This means that z is a candidate solution for t̂ake (n,x).

But there is only one solution, the largest one:

• length z ⩽ n ∧ z ≼ x⇒ z ≼ t̂ake (n,x)

Among all candidates z, z ≼ t̂ake (n,x) holds. So, t̂ake (n,x) is the largest one.

Now, let us again blend this GC with indirect equality (on partial order (≼)) to prove these expected

properties:

4 Uncurried functions receive arguments wrapped within a pair, instead of receiving them sequentially, and a special notation will be used: uncurry f will be

denoted by f̂ . Section 3.1 will delve deeper into this concept.
5 The product of two partial orders is a partial order too (Backhouse, 2004). As it will be seen later on, the product (“tensor”) of two relations is defined by

(c,d) (R×S) (a,b) ≡ c R a ∧ d S b.
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1. t̂ake ((length x),x) = x

Proof:

z ≼ t̂ake ((length x),x)

≡ { GC (2.8) }

length z ⩽ length x ∧ z ≼ x

≡ { length z ⩽ length ⇐ z ≼ x }

z ≼ x

:: { indirect equality over list prefixing (≼) }

t̂ake ((length x),x) = x

□

2. t̂ake (0,x) = [ ]

Proof:

z ≼ t̂ake (0,x)

≡ { GC (2.8) }

length z ⩽ 0 ∧ z ≼ x

≡ { length z ⩽ 0 ≡ z = [ ] }

z = [ ] ∧ z ≼ x

≡ { z ≼ x ⇐ z = [ ] }

z = [ ]

≡ { (≼) definition (4.18) }

z ≼ [ ]

:: { indirect equality over list prefixing (≼) }

t̂ake (0,xs) = [ ]

□

3. t̂ake (n, [ ]) = [ ]

Proof:

z ≼ t̂ake (n, [ ])

13



≡ { GC (2.8) }

length [ ]⩽ n ∧ z ≼ [ ]

≡ { length [ ] = 0 ⩽ n }

z ≼ [ ]

:: { indirect equality over list prefixing (≼) }

t̂ake (n, [ ]) = [ ]

□

Note how such elegant proofs expose some expected properties before the implementation of take itself.

Indeed, an advantage of this kind of formal specification is precisely questing the specification for properties

of the design before the implementation phase.

By the way, note that the already inferred

t̂ake (0,x) = [ ]

t̂ake (n, [ ]) = [ ]

can be regarded as base cases of a possible implementation. As such, by pattern matching, only the

following case remains to be addressed:

t̂ake (n+1,x : xs)

Can this be inferred from (2.8) too? Let us unfold z ≼ t̂ake (n+1,x : xs) and see what happens.

z ≼ t̂ake (n+1,x : xs)

≡ { GC (2.8); prefix definition (2.7) }

length z ⩽ n+1 ∧ (⟨∃b : z = (x : b) : b ≼ xs⟩ ∨ z = [ ])

≡ { distribution; length z ⩽ n+1 ⇐ z = [ ] }

⟨∃b : z = (x : b) : length z ⩽ n+1 ∧ b ≼ xs⟩ ∨ z = [ ]

≡ { length (x : t) = 1+ length t }

⟨∃b : z = (x : b) : length b ⩽ n ∧ b ≼ xs⟩ ∨ z = [ ]

≡ { GC (2.8) }

⟨∃b : z = (x : b) : b ≼ t̂ake (n,xs)⟩ ∨ z = [ ]

≡ { prefix definition (2.7) }
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z ≼ x : t̂ake (n,xs)

:: { indirect equality over list prefixing (≼) }

t̂ake (n+1,x : xs) = x : t̂ake (n,xs)

□

Altogether, the implementation of t̂ake has been derived by calculation in a correct-by-construction way:

t̂ake (0, ) = [ ]

t̂ake ( , [ ]) = [ ]

t̂ake (n+1,h : xs) = h : t̂ake (n,xs)

Clearly, verifying this implementation is not needed, as it was calculated from its formal specification —

recall the CbC design principle.

These examples provide two clear illustrations of the Formal Methods “golden triad”:

• specification (via GC in this case) — what the program should do;

• implementation — how the program does it;

• justification — why the program does it (correct-by-construction in this case).

However, some ingredients of the calculations, such as the use of products in the previous example (take),

have been used before being duly defined. Section 2.3 will provide such explicit definitions in detail. It

will also provide a deeper understanding of the GC concept by presenting alternative definitions. The

importance of being able to define a concept in multiple, equivalent ways is emphasized, as it helps to

recognize it in other contexts and adds to the understanding of what it means for one function to be the

adjoint of another (Backhouse, 2004). Let us first introduce the concept of a GC from the perspective of

the easy/hard dichotomy.

2.2 The antithetical perspective of Galois connections

Dichotomies are frequently observed in various aspects of daily life, wherein pairs of opposing concepts,

such as good/bad, action/reaction, left/right, lower/upper, easy/hard, commonly emerge. Each element

within these pairs finds its definition and significance in relation to its opposite, thereby embodying an

antithetical nature. Despite the inherent circularity involved, everyday language persistently employs and

sustains such dualities. As proposed by Oliveira (2023), Galois connections capture such dualities in an

effective and calculational way, as explained next.
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Perfect antithesis The concept of a perfect antithesis, characterized by opposition or inversion, is

embodied by the notion of a bijection or isomorphism. This involves two functions f and g that satisfy the

following properties:

B

g
''∼= A

f

gg

 f (g b) = b

g (f a) = a
(2.9)

That is, both are lossless transformations. For example, multiplication and division are inverses of each

other in the real numbers. That is, undertaking these operations does not result in any loss of information

— for g :=(/y) and f :=(∗y), one gets

R

(/y)
''∼= R

(∗y)

gg

 (b/ y)∗ y = b

(a∗ y)/ y = a

Imperfect antithesis In practice, data transformations often result in loss of information, e.g.

png2pdf
))

≇
pdf2png

ii

 png2pdf ·pdf2png ̸= id

pdf2png ·png2pdf ̸= id

although our eyes may not spot the difference in most cases. These imperfect inversions result in a loss

of information which does not fit in equation (2.9). However, it may be the case that one can write f (g b) ⩽ b

g (f a) ⊑ a
(2.10)

telling “how bad” each inversion is, by relying on two preorders (⩽) and (⊑) that capture under and over

approximations:

(⩽)

g
((
(⊑)

f

hh (2.11)

(Functions f and g are assumed monotonic above.)

How Galois connections arise Let us now handle these approximations by analyzing the following

diagram:

g x f (g x)
(⩽) // x g x

a

(⊑)

OO

f a

(⩽)

OO

(⩽)

;;vvvvvvvvvvvvvv
g (f a)

(⊑)
<<yyyyyyyyyyy

a

(⊑)

OO

(⊑)
oo
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where x
(⩽) // y and x

(⊑) // y denote x ⩽ y and x ⊑ y respectively. Starting with a
(⊑) // g x ,

which means that a ⊑ g x,

1. since f is monotonic, one obtains f a ⩽ f (g x);

2. from (2.10), one obtains f (g x) ⩽ x;

3. by transitivity (“arrow composition”), one obtains f a ⩽ x;

4. since g is monotonic, one obtains g (f a) ⩽ g x;

5. again, from (2.10) and transitivity, one obtains a ⊑ g x.

Thus,

a ⊑ g x⇒ f a ⩽ x⇒ a ⊑ g x

which leads, by circular implication, to the following equivalence

f a ⩽ x ⇔ a ⊑ g x (2.12)

that is, Galois connection (2.1). Thus, one may also use the notation in (2.11) in order to render GCs.

Back to the integer division algorithm, it is the experience of every child that x ∗ y is much simpler to

calculate than x÷ y. Nevertheless, an intriguing observation arises wherein the perceived complexity of

the operation x÷ y can be effectively explained by the inherent simplicity of the operation x ∗ y. In fact,

(∗y) ⊣ (÷y) conveys the underlying message:

hard (÷y) is explained by easy (∗y).

Exploring program specifications as GCs within the framework of this easy/hard dichotomy is at the very

core of this thesis, so as to calculate “hard” adjoints from easy ones. For instance, extending this dichotomy

to the aforementioned function t̂ake, one has

length z ⩽ n ∧ z ≼ x︸ ︷︷ ︸
easy

⇔ z ≼ t̂ake (n,x)︸ ︷︷ ︸
hard

2.3 Algebraic properties and equivalent definitions

One of the main advantages of this rich theory is that once a concept is identified as an adjoint of a Galois

connection, all generic properties are inherited, even when the other adjoint is not known. Let us brief

these key properties which relate GCs to the underlying ordered structures.
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• “Shunting rule” — f “shunts to the other side” and becomes g, and vice-versa:

f a ⊑B b⇔ a ⊑A g b (2.13)

• Upper adjoint distributes over meet (wherever this exists):

g (b ⊓B b′) = g b ⊓B g b′ (2.14)

• Lower adjoint distributes over join (wherever this exists):

f (a ⊔A a′) = f a ⊔A f a′ (2.15)

• Cancellation of the lower adjoint:

a ⊑A g (f a) (2.16)

• Cancellation of the upper adjoint:

f (g b) ⊑B b (2.17)

• Lower adjoint is monotonic:

a ⊑A a′ ⇒ f a ⊑B f a′ (2.18)

• Upper adjoint is monotonic:

b ⊑B b′ ⇒ g b ⊑A g b′ (2.19)

• Upper adjoints preserve top elements:

g⊤B =⊤A (2.20)

• Lower adjoints preserve bottom-elements:

f ⊥A =⊥B (2.21)
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• for partial orders, the so-called semi-inverse properties:

f = f ·g · f (2.22)

g = g · f ·g (2.23)

Besides, a most useful ingredient of Galois connections lies in the fact that they build up on top of them-

selves thanks to a number of combinators which enable one to construct (on the fly) new connections out

of existing ones (Oliveira, 2020b). A fundamental result that Galois-connected functions can be combined

to form new GCs is given via functional composition. Given two GCs as follows

(⩽)

g
((
(⊑)

f

hh

k
((
(≼)

h

hh

a new GC arises:

(⩽)

k·g
((
(≼)

f ·h
hh

The equivalence is quite straightforward, cf.

(f ·h) x ⩽ z

⇔ { composition; f ⊣ g }

h x ⊑ g z

⇔ { h ⊣ k; composition }

x ≼ (k ·g) z

□

A second major result is that every relator6 that distributes through binary intersections preserves GCs

(Backhouse and Backhouse, 2004). This means that, for every such relator R and given a GC

(⩽)

g
((
(⊑)

f

hh

a new GC arises:

R (⩽)

R g
**
R (⊑)

R f

jj

6 See Section 3.2 which expounds the notion of a relator within the relation algebra framework.
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Finally, Backhouse (2004) presents some alternative definitions in order to easily identify (f ,g) as a

GC between posets (partially ordered sets)7 (A,⊑A) and (B,⊑B). Among them, the following two are

noteworthy:

Alternative definition 1

• f and g are both monotonic;

• for all x ∈ B and y ∈ A, x ⊑B g (f x) and f (g y) ⊑A y

Alternative definition 2

• g is monotonic;

• for all x ∈ B, x ⊑B g (f x);

• for all x ∈ B and y ∈ A, x ⊑B g y ⇒ f x ⊑A y

2.4 Summary

The calculational power of Galois connections has been shown to be effective in function specification

and in deriving them by calculation using the indirect equality method, dispensing with explicit inductive

proofs. This same method allows for the derivation of properties of the adjoint functions prior to their

implementation — an excellent and highly desired application of GCs.

Having demonstrated its practicality and usefulness, important algebraic properties as well as equiva-

lent definitions of GCs have also been revealed, which will certainly facilitate the specification of further

functions in terms of GCs.

7 A poset is a pair (P,(⩽)), where P is a set and (⩽) is partial order on P.
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Chapter 3

Going pointfree

Oliveira (2020b) conducts a comprehensive examination of GCs within the framework of relation algebra.

In this chapter, the mathematical concept of GC is presented from this perspective. Furthermore, this

chapter will provide us with the necessary means to formally specify programs through GCs and carry

out precise calculations to derive their implementations. To fulfill that purpose, the chapter begins with a

brief overview of the pointfree relational calculus and concludes with the formulation of GCs in the form

of relational equalities. The use of pointfree notation is essential to provide a rigorous justification for

the developed theory and for proof-support purposes. In fact, by exploring the domain of calculating with

functions and relations, we shall unlock the potential for precise program specification and its correct-by-

construction implementation.

It should be noted that some laws are not introduced in this chapter for the purpose of streamlining the

content. However, all the laws and properties used are presented in Appendix B.

3.1 Calculating with functions

The concept of a function is well-known to anyone with basic school education. The understanding of func-

tions permeates mathematics, as it is grounded in the established framework of sets and set-theoretical

functions. Functional programming, which is basically programming with functions, extends beyond the

act of writing code for computers. It embodies the notion that different branches of programming have

the potential to adopt a functional structure or expression, while also encompassing the concept of trans-

forming abstract and inefficient programs into efficient ones through calculation.

Functions and types In Functional Programming (FP), functions are the most important objects. They

act like a “black box” that produces a specific result from a given input. Functions will be denoted by

lowercase letters. We write f : A→B to indicate that f receives values of type A and produces values of
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type B. This is usually referred as the function signature or type.

How is the output of a function produced? The answer is given when inspecting the inside of the black

box — that is where the calculation rule of the function is to be found. This calculation rule, also called

the function’s behavior, is specified directly at an arbitrary point in the domain (also called variable). For

example, in the definition f x = x+1, it is directly specified on an arbitrary x in the domain of f that the

behavior of f on that x is to add 1 to it. It is precisely this way of defining functions that is studied in high

school.

By contrast, pointfree definitions are characterized by the absence of variables, being built instead through

the combination of simpler functions using a limited set of combinators. The choice of these combinators

is dictated by the power of the laws associated with them. Some of these combinators are analyzed below.

Identity and constant functions Identity functions are those that merely copy the input to the output:

f a = a, for f : A→A and a ∈ A. In this case, f is said to be the identity function on A. As expected,

every type X has its own identity function idX . However, subscripts will be omitted whenever they are

implicit in the context. Thus, a “single” identity function can be assumed.

Unlike the identity function, which does not lose any information, constant functions lose all (or nearly all)

information. Regardless of the input data, the output is always the same value. The notation to be used

will be underlining. Therefore, let C be a non-empty datatype and c ∈C. The everywhere c function, for

an arbitrary type A, is defined as cA = c whose signature is A→C. Similar to what occurs with identity

functions, subscripts will be omitted whenever they are implicit in the context.

Functional composition A cornerstone of FP is the functional composition combinator, which “chains”

two functions in the following way:

A
f //

g·f

99B
g // C

In mathematics, one usually says that the outputs of function f must be contained within the domain of

function g. However, in computer science the rule is simpler, yet more restrictive: the output type of f

must match the input type of g. Nonetheless, the notation employed is the same: g · f , which can be read

as “g composed with f ” or “g after f ”, and is precisely defined as (g · f ) x = g (f x).

Products As expected, not all functions can be combined via functional composition. For example,

functions f : A→B and g : A→C are a case where functional composition cannot be applied. However,

since both functions share the same input type, they can be combined via the binary operator ⟨ , ⟩ called
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split. For functions f and g, one has ⟨f ,g⟩ : A→B×C. This operator satisfies

h = ⟨f ,g⟩ ⇔

 π1 ·h = f

π2 ·h = g
(3.1)

for all h : A→B×C and given projections π1 : A×B→A and π2 : A×B→B.

Set B×C is given by the Cartesian product of B with C, i.e.,

B×C = {(b,c) | b ∈ B ∧ c ∈C}

and the split combinator is defined by

⟨f ,g⟩ a = (f a,g a) (3.2)

The “tensor product” operator × can also be defined on functions via the split combinator:

f ×g = ⟨f ·π1,g ·π2⟩ (3.3)

IT preserves composition and identity:

(f ×g) · (h× k) = (f ·h)× (g · k) (3.4)

idA× idB = idA×B (3.5)

Coproducts As previously explained, the functional combinator split was created with the aim of com-

bining functions that do not meet the requirements of functional composition but share the same domain.

The “dual” situation corresponds to functions sharing the codomain instead. Thus, functions f :A→C and

g :B→C can be combined via the binary operator [ , ] called either or join. One has [f ,g] :A+B→C,

where A+B is the disjoint union,

A+B def
= {i1 a | a ∈ A} ∪ { i2 b | b ∈ B}

assuming the “tagging” functions i1 and i2, whose signatures are A
i1 // A+B B

i2oo . These func-

tions associate different tags in order to ensure that values of type A and values of type B do not mix in

the set A+B. They are called injections of the disjoint union — i1 is said to “inject” values to the left,

while i2 “injects” values to the right. In words, “either we are on the left side and execute f or we are in

the right side and execute g.”

Therefore, the either combinator is defined by

[f ,g] x def
=

 x = i1 a⇒ f a

x = i2 b⇒ g b
(3.6)
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and satisfies

k = [f ,g] ⇔

 k · i1 = f

k · i2 = g
(3.7)

for all k : A+B→C.

Similarly to ×, the operator + can also be defined on functions, now via the either combinator:

f +g = [i1 · f , i2 ·g] (3.8)

Again, it preserves composition and identity:

(f +g) · (h+ k) = (f ·h)+(g · k) (3.9)

idA + idB = idA+B (3.10)

McCarthy’s conditional Most functional programming languages provide pointwise conditional ex-

pressions in the form

if p x then f x else g x (3.11)

which translates into the following process: given a predicate p : A→B and two functions f ,g : A→B, if

p x holds then the process results in f x, otherwise in g x, i.e., p x ⇒ f x

¬ (p x) ⇒ g x

In order to rewrite the expression (3.11) in a pointfree style, let us start by assuming that p x has already

been calculated. In this case, either f is executed or g is executed. This latter operation is clearly the

combinator [f ,g]. So, the goal is, if p x holds, the argument is injected on the left side, so that the operation

f x is executed; otherwise, the argument is injected on the right side and g x is executed instead of f x.

This injection choice is performed by the operation p?, called the guard associated with the predicate p,

defined by

p? x = if p x then i1 x else i2 x

Thus, the expression (3.11), rewritten in a pointfree style, is given by [f ,g] · p?. Note that p? is much

more informative than the predicate itself, as it already gives us the result of testing p on a given input.

All this leads to the well-known functional combinator “McCarthy’s conditional” that is usually denoted by

the expression p→ f ,g. Therefore,

p→ f ,g def
= [f ,g] ·p? (3.12)
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The use of the either combinator suggests that, when reasoning about conditionals, one can turn to the

algebra of coproducts as a potential aid. This results in the following properties:

h · (p→ f ,g) = p→h · f ,h ·g (3.13)

(p→ f ,g) ·h = (p ·h)→ f ·h,g ·h (3.14)

p? · f = ( f + f ) · (p · f )? (3.15)

namely, the fusion laws and the natural property of the guard, respectively.

Exponentials Given a function f :C×A→B, one intends to construct a family of functions of the type

A→B according to the following approach: for each c ∈C, the function

fc : A→B

fc a def
= f (c,a)

(3.16)

is constructed. In other words, the construction of this family is a function of the type C→(A→B),

meaning that given a c ∈C, it produces a function of the type A→B. Functions of this kind are called

higher-order functions — functions that not only produce functions but also receive functions as arguments.

To represent the type A→B (or B← A), we shall use the notation BA. Thus,

BA def
= {g | g : A→B} (3.17)

corresponds to the type inhabited by functions from A to B. This means that the functional declaration

g : A→B is equivalent to g ∈ BA.

Since the purpose of functions is to be applied to arguments, the introduction of the apply combinator is

quite intuitive:

ap : BA×A→B

ap (f ,a) def
= f a

(3.18)

Now, going back to the function f : C×A→B, let’s recall the strategy of producing a function fc ∈ BA

for each c ∈C. As mentioned before, this process corresponds to a function of the type C→BA, which

expresses f as a family of functions of the type A→B indexed by the type C. Such functions will be

referred to as transposes, and the notation f will be used to represent them, read as “curry of f”. As

expected, f and f are mutually related by the following property:

f (c,a) = (f c) a (3.19)
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However, despite the equality, f has the advantage of being more “tolerant” than f . While f requires both

arguments under the pair (c,a), f is satisfied with receiving the argument c first and, later, if the process

allows, the argument a.

Just like the product A×B and the coproduct A+B, the exponential BA also has a universal property:

k = f ⇔ f = ap · (k× id) (3.20)

Finally, a new functional combinator arises from f ·ap whose signature is BA → CA. The notation to

express this functional combinator f ·ap will be f A, which follows

C oo f
B

CA oo f A

BA

But what does this new combinator mean? Well, f A takes a function g :A→B as an argument and returns

a function of type A→C. Therefore, given a particular a∈ A, (f A g) a will produce a C-value. It is known

that the function f produces values of type C when given a B-value. It so happens that g produces values

of type B. Thus, g a is executed, resulting in a value b ∈ B, which is passed to the function f to produce

a value c ∈ C. What is happening here is precisely the functional composition of f with g, that is, f A

translates to the combinator “composition with f ”:

f A g def
= f ·g (3.21)

i.e.,

f A def
= (f ·) (3.22)

Back to property (3.19), the chosen notation allows us to express the equality f (a,b) = (f a) b using the

isomorphism,

C×A→B ∼= C→BA

which can be rewritten as:

BC×A ∼= (BA)
C

(3.23)

Isomorphism (3.23) is at the core of functional programming. In Haskell, the pre-defined functions that

witness it are:

BC×A

curry
**∼= (BA)

C

uncurry
ii (3.24)

This means that curry corresponds to the transposition in Haskell. Besides, to simplify algebraic notation,

the inverse of transposition will also have its own notation: uncurry f will be abbreviated by f̂ .
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Functors A so-called functor F can be regarded as a datatype constructor which, given datatype A,

builds a more elaborate datatype F A; given another datatype B, it builds a similarly elaborate datatype F

B; and so on.

The most important feature of a functor F is that its data-structuring effect extends smoothly to functions.

Given a function B A
foo , note that A and B are parameters of F A and F B respectively. Thus this

data-structuring effect extends to a new function F B F A
F foo , depicted by the following diagram:

A

f
��

F A

F f
��

B F B

(3.25)

By definition, a functor obeys to two very basic properties: it commutes with identity

F idA = idF A (3.26)

and with composition

F (g ·h) = (F g) · (F h) (3.27)

Catamorphisms Given a functor F, any arrow A F Aαoo is said to be an F-algebra, where A is

called the carrier of the F-algebra α and contains the values that α operates on. This results in the

computation of new A-values based on existing ones which are “encapsulated” in a F-pattern structure.

Furthermore, given a function B A
foo and another F-algebra B F B

βoo , one may consider to

relate the F-algebra α to the other F-algebra β in the following manner:

A

f
��

F Aαoo

F f
��

B F B
β

oo

f ·α = β · (F f ) (3.28)

This states that A-objects are mapped to B-objects in a structural way, according to the F-pattern. Arrows

with this structure are usually referred to as homomorphisms.

It may happen that α is an isomorphism (or a bijective function), i.e., that exists some function α◦ such

that α◦ ·α = id and α ·α◦ = id. Such algebras α are said to be initial and usually denoted by inT,

that is, F T
inT // T assuming their carrier set denoted by T. Besides, the converse of the algebra inT

is called the coalgebra outT. An F-coalgebra is an arrow F A Aoo , for a functor F, where A is also

called the carrier.
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In this particular case, α is such that, for every β , f is unique. The uniqueness of f is denoted by the

banana-brackets notation, f = Lβ M, and captured by the universal property:
T

f=Lβ M
��

outT
''∼= F T

F f
��

inT

f f

B F B

β

ff

f = Lβ M ⇔ f · inT = β ·F f (3.29)

This leads to the definition:

Lβ M def
= β ·F Lβ M ·outT (3.30)

Lβ M is referred to as the (unique) catamorphism induced by algebra β (or fold over β ). This construct is

a generic and recursive expression that transforms T into B, following a “recursive-descent” approach as

dictated by functor F.

Parameterization and type functors In order to properly characterize parametric inductive

datatypes, the use of functors such as T ∼= F T proves inadequate, as they do not provide a

parametric perspective of datatype T. Then we may factor this out via the type variable X and write

T X ∼= B (X,T X) where B is called the type’s base functor. Moreover, one has

F f = B (id, f ) (3.31)

Concerning the functorial behavior of T, for a given function f : A→B, T f can be expressed in terms of

a B (A, )-catamorphism:

T A

T f

��

B (A,T A)
inTAoo

B (id,T f )

��
T B B (B,T B)

inTB

oo B (A,T B)
B (f ,id)
oo

T f def
= L inT ·B (f , id)M (3.32)

Finally, type functors allow us to define the absorption law for the catamorphism combinator:

LgM ·T f = Lg ·B (f , id)M (3.33)

Anamorphisms By inverting the arrows of a catamorphism diagram (3.29) one is lead to the concept of

the (unique) anamorphism induced by algebra β . Under some conditions, this construct is a generic and
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recursive expression that synthesizes the inductive datatype T, following a recursive approach as dictated

by functor F.

T

outT
''∼= F T

inT

ff

B

k=[(β )]

OO

β

88F B

F k

OO k = [(β )] ⇔ outT · k = (F k) ·β (3.34)

While a catamorphism is the unique homomorphism from the initial algebra to another algebra of a functor,

an anamorphism is the unique homomorphism from a coalgebra to its final coalgebra. English speaking,

while a catamorphism consumes a datatype, an anamorphism synthesizes it.

Hylomorphisms The composition of a catamorphism with an anamorphism is referred to as a hylo-

morphism, with the following notation:

A

[(g)]
��

g
''
F A

F [(g)]
��

T

L f M
��

outT
''∼= F T

F L f M
��

inT

ff

B F B

f

ff

J f , gK = L f M · [(g)] (3.35)

T is said to be the intermediate structure of the hylomorphism. Often, this structure remains concealed

— it is a virtual data structure — as one adopts the Divide & Conquer perspective of a hylomorphism, cf.

A

h
��

divide // F A

F h
��

B F Bconquer
oo

h = conquer ·F h ·divide (3.36)

Adjunctions In general, given two functors R and L, an isomorphism of shape

L A→B

⌈ ⌉
**∼= A→R B

⌊ ⌋

ii (3.37)

is called an adjunction of R and L, which are said to be adjoint of each other. One writes L ⊣ R and says

that L is the left adjoint and R the right adjoint. As already shown, the witnesses of the isomorphism carry
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a very simple notation, cf.

k = ⌈f ⌉ ⇔ f = ε ·L k︸ ︷︷ ︸
⌊k⌋

R B L (R B) ε // B

A

k=⌈f ⌉

OO

L A
f

;;xxxxxxxxx
L k

OO
(3.38)

As is well known as is detailed in (Oliveira, 2023), GCs are particular cases of adjunctions.

Interplay between catamorphisms and adjunctions Given an adjunction L ⊣ R, an inductive

datatype T ∼= F T and ϕ :L F→G L a natural transformation for some functor G, then

f · (L inF) = h ·G f ·ϕ ⇔ ⌈f ⌉= L⌈h ·G ε ·ϕ⌉M (3.39)

holds (Oliveira, 2023). This states that the G-hylomorphism (left-hand side of (3.41))

L T

f
��

G L T

G f
��

L F T
ϕ

oo

L inF

ss

A G A
h

oo

f = h ·G f ·ϕ ·L out

is equivalent to the F-catamorphism

T

⌈f ⌉
��

F T
inFoo

F ⌈f ⌉
��

R A F R A
⌈h·G ε·ϕ⌉

oo

A G Ahoo G L R AG εoo L F R A
ϕoo

⌈f ⌉= L⌊h ·G ε ·ϕ⌋M
Particularly, for the aforementioned adjunction (3.23), that is,

C×A→B

curry
,,

∼= C→(A→B)
uncurry

kk (3.40)

the following isomorphism arises

f · (inT× id) = h ·G f ·ϕ ⇔ f = Lh ·G ap ·ϕ M (3.41)

which will prove very useful in calculating the curried version of some recursive functions.
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3.2 Calculating with relations

We acknowledge that calculating programs from specifications in the form of Galois connections is in-

tricately tied to defining the orders to which the connections are subject. As anticipated, these orders

manifest as relations rather than functions, constituting a significantly more generic and expressive con-

ceptual framework. Consequently, the exploration of relations assumes a pivotal role within this domain.

It is within this context that the present section endeavors to address the essential aspects of relational

calculus, thereby ensuring a succinct and rigorous examination of the process of programming from Galois

connections.

Binary relations In relation algebra, functions are generalized to binary relations, which may produce

multiple outputs. First of all, such relations are denoted by arrows exactly in the same way functions are.

That is, relations are typed in the same way as functions. So, B ARoo indicates that relation R relates

B-values to A-values, writing b R a which is read as “b is related by R to a”. This is the same as writing

(b,a) ∈ R since relations are sets of pairs.

The adopted convention is to employ lowercase letters to denote functions and uppercase letters to denote

these generalized binary relations.

Relation composition Generalized to relation algebra, composition (R ·S) takes into account the mul-

tiple values that may be produced by S. It is defined as follows:

B ARoo CSoo

R·S

ee b(R ·S)c ≡ ⟨∃ a : b R a : a S c⟩ (3.42)

An element b is related to an element c by (R ·S) if (and only if) there exists an element a to which b is

related by R and which is related to c by S. This compact notation for relation composition allows us to

deal with existential quantification in a pointfree style in our proofs.

Converses Unlike functions, which do not always have corresponding converse functions, every relation

A R // B has a converse A BR◦oo defined by:

b R a ⇔ a R◦ b (3.43)

In terms of grammar, R◦ corresponds to the passive voice — compare e.g.

John︸︷︷︸
b

loves︸︷︷︸
R

Mary︸ ︷︷ ︸
a
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with

Mary︸ ︷︷ ︸
a

is loved by︸ ︷︷ ︸
R◦

John︸︷︷︸
b

That is, loves◦ = (is loved by).

Naturally, the converse of a converse is the relation itself — converse is an involution

(R◦)◦ = R (3.44)

and commutes with composition in a contravariant way:

R ·S◦ = S◦ ·R◦ (3.45)

Converses of functions enjoy a number of properties from which the following is singled out as a way to

introduce/remove them from logical expressions (useful when dealing with more complex types):

b (f ◦ ·R ·g) a ⇔ (f a) R (g b) (3.46)

Relation inclusion and equality While function equality can be expressed by extensionality,

f = g ≡ ⟨∀ a : a ∈ A : f a = g a⟩

there are two methods, besides direct equality, to prove relational equality: circular inclusion, and indirect

equality. Both of these rely on the notion of relation inclusion, defined as follows:

R ⊆ S ≡ ⟨∀ a,b :: a R b⇒ a S b⟩ (3.47)

Circular inclusion arrives at equality by proving, in both directions, that one relation is smaller than, or, at

most, equal to the other. This method is often called “ping-pong”, and in proofs of this type the two steps

will be referred to as the “ping” step and the “pong” step.

R = S ≡ R⊆ S∧S⊆ R (3.48)

In indirect equality, we prove that inclusion under one relation is equivalent to inclusion under the other.

That is to say, one shows that all relations having R as a subset have S as a subset, and vice-versa.

R = S ≡ ⟨∀ X :: X ⊆ R⇔ X ⊆ S⟩ (3.49)

≡ ⟨∀ X :: R ⊆ X⇔ S ⊆ X⟩ (3.50)
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Meet and join Like sets, two relations of the same type, say B A
R,Soo , can be intersected or joined

in the obvious way:

b (R ∩ S) a ≡ a R a ∧ b S a (3.51)

b (R ∪ S) a ≡ a R a ∨ b S a (3.52)

R ∩ S is usually calledmeet (intersection) andR ∪ S is called join (union). They lift pointwise conjunction

and disjunction, respectively, to the pointfree level. Their meaning is nicely captured by the following

universal properties:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (3.53)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (3.54)

Taxonomy of binary relations Let us now define some basic properties of some relations, which will

be the starting point to describe more complex properties.

• A relation is reflexive if and only if every element is related to itself:

R is reflexive ⇔ id ⊆ R (3.55)

• A relation is correflexive if and only if it is a subset of the identity relation:

R is correflexive ⇔ R ⊆ id (3.56)

• A relation is transitive if and only if c R a whenever c R b and b R a:

R is transitive ⇔ R ·R ⊆ R (3.57)

• A relation is antisymmetric iff b = a wherever b R a and a R b:

R is antisymmetric ≡ R ∩ R◦ ⊆ id (3.58)

A preorder is a relation that is both reflexive and transitive. An antisymmetric preorder is referred to as

a partial order. Well-known examples of such partial orders are the numerical comparison operator (⩽)

and relation inclusion. In subsequent chapters, the properties of this and other operators as partial orders

will play a crucial role in many proofs.

Additionally, a relation is:
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• entire if it is defined for every element of its domain.

• injective if no two elements of its domain are related to the same element.

• surjective if, for every element of its range, there is at least one element related to it.

• simple if each element of its domain is related to at most one element.

To define these last four properties using relation algebra, we first introduce the notions of kernel and

image:

ker R = R◦ ·R (3.59)

img R = R ·R◦ (3.60)

Thee kernel of R relates inputs that share shared outputs, and its image relates outputs to shared inputs.

R injective: ker R ⊆ id (3.61)

R simple: img R ⊆ id (3.62)

R entire: id ⊆ ker · R (3.63)

R surjective: id ⊆ img · R (3.64)

This can be “translated” to the following table:

Reflexive Coreflexive

ker R entire R injective R

img R surjective R simple R

Figure 1 shows a taxonomy of binary relations based on the combination of the previous four properties.

It is quite interesting because it denotes the central role played by functions.

binary relation
[[[[[[[[[

[[[[[[[[[
[

VVVVV
V

hhhhh
h

ccccccccc
ccccccccc

ccc

injective
QQQ

entire
mmmm VVVVV

VV simple
PPPhhhhh

hh surjective
nnn

representation
QQQ

function
VVVVV

V
hhhhh

h abstraction
nnnn

injection
UUUU

surjection
hhhh

bijection (isomorphism)

Fig. 1: Binary relation taxonomy
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The properties of different kinds of relations have dualities under converse, that is:

R is a bijection ⇔ R and R◦ are both functions (3.65)

R is injective ⇔ R◦ is simple (3.66)

R is surjective ⇔ R◦ is entire (3.67)

By extension, the converse of a representation is an abstraction, the converse of an injection is a surjection,

and vice-versa.

Due to transitivity of inclusion and the fact that a larger relation also has a larger (or at most equal) kernel

and image, making a relation bigger or smaller can preserve some of its properties, as follows:

S is injective (simple) ⇐ S⊆ R and R is injective (simple) (3.68)

S is entire (surjective) ⇐ R⊆ S and R is entire (surjective) (3.69)

Relators As a generalization of a functor, a parametric datatype G is said to be a relator wherever, given

a relation B ARoo , G R extends R to G-structures forming the new relation G B G AG Roo depicted

by the following diagram:

A

R
��

G A

G R
��

B G B

(3.70)

By definition, relators, in addition to obeying the two properties of functors — commutation with identity

G idA = id (G A) (3.71)

and with composition

G (R ·S) = (G R) · (G S) (3.72)

— they also obey a third property — commutation with converse

G (R◦) = (G R)◦ (3.73)

Top and bottom The ⊤ (“top”) and ⊥ (“bottom”) relations

b⊤ a ≡ True (3.74)

b⊥ a ≡ False (3.75)
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are the upper and lower bound for all relations of a certain relational type, meaning that, for any relation

B ARoo :

⊥ ⊆ R ⊆ ⊤ (3.76)

These relations are the zero and identity elements of the relational join and meet operations:

R ∪ ⊥= R (3.77)

R ∩ ⊥=⊥ (3.78)

R ∪ ⊤=⊤ (3.79)

R ∩ ⊤= R (3.80)

Sometimes it is possible to discard relations composed with⊤ to use the laws introduced above. This can

be done if the relation in question is entire:

⊤·R =⊤ ⇐ R is entire (3.81)

Since ⊤ is larger than any relation (3.76), it suffices to prove ⊤⊆⊤·R:

⊤⊆⊤·R

⇐ { R is assumed entire; raising the lower side }

⊤ ·R◦ ·R⊆⊤·R

⇐ { monotonicity }

⊤ ·R◦ ⊆⊤

≡ { ⊤ above everything }

True

□

Predicates as relations Given a predicate p : A→B, the relation ϕp : A→A defined by

ϕp = id ∩ true◦ ·p (3.82)

for true x = True, is said to be the coreflexive relation that represents predicate p as binary relation, cf.

y ϕp x ⇔ y = x ∧ p y (3.83)

Two crucial derived properties are:

R ·ϕp = R ∩ ⊤·ϕp (3.84)
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ϕq ·R = R ∩ ϕq ·⊤ (3.85)

which respectively mean

b (R ·ϕp) a ⇔ b R a ∧ (p a) (3.86)

b (ϕq ·R) a ⇔ b R a ∧ (q b) (3.87)

Finally, a notable property is that the composition of coreflexives coincides with their meet:

ϕq ·ϕp = ϕq ∩ ϕp (3.88)

Relational catamorphisms They are identical to functional catamorphisms, with the distinction that

now the F-algebra β in diagram (3.29) is a relation, say R, and F is a relator instead of a functor. Thus,

there is a unique relation of type B← T, denoted by LRM, such that LRM · inT = R ·F LRM holds, cf.
T

LRM
��

outT
''∼= F T

F LRM
��

inT

ff

B F B

R

ff

(3.89)

A crucial property is the fusion law:

S · LRM = LQM ⇐ S ·R = Q ·F S (3.90)

along with its weaker versions:

Q · LS M ⊆ LRM ⇐ Q ·S ⊆ R ·F Q (3.91)

LRM ⊆ Q · LS M ⇐ R ·F Q ⊆ Q ·S (3.92)

Relational catamorphism are central to relation algebra (Bird and de Moor, 1997). Oliveira (2023) shows

how they arise from (3.41) for the adjunction that yields the powerset monad.

3.3 Galois connections go pointfree

In Section 2.1, a Galois connection was defined pointwise as a pair of functions f and g satisfying

f z ⩽ x ⇔ z ⊑ g x
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for all z and x, given preorders (⩽) and (⊑). Now, relation composition, relational equality and converses

can be used to derive the GC pointfree definition, as follows.

f z ⩽ x ⇔ z ⊑ g x

≡ { (3.46); identity }

z (f ◦ · (⩽)) x ⇔ z ((⊑) ·g) x

≡ { (3.47) twice; circular inclusion (3.48) }

f ◦ · (⩽) = (⊑) ·g

The rendering of Galois connections as relational equalities,

f ◦ · (⩽) = (⊑) ·g (3.93)

will prove very useful in the sequel.

3.4 Summary

A brief introduction to pointfree calculus and relation algebra was presented, highlighting relevant concepts

such as functions, functional combinators, binary relations, relation composition, converses, relation in-

clusion and equality, and the taxonomy of binary relations. This study is crucial in formulating Galois

connections as relational equalities, as the use of pointfree notation is essential for rigorously justifying

the entire developed theory.
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Part II

Contribution
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Chapter 4

Programming from Galois connections

A pivotal factor in Galois connection-based programming lies in the specification of the underlying orders.

This chapter will show how the (pointfree) relational definition of these (inductive) orders is essential for

accurately inferring the functions specified by the connections they rely upon.

4.1 Inductive partial orderings

4.1.1 Peano algebra

Giuseppe Peano (1858-1932) was a famous Italian mathematician who made significant contributions to

the field of mathematics, particularly in the area of mathematical logic and the foundations of arithmetic.

Peano is well-known for developing the so-called Peano axioms, which provide a set of five axioms for the

construction of the natural numbers. The study of these axioms is not relevant to this discussion. The

relevance lies in what these axioms translate into, that is, a unique way of constructing natural numbers:

Every natural number in N0 is either 0 or the successor of another natural number.

Thus, for

succ :N0→N0

succ n def
= n+1

(4.1)

and

inN0 = [0 ,succ] (4.2) outN0 0 = i1 ()

outN0 (n+1) = i2 n
(4.3)
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one gets the Peano algebra isomorphism:

N0

outN0
))∼= 1+N0

[0 ,succ]

gg (4.4)

which will be used to define the aforementioned orderings in the domain of N0.

Concerning the greater or equal partial order, it may be defined via the N0-catamorphism combinator by

(⩾) = L [⊤ ,succ]M (4.5)

≡ { catamorphisms } (⩾) ·0 =⊤

(⩾) · succ = succ · (⩾)
(4.6)

≡ { going pointwise } y ⩾ 0 ⇔ True

y ⩾ (n+1) ⇔ ⟨∃ x : y = x+1 : x ⩾ n⟩
(4.7)

As in (Oliveira, 2022), the monotonicity of the catamorphism combinator ensures reflexivity:

id ⊆ (⩾)

≡ { idT = L inT M; inT = [0 ,succ] }

L [0 ,succ]M ⊆ L [⊤ ,succ]M
⇐ { monotonicity }

[0 ,succ] ⊆ [⊤ ,succ]

≡ { coproducts } 0 ⊆ ⊤

succ ⊆ succ

≡ { trivial }

True

□

On the other hand, fusion and absorption provide us with the proof of transitivity:

(⩾) · (⩾) ⊆ (⩾)

≡ { definitions }
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(⩾) · L [⊤ ,succ]M ⊆ L [⊤ ,succ]M
⇐ { catamorphism fusion (3.91) }

(⩾) · [⊤ ,succ] ⊆ [⊤ ,succ] · (id+(⩾))

≡ { fusion and absorption } (⩾) ·⊤ ⊆ ⊤

(⩾) · succ ⊆ succ · (⩾)

≡ { trivial; (⩾) · succ = succ · (⩾) (4.7) }

True

□

Proving antisymmetry requires knowledge of (⩾)◦, which Oliveira (2020b) has shown to be (⩽), the less

than or equal defined by:

(⩽) = L [0 ,0 ∪ succ]M (4.8)

≡ { catamorphisms } (⩽) ·0 = 0

(⩽) · succ = (0 ∪ succ) · (⩽)

≡ { going pointwise } y ⩽ 0 ⇔ y = 0

y ⩽ (n+1) ⇔ y = 0 ∨ ⟨∃ x : y = x+1 : x ⩽ n⟩
(4.9)

Note that proving (⩽) being a partial order is trivial, since by applying converses on both sides of

id ⊆ (⩽)

(⩽) · (⩽) ⊆ (⩽)

(⩽) ∩ (⩾)◦ ⊆ id

one obtains the conditions for (⩾) to be a partial order. However, the proof of antisymmetry, (⩽) ∩

(⩾)◦ ⊆ id, is still lacking. As a foretaste, note that

(⩽) = L inN0 ∪ [⊥ ,0]︸ ︷︷ ︸
R

M (⩾) = L inN0 ∪ [⊤ ,⊥]︸ ︷︷ ︸
S

M (4.10)

and so:

R ∩ S = inN0 ∪ ([⊥ ,0] ∩ [⊤ ,⊥]) = inN0 ∪ ⊥= inN0 (4.11)
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Clearly, (4.11) is an indication of how R and S cancel each other as far as what they “add” to the initial

algebra inN0 , which is such that L inN0 M = id, as is well known.

Let us calculate the meaning of (⩽) ∩ (⩾). By mere convenience we use indirect equality:

(⩽) ∩ (⩾) ⊆ X

≡ { definitions (4.10); shunt inN0 to the right }

(inN0 ∪ [⊥ ,0]) · (id+(⩽)) ∩ (inN0 ∪ [⊤ ,⊥]) · (id+(⩾)) ⊆ X · inN0

≡ { distributivity; simplifications }

(inN0 · (id+(⩽)) ∪ [⊥ ,0]) ∩ (inN0 · (id+(⩾)) ∪ [⊤ ,⊥]) ⊆ X · inN0

≡ { ∪/∩- distributivity; simplifications; (4.11) }

inN0 · ((id+(⩽)) ∩ (id+(⩾))) ∪ (inN0 · (id+(⩽)) ∩ [⊤ ,⊥])

∪

([⊥ ,0] ∩ [0 ,succ · (⩽)]) ∪ ⊥

⊆ X · inN0

≡ { coproducts: meet of sums and alternatives; ⊥ and ⊤ }

inN0 · (id+((⩽) ∩ (⩾))) ∪ [0 ,⊥] ∪ [⊥ ,0 ∩ (succ · (⩽))] ⊆ X · inN0

≡ { 0 = succ n impossible for any n }

inN0 · (id+((⩽) ∩ (⩾))) ∪ [0 ,⊥] ⊆ X · inN0

≡ { [0 ,⊥] = inN0 · (id+⊥); linearity; bring inN0 back }

inN0 · (id+((⩽) ∩ (⩾)) · in◦N0
⊆ X

≡ { F R = id+R }

inN0 ·F ((⩽) ∩ (⩾)) · in◦N0
⊆ X

:: { indirect equality }

(⩽) ∩ (⩾) = inN0 ·F ((⩽) ∩ (⩾)) · in◦N0

≡ { relational catamorphisms (3.89) }

(⩽) ∩ (⩾) = L inN0 M = id

In summary, both inductive orders are indeed partial orders.

4.1.2 Algebra of lists

Lists (or finite sequences) are foundational data structures in diverse problem-solving contexts. They

exhibit the following recursive structure: a list is either empty, serving as the base case, or a constructed

44



list composed of an element (commonly referred as the head) and another list (commonly referred as the

tail). Given some type A, notation A∗ is taken to express that type of all lists of A-values. Thus,

A∗
outList

))∼= 1+A×A∗

inList

hh (4.12)

forms the algebra of lists, an isomorphism where

inList = [nil ,cons] (4.13)

nil = [ ] (4.14)

cons = (̂:) (4.15) outList [ ] = i1 ()

outList (h : t) = i2 (h, t)
(4.16)

The partial orders on lists relevant for this dissertation are given next.

Prefix partial order It may be defined via the List-catamorphism combinator by

(≼) = L [nil ,cons ∪ nil]M
≡ { catamorphisms } (≼) ·nil = nil

(≼) · cons = (cons ∪ nil) · (id× (≼))

≡ { left linearity; constants } (≼) ·nil = nil

(≼) · cons = cons · (id× (≼)) ∪ nil
(4.17)

≡ { going pointwise } s ((≼) ·nil) x ⇔ s nil x

s ((≼) · cons) (h, t) ⇔ s (cons · (id× (≼))) (h, t) ∨ s nil (h, t)

≡ { composition } s ≼ [ ] ⇔ s = [ ]

s ≼ (h : t) ⇔ ⟨∃ (x,y) : s = (x : y) : x = h ∧ y ≼ t ⟩ ∨ s = [ ]

≡ { one-point } s ≼ [ ] ⇔ s = [ ]

s ≼ (h : t) ⇔ ⟨∃ y : s = (h : y) : y ≼ t ⟩ ∨ s = [ ]
(4.18)
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Again, catamorphism monotonicity provides us with the proof that (≼) is reflexive, cf.

id ⊆ (≼)

≡ { idT = L inT M; inT = [nil ,cons] }

L [nil ,cons]M ⊆ L [nil ,cons ∪ nil]M
⇐ { monotonicity }

[nil ,cons] ⊆ [nil ,cons ∪ nil]

≡ { coproducts } nil ⊆ nil

cons ⊆ cons ∪ nil

≡ { trivial; R ⊆ R ∪ S }

True

□

The fusion and absorption laws of catamorphisms ensure (≼)-transitivity, cf.

(≼) · (≼) ⊆ (≼)

≡ { definitions }

(≼) · L [nil ,cons ∪ nil]M ⊆ L [nil ,cons ∪ nil]M
⇐ { catamorphism fusion }

(≼) · [nil ,cons ∪ nil] ⊆ [nil ,cons ∪ nil] · (id+ id× (≼))

≡ { fusion and absorption } (≼) ·nil ⊆ nil

(≼) · (cons ∪ nil) ⊆ (cons ∪ nil) · (id× (≼))

≡ { (≼) ·nil = nil (4.17); linearity }

(≼) · cons ∪ (≼) ·nil ⊆ cons · (id× (≼)) ∪ nil · (id× (≼))

≡ { ∪ -universal property; (≼) ·nil = nil } (≼) · cons ⊆ cons · (id× (≼)) ∪ nil · (id× (≼))

nil ⊆ cons · (id× (≼)) ∪ nil · (id× (≼))

≡ { ⊆-transitivity since nil ·R ⊆ nil and (≼) · cons = cons · (id× (≼)) ∪ nil (4.17) }

True
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□

Proving antisymmetry relies on defining the converse of the order through a reasoning similar to that of

Oliveira (2022), y ≽ [ ] ⇔ True

y ≽ (h : t) ⇔ ⟨∃ z : y = (h : z) : z ≽ t ⟩

≡ { going pointfree } (≽) ·nil =⊤

(≽) · cons = cons · (id× (≽))

≡ { catamorphisms }

(≽) = L [⊤ ,cons]M
according to which (≼) = (≽)◦. The proof of antisymmetry is thereafter analogous to the one given

earlier concerning the less than or equal and the greater than or equal partial orders on natural numbers

— compare (4.10) with

(≼) = L inList ∪ [⊥ ,nil]M (≽) = L inList ∪ [⊤ ,⊥]M (4.19)

Sublist partial order This order is defined as a relational catamorphism, cf.

(⊑) = L [nil ,cons ∪ π2]M (4.20)

≡ { catamorphisms } (⊑) ·nil = nil

(⊑) · cons = (cons ∪ π2) · (id× (⊑))

≡ { left linearity; π2-natural property } (⊑) ·nil = nil

(⊑) · cons = cons · (id× (⊑)) ∪ (⊑) ·π2

(4.21)

≡ { going pointwise } s ((⊑) ·nil) x ⇔ s nil x

s ((⊑) · cons) (h, t) ⇔ s (cons · (id× (⊑))) (h, t) ∨ s ((⊑) ·π2) (h, t)

≡ { composition; π2-definition } s ⊑ [ ] ⇔ s = [ ]

s ⊑ (h : t) ⇔ ⟨∃ (x,y) : s = (x : y) : x = h ∧ y ⊑ t ⟩ ∨ s ⊑ t
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≡ { one-point } s ⊑ [ ] ⇔ s = [ ]

s ⊑ (h : t) ⇔ ⟨∃ y : s = (h : y) : y ⊑ t ⟩ ∨ s ⊑ t
(4.22)

The proofs of reflexivity and transitivity are identical to those of the prefix order, cf.

id ⊆ (⊑)

≡ { idT = L inT M; inT = [nil ,cons] }

L [nil ,cons]M ⊆ L [nil ,cons ∪ π2]M
⇐ { monotonicity }

[nil ,cons] ⊆ [nil ,cons ∪ π2]

≡ { coproducts } nil ⊆ nil

cons ⊆ cons ∪ π2

≡ { trivial; R ⊆ R ∪ S }

True

□

and

(⊑) · (⊑) ⊆ (⊑)

≡ { definitions }

(⊑) · L [nil ,cons ∪ π2]M ⊆ L [nil ,cons ∪ π2]M
⇐ { catamorphism fusion }

(⊑) · [nil ,cons ∪ π2] ⊆ [nil ,cons ∪ π2] · (id+ id× (⊑))

≡ { fusion and absorption } (⊑) ·nil ⊆ nil

(⊑) · (cons ∪ π2) ⊆ (cons ∪ π2) · (id× (⊑))

≡ { (⊑) ·nil = nil (4.21); linearity }

(⊑) · cons ∪ (⊑) ·π2 ⊆ cons · (id× (⊑)) ∪ π2 · (id× (⊑))

≡ { ∪ -universal property } (⊑) · cons ⊆ cons · (id× (⊑)) ∪ π2 · (id× (⊑))

(⊑) ·π2 ⊆ cons · (id× (⊑)) ∪ π2 · (id× (⊑))
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≡ { π2-natural property } (⊑) · cons ⊆ cons · (id× (⊑)) ∪ (⊑) ·π2

(⊑) ·π2 ⊆ cons · (id× (⊑)) ∪ (⊑) ·π2

≡ { (⊑) · cons = cons · (id× (⊑)) ∪ (⊑) ·π2 (4.21); trivial }

True

□

However, the method for proving antisymmetry does not follow the same scheme, since the definition of

the converse of (⊑) is not a relational catamorphism: y ⊒ [ ] ⇔ True

y ⊒ (h : t) ⇔ ⟨∃ (a,b) : y = (a : b) : (a = h ∧ b ⊒ t) ∨ b ⊒ (h : t)⟩

≡ { going pointfree } (⊒) ·nil =⊤

(⊒) · cons = cons · ((id× (⊒)) ∪ π◦2 · (⊒) · cons)

≡ { right linearity } (⊒) ·nil =⊤

(⊒) · cons = cons · (id× (⊒)) ∪ cons ·π◦2 · (⊒) · cons

Because this calls for a concept that extends that of a catamorphism, known as hylomorphism (Bird and

de Moor, 1997), this proof is left for future work, see Section 7.2.

Suffix partial order Another order that will be required in the sequel is the suffix order, namely when

calculating functions such as drop and dropWhile. Taking as starting point s ⋞ [ ] ⇔ s = [ ]

s ⋞ (h : t) ⇔ s = (h : t) ∨ s ⋞ t
(4.23)

one easily seems that it is another example of a non-catamorphic definition: s ⋞ [ ] ⇔ s = [ ]

s ⋞ (h : t) ⇔ s = (h : t) ∨ s ⋞ t

≡ { go pointfree } (⋞) ·nil = nil

(⋞) · cons = cons ∪ (⋞) ·π2

(4.24)
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≡ { coproducts }

(⋞) · inList = [nil ,cons ∪ (⋞) ·π2] (4.25)

For the same reasons as above, the proofs for reflexivity, transitivity, and antisymmetry require hylomor-

phisms and are deferred for future work.

4.2 Predicates in Galois connections

Some GCs that will be subject of study in Section 4.3 deal with predicates in a very particular pattern —

when expressed via pointwise

f z ⩽ x ≡ z ⊑ g x

z needs to satisfy some given predicate p. Thus, one could simply write

p z ∧ f z ⩽ x ≡ p z ∧ z ⊑ g x

However, this approach is not particularly suitable for indirect equality proofs, nor does it resemble the

typical format of a GC. Nevertheless, this is an easily surmountable issue — observe that in these cases,

the upper adjoint yields values that satisfy p. Thus, it suffices to restrict the respective order to values that

satisfy p, and the lower adjoint merely receives z’s that satisfy the given predicate, that is,

(f · castp) z ⩽ x ≡ z ⊑p g x (4.26)

where castp type-casts Ap (type A restricted to the elements that satisfy predicate p) to its general type

A. Note that, since the orders are parametric, the subscript can be omitted.

For instance, consider the function takeWhile specified as

takeWhile p l yields the longest prefix of a sequence whose elements satisfy predicate p.

Recurring to (4.26), it can be formally specified as

castall p z ≼ l ≡ z ≼ takeWhile p l (4.27)

Someone might complain it can be quite tiresome to handle two “different” types. But what does this

function cast practically mean? Clearly,

castp z R y ≡ p z ∧ z R y (4.28)

Thus, (4.27) could be rewritten as

all p z ∧ z ≼ l ≡ z ≼ takeWhile p l (4.29)

50



which reads very effectively “the largest prefix whose elements satisfy predicate p”. Generally, equivalence

(4.26) is rewritten as, dropping the subscript,

p z ∧ f z ⩽ x ≡ z ⊑ g x (4.30)

Finally, concerning to relation equalities, what can be said about this type-casting? First, GC (4.26) is

directly given in pointfree as

cast◦p · f ◦ · (⩽) = (⊑p)
◦ ·g (4.31)

However, when calculating it from (4.30), one obtains

p z ∧ f z ⩽ x ⇔ z ⊑ g x

≡ { one-point and trading }

⟨∃a : z = a ∧ p a : f a ⩽ x⟩ ⇔ z ⊑ g x

≡ { coreflexives }

⟨∃a : z ϕp a : f a ⩽ x⟩ ⇔ z ⊑ g x

≡ { going pointfree }

ϕp · f ◦ · (⩽) = (⊑) ·g (4.32)

So, cast◦p operates just like ϕp — it enforces the coreflexive in the “lower” type. This result will prove very

useful when dealing with pointfree specifications in Chapter 5. For instance, takeWhile p can be specified

via GC as a relational equality by

cast◦all p · (≼) = (≼) · takeWhile p (4.33)

which can be rewritten as

ϕall p · (≼) = (≼) · takeWhile p (4.34)

4.3 Repertoire of functions calculated from GCs

In order to evaluate the scope of the proposed correct-by-construction method, a series of functions taken

from the Haskell standard libraries have been subject to the check whether they are specifiable (and

implementable) by GCs or not. Positive examples are given first, along with their pointwise derivations.

Counter-examples will be given later.
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• x÷ y is the largest natural number that, when multiplied by y, is at most x.

z× y ⩽ x ≡ z ⩽ x÷ y (4.35)

As already calculated in Section 2.1:

-- Calculated implementation of div
div :: (Ord t, Num a, Num t) => t -> t -> a
div x y = if x < y then 0 else 1 + div (x - y) y

• Given a partial order (⩽), min m n yields the greatest value which is simultaneously ‘less or equal’

than m and n according to the given order.

z ⩽ m ∧ z ⩽ n ≡ z ⩽ min m n (4.36)

– if m ⩽ n

z ⩽ min m n

≡ { GC (4.36) }

z ⩽ m ∧ z ⩽ n

≡ { since m ⩽ n, z ⩽ m entails z ⩽ n }

z ⩽ m

:: { indirect equality over (⩽) partial order }

min m n = m

– if ¬ (m ⩽ n)

z ⩽ min m n

≡ { GC (4.36) }

z ⩽ m ∧ z ⩽ n

≡ { since ¬ (m ⩽ n) = n<m, z ⩽ n entails z<m which entails z ⩽ m }

z ⩽ n

:: { indirect equality over (⩽) partial order }

min m n = n

-- Calculated implementation of min
min :: Ord a => a -> a -> a
min m n = if m <= n then m else n
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• Given a partial order (⩾), max m n yields the greatest value which is simultaneously ‘greater or

equal’ than m and n according to the given order.

z ⩾ m ∧ z ⩾ n ≡ z ⩾ max m n (4.37)

Its calculation is analogous to min (4.36).

-- Calculated implementation of max
max :: Ord a => a -> a -> a
max m n = if m >= n then m else n

• Given a partial ordering (⩽), minimum l yields the greatest value which is ‘less or equal’ than all

elements of l according to the given order.

all (z ⩽) l ≡ z ⩽ minimum l (4.38)

– minimum [h ]

z ⩽ minimum [h ]

≡ { GC (4.38) }

all (z ⩽) [h ]

≡ { definition of all }

z ⩽ h

:: { indirect equality over (⩽) partial order }

minimum [h ] = h

– minimum (h : t)

z ⩽ minimum (h : t)

≡ { GC (4.38) }

all (z ⩽) (h : t)

≡ { definitions of all }

z ⩽ h ∧ all (z ⩽) t

≡ { GC (4.38) }

z ⩽ h ∧ z ⩽ minimum t

≡ { GC (4.36) }
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z ⩽ min h (minimum t)

:: { indirect equality over (⩽) partial order }

minimum (h : t) = min h (minimum t)

-- Calculated implementation of minimum
minimum :: Ord a => [a] -> a
minimum [h] = h
minimum (h:t) = min h (minimum t)

• Given a partial ordering (⩾), maximum l yields the smallest value which is ‘greater or equal’ than

all elements of l according to the given order.

all (⩾ z) l ≡ z ⩾ maximum l (4.39)

Calculation is analogous to that of minimum (4.38).

-- Calculated implementation of maximum
maximum :: Ord a => [a] -> a
maximum [h] = h
maximum (h:t) = max h (maximum t)

• take n x yields the longest prefix of a sequence up to some given length n.

length z ⩽ n ∧ z ≼ x ≡ z ≼ take n x (4.40)

Already calculated in Section 2.1, but this time given on its original (curried) form.

-- Calculated implementation of take
take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take (n+1) (h:xs) = h: take n xs

• takeWhile p l yields the longest prefix of a sequence whose elements satisfy predicate p.

castall p z ≼ l ≡ z ≼ takeWhile p l (4.41)

– takeWhile p [ ]

z ≼ takeWhile p [ ]

≡ { GC (4.41) }

castall p z ≼ [ ]
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≡ { type-casting (4.28) }

z ≼ [ ]

:: { indirect equality over list prefixing (≼) }

takeWhile p [ ] = [ ]

– takeWhile p (h : t)

z ≼ takeWhile p (h : t)

≡ { GC (4.41) }

castall p z ≼ l

≡ { type-casting (4.28) }

all p z ∧ z ≼ l

≡ { (≼) definition (4.18) }

all p z ∧ (⟨∃b : z = (h : b) : b ≼ t ⟩ ∨ z = [ ])

≡ { distribution }

(all p z ∧ z = [ ]) ∨ ⟨∃b : z = (h : b) : all p z ∧ (b ≼ t)⟩

≡ { all p z ⇐ z = [ ] }

z = [ ] ∨ ⟨∃b : z = (h : b) : all p z ∧ (b ≼ t)⟩

≡ { all p (x : xs) ≡ p x ∧ all p xs }

z = [ ] ∨ ⟨∃b : z = (h : b) : p h ∧ all p b ∧ b ≼ t ⟩

≡ { type-casting (4.28) }

z = [ ] ∨ ⟨∃b : z = (h : b) : p h ∧ castall p b ≼ t ⟩

≡ { GC (4.41) }

z = [ ] ∨ ⟨∃b : z = (h : b) : p h ∧ b ≼ takeWhile p t ⟩

* if p h

z = [ ] ∨ ⟨∃b : z = (h : b) : b ≼ takeWhile p t ⟩

≡ { (≼) definition (4.18) }

z ≼ h : takeWhile p t

:: { indirect equality over list prefixing (≼) }

takeWhile p (h : t) = h : takeWhile p t
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* if ¬ (p h)

z = [ ]

≡ { (≼) definition (4.18) }

z ≼ [ ]

:: { indirect equality over list prefixing (≼) }

takeWhile p (h : t) = [ ]

-- Calculated implementation of takeWhile
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (h:t) = if p h then h : takeWhile p t else []

• drop n x yields the longest suffix of a sequence whose length does not exceed length x−n.

length z ⩽ length x−n ∧ z ⋞ x ≡ z ⋞ drop n x (4.42)

– drop 0 x

z ⋞ drop 0 x

≡ { GC (4.42) }

length z ⩽ length x ∧ z ⋞ x

≡ { z ⋞ x entails length z ⩽ length }

z ⋞ x

:: { indirect equality over list suffixing (⋞) }

drop 0 x = x

– drop n [ ]

z ⋞ drop n [ ]

≡ { GC (4.42) }

length z ⩽ n ∧ z ⋞ [ ]

≡ { z ⋞ [ ] ⇔ z = [ ] which entails length z ⩽ n }

z ⋞ [ ]

:: { indirect equality over list suffixing (⋞) }

drop n [ ] = [ ]
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– drop (n+1) (h : t)

z ⋞ drop (n+1) (h : t)

≡ { GC (4.42) }

length z ⩽ length (h : t)− (n+1) ∧ z ⋞ (h : t)

≡ { length definition; arithmetics; suffix definition (4.23) }

length z ⩽ length t−n ∧ (z = (h : t) ∨ z ⋞ t)

≡ { distribution }

(length z ⩽ length t−n ∧ z = (h : t)) ∨ (length z ⩽ length t−n ∧ z ⋞ t)

≡ { GC (4.42) }

(length t+1 ⩽ length t−n) ∨ (z ⋞ drop n t)

≡ { 1 ⩽−n is false }

z ⋞ drop n t

:: { indirect equality over list suffixing (⋞) }

drop (n+1) (h : t) = drop n t

-- Calculated implementation of drop
drop :: Int -> [a] -> [a]
drop 0 x = x
drop n [] = []
drop (n+1) (h:t) = drop n t

Assert drop (length l) l = [ ]

z ⋞ drop (length l) l

≡ { GC (4.42) }

length z ⩽ length l− length l ∧ z ⋞ [ ]

≡ { trivial }

length z ⩽ 0 ∧ z ⋞ [ ]

≡ { length z ⩽ 0 ⇔ z = [ ] ⇔ z ⋞ [ ] }

z ⋞ [ ]

:: { indirect equality over list suffixing (⋞) }

drop (length l) l = [ ]
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□

Assert drop m (drop n l) = drop (m+n) l

z ⋞ drop m (drop n l)

≡ { GC (4.42) }

length z ⩽ length (drop n l)−m ∧ z ⋞ (drop n l)

≡ { GC (4.42) and associativity }

(length z ⩽ length (drop n l)−m ∧ length z ⩽ length l−n) ∧ z ⋞ l

≡ { length (drop n l) ⩽ length l−n }

(length z ⩽ length l−n−m ∧ length z ⩽ length l−n) ∧ z ⋞ l

≡ { length z ⩽ length l−n−m⇒ length z ⩽ length l−n }

length z ⩽ length l−n−m ∧ z ⋞ l

≡ { trivial }

length z ⩽ length l− (m+n) ∧ z ⋞ l

≡ { GC (4.42) }

z ⋞ drop (m+n) l

:: { indirect equality over list suffixing (⋞) }

drop m (drop n l) = drop (m+n) l

□

• dropWhile p l yields the longest suffix of a sequence whose head fails to satisfy predicate p

For that, consider the following function

headFails :: (t -> Bool) -> [t] -> Bool
headFails p [] = True
headFails p (h:t) = not p h

This way, dropWhile p l is specified via the following GC:

castheadFails p z ⋞ l ≡ z ⋞ dropWhile p l (4.43)

– dropWhile [ ]

z ⋞ dropWhile p [ ]
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≡ { GC (4.43) }

castheadFails p z ⋞ [ ]

≡ { type-casting (4.28) }

headFais p [ ] ∧ z ⋞ [ ]

≡ { headFais p [ ] = True }

z ⋞ [ ]

:: { indirect equality over list suffixing (⋞) }

dropWhile p [ ] = [ ]

– dropWhile (h : t)

z ⋞ dropWhile p (h : t)

≡ { GC (4.43) }

castheadFails p z ⋞ (h : t)

≡ { type-casting (4.28) }

headFails p z ∧ z ⋞ (h : t)

≡ { suffix definition (4.23) }

headFails p z ∧ (z = (h : t) ∨ z ⋞ t)

≡ { distribution }

headFails p (h : t) ∨ (headFails p z ∧ z ⋞ t)

≡ { definition of headFails }

¬ (p h) ∨ (headFails p z ∧ z ⋞ t)

* if p h

headFails p z ∧ z ⋞ t

≡ { type-casting (4.28) }

castheadFails p z ⋞ t

≡ { GC (4.43) }

z ⋞ dropWhile p t

:: { indirect equality over list suffixing (⋞) }

dropWhile p (h : t) = dropWhile p t
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* if ¬ (p h)

¬ (p h) ∨ (headFails p z ∧ z ⋞ t)

≡ { logic }

True

≡ { going back to the third step knowing ¬ (p h) }

headFails p z ∧ z ⋞ (h : t) ∧ ¬ (p h)

≡ { both (h : t) and z meet headFails p }

z ⋞ (h : t)

:: { indirect equality over list suffixing (⋞) }

dropWhile p (h : t) = (h : t)

-- Calculated implementation of dropWhile
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p (h:t) = if p h then dropWhile p t else (h:t)

• filter p l yields the longest sublist of a sequence whose elements satisfy predicate p.

castall p z ⊑ l ≡ z ⊑ filter p l (4.44)

– filter [ ]

z ⊑ filter p [ ]

≡ { GC (4.44) }

castall p z ⊑ [ ]

≡ { type-casting (4.28) }

all p z ∧ z ⊑ [ ]

≡ { all p [ ] ⇐ z ⊑ [ ] }

z ⊑ [ ]

:: { indirect equality over sublist partial order (⊑) }

filter p [ ] = [ ]

– filter (h : t)

z ⊑ filter p (h : t)
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≡ { GC (4.44); }

castall p z ⊑ (h : t)

≡ { type-casting (4.28); sublist definition (4.22) }

all p z ∧ (z ⊑ t ∨ ⟨∃b : z = (h : b) : b ⊑ t ⟩)

≡ { distribution }

(all p z ∧ z ⊑ t) ∨ ⟨∃b : z = (h : b) : b ⊑ t ∧ all p (h : b)⟩

≡ { type-casting (4.28) }

castall p z ⊑ t ∨ ⟨∃b : z = (h : b) : b ⊑ t ∧ all p (h : b)⟩

≡ { GC (4.44) }

z ⊑ filter p t ∨ ⟨∃b : z = (h : b) : b ⊑ t ∧ all p (h : b)⟩

≡ { all p (x : xs) ≡ p x ∧ all p xs; association }

z ⊑ filter p t ∨ ⟨∃b : z = (h : b) : b ⊑ t ∧ p h ∧ all p b⟩

≡ { type-casting (4.28) }

z ⊑ filter p t ∨ ⟨∃b : z = (h : b) : p h ∧ castall p b ⊑ t ⟩

≡ { GC (4.44) }

z ⊑ filter p t ∨ ⟨∃b : z = (h : b) : p h ∧ b ⊑ filter p t ⟩

* if p h

z ⊑ filter p t ∨ ⟨∃b : z = (h : b) : b ⊑ filter p t ⟩

≡ { (⊑) definition (4.22) }

z ⊑ h : filter p t

:: { indirect equality over sublist partial order (⊑) }

filter p (h : t) = h : filter p t

* if ¬ (p h)

z ⊑ filter p t

:: { indirect equality over sublist partial order (⊑) }

filter p (h : t) = filter p t

-- Calculated implementation of filter
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (h:t) = if p h then h : filter p t else filter p t
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• zip l1 l2 yields the longest prefix of pairs whose first elements of its pairs form a prefix of l1 and

the second ones form a prefix of l2.

map π1 z ≼ l1 ∧ map π2 z ≼ l2 ≡ z ≼ zip l1 l2 (4.45)

– zip l1 [ ]

z ≼ zip l1 [ ]

≡ { GC (4.45) }

map π1 z ≼ l1 ∧ map π2 z ≼ [ ]

≡ { prefix definition (4.18) }

map π1 z ≼ l1 ∧ map π2 z = [ ]

≡ { z = [ ] by map π2 z = [ ] and map definition; prefix definition (4.18) again }

z ≼ [ ]

:: { indirect equality over prefix partial order (≼) }

zip l1 [ ] = [ ]

– zip [ ] l2 = [ ]

Analogous to the previous calculation.

– zip (h1 : t1) (h2 : t2)

z ≼ zip (h1 : t1) (h2 : t2)

≡ { GC (4.45) }

map π1 z ≼ (h1 : t1) ∧ map π2 z ≼ (h2 : t2)

≡ { prefix definition (4.18) twice } ⟨∃ y : map π1 z = (h1 : y) : y ≼ t1 ⟩ ∨ map π1 z = [ ]

⟨∃ y : map π2 z = (h2 : y) : y ≼ t2 ⟩ ∨ map π2 z = [ ]

≡ { map definition; distribution } (⟨∃ y : map π1 z = (h1 : y) : y ≼ t1 ⟩)

(⟨∃ y : map π2 z = (h2 : y) : y ≼ t2 ⟩)
∨ z = [ ]

≡ { map f (h : t) = f h :map f t } ⟨∃ y : map π1 (tail z) = y ∧ π1 (head z) = h1 : y ≼ t1 ⟩

⟨∃ y : map π2 (tail z) = y ∧ π2 (head z) = h2 : y ≼ t2 ⟩
∨ z = [ ]
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≡ { one-point rule twice } π1 (head z) = h1 ∧ map π1 (tail z) ≼ t1

π2 (head z) = h2 ∧ map π2 (tail z) ≼ t2
∨ z = [ ]

≡ { products } map π1 (tail z) ≼ t1

map π2 (tail z) ≼ t2
∧ head z = (h1,h2)

 ∨ z = [ ]

≡ { one-point rule }

⟨∃ y : z = ((h1,h2) : y) : map π1 y ≼ t1 ∧ map π2 y ≼ t2 ⟩ ∨ z = [ ]

≡ { GC (4.45) }

⟨∃ y : z = ((h1,h2) : y) : y ≼ zip t1 t2 ⟩ ∨ z = [ ]

≡ { prefix definition (4.18) }

z ≼ (h1,h2) : zip t1 t2

:: { indirect equality over prefix partial order (≼) }

zip (h1 : t1) (h2 : t2) = (h1,h2) : zip t1 t2

-- Calculated implementation of zip
zip :: [a] -> [b] -> [(a,b)]
zip l1 [] = []
zip [] l2 = []
zip (h1:t1) (h2:t2) = (h1, h2) : zip t1 t2

• replicate n x yields the sequence of length n where all elements are equal to x.

(length · castall (≡x)) z = n ≡ z = replicate n x (4.46)

Although (4.46) does not directly fit into the GC format, it is easy to see that once replicate is

flipped it does so:

(length · castall (≡x))︸ ︷︷ ︸
lower adjoint

z = n ≡ z = flip replicate x︸ ︷︷ ︸
upper adjoint

n (4.47)

So isomorphism flip plays the role of curry in the case of take earlier on. Thus, it may be calculated

as follows:

z ≼ replicate n x

≡ { GC (4.46) }
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length z ⩽ n ∧ all (≡ x) z

≡ { repeat property (4.48) }

length z ⩽ n ∧ z ≼ repeat x

≡ { GC (4.40) }

z ≼ take n (repeat x)

:: { indirect equality over list prefixing (≼) }

replicate n x = take n (repeat x)

-- Calculated implementation of replicate
replicate :: a -> Int -> [a]
replicate n x = take n (repeat x)

4.4 Non-Galois connections

The study carried out in this dissertation of identifying functions that can be specified as Galois connections

was primarily targetted at predefined functions from Haskell Standard Prelude. In some cases, in spite

of exhibiting similarities with the ones addressed in the previous section, upon closer examination they

could not be specified as GCs. As exmples of such counter-examples, the functions repeat and words &

unwords are scrutinized below.

4.4.1 repeat

Function repeat of the Haskell Standard Prelude operates by generating an infinite sequence through the

perpetual replication of a specified element. For instance, the outcome of repeat 7 will be an unending

sequence [7,7,7, ... ]. The idea that immediately comes to mind is to postulate the following property

that relates function ‘repeat‘ with the prefix partial order:

all (≡ x) z ⇔ z ≼ repeat x (4.48)

The question is: is this property a Galois connection? Clearly, this is not the case — there is no order on

the lower side of the connection. Even by employing the cast function as studied in Section 4.2, it is not

possible to express the property in the form:

f z ⩽ x ⇔ z ≼ repeat x

form some order (⩽) and some lower adjoint f .
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Nevertheless, nothing prevents one from using such a property (cf. the replicate calculation in the reper-

toire Section 4.3) and from employing indirect equality over the prefix partial order to derive the definition

of repeat, cf.

z ≼ repeat x

≡ { property (4.48) }

all (≡ x) z

≡ { definition of all }

⟨∃ t : z = x : t : all (≡ x) t ⟩ ∨ z = [ ]

≡ { property (4.48) }

⟨∃ t : z = x : t : t ≼ repeat x⟩ ∨ z = [ ]

≡ { prefix definition (4.18) }

z ≼ x : repeat x

:: { indirect equality over list prefixing (≼) }

repeat x = x : repeat x

-- Calculated implementation of repeat
repeat :: a -> [a]
repeat x = x : repeat x

This example demonstrates that indirect equality serves as an effective proof technique and is not limited

to Galois connections exclusively.

4.4.2 words & unwords

In the Haskell Standard Prelude, some pairs of functions can be found that, at first glance, appear to

constitute Galois connections. One example is the pair words & unwords that plays a fundamental role

in text processing:

• words :String→ [String ] is employed to split a string by spaces or whitespace characters (spaces,

tabs, and newline characters) — it essentially parses a textual input into a list of individual words.

• “conversely”, unwords : [String ]→String takes a list of words and concatenates them into a

single string, using the space character as a delimiter.
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Note that the expression ‘conversely’ referring to unwords is enclosed in commas. In fact, the pair does

not form an isomorphism, cf.

> words . unwords $ ["ola "]
["ola"]

But — is it a GC? If so, by (2.22), unwords ·words ·unwords = unwords should hold. However, it clearly

does not, since

> unwords $ ["Hello "]
"Hello "
> unwords . words . unwords $ ["Hello "]
"Hello"

shows such a property failing at least once. This suffices to state that words and unwords do not form

a Galois connection.

Another pair of similar functions in the Haskell Standard Prelude, is lines & unlines. The distinction lies in

the fact that they operate with newline characters rather than spaces:

• lines : String→ [String ] divides a string into a list of substrings, each representing a line of text.

The division is determined by the presence of a newline character.

• “conversely”, unlines : [String ]→String accepts a list of strings (each representing a line of text)

and concatenates them into a single string. Basically, it inserts newline characters between the

substrings.

Again, the expression ‘conversely’ is enclosed in commas, since it does not form an isomorphism, cf.

> lines . unlines $ ["Hello.\n"]
["Hello.",""]

But, this time, no cases were found where the laws of semi-inverses (2.22) and (2.23) failed. However,

this does not guarantee that it is a Galois connection, even though, through other properties, it may indeed

seem to be (recall Section 2.3).

Hence, it appears quite probable to define the following Galois connection:

unlines z ⩽ l ≡ z ⊑ lines l (4.49)

with the orders yet to be defined.

Note, however, that both lines & unlines and words & unwords could well be a particular case of a pair

of functions defined by
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sep :: Eq a => a -> [a] -> [[a]]
sep a = splitOn [a]

unsep :: a -> [[a]] -> [a]
unsep a = concat . (intersperse [a])

It can be argued that words is more powerful since it separates not just by a single character, but the truth

is that unwords uses only one such character. Nevertheless, one could define words, unwords, lines,

and unlines in the following way,

lines = sep '\n'
unlines = unsep '\n'
words = sep ' '
unwords = unsep ' '

leading to a likely Galois connection,

unsep a z ⩽ l ≡ z ⊑ sep a l (4.50)

the analysis of which is left for future work.

4.5 Summary

Programming from Galois connections was examined as a method for calculating programs from their

specifications under Galois connections. To do so, the most common partial orders pertaining to both the

Peano and the finite list algebras were initially defined. Particular attention was given to rigorously proving

that they indeed constitute partial orders.

Following this, a significant result regarding predicates in Galois connections was presented. This result is

subsequently demonstrated in the repertoire, where several functions from the Haskell Standard Prelude

were specified under Galois connections, and their respective implementations were computed.

Finally, some attention was paid to functions that initially appeared to belong to Galois connections but

were subsequently shown not to do so. Alternative approaches were outlined in such cases.
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Chapter 5

Pointfree programming from Galois connections

As previously mentioned in the introduction, one of the objectives of this work is to automate the proofs

using the Galculator proof assistant, a process which will be examined in the following chapter. However, it

is worth noting that the Galculator operates exclusively at the pointfree level, with relational equalities. To

assess such pointfree proof style, three functions were selected from the repertoire of the previous chapter

for pointfree recalculation, now with their GC specifications turned into relational equalities.

Pointfree reasoning is usually advocated to ensure a fully correct and error-free alternative to pointwise

proofs, which “conceal” many intermediate steps. Indeed, the rigor of pointfree proofs will become evident

when comparing the respective proofs for each selected function.

The chosen functions are take, takeWhile, and zip. We shall analyze each of them in sequence. These

functions were selected since, collectively, they suffice to characterize the aforementioned calculation

method. With the calculation of these three functions as a foundation, the remainder are calculated in a

similar manner.

Note that, since relational equalities are being employed, the uncurried versions of the take and zip will

be used. Towards the end, the power of adjoint recursion (3.41) will allow us to derive the original curried

functions. In the case of takeWhile, the predicate will be fixed, i.e., we shall work with takeWhile p for

a given suitable predicate p.

5.1 Pointfree calculation of take

Function t̂ake has been specified via pointwise GC (2.8) and a pointwise derivation was made. Now,

rendered as a relational equality (3.93), let us work with the pointfree specification of t̂ake:

⟨length, id⟩◦ · ((⩽)× (≼)) = (≼) · t̂ake (5.1)

First of all, since its specification recurs to the converse of length, one may calculate length◦ to derive

some important equalities to be used in the proofs.
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Therefore, and since length= L [0 ,succ ·π2]M,
length◦ = L [0 ,succ ·π2]M◦

= { catamorphisms definition }

([0 ,succ ·π2] · (id+ id× length) ·outList)◦

= { converses }

inList · (id+ id× length◦) · [0 ,succ ·π2]
◦

= { +-definition }

inList · [i1 , i2 · (id× length◦)] · [0 ,succ ·π2]
◦

= { either and converse }

inList · (i1 ·0◦ ∪ i2 · (id× length◦) ·π◦2 · succ◦)

= { either and converse; inN0 definition }

inList · [i1 , i2 · (id× length◦) ·π◦2 ] ·outN0

= { +-definition; converses }

inList · (id+(id× length)◦ ·π◦2 ) ·outN0

= { converses }

inList · (id+π◦2 · length◦) ·outN0

= { +-composition }

inList · (id+π◦2 ) · (id+ length◦) ·outN0

= { catamorphisms definition }

L inList · (id+π◦2 )M
which means that length◦ ·0 = nil

length◦ · succ = cons · (length ·π2)
◦

(5.2)

and from which one may derive

length◦ · (⩽) ∩ nil = nil (5.3)

nil ⊆ length◦ · (⩽) (5.4)

(length · cons)◦ · (⩽) · succ = (length ·π2)
◦ · (⩽) (cf. Proof 1) (5.5)

Note that while length is a List-catamorphism, length◦ is an N0-catamorphism.
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Finally, let us work with the three aforementioned cases of t̂ake:

• z ≼ t̂ake (0,x) which becomes the pointfree expression (≼) · t̂ake · (0× id)

(≼) · t̂ake · (0× id)

= { GC (5.1) }

⟨length, id⟩◦ · ((⩽)× (≼)) · (0× id)

= { ×-definition and composition; constants natural property; pairing and converse }

length◦ · (⩽) ·0 ∩ (≼) ·π2

= { (⩽) definition (4.9); length◦ ·0 = nil (5.2) }

nil ∩ (≼) ·π2

= { nil ⊆ (≼) ·π2 since img π2 = id and nil = L [nil ,nil]M ⊆ (≼) by monotonicity }

(≼) ·nil

:: { indirect equality over prefix partial order (≼) }

t̂ake · (0× id) = nil (5.6)

• z ≼ t̂ake (n, [ ]) which becomes (≼) · t̂ake · (id×nil)

(≼) · t̂ake · (id×nil)

= { GC (5.1) }

⟨length, id⟩◦ · ((⩽)× (≼)) · (id×nil)

= { ×-definition and composition; constants natural property; pairing and converse }

length◦ · (⩽) ·π1 ∩ (≼) ·nil

= { (≼) ·nil = nil ⊆ length◦ · (⩽) ·π1 (cf. Proof 3) }

(≼) ·nil

:: { indirect equality over prefix partial order (≼) }

t̂ake · (id×nil) = nil (5.7)

• z ≼ t̂ake (n+1,h : t) which becomes (≼) · t̂ake · (succ× cons)

(≼) · t̂ake · (succ× cons)

= { GC (5.1) }
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⟨length, id⟩◦ · ((⩽)× (≼)) · (succ× cons)

= { ×-composition and definition }

⟨length, id⟩◦ · ⟨(⩽) · succ ·π1,(≼) · cons ·π2⟩

= { pairing and converse }

length◦ · (⩽) · succ ·π1 ∩ (≼) · cons ·π2

= { (≼) definition (4.17) }

length◦ · (⩽) · succ ·π1 ∩ (nil ∪ cons · (id× (≼)) ·π2)

= { distributivity; k ·R = k when R is entire; id× (≼) is entire since (≼) is reflexive }

(length◦ · (⩽) · succ ·π1 ∩ nil) ∪ (length◦ · (⩽) · succ ·π1 ∩ cons · (id× (≼)) ·π2)

= { nil ⊆ length◦ · (⩽) · succ ·π1 (check (5.4)) }

nil ∪ (length◦ · (⩽) · succ ·π1 ∩ cons · (id× (≼)) ·π2)

= { distributivity, since cons◦ · cons is injective; contravariance }

nil ∪ cons · ((length · cons)◦ · (⩽) · succ ·π1 ∩ (id× (≼)) ·π2)

= { (5.5) }

nil ∪ cons · ((length ·π2)
◦ · (⩽) ·π1 ∩ (id× (≼)) ·π2)

= { contravariance; ×-definition and fusion; pairing definition }

nil ∪ cons · (length◦ ·π◦2 · (⩽) ·π1 ∩ (π◦1 ·π1 ·π2 ∩ π◦2 · (≼) ·π2 ·π2))

= { associativity }

nil ∪ cons · (π◦1 ·π1 ·π2 ∩ (π◦2 · length◦ · (⩽) ·π1 ∩ π◦2 · (≼) ·π2 ·π2))

= { distributivity since π◦2 is injective; pairing definition }

nil ∪ cons · ⟨π1 ·π2, length
◦ · (⩽) ·π1 ∩ (≼) ·π2 ·π2⟩

= { pairing and converse; identity }

nil ∪ cons · ⟨π1 ·π2,⟨length, id⟩◦ · ⟨(⩽) ·π1,(≼) ·π2 ·π2⟩⟩

= { ×-definition }

nil ∪ cons · ⟨π1 ·π2,⟨length, id⟩◦ · ((⩽)× (≼) ·π2)⟩

= { ×-absorption and composition }

nil ∪ cons · (id×⟨length, id⟩◦ · ((⩽)× (≼)) · ⟨π1 ·π2, id×π2⟩)

= { GC (5.1) }
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nil ∪ cons · ((id× (≼) · t̂ake) · ⟨π1 ·π2, id×π2⟩)

= { ×-composition }

nil ∪ cons · (id× (≼)) · (id× t̂ake) · ⟨π1 ·π2, id×π2⟩)

= { constants natural property }

nil · (id× t̂ake) · ⟨π1 ·π2, id×π2⟩ ∪ cons · (id× (≼)) · (id× t̂ake) · ⟨π1 ·π2, id×π2⟩)

= { left linearity }

(nil ∪ cons · (id× (≼))) · (id× t̂ake) · ⟨π1 ·π2, id×π2⟩

= { (≼) definition (4.17) }

(≼) · cons · (id× t̂ake) · ⟨π1 ·π2, id×π2⟩

:: { indirect equality over prefix partial order (≼) }

t̂ake · (succ× cons) = cons · (id× t̂ake) · ⟨π1 ·π2, id×π2⟩ (5.8)

This leads to the already presented definition of t̂ake:

t̂ake (0, ) = [ ]

t̂ake ( , [ ]) = [ ]

t̂ake (n+1,h : t) = h : t̂ake (n, t)

which is clearly the following G-hylomorphism on lists:

N0×A∗

t̂ake
��

1+A× (N0×A∗)

G t̂ake
��

(1+N0)×A∗ψ
oo

L inN0

rr

A∗ 1+A×A∗
inList

oo

where

ψ = [i1 ·π1 ,(π2 + xr) ·distr · (id×outList)] ·distl

xr = ⟨π1 ·π2, id×π2⟩

L f = f × id

G f = id+ id× f

That is,

t̂ake = inList ·G t̂ake ·ψ ·L outN0
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Now, let us recur to the power of adjoint recursion in order to define the original (curried) version of take

as an adjoint catamorphism:

N0

take
��

1+N0
inN0oo

id+take
��

(A∗)A∗ 1+(A∗)A∗

inList·G ε·ψ
oo

take = L inList ·G ε ·ψ M where

ε = ap

Simplifying the gene of catamorphism take:

[f ,g] = inList ·G ε ·ψ

≡ { definitions of inList, G ε and ψ }

[f ,g] = [nil ,cons] · (id+ id× ε) · [i1 ·π1 ,(π2 + xr) ·distr · (id×outList)] ·distl

≡ { coproducts }

[f ,g] = [nil , [nil ,cons · (id× ε) · xr] ·distr · (id×outList)] ·distl

≡ { [f ,g] = [f ,g] ·distl } f = nil

g = [nil ,cons · (id× ε) · xr] ·distr · (id×outList)

≡ { f · (id×g) = (·g) · f } f = nil

g = (·outList) · [nil ,cons · (id× ε) · xr] ·distr

In order to continue simplifying the gene, recall that A×B ∼= B×A. Thus, recurring to the function

flip :: (a→b→c)→b→a→c, one may encounter the adjunction (K× ) ⊣ ( K), i.e.,

K×A→B

flip·curry

77
∼= A→BK

uncurry·flip

ww
(5.9)

leading to the following property:

[flip f ,flip g] = flip [f ,g] ·distr (5.10)
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Now, let us proceed with f = nil

g = (·outList) · (flip (flip [nil ,cons · (id× ε) · xr] ·distr))

≡ { (5.10) } f = nil

g = (·outList) · (flip [flip nil ,flip cons · (id× ε) · xr])

≡ { isomorphism flip = flip◦ } f = nil

flip ((·inList) ·g) = [flip nil ,flip cons · (id× ε) · xr]

≡ { +-universal property }
f = nil (flip ((·inList) ·g)) · i1 = flip nil

(flip ((·inList) ·g)) · i2 = flip cons · (id× ε) · xr

≡ { flip-fusion (Oliveira, 2020a); remove flip both sides }
f = nil (·i1) · (·inList) ·g = nil

(·i2) · (·inList) ·g = cons · (id× ε) · xr

≡ { composition of pre-compositions is contravariant }
f = nil (·(inList · i1)) ·g = nil

(·(inList · i2)) ·g = cons · (id× ε) · xr

≡ { inList · i1 = nil and inList · i2 = cons; going pointwise on the pre-compositions }
f = nil (g k) ·nil = nil

(g k) · cons = cons · (id× ε) · xr k

≡ { going pointwise }
f = [ ] g k [ ] = [ ]

g k (h : t) = h : k t

Therefore, function take is given by the following (higher-order) catamorphism:
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take :: Integral c⇒ c→ [a ]→ [a ]

take = L [f ,g]M where

f = [ ]

g k [ ] = [ ]

g k (h : t) = h : k t

5.2 Pointfree calculation of takeWhile

Recall from Section 4.2 that takeWhile can be specified via relational equality recurring to the use of

coreflexives, cf. (4.34). That is,

ϕall p · (≼) = (≼) · takeWhile p (5.11)

Besides, function takeWhile has already been calculated using a pointwise approach. Now, similar to

what occurred with the preceding function, takeWhile will be calculated based on the aforementioned

relational equality through a pointfree methodology. In order to do so, predicate p will be held constant,

and thus we shall be working with takeWhile p instead, leading to the following calculations:

• z ≼ takeWhile p [ ] which becomes the pointfree expression (≼) · takeWhile p ·nil

(≼) · takeWhile p ·nil

= { GC (5.11) }

ϕall p · (≼) ·nil

= { (≼) definition (4.17) }

ϕall p ·nil

= { all q [ ] holds for every predicate q }

nil

= { (≼) ·nil = nil (4.17) }

(≼) ·nil

:: { indirect equality over prefix partial order (≼) }

takeWhile p ·nil = nil

• z ≼ takeWhile p (h : t) which becomes the pointfree expression (≼) · takeWhile p · cons

(≼) · takeWhile p · cons
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= { GC (5.11) }

ϕall p · (≼) · cons

= { (≼) definition (4.17) }

ϕall p · (cons · (id× (≼)) ∪ nil)

= { right linearity; ϕall p ·nil = nil since all q [ ] holds for every suitable predicate q }

ϕall p · cons · (id× (≼)) ∪ nil

= { ϕall p =map ϕp }

cons · (ϕp×ϕall p) · (id× (≼)) ∪ nil

= { ×-functor composition }

cons · (ϕp× id) · (id×ϕall p · (≼)) ∪ nil

= { GC (5.11) }

cons · (ϕp× id) · (id× (≼) · takeWhile p) ∪ nil

= { ×-functor composition twice }

cons · (id× (≼)) · (id× takeWhile p) · (ϕp× id) ∪ nil

= { ϕp ∪ ϕ¬ p = id }

cons · (id× (≼)) · (id× takeWhile p) · (ϕp× id) ∪ nil · (ϕp× id ∪ ϕ¬ p× id)

= { right linearity and associativity }

cons · (id× (≼)) · (id× takeWhile p) · (ϕp× id) ∪ nil · (ϕp× id) ∪ nil · (ϕ¬ p× id)

= { left linearity }

(cons · (id× (≼)) · (id× takeWhile p) ∪ nil) · (ϕp× id) ∪ nil · (ϕ¬ p× id)

= { left linearity again, since nil = nil · (id× takeWhile p) }

(cons · (id× (≼)) ∪ nil) · (id× takeWhile p) · (ϕp× id) ∪ nil · (ϕ¬ p× id)

= { (≼) definition (4.17) }

(≼) · cons · (id× takeWhile p) · (ϕp× id) ∪ nil · (ϕ¬ p× id)

= { ϕp·π1 = ϕp× id }

(≼) · cons · (id× takeWhile p) ·ϕp·π1 ∪ nil ·ϕ¬ (p·π1)

= { either and converse since R being coreflexive means R◦ = R }

[(≼) · cons · (id× takeWhile p) ,nil] · [ϕp·π1 ,ϕ¬ (p·π1)]
◦
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= { nil = (≼) ·nil (4.17); +-fusion; p? = [ϕp ,ϕ¬ p]
◦ }

(≼) · [cons · (id× takeWhile p) ,nil] · (p ·π1)?

:: { McCarthy’s conditional and indirect equality over prefix partial order (≼) }

takeWhile p · cons = p ·π1→ cons · (id× takeWhile p), nil

Finally, since

p ·π1→ cons · (id× takeWhile p), nil

= { McCarthy’s conditional and coproducts }

(p ·π1→ cons, nil) · (id× takeWhile p)

one gets the definition of takeWhile as the following List-catamorphism:

takeWhile :: (a→B)→ [a ]→ [a ]

takeWhile p = L [nil ,cond (p ·π1) cons nil]M

5.3 Pointfree calculation of uncurry zip

As a final example, we shall calculate function ẑip based on a relational equality. As in previous functions,

we shall commence by converting its pointwise specification (4.45) to a pointfree representation, cf.

⟨map π1,map π2⟩◦ · ((≼)× (≼)) = (≼) · ẑip (5.12)

Thus, one deals with the respective cases:

• z ≼ ẑip (l1, [ ]) which becomes (≼) · ẑip · (id×nil)

(≼) · ẑip · (id×nil)

= { GC (5.12) }

⟨map π1,map π2⟩◦ · ((≼)× (≼)) · (id×nil)

= { ×-functor composition }

⟨map π1,map π2⟩◦ · ⟨(≼) ·π1,nil⟩

= { pairing and converse }

(map π1)
◦ · (≼) ·π1 ∩ (map π2)

◦ ·nil
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= { map converse and definition }

(map π1)
◦ · (≼) ·π1 ∩ nil

= { nil ⊆ (map π1)
◦ · (≼) ·π1; (≼) ·nil = nil (4.17) }

(≼) ·nil

:: { indirect equality over prefix partial order (≼) }

ẑip · (id×nil) = nil

• z ≼ ẑip ([ ], l2) which becomes (≼) · ẑip · (nil× id)

Analogous to the previous calculation, leading to ẑip · (nil× id) = nil

• z ≼ ẑip (h1 : t1,h2 : t2) which is equivalent to (≼) · ẑip · (cons× cons)

For this, we shall denominate function ⟨π1× π1,π2× π2⟩ as transpose. This function is an

isomorphism:

(A×B)× (C×D)

transpose
,,

∼= (A×C)× (B×D)

transpose◦
ll

It is trivial to check that transpose◦ = transpose. Besides, its natural property,

((f ×g)× (h× i)) · transpose = transpose · ((f ×h)× (g× i)) (5.13)

will prove very useful in the following proof.

Therefore, one has

(≼) · ẑip · (cons× cons)

= { GC (5.12) }

⟨map π1,map π2⟩◦ · ((≼)× (≼)) · (cons× cons)

= { ×-functor-composition }

⟨map π1,map π2⟩◦ · ((≼) · cons× (≼) · cons)

= { pairing definition and converse; functor map }

map π◦1 · (≼) · cons ·π1 ∩ map π◦2 · (≼) · cons ·π2

= { (≼) definition; left and right linearity twice; constants’ natural property; map ·nil = nil }

(map π◦1 · cons · (id× (≼)) ·π1 ∪ nil) ∩ (map π◦2 · cons · (id× (≼)) ·π2 ∪ nil)
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= { union distributes through intersection }

(map π◦1 · cons · (id× (≼)) ·π1 ∩ map π◦2 · cons · (id× (≼)) ·π2) ∪ nil

= { map R · cons = cons · (R×map R); cons is injective }

cons · ((π◦1 ×map π◦1 · (≼)) ·π1 ∩ (π◦2 ×map π◦2 · (≼)) ·π2) ∪ nil

= { ×-functor composition }

cons · ((π◦1 ×map π◦1 ) · (id× (≼)) ·π1 ∩ (π◦2 ×map π◦2 ) · (id× (≼)) ·π2) ∪ nil

= { pairing and converse; ×-functor definition }

cons · ⟨π1×map π1,π2×map π2⟩◦ · ((id× (≼))× (id× (≼))) ∪ nil

= { ⟨π1×map π1,π2×map π2⟩◦ = (id×⟨map π1,map π2⟩)◦ · transpose (Proof 2) }

cons · (id×⟨map π1,map π2⟩)◦ · transpose · ((id× (≼))× (id× (≼))) ∪ nil

= { converses; transpose natural property }

cons · (id×⟨map π1,map π2⟩◦) · (id× ((≼)× (≼))) · transpose ∪ nil

= { ×-functor composition }

cons · (id×⟨map π1,map π2⟩◦ · ((≼)× (≼))) · transpose ∪ nil

= { GC (5.12) }

cons · (id× (≼) · ẑip) · transpose ∪ nil

= { ×-functor-composition }

cons · (id× (≼)) · (id× ẑip) · transpose ∪ nil

= { left linearity; constants’ natural property }

(cons · (id× (≼)) ∪ nil) · (id× ẑip) · transpose

= { (≼) definition }

(≼) · cons · (id× ẑip) · transpose

:: { indirect equality over prefix partial order (≼) }

ẑip · (cons× cons) = cons · (id× ẑip) · transpose

This leads to the already presented definition of ẑip:

ẑip ([ ], ) = [ ]

ẑip ( , [ ]) = [ ]

ẑip (h1 : t1,h2 : t2) = (h1,h2) : ẑip (n, t)
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which is clearly the following G-hylomorphism on lists:

A∗×A∗

ẑip

� �

1+(A×A)× (A∗×A∗)

G ẑip

��

(1+A×A∗)×A∗ψ
oo

L inList

rr

(A×A)∗ 1+(A×A)× (A×A)∗
inList

oo

where

ψ (i1 (), ) = i1 ()

ψ ( , [ ]) = i1 ()

ψ (i2 (h1, t1),h2 : t2) = i2 ((h1,h2),(t1, t2))

L f = f × id

G f = id+ id× f

That is,

ẑip = inList ·G ẑip ·ψ ·L outList

Now, let us again recur to the power of adjoint recursion in order to define the original (curried) version of

zip as an adjoint catamorphism:

A∗

take
��

1+A×A∗
inListoo

id+id×take
��

((A×A)∗)A∗ 1+A× ((A×A)∗)A∗

inList·G ε·ψ
oo

zip = L inList ·G ε ·ψ M where

ε = ap

The process to simplify the gene of catamorphism zip is similar to the catamorphism take. Thus, zip is

defined by the following pointwise definition:

zip :: [a ]→ [b ]→ [(a,b)]

zip = L [f ,g]M where

f = [ ]

g [ ] = [ ]

g (h1,k) (h2 : t2) = (h1,h2) : k t2
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5.4 Summary

Pointfree level reasoning ensures complete correctness in program calculation, in contrast with pointwise

calculations that often “conceal” many intermediate steps. Moreover, automation is enabled by tools that,

such as the Galculator, adopt such a reasoning paradigm.

In this chapter three functions — namely, take, takeWhile and zip — were chosen to be recalculated, this

time at the pointfree level. In the case of the take and zip, whose uncurried versions had been calculated,

the study of adjunctions and catamorphisms ultimately facilitated the calculation of the original curried

version.

Galois-connection pointfree proofs rely, as previously mentioned, on relational equalities, which is the

framework employed by the aforementioned Galculator proof assistant. This is the subject of the chapter

that follows.
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Chapter 6

Galculator

The proposal of a design strategy for software development starting from specifications cast in the form

of Galois connections, leading to correct-by-construction (CbC) artifacts, has taken most of the current

dissertation. Looking at some of the calculations that have been performed by hand, it becomes clear that

CbC comes with a cost: it may take a significant number of steps to reach the final implementation. This

calls for some kind of proof-assistance.

The prototype proof assistant known as Galculator (Silva and Oliveira, 2008) is distinctively centered on

the algebra of Galois connections. Its effectiveness is heightened when integrated with techniques like the

pointfree transform (recall Section 3.3) and proof methods such as the indirect equality principle.

Clearly, the Galculator is a first choice for assisting in calculating functions specified by Galois connections,

provided these are appropriately expressed at the pointfree level, as shown in the previous chapter. This

chapter will demonstrate how the tool can be used as proof assistant in such proofs.

The potential for proof automation supported by the Galculator tool will be showcased taking the calculation

of the function take as demonstration example.

6.1 Launching Galculator

After refactoring part of the code of the Galculator due to updates in the Haskell programming language

and its libraries since the tool was developed years ago, all modules run properly. The Galculator was con-

tainerized from the Haskell image, and the base command is ghci with the necessary flags for compiling

all modules. With the container up and running, it is sufficient to execute the main function, cf.
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ghci> main
___ __ _ ___ _ _ _ __ _____ __ ___

/ _ \ / \ | | / __|| | | || | / \ |_ _|/ \| \
/ /_\/ / /\ \ | | | | | | | || | / /\ \ | | | | || /

/ /_\\ / ___ \| |___| |__ | |_| || |___ / ___ \ | | | | || |\ \
\____//_/ \_/ \____|\___|\____/ \____|/_/ \_/ |_| \___/|_| \_\

Paulo Silva (paufil@di.uminho.pt)
Universidade do Minho, Braga, Portugal

Galculator>

and the Galculator is on.

Within the scope of this study, it is imperative to understand the process of creating modules encompassing

the laws, properties, and definitions pertinent to the programs whose calculations are sought. Equally

important is to,learn how to conduct indirect equality proofs.

Modules and terminology Concerning modules, these must be stored in files with the .gal extension

and must begin by specifying the module’s name, e.g. module integer. The terminology used in the

modules is quite user-friendly. Some examples that elucidate what one can expect to find in a Galculator

module follow:

• EQUIV meet_assoc
(MEET (MEET (Var r) (Var s)) (Var t))
(MEET (Var r) (MEET (Var s) (Var t)));

This equivalence reflects the associative property of the meet operation. As observed, MEET is part

of a set of reserved words and in this case refers to the operator ∩ . Note that the expressions are

polymorphic, as they can take any expression — cf. the use of Var.

• EQUIV involution
(CONV (CONV (Var r)))
(Var r);

EQUIV contravariance
(CONV (COMP (Var r) (Var s)))
(COMP (CONV (Var s)) (CONV (Var r)));

The two equivalences presented just above — namely, contravariance and converse involution —

emphasize the use of the reserved word CONV denoting the converse of a relation.

• DEF const (Fun (TVar a) (Prod (TVar a) (TVar b)));

DEF zero INT;
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DEF succ (Fun Int Int);

DEF leq (Ord Int);
DEF prefix (Ord (List (TVar t3)));
DEF leq_prefix (Ord (Prod Int (List (TVar t4))));

It is noteworthy to highlight function declaration via signatures declared from right to left. Please

note that the constant function is defined in an uncurried way, as it takes a pair. (Recall the need for

making functions uncurried due to the use of pointfree notation.) An integer zero and the function

succ are defined, as well as the orders less than or equal in the natural numbers, prefix in lists,

and the order as the product of these last two.

• EQUIV leq_zero
(COMP (ORD (REF leq)) (FUN (LEFTSEC (REF const) (REF zero))))
(FUN (LEFTSEC (REF const) (REF zero)));

EQUIV prefix_nil
(COMP (ORD (REF prefix)) (FUN (LEFTSEC (REF const) (REF

empty_list))))↪→

(FUN (LEFTSEC (REF const) (REF empty_list)));

The code above is the Galculator equivalent to:

(⩽) ·0 = 0

(≼) ·nil = nil

One thus needs to define the functions 0 and nil, obtained through the use of LEFTSEC. This

operator takes a function that accepts a pair of arguments and will fix the first argument — it

corresponds to fixing arguments in Haskell’s transposition.

The examples given above are sufficient to get a glimpse of how the Galculator is implemented. For a

more comprehensive understanding, it is recommended to delve into some of the modules provided in the

Galculator’s Github repository.

Galois connections and proofs by indirect equality To establish a Galois connection in the Galcu-

lator, one only needs to input the lower adjoint, followed by the upper adjoint, the lower-side order and then

the upper-side order right after GDef <name_of_gc>. For instance, the Galois connection that specifies

take (5.1) is given by

GDef take_gc
(APPLY (REF to_func) (SPLIT (FUN (REF length)) ID))
(REF take)
(REF leq_prefix)
(REF prefix);
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NB: to_func is used to retrieve the function embedded in a relation since SPLIT is, as defined in

Galculator, a relation.

Indirect equality proofs are conducted within the command line using the prove command followed by the

equality to be demonstrated. For instance, after composing within a module, say take.gal including all

that is needed for proving the first base case of function take (5.6), the following commands are executed,

Galculator> load take
Galculator> prove EQUIV take_zero_id (COMP (FUN (REF take)) (PROD (FUN

(LEFTSEC (REF const) (REF zero))) ID)) (FUN (LEFTSEC (REF const) (REF
empty_list)))

↪→

↪→

Galculator> left
Galculator> indirect low (REF prefix)

indicating the intent to start the proof named take_zero_id from the left-hand side of the equality through

indirect equality over the prefix order. This proof alongside with the second base case of take will be

undertaken in the next section.

6.2 “Galculating” uncurry take

Let us recall the two base cases of function t̂ake, that is,

t̂ake · (0× id) = nil

t̂ake · (id×nil) = nil

Also recall their calculations (5.6) and (5.7), respectively. Note that Galculator carries out the proof step

by step, and some trivial steps, like associativity, are hidden, but the Galculator needs to perform them

explicitly.

The first case starts with the pointfree equality t̂ake ·(0× id) = nil, cf. (5.6), and then it is stated that the

proof starts from the left side of the equality. Subsequently, the proof by indirect equality over the prefix

partial order is introduced, having the following first steps:1

Galculator> prove EQUIV take_zero_id (COMP (FUN (REF take)) (PROD (FUN
(LEFTSEC (REF const) (REF zero))) ID)) (FUN (LEFTSEC (REF const) (REF
empty_list)))

↪→

↪→

Galculator> show
Current proof:

1 Some text of the Galculator logs is omitted to streamline the reading.
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---------------------------------------------------------------
(take . ((<zero>const) >< id)) <=> (<empty_list>const)
---------------------------------------------------------------
Galculator> left
Galculator> indirect low (REF prefix)
Galculator> show
Current proof:
---------------------------------------------------------------
(take . ((<zero>const) >< id)) <=> (<empty_list>const)
---------------------------------------------------------------

(prefix . (take . ((<zero>const) >< id)))
Galculator>

Now, proceeding with the proof, one must use the associativity of composition. Since it is defined by

EQUIV comp_assoc
(COMP (COMP (Var r) (Var s)) (Var t))
(COMP (Var r) (COMP (Var s) (Var t)));

that is, it is inverted, one need to recur to the command inv, cf.

Galculator> inv apply comp_assoc
Galculator> show

((prefix . take) . ((<zero>const) >< id))

The proof proceeds by calling the shunting rule (automatically derived from the GC):

Galculator> once inv shunt take_gc
Galculator> show

(((to_func <length, id>)* . leq_prefix) . ((<zero>const) >< id))

Now, one must apply the associativity of composition again:

Galculator> apply comp_assoc
Galculator> show
Current proof:

((to_func <length, id>)* . (leq_prefix . ((<zero>const) >< id)))

Now, notice that the product of ⩽ with ≼ was defined as a specific order, meaning that the order is the

product itself. Therefore, it is necessary to return the product of the two orders in a way to proceed with

the definition of the product. This step is accomplished by the following equivalence

EQUIV leq_prefix_def (REF leq_prefix) (APPLY (REF to_ord) (PROD (ORD (REF
leq)) (ORD (REF prefix))));↪→
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which uses the function to_ord that handles the retrieval of the order embedded in a relation, cf.

-- Retrieving the order embedded in a relation
DEF to_ord (Fun (Ord (TVar t22)) (Rel (TVar t22) (TVar t22)));
EQUIV to_ord_cancel (ORD (APPLY (REF to_ord) (Var o))) (Var o);

In this way, the following commands are executed:

Galculator> once apply leq_prefix_def
Galculator> once apply to_ord_cancel
Galculator> show
Current proof:

((to_func <length, id>)* . ((leq >< prefix) . ((<zero>const) >< id)))

The proof proceeds with the respective laws — ×-fusion, id-natural property, ×-definition, associativity of

composition, “free-theorem” of a constant function, cf.

Galculator> once apply prod_fusion
Galculator> once apply natural_id_right
Galculator> once apply prod_def
Galculator> once apply comp_assoc
Galculator> once apply const_nat
Galculator> show
Current proof:

((to_func <length, id>)* . <(leq . (<zero>const)), (prefix . pi2)>)

Notice that <length, id> is a parameter of to_func. Recall this is needed because the SPLIT com-

binator within the Galculator definitions is defined as a relation. Thus, one has to retrieve the function

embedded in that relation. The same happens with the identity function, since ID is defined as a relation.

For that, one uses the following:

-- Retrieving the function embedded in a relation
DEF to_func (Fun (Fun (TVar t20) (TVar t21)) (Rel (TVar t20) (TVar t21)));
EQUIV to_func_cancel (FUN (APPLY (REF to_func) (Var f))) (Var f);
EQUIV to_func_id (APPLY (REF to_func) ID) FId;

Therefore, the proof continues as follows with

Galculator> once apply to_func_cancel
Galculator> show
Current proof:

(<length, id>* . <(leq . (<zero>const)), (prefix . pi2)>)
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and the laws of pairing and converse, id◦ = id, id-natural property and (⩽) ·0 = 0, cf.

Galculator> once apply pairing_converse
Galculator> once apply conv_id
Galculator> once apply natural_id_left
Galculator> once apply leq_zero
Galculator> show
Current proof:

((length* . (<zero>const)) /\ (prefix . pi2))

Now, recall that properties length◦ ·0 = nil and nil ∩ (≼ ·π2) = nil were used in the proof. Thus, one

has to add these to the module,

-- conv length . zero = nil
EQUIV conv_length_zero

(COMP (CONV (FUN (REF length))) (FUN (LEFTSEC (REF const) (REF zero))))
(FUN (LEFTSEC (REF const) (REF empty_list)));

-- nil `cap` (pref . p2) = nil
EQUIV assert1

(MEET (FUN (LEFTSEC (REF const) (REF empty_list))) (COMP (ORD (REF
prefix)) (FUN (REF pi2))))↪→

(FUN (LEFTSEC (REF const) (REF empty_list)));

Using these equivalences one gets

Galculator> once apply conv_length_zero
Galculator> once apply assert1
Galculator> show
Current proof:

(<empty_list>const)

which is equivalent to (≼) ·nil by (4.17), thus

Galculator> inv apply prefix_nil
Galculator> show
Current proof:

(prefix . (<empty_list>const))

Thus, the proof by indirect equality is now complete:
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Galculator> indirect end
Galculator> qed
Galculator> show

Qed

The second case, cf. (5.7), will be similar to the previous. Thus let us look to the commands used:

Galculator> prove EQUIV take_id_nil (COMP (FUN (REF take)) (PROD ID (FUN
(LEFTSEC (REF const) (REF empty_list))))) (FUN (LEFTSEC (REF const)
(REF empty_list)))

↪→

↪→

Galculator> left
Galculator> indirect low (REF prefix)
Galculator> inv apply comp_assoc
Galculator> once inv shunt take_gc
Galculator> apply comp_assoc
Galculator> once apply leq_prefix_def
Galculator> once apply to_ord_cancel
Galculator> once apply prod_fusion
Galculator> once apply natural_id_right
Galculator> once apply prod_def
Galculator> once apply comp_assoc
Galculator> once apply const_nat
Galculator> once apply to_func_cancel
Galculator> once apply pairing_converse
Galculator> once apply conv_id
Galculator> once apply natural_id_left
Galculator> once apply prefix_nil
Galculator> apply assert2
Galculator> inv apply prefix_nil
Galculator> indirect end
Galculator> qed
Galculator> show

And now to the logs:2

---------------------------------------------------------------
(take . ((<zero>const) >< id)) <=> (<empty_list>const)
---------------------------------------------------------------
(take . ((<zero>const) >< id))

indirect low:

(prefix . (take . ((<zero>const) >< id)))

{ comp_assoc }

2 Again, some text will be omitted to streamline the reading.
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((prefix . take) . ((<zero>const) >< id))

{ Shunting: Shunting }

(((to_func <length, id>)* . leq_prefix) . ((<zero>const) >< id))

{ to_func_cancel }

((<length, id>* . leq_prefix) . ((<zero>const) >< id))

{ comp_assoc }

(<length, id>* . (leq_prefix . ((<zero>const) >< id)))

{ leq_prefix_def }

(<length, id>* . ((to_ord (leq >< prefix)) . ((<zero>const) >< id)))

{ to_ord_cancel }

(<length, id>* . ((leq >< prefix) . ((<zero>const) >< id)))

{ prod_fusion }

(<length, id>* . ((leq . (<zero>const)) >< (prefix . id)))

{ natural_id_right }

(<length, id>* . ((leq . (<zero>const)) >< prefix))

{ prod_def }

(<length, id>* . <((leq . (<zero>const)) . pi1), (prefix . pi2)>)

{ comp_assoc }

(<length, id>* . <(leq . ((<zero>const) . pi1)), (prefix . pi2)>)

{ const_nat }

(<length, id>* . <(leq . (<zero>const)), (prefix . pi2)>)

{ pairing_converse }

((length* . (leq . (<zero>const))) /\ (id* . (prefix . pi2)))

{ conv_id }

((length* . (leq . (<zero>const))) /\ (id . (prefix . pi2)))

{ natural_id_left }
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((length* . (leq . (<zero>const))) /\ (prefix . pi2))

{ leq_zero }

((length* . (<zero>const)) /\ (prefix . pi2))

{ conv_length_zero }

((<empty_list>const) /\ (prefix . pi2))

{ assert1 }

(<empty_list>const)

{ prefix_nil }

indirect end

Qed

Concerning the general case, its proof is too long to be presented in this dissertation and actually dispens-

able, since it does not bring any new insight. So it has been decided not to include it, as it follows the

same structure as the previous ones.

The Galculator proves to be the right tool for this type of proof by indirect equality in Galois connections.

Of course, the take function does not cover all the intricacies studied in this work, particularly the use

of coreflexives. Therefore, it would be interesting to see how the Galculator performs with the use of

coreflexives, an experience that is left for future work.

6.3 Summary

The Galculator proof assistant was “awoken” from its legacy state, requiring some code refactoring due to

updates in the Haskell programming language and the associated libraries.

Upon launching the Galculator, a succinct explanation was given on how to use the proof assistant, includ-

ing key commands and instructions concerning loading the necessary modules containing all the required

information for proofs.

Finally, the base cases of the function take were given as examples of using the tool in concrete program-

ming situations.
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Chapter 7

Conclusions

The starting motivation for the work reported in this dissertation was a critical inquiry into the efficacy

and establishment of Software Engineering as a robust body of knowledge since its start in 1968. In-

deed, the fundamental principles then proposed should be assessed in light of the ensuing five decades.

Regrettably, the field has been grappled with pervasive challenges, including deficient software quality,

exorbitant development costs and unwieldy team sizes. These issues have culminated in the production

of sub-optimal software products, falling short of the engineering ideals envisioned.

To ensure the reliability and safety of critical software systems, rigorous proof methods are essential.

However, widespread adoption of such methods, often reliant on complex inductive proofs, has proved

difficult.

This research decided to go back to first principles in its adoption of a correct-by-construction (CbC) method-

ology, capable of ensuring software correctness from its very construction process. Such an approach

aligns with engineering principles and emphasizes correctness from the outset.

In particular, the exploration of recursive computations specified by and derived from Galois connections

whose proofs do not require induction eventually became the main theme of the dissertation. This method

shows promise for deriving functionally correct implementations by construction.

Overall, correct-by-construction methodologies of this kind present a potential avenue for advancing Soft-

ware Engineering as a bona fide engineering discipline. By prioritizing correctness and integrating rigorous

techniques, this approach is hopefully a starting point for researchers and engineers to eventually seek

improvements in the quality and reliability of the software systems they build.

7.1 Summary of contributions

This work’s main contribution is on Galois Connection-based programming — on how to find a method for

calculating programs from their specifications written as GCs. In particular, it focuses on functions that
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involve the Peano and finite list algebras, establishing them as valid partial orders through rigorous proofs.

Handling of predicates within Galois connections is addressed too, an ingredient needed and illustrated

with functions from the Haskell Standard Prelude that recur to the use of filters and predicates. This has led

to a repertoire of such functions specified by Galois connections and how to calculate their implementation

through indirect equality.

Hopefully, this provides valuable insight into how to document and develop such widely used libraries. In

some cases, another crucial aspect of the overall strategy was illustrated: deriving useful properties of a

function before even implementing it.

Along this process, the approach also showed potential for library function classification. Indeed, some

functions were identified as clearly not being adjoints of Galois connections, even though some initially

appeared to be. Those that proved to be so were documented and, in one case, its implementation was

calculated through indirect equality, highlighting the power of this calculational approach.

Bearing automation and proof support in mind, the importance of reasoning at pointfree level in program

calculation was emphasized. In particular, specific functions, namely take, takeWhile and zip, were re-

calculated at the pointfree level. Notably, the interplay between catamorphisms and adjunctions played a

pivotal role in calculating take and zip.

The fact that Galois-connections at pointfree level are relational equalities aligns the approach with the

framework implemented by the Galculator proof assistant, which was found in legacy state since its devel-

opment in Haskell by Silva (2009).

After some refactoring due to updates in the Haskell programming language and associated libraries,

the Galculator was “awoken” and proved to be the right proof assistant for helping making the approach

defended in this thesis practical. In this respect, the preceding chapter provided some practical guidance

on using the Galculator proof assistant. The proof process is exemplified through the concrete example of

proving the base cases of the take function.

7.2 Future work

As is to be expected in a project of this kind, the research often raises more questions than provides

answers. One particular concern has to do with scalability. In this respect, delving into the founda-

tional aspects concerning the additive category of GCs as presented in (Oliveira, 2020a) promises a clear

scale-up in GC-based reasoning. This subject holds promise, particularly in the exploration of biproduct

constructs which offer (for free) interesting ways for combining and fine-tuning GCs in a scalable, correct-
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by-construction way.

Another future endeavor for this thesis is to generalize the algebras that were studied, a generalization that

seems to be required in some particular situations. For example, the Peano algebra can be generalized

as

N0

out(N0,k)

))∼= N0 +N0

[id ,(k+)]

gg (7.1)

parametric on k:

in(N0,k) = [id ,(k+)]

out(N0,k) n = if n< k then i1 n else i2 (n− k)

(Note that, by instantiating k :=1 one obtains the previously analyzed Peano algebra.) The corresponding

catamorphism combinator is defined by1

⦉g⦊k = g · (id+⦉g⦊k) ·out(N0,k)

With this generalization, implementing, for instance, the algorithms for integer division and remainder is

straightforward:

(÷y) = ⦉[0 ,succ]⦊y

(% y) = ⦉[id , id]⦊y

It is known that the algorithm for gcd (m,n) (greatest common divisor) is specified as the greatest divisor

that divides both m and n, i.e.,

z | m ∧ z | n ≡ z | gcd (m,n) (7.2)

for the yet-to-be-defined divisibility partial order (|). The intention is to assess the feasibility of defining this

ordering employing the catamorphism above over this new algebra and to calculate function gcd.

In the trip through the standard Haskell libraries searching for GC-specifiable functions, some were found

particularly tricky to handle. One illustrative example is nub. Intuitively, it seems to yield the longest sublist

of a sequence whose elements do no repeat, that is:

bag z ⩽ 1 ∧ z ⊑ l ≡ z ⊑ nub l (7.3)

Recall that bag : A∗→N0
A is the function that, given a finite sequence (list), indicates the number of

occurrences of any element. It may be defined by:
1 The traditional banana brackets were replaced by triangular ones in order to distinguish the algebras.
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bag :: Eq a => [a] -> a -> Int
bag [] _ = 0
bag (h:t) x = bag t x + (if x == h then 1 else 0)

However, (7.3) is an over simplification inadequate for what the function actually does: nub cannot yield

just the longest sublist, because there may exist more than one and, in that case, it must return the one

that preserves the order of the initial occurrences. As an example, consider nub [1,2,1,3,2,1,0 ] =

[1,2,3,0 ]. Sublist [1,3,2,0 ] is also one of the longest sublists whose elements do not repeat but the

order of the initial occurrences must be preserved — 2 appears before 3. The aim is to reformulate the

sublist partial order in a manner that ensures this nuance, thus correctly calculating the function nub.

In the field of the inductive partial orders that were shown to underpin the derivation of GC-adjoints as

recursive functions, some orderings were found to be harder to handle than others. For instance, the

antisymmetry of the sublist ordering still needs to be proved, as the converse of this order is not a cata-

morphism. Therefore, an alternative approach to the proof needs to be explored. Another example is the

suffix ordering which, not being a relational catamorphism, needs a different strategy to prove its partial

order basic properties.

Finally, as previously mentioned about the Galculator proof assistant, the presented proofs were limited to

function take, and the use of coreflexives and predicates was not tested. It would be interesting to observe

how Galculator performs with proofs like takeWhile, whose pointfree calculation is provided in Section 5.2.

Additionally, implementing the auto command, which attempts to automatically complete the proof, would

be beneficial. This is because it was observed that the proofs follow a very similar structure. Furthermore,

it would be even more intriguing if, with this automation, Galculator could autonomously draw conclusions

about real-life, sizeable specifications. This would (will?) be indeed software correct-by-construction.
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Appendix A
Proofs

Proof 1

(length · cons)◦ · (⩽) · succ

= { length definition }

(succ · length ·π2)
◦ · (⩽) · succ

= { (⩽) definition ; distribution (twice) ; contravariance }

π◦2 · length◦ · succ◦ ·0 · (⩽) ∪ π◦2 · length◦ · succ◦ · succ · (⩽)

= { succ is injective }

π◦2 · length◦ · succ◦ ·0 · (⩽) ∪ π◦2 · length◦ · (⩽)

= { succ◦ ·0 =⊥ }

π◦2 · length◦ · (⩽)

□

Proof 2

⟨π1×map π1,π2×map π2⟩◦

= { pairing definition }

(π◦1 · (π1×map π1) ∩ π◦2 · (π2×map π2))
◦

= { converses }

(π◦1 ×map π◦1 ) ·π1 ∩ (π◦2 ×map π◦2 ) ·π2

= { ×-definition }

⟨π◦1 ·π1,map π◦1 ·π2⟩ ·π1 ∩ ⟨π◦2 ·π1,map π◦2 ·π2⟩ ·π2

= { pairing definition }
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(π◦1 ·π◦1 ·π1 ∩ π◦2 ·map π◦1 ·π2) ·π1 ∩ (π◦1 ·π◦2 ·π1 ∩ π◦2 ·map π◦2 ·π2) ·π2

= { distributivity twice }

(π◦1 ·π◦1 ·π1 ·π1 ∩ π◦2 ·map π◦1 ·π2 ·π1) ∩ (π◦1 ·π◦2 ·π1 ·π2 ∩ π◦1 ·map π◦2 ·π2 ·π2)

= { ∩ -associativity }

(π◦1 ·π◦1 ·π1 ·π1 ∩ π◦1 ·π◦2 ·π1 ·π2) ∩ (π◦2 ·map π◦1 ·π2 ·π1 ∩ π◦2 ·map π◦2 ·π2 ·π2)

= { distributivity twice }

π◦1 · (π◦1 ·π1 ·π1 ∩ π◦2 ·π1 ·π2) ∩ π◦2 · (map π◦1 ·π2 ·π1 ∩ map π◦2 ·π2 ·π2)

= { pairing definition; pairing and converse }

π◦1 · ⟨π1 ·π1,π1 ·π2⟩ ∩ π◦2 · ⟨map π1,map π2⟩◦ · ⟨π2 ·π1,π2 ·π2⟩

= { ×-definition twice; pairing and converse }

⟨π1,⟨map π1,map π2⟩ ·π2⟩◦ · ⟨π1×π1,π2×π2⟩

= { ×-functor and transpose definition }

(id×⟨map π1,map π2⟩)◦ · transpose

□

Proof 3

nil ⊆ length◦ · (⩽) ·π1

≡ { constants’ natural property }

nil ·π1 ⊆ length◦ · (⩽) ·π1

≡ { shunting; img π1 is surjective }

nil ⊆ length◦ · (⩽)

≡ { (5.4) }

True

□
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Appendix B
Laws of functional and relation calculus

Lowercase letters denote functions, and uppercase letters denote relations. Uppercase letters in sans serif

font indicate functors and relators.

Composition

Pointwise definition b (R.S) c ≡ ⟨∃a : b R a : a S c⟩

Identity R · id = id ·R = R

Associativity of composition R · (S ·T) = (R ·S) ·T

Converses

Universal X◦ ⊆ Y ≡ X ⊆ Y◦

Involution (R◦)◦ = R

Contravariance (R ·S)◦ = S◦ ·R◦

Isomorphism R ⊆ S = S◦ ⊆ R◦

“A pocket rule” b (f ◦ ·R ·g) a ≡ (f b) R (g a)

Relation inclusion

Pointwise R ⊆ S ⇔ ⟨∃a,b :: b R a⇒ b S a⟩

Reflection R ⊆ R

Transitivity R ⊆ S ∧ S ⊆ T ⇒ R ⊆ T

Top and bottom ⊥ ⊆ R ⊆ ⊤

Absorption R ·⊥=⊥·R =⊥

Relation equality

Pointwise R = S ⇔ ⟨∀a,b : (a ∈ A ∧ b ∈ B) : b R a ⇔ b S a⟩

Indirect equality (1) R = R ≡ ⟨∀X :: X ⊆ R ⇔ X ⊆ S ⟩

Indirect equality (2) R = R ≡ ⟨∀X :: R ⊆ X ⇔ S ⊆ X ⟩
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Functions

Shunting (1) f ·R ⊆ S ≡ R ⊆ f ◦ ·S

Shunting (2) R · f ◦ ⊆ S ≡ R ⊆ S · f

Constants

Natural property (functions) k · f = k

Natural property (relations) k ·R ⊆ k

Truth functions true = True ∧ false = False

Fusion f · k = f k

Relation union

Universal property R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X

Right linearity R · (S ∪ T) = (R ·S) ∪ (R ·T)

Left linearity (S ∪ T) ·R = (S.R) ∪ (T.R)

Converse (R ∪ S)◦ = R◦ ∪ S◦

Bottom R ∪ ⊥= R

Top R ∪ ⊤=⊤

Relation intersection

Universal property X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S

Right distribution (S ∩ Q) ·R = (S.R) ∩ (Q.R)⇐
Q · img R ⊆ Q

∨
S · img R ⊆ S

Left distribution R · (Q ∩ S) = (R.Q) ∩ (R.S)⇐
ker R ·Q ⊆ Q

∨
ker R ·S ⊆ S

Converse (R ∩ S)◦ = R◦ ∩ S◦

Bottom R ∩ ⊥=⊥

Top R ∩ ⊤= R
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Pairing and products

Pairing universal property X ⊆ ⟨R,S⟩ ⇔ π1 ·X ⊆ R ∧ π2 ·X ⊆ S

Pairing Fusion ⟨R,S⟩ ·T = ⟨R ·T,S ·T⟩ ⇐
R · img T ⊆ R

∨
S · img T ⊆ S

Fusion (functions) ⟨R,S⟩ · f = ⟨R.f ,S.f ⟩

Pairing definition ⟨R,S⟩= π◦1 ·R ∩ π◦2 ·S

Pairing and converse ⟨R,S⟩◦ · ⟨X,Y⟩= R◦ ·X ∩ S◦ ·Y

Functor-× composition (R×S) · (P×Q) = (R ·P)× (S ·Q)

Functor-× definition R×S = ⟨R ·π1,S ·π2⟩

Functor-× converse (R×S)◦ = R◦×S◦

Coproducts

Universal property X = [R ,S] ⇔ X · i1 = R ∧ X · i2 = S

Fusion R · [S ,T] = [R ·S ,R ·T]

Definition [R ,S] = R · i1◦ ∪ S · i2◦

Absorption [R ,S] · (P+Q) = [R ·P ,S ·Q]

Either and converse [R ,S] · [T ,U]◦ = R ·T◦ ∪ S ·U◦

i1-natural property (i+ j) · i1 = i1 · i

i2-natural property (i+ j) · i2 = i2 · j

Functor-+ composition (R+S) · (P+Q) = (R ·P)+(S ·Q)

Functor-+ definition R+S = [i1 ·R , i2 ·S]

Functor-+ converse (R+S)◦ = R◦+S◦

Catamorphisms

Universal property X = LRM ≡ X · inT = R · (F X)

Monotonicity LRM ⊆ LS M ⇐ R ⊆ S

Fusion S · LRM = LQM ⇐ S ·R = Q ·F S

Fusion weaker version 1 Q · LS M ⊆ LRM ⇐ Q ·S ⊆ R ·F Q

Fusion weaker version 2 LRM ⊆ Q · LS M ⇐ R ·F Q ⊆ Q ·S

Reflection L inT M = idT
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Eindhoven quantifier calculus The notation standards employed by the Eindhoven quantifier calcu-

lus are as follows:

• ⟨∀x : R : T ⟩ means for all x in the range R, term T holds, where R and T are logic expressions

involving x.

• ⟨∃x : R : T ⟩means for some x in the range R, term T holds, where R and T are logic expressions

involving x.

Below are some of the primary rules of the Eindhoven quantifier calculus:

Trading-∀ ⟨∀ k : R ∧ S : T ⟩= ⟨∀ k : R : S ⇒ T ⟩

Trading-∃ ⟨∃ k : R ∧ S : T ⟩= ⟨∃ k : R : S ∧ T ⟩

One-point-∀ ⟨∀ k : k = e : T ⟩= T [k := e ]

One-point-∃ ⟨∃ k : k = e : T ⟩= T [k := e ]
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