
University of Minho
School of Engineering

Luís Paulo Ferreira Gomes Neto

Development of a bot like entity to emulate an
user in a tridimensional virtual environment

october 2023

University of Minho
School of Engineering

Luís Paulo Ferreira Gomes Neto

Development of a bot like entity to emulate an
user in a tridimensional virtual environment

Masters Dissertation
Master’s in Informatics Engineering

Dissertation supervised by
Paulo Jorge Sousa Azevedo
Rui Manuel Ribeiro de Castro Mendes

october 2023

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY-SA

https://creativecommons.org/licenses/by-sa/4.0/

i

https://creativecommons.org/licenses/by-sa/4.0/

Acknowledgements

This undertaking would not have been feasible without the invaluable support and opportunities extended

to me by Paulo Jorge Sousa Azevedo and Rui Manuel Ribeiro de Castro Mendes. I am sincerely grateful

for their unwavering guidance and insightful contributions throughout this endeavor. Their belief in both

myself and my vision, even during the initial stages when clarity was lacking, has been instrumental to my

progress. I extend my heartfelt appreciation to my colleagues for their continuous support throughout this

arduous journey. The shared moments of academic challenges and triumphs shall forever be cherished,

filling my heart with profound gratitude. Furthermore, I would like to express my deep gratitude to the

Department of Informatics at the University of Minho for shaping me and equipping me with the necessary

tools to navigate the realm of software development with confidence and proficiency.

ii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Braga, october 2023

Luís Paulo Ferreira Gomes Neto

iii

Abstract

This dissertation explores a novel approach for the development of a virtual entity or artificial intelligence

capable of simulating user behavior within the immersive and expansive virtual realm of the World of

Warcraft video game. Classified as a three-dimensional massively multiplayer online role-playing game,

World of Warcraft serves as an exemplary context for studying and refining techniques that can be readily

adapted to other applications. The research methodology employed in this study involves a systematic

analysis of the application’s process memory space, with a focus on identifying crucial memory data

locations. Furthermore, the investigation entails the identification and preservation of pathways leading to

the aforementioned memory data points, ensuring their efficient and viable accessibility. To enable the

creation of the virtual entity, the Neuroevolution of Augmenting Topologies technique is employed, which

facilitates the generation and intricate development of an artificial neural network—the entity’s simulated

brain. By utilizing the previously acquired memory data points as sensory inputs, and emulating the entity’s

responses as inputs within the running process, a comprehensive framework for emulating user behavior

is established. The findings presented in this dissertation contribute to the advancement of knowledge

in the field of virtual entity creation and artificial intelligence, offering practical implications for a range of

applications beyond World of Warcraft.

Keywords Machine Learning, Artificial Intelligence, Neural Network, Neuroevolution, Neuroevolution

of Augmenting Topologies, Genetic Algorithm, Reverse Engineering, Input Emulation, Process Memory

Scanning, Process Memory Reading, Bot, 3D, MMORPG, PVE, Video Game, Player Emulation, Exploit,

Scripting, Automation, Hooking, DLL Injection

iv

Resumo

Esta dissertação explora uma abordagem inovadora para o desenvolvimento de uma entidade virtual ou

inteligência artificial capaz de simular o comportamento do usuário no ambiente imersivo e expansivo do

jogo de vídeo World of Warcraft. Classificado como MMORPG, este serve como um contexto exemplar para

estudar e aprimorar técnicas que podem ser facilmente adaptadas a outras aplicações. A metodologia de

pesquisa empregada neste estudo envolve uma análise sistemática do espaço de memória do processo

do aplicativo, com foco na identificação de locais cruciais de dados na memória. Além disso, a investi-

gação envolve a identificação e preservação de caminhos que levam aos pontos de dados de memória

mencionados anteriormente, garantindo uma acessibilidade eficiente e viável. Para permitir a criação da

entidade virtual, é empregada a técnica de Neuroevolução de Topologias Ampliáveis, que facilita a geração

e o desenvolvimento intrincado de uma rede neural artificial - o cérebro simulado da entidade. Ao utilizar os

pontos de dados de memória adquiridos anteriormente como entradas sensoriais e emular as respostas

da entidade como entradas no processo em execução, é estabelecido um framework abrangente para

simular o comportamento do usuário. As descobertas apresentadas nesta dissertação contribuem para

o avanço do conhecimento no campo da criação de entidades virtuais e inteligência artificial, oferecendo

implicações práticas para uma variedade de aplicações além do World of Warcraft.

Palavras-chave Aprendizagem deMáquina, Inteligência Artificial, Rede Neuronal, Neuroevolução, NEAT,

Algoritmo Genético, Engenharia Reversa, Emulação de Input, Pesquisa de Memoria, Leitura de Memória,

Bot, 3D, MMORPG, PVE, Video Jogo, Emulação de Jogador, Exploit, Scripting, Automação, Hooking, In-

jecção DLL

v

Contents

List of Acronyms xv

I Introductory material 1

1 Introduction 2

1.1 Thesis Topic and Approach . 2

1.2 Artificial Intelligence and Genetic Algorithms . 3

1.3 Video Games as Industry and Software . 5

1.4 Target Application - World of Warcraft . 7

2 State of the Art 9

2.1 Artificial Neural Networks Concepts . 9

2.2 Evolutionary Algorithms . 13

2.2.1 Genetic Algorithms . 13

2.2.2 NeuroEvolution Challenges Addressed by NEAT 15

2.3 NEAT - Neuroevolution of Augmented Topologies . 17

2.4 Related Work . 27

2.4.1 Genetic Algorithms . 28

2.4.2 NeuroEvolution . 30

2.4.3 HyperNEAT - Hybercube-based Neuroevolution of Augmenting Topologies . . . 34

2.4.4 rtNEAT - Real-time Neuroevolution of Augmenting Topologies 36

2.4.5 Reinforcement Learning . 38

3 The problem and its challenges 40

3.1 The Sensory/Input Layer . 41

3.2 The Processing/NEAT Layer . 43

vi

3.3 The Motor/Output Layer . 44

II Core of the Dissertation 45

4 Contribution 46

4.1 Introduction . 46

4.2 Building the Sensory/Input Layer . 47

4.2.1 Scanning Memory using Cheat Engine . 47

4.2.2 Pointer Scanning using Cheat Engine . 48

4.2.3 Countermeasures Against Reverse Engineering 52

4.2.4 DLL Injection, Hooking and Process Memory Reading 53

4.3 Building the Processing/NEAT Layer . 55

4.3.1 Navigation Domain and Strategy . 56

4.3.2 Combat Domain and Strategy . 61

4.3.3 Atan2 - Determining if a player is facing a target 66

4.3.4 Saving and Loading State . 67

4.4 Building the Motor/Output Layer . 68

4.4.1 Autoit - Scripting Language . 69

4.5 Summary . 71

5 Application 73

5.1 Introduction . 73

5.2 Architecture . 74

5.3 Domains and Automatic Context Switching . 76

5.4 Post Launch Application Priming . 77

5.5 GUI Live Data Visualization . 80

5.6 End Result and Observations . 82

5.6.1 Navigation Domain . 83

5.6.2 Combat Domain . 84

5.7 Summary . 85

6 Conclusions and future work 86

6.1 Conclusions . 86

vii

6.2 Prospect for future work . 87

A Details of results 94

A.1 Additional Details of Memory Scanning Using Cheat Engine 94

A.2 Obtaining Player Health Offsets Using Cheat Engine 96

A.3 How to Define a Domain in SharpNEAT . 99

A.4 Default Configuration Files in SharpNEAT . 102

viii

List of Figures

1 Example of a player engaging in PVE combat on WoW. 7

2 Example of a Neural Network Structure or Topology. 11

3 Schematics of a standard Genetic Algorithm. 13

4 Genetic Algorithm genetic encoding. 14

5 Illustration of a competing conventions problem. In this scenario, two neural networks

perform identical computations, despite their hidden units being arranged differently

and represented by distinct genetic information, rendering them unsuitable for standard

crossover operations. The figure illustrates that when applying single-point recombina-

tions, both methods fail to include one of the three essential elements from each solution.

Adapted from Stanley and Miikkulainen [2002]. 15

6 A genotype (genome) to phenotype (Neural Network) mapping example. A genotype

is depicted that produces the shown phenotype. Note that the second gene is disabled,

so the connection that it specifies (between nodes 2 and 4) is not expressed in the

phenotype. ID is the global innovation number. Adapted from Stanley and Miikkulainen

[2002]. 19

7 ID represents innovation number and theWeight represents the connection weight value.

In this example, E would be 1, since there is 1 excess gene, gene ID 6. D would be 4,

since genes ID 2 and 4 are not in genome 2, and genes ID 3 and 5 are not in genome

1. W would be (|0.7 - 0.2| / 1) = 0.5, since only gene ID 1 is shared between the two

genomes. 21

8 Crossover operation example in NEAT aligning genetic information across various net-

work topologies through the use of innovation numbers. Adapted from Stanley and Mi-

ikkulainen [2002] . 23

ix

9 The two types of structural mutation in NEAT. The top number in each genome repre-

sents the innovation number assigned to that particular gene. “EN” indicates the gene

expression is enabled. “DIS” indicates the gene expression is disabled. Adapted from

Stanley and Miikkulainen [2002]. 25

10 NeuroEvolution Loop Schematics. 30

11 Neural Network schema for playing 2D game Flappy Bird. In NEAT, a bias is an

input node that is always set to 1.0 and that can connect to any node other than inputs;

The bias connections are not always needed depending on the solution. Stanley and

Miikkulainen [2002] . 32

12 The main replacement cycle in rtNEAT. 36

13 Diagram of DQN architecture for playing Atari games. Mnih et al. [2015] 38

14 The three layers that compose a NEAT bot architecture. 40

15 Cheat Engine’s pointer scan result to a dynamic memory address. 50

16 Schematics of the Navigation Domain. 56

17 Schematics of the Combat Domain. 61

18 Pratical examples of atan2. 66

19 Autoit scripting language. Ltd [2023] . 69

20 System’s Architecture. C# as the main language for the project. 74

21 Automatic Context Switching Between Domains. 76

22 Default state of the application at startup. 78

23 Hooking the application the relevant WoW instance. We use the character’s in-game

name to better discern viable instances. 78

24 Changing the Experiment/Task to WoW NEAT Cheese. - The Navigation Domain 78

25 Loading the experiment default parameters that we set in the configuration file for the

selected experiment. 78

26 Creating a random population of genomes following the guidelines set in place. 79

27 Starting the Experiment/Task on the Navigation Domain, eventually switching to the Com-

bat Domain. 79

28 The possibility of changing Evolution and Reproduction settings directly through the GUI. 79

29 Seeing the current best genome phenotype (NN) of the Navigation Domain through the

GUI. 80

x

30 Time Series, Histograms and Rank Plots that can be monitored through the GUI. 81

31 Showing the application in action currently on the Navigation Domain. 83

32 Showing the application in action currently on the Combat Domain. 84

33 Diagram demonstrating how a LLM can be used as the processing layer. 88

34 Updated architecture now using a LLM as the core component of the processing layer. . 88

35 Cheat Engine main screen with “WoW.exe” attached. 94

36 Scanning the process memory for the value ”180”. 96

37 Scanning the process memory for the value ”160”, now ”152”. 96

38 Starting a pointer scan for the selected address. 97

39 Results of the first pointer scan for the selected address. 97

40 Manually checking a pointer chain for confirmation. 98

xi

List of Tables

1 NEAT’s Parameters for the Navigation Domain. 60

2 NEAT’s Parameters for the Combat Domain. 65

xii

Acronyms

2D Two-dimensional. x, 32

3D Three-dimensional. 2, 7, 8

AI Artificial Intelligence. 3, 4, 6, 8, 17, 27, 32, 36, 37, 38, 39, 40, 41, 43, 55, 68, 70, 72, 77, 85, 86,

87

ANN Artificial Neural Network. 9, 34, 35, 55

API Application Programming Interface. 53, 75, 87

ASLR Address Space Layout Randomization. 41, 52

CPPNs Compositional Pattern Producing Networks. 34

DLL Dynamic-link library. 42, 52, 53, 69, 74

Double-QL Double Q-Learning. 39

DQN Deep Q-Network. x, 12, 38, 39

EA Evolutionary Algorithm. 9, 13, 16, 27, 28, 34, 36, 55, 102, 104

GA Genetic Algorithm. ix, 2, 3, 9, 10, 13, 14, 17, 21, 28, 29, 38, 55, 73, 82, 83

GE Grammatical Evolution. 29

GUI Graphical User Interface. x, xi, 69, 72, 73, 74, 75, 76, 77, 79, 80, 81, 85, 102

HTTP Hypertext Transfer Protocol. 87

HyperNEAT Hypercube-based Neuroevolution of Augmenting Topologies. 34, 35

xiii

ID Identification. ix, 21, 26, 33

JSON JavaScript Object Notation. 105

LLM Large Language Model. xi, 88

MAP-Elites Multi-dimensional Archive of Phenotypic Elites. 28, 29

MDP Markov Decision Process. 39

ML Machine Learning. 4, 6, 9, 27, 35, 37, 38, 55

MMORPG Massively Multiplayer Online Role-playing Game. 2, 5, 7, 8, 46

NE NeuroEvolution. x, 15, 16, 17, 30, 31, 34, 35, 36, 38, 55

NEAT Neuroevolution of Augmented Topologies. ix, x, xii, 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 28, 31, 32, 33, 34, 35, 36, 37, 40, 43, 46, 55, 60, 65, 70, 71, 73, 74, 75, 76,

77, 78, 80, 81, 83, 85, 86, 87, 99, 100, 101, 105

NERO NeuroEvolving Robotic Operatives. 37

NLP Natural Language Processing. 87

NN Neural Network. ix, x, 2, 3, 4, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 30, 31, 32, 33,

34, 35, 36, 37, 40, 43, 46, 47, 55, 57, 62, 63, 64, 69, 70, 71, 80, 87, 100, 102, 103, 104

NPC Non-player Character. 3, 7, 96

NS Novelty Search. 29

PCG Procedural Content Generation. 31

PVE Player versus Environment. ix, 5, 7

PVP Player versus Player. 5, 7

QD Quality Diversity. 28, 29

QL Q-Learning. 38, 39

RAM Random-Access Memory. 47

xiv

ReLU Rectified Linear Unit. 11

RL Reinforcement Learning. 4, 27, 33, 38, 39

rtNEAT Real-time Neuroevolution of Augmenting Topologies. x, 36, 37

SA Simulated Annealing. 29

SS Surprise Search. 29

tanh Hyperbolic Tangent. 11

TWEANN Topology and Weight Evolving Artificial Neural Network. 17, 26

WoW World of Warcraft. ix, x, xi, 2, 7, 8, 9, 41, 42, 44, 52, 53, 69, 70, 78, 86, 87, 94, 96, 97

xv

Part I

Introductory material

1

Chapter 1

Introduction

1.1 Thesis Topic and Approach

This thesis delves into a comprehensive study, analysis, and reverse engineering of an existing application,

leading to the development and provision of a tool capable of emulating human-like behavior within a

specific environment.

The focal point of this research is the immersive video gameWorld of Warcraft (WoW), renowned

as a Three-dimensional (3D) Massively Multiplayer Online Role-playing Game (MMORPG).

The initial phase of this investigation involves a meticulous reverse engineering process to extract

pertinent information from the application’s memory space. This critical endeavor enables the acquisition

of real-time and precise data on the game’s dynamic state, which serves as the fundamental input for the

Neural Network (NN).

To engender the intricate logic required to emulate human-like behavior, the author adopts the pioneer-

ing technique known as Neuroevolution of Augmented Topologies (NEAT) Stanley and Miikkulainen

[2002]. NEAT represents a specialized form of Genetic Algorithm (GA) that demonstrates proficiency

in evolving Neural Networks, thereby facilitating the progressive development of the virtual entity’s cog-

nitive capabilities.

The resultant output generated by the NN is seamlessly integrated back into the game environment

through the utilization of AutoIt, an embeddable freeware scripting language that bears resemblance to the

BASIC programming language. AutoIt assumes the role of a powerful automation tool, effectively enabling

the provision of a lifelike experience to unsuspecting observers.

2

1.2 Artificial Intelligence and Genetic Algorithms

Artificial Intelligence (AI) encompasses a wide range of techniques and programming methodologies

employed in various applications. In the realm of computer games, AI plays a crucial role in enhancing

player experiences by introducing Non-player Characters (NPCs) with individual goals and predefined

actions. NPCs such as bankers, merchants, and guards exhibit behaviors that can evolve and become

increasingly intricate. For instance, a guard may deviate from its assigned role and transform into a thief,

while a thief might demonstrate altruistic behavior by aiding others. Implementing natural and believable

behaviors within the game environment remains a challenge, as human players exhibit a multitude of

diverse behavioral patterns, making it difficult to ascertain a definitive correct approach.

Genetic Algorithms (GAs) serve as effective tools for optimizing AI behavior Koza [1994]. GAs

involve evaluating and comparing similar solutions to refine them using successful solutions as templates.

Refinement entails introducing small randomized changes to the AIs. GAs progress through generations in

a systematic exploration of the problem space, with each new generation further refining the solutions. The

refinement process requires a reasonable likelihood of generating improved solutions. However, GAs can

encounter stagnation in their evolutionary process, leading to a plateau in improvement. To address this,

the definition of well-performing solutionsmay be redefined, with innovation being one notable performance

indicator. The emphasis placed on legible performance versus other criteria may vary depending on the

specific use case.

Neuroevolution of Augmented Topologies (NEAT) stands as a noteworthy type of GA that spe-

cializes in the evolution of Neural Networks (NNs) to address complex AI challenges. NEAT introduces

a unique approach to evolving neural architectures by allowing the networks to grow in complexity over

successive generations. This ability to augment the network’s topology enables NEAT to discover more

intricate and efficient solutions.

In NEAT, each NN represents an individual solution within a given generation. Initially, these net-

works start with minimal structure, typically consisting of a few input and output nodes. As the evolution

progresses, NEAT employs various genetic operators, such as mutation and crossover, to introduce new

nodes and connections into the networks. This incremental growth of neural complexity enables NEAT to

navigate and adapt to increasingly intricate problem spaces.

By combining both historical markings and explicit compatibility measures, NEAT ensures the preser-

vation of innovation throughout the evolutionary process. Historical markings allow NEAT to track the

origin of genes within a population, facilitating crossover operations that maintain innovation. Explicit

3

compatibility measures help assess the similarity between different NNs, enabling NEAT to determine if

a particular network structure can be considered a modification of a previously existing one.

Furthermore, NEAT employs a speciation mechanism, wherein similar NNs are grouped into species.

This mechanism ensures diversity within the population and encourages the exploration of various network

architectures. By promoting both exploration and exploitation, NEAT strikes a balance between maintain-

ing diversity and converging towards optimal solutions.

NEAT’s flexibility in evolving complex NN architectures makes it well-suited for addressing heteroge-

neous objectives. Networks generated by NEAT can exhibit diverse structures, enabling them to handle

a wide range of AI tasks and adapt to varying environments. The ability to dynamically grow and com-

plexify neural topologies grants NEAT the potential to discover novel and effective solutions to complex AI

challenges.

Overall, NEAT represents a powerful approach within the realm of genetic algorithms, harnessing the

potential of evolving neural networks with augmented topologies. Its unique characteristics make NEAT a

valuable tool for tackling complex AI problems and advancing the field of artificial intelligence.

Additionally, there exist alternative methods that directly compete with the aforementioned approaches.

Reinforcement Learning (RL) serves as an umbrella term for various algorithms within the Machine

Learning (ML) domain. RL algorithms learn from rewards and punishments to make optimal sequences

of decisions, maximizing future rewards. RL finds particular relevance in video games, where well-defined

rules and explicit goals are prevalent. Notably, one of the earliest successful RL programs was developed

for playing checkers Samuel [1959]. While simple tabular algorithms suffice for small problem spaces,

more complex scenarios necessitate approximators like NNs. RL demonstrates efficiency in generating

approximate or even optimal solutions by mapping states to decisions, also known as actions Russell and

Norvig [2010].

4

1.3 Video Games as Industry and Software

The video game industry has emerged as a highly profitable and continuously expanding market, with

global sales surpassing US$192.7 billion annually Richter [2022]. For reference, during the same fiscal

period, the global music industry yielded an approximate revenue of US$25.9 billion, as documented by

the International Federation of the Phonographic Industry (IFPI) Richter [2022].

The video game industry’s significant economic impact underscores its prominence and renders it a

domain that cannot be overlooked. The genesis of this expansive industry can be traced back to 1952

when A.S. Douglas, a professor at Cambridge University, created the world’s first video game titled “OXO”.

This pioneering endeavor introduced Player versus Environment (PVE) gameplay, as players engaged

in a tic-tac-toe simulation against a computer opponent. Subsequently, in 1958, William Higinbotham

created the second video game, ”Tennis for Two,” marking the advent of diverse game genres and the

proliferation of both standalone offline and multiplayer online games.

Among the vast array of online multiplayer games, MMORPGs occupy a prominent position. These

games allow players1 to develop their own characters within expansive virtual worlds. In such games,

players typically undertake quests and engage in repetitive tasks, known as grinding2 to acquire loot3 or

experience points, thereby strengthening their characters and enabling them to overcome progressively

challenging opponents in both Player versus Environment (PVE) and Player versus Player (PVP)

contexts.

As players accumulate valuable loot and experience, virtual currency gains significant worth. In fact,

there was a time when an unofficial exchange rate existed, with numerous listings on platforms like eBay

facilitating the trade of online currency for real money and vice versa. This virtual currency sometimes

exceeded the value of certain real-life currencies, particularly in economies affected by hyperinflation.

Consequently, some individuals resorted to farming4 virtual currency as their primary source of income

Economist [2019] 365 [2021].

However, an inherent vulnerability in video games lies within their software foundation. By manipu-

lating, tweaking, or exploiting the underlying software, players can gain an unfair advantage and engage

in cheating practices. Exploitation of online games is commonplace, driven by motivations ranging from

financial gain to the desire for a perceived superiority over opponents or the pursuit of alternative means

1 Often referred to as gamers.
2 Grinding is the act of collecting something, either an item or coin, continuously or repeatedly.
3 Virtual items.
4 Usually referred as grinding.

5

to level the playing field due to time constraints.

This thesis focuses on the exploitation of online games, viewing them as intriguing testbeds for the

application and experimentation of ever-evolving concepts in Machine Learning. As Artificial Intel-

ligence permeates various aspects of modern life, this research offers a glimpse into potential future

scenarios and may aid the industry in enhancing its defenses against emerging threats posed by a new

breed of bots. Moreover, this approach may provide the industry with a valuable tool or perspective during

player testing phases, wherein techniques such as those explored in this thesis could be employed to

uncover bugs or other nuances that may arise during gameplay mechanics testing or unguided playtesting

sessions.

By delving into the realm of video games, this thesis seeks to contribute to the academic discourse

surrounding the intersection of gaming, AI, and software exploitation, offering insights into the potential

applications, challenges, and implications within this dynamic and rapidly evolving industry.

6

1.4 Target Application - World of Warcraft

World of Warcraft (WoW) is a prominent and widely acclaimedMassively Multiplayer Online Role-

playing Game (MMORPG) developed and released by Blizzard Entertainment in 2004 Entertainment

[2004]. As with other MMORPGs, WoW allows players to create personalized character avatars and

immerse themselves in an expansive virtual world, presented from a third or first-person perspective.

Within this virtual realm, players embark on adventures, combat various monsters, undertake quests,

and engage in interactions with Non-player Characters (NPCs) as well as other players. While WoW

promotes cooperative gameplay, enabling players to form alliances and undertake shared quests, it also

offers a solo play experience for those who prefer independent exploration and progression. The game

features a diverse range of activities, including dungeon exploration and both Player versus Player

(PVP) and Player versus Environment (PVE) combat encounters. However, the core focus of WoW

revolves around character advancement, whereby players accumulate experience points to enhance their

character’s abilities, acquire in-game currency to obtain superior equipment, and master various gameplay

systems.

Figure 1: Example of a player engaging in PVE combat on WoW.

The underlying motivation of this thesis is to devise an artificial entity that emulates the behavior

of a player, enabling it to systematically engage in combat with in-game creatures within the Three-

7

dimensional (3D) environment of WoW. By leveraging this external software, the aim is to achieve a

continuous accumulation of in-game experience points, subsequently benefiting the controlled character.

This endeavor entails exploring the mechanics and intricacies ofWoW, identifying strategic patterns, and

formulating an algorithmic approach to optimize the efficiency of monster slaying, ultimately augmenting

the character’s progress within the game world.

Through the academic exploration ofWoW as the target application, this thesis endeavors to contribute

to the scholarly discourse surrounding AI-driven automation in the context ofMMORPGs. By addressing

the technical challenges and ethical considerations associated with the deployment of bot-like entities

within virtual environments, this work aims to shed light on the implications, opportunities, and potential

ramifications of such automated systems within the gaming landscape.

8

Chapter 2

State of the Art

The thesis leverages the scope ofMachine Learning and Evolutionary Algorithms (EAs) with the aim

to develop and evolve strategies for achieving automated gameplay in World of Warcraft. This section

provides a comprehensive background on the fundamental concepts and theories that form the basis of

these algorithms, thereby facilitating a better understanding of the subsequent sections.

2.1 Artificial Neural Networks Concepts

An Artificial Neural Network (ANN or NN) is designed to mimic the behavior of the human brain by

utilizing interconnected nodes, also known as neurons. These neurons process and transmit information

through a network of connections. The configuration of these connections, known as the network’s topol-

ogy, determines the NN’s ability to analyze input data and make predictions. During training, the weights

and biases of these connections are adjusted to optimize the performance of the NN Dreyfus [2005]

Kacprzyk [2016].

In addition to training NN using traditional methods, another approach to optimizing their perfor-

mance is through the use of Evolutionary Algorithms (EAs) or Genetic Algorithms (GAs), such as

Neuroevolution of Augmented Topologies (NEAT). EAs and GAs are inspired by the process of

natural evolution and mimic the principles of genetic variation and selection.

In the context of this thesis, NEAT can be utilized to evolveNNs that demonstrate intelligent gameplay

strategies inWorld ofWarcraft, enhancing the performance of the bot-like entities in continuously slaying

monsters and accumulating in-game experience points.

In the context of NEAT, the GA operates by maintaining a population of NNs, each representing

a solution to a given task. These NNs have their own unique structure, referred to as their topology,

which includes the arrangement of nodes and connections. Initially, the population consists of randomly

generated NNs with simple structures.

9

During the evolution process, the NNs are subjected to mutation and potential crossover. Mutation

involves making small random changes to the structure and weights of individual NNs, introducing vari-

ation into the population. This variation allows for exploration of different configurations and strategies.

Crossover, on the other hand, involves combining the characteristics of two or more parent NNs to create

offspring with a new set of traits.

The performance of each NN in the population is evaluated based on its ability to accomplish the

desired task, such as successfully playing the game or solving a specific problem. The fittest individuals,

those with the best performance, are selected to reproduce and pass their genetic information to the next

generation. This process is known as “survival of the fittest” Darwin [1859], as the better-performing

individuals have a higher chance of contributing their genetic material to the next generation.

Over successive generations, the population evolves through the iterative application of mutation,

crossover, and selection. Through this process, NEAT seeks to discover and refine effectiveNN topologies

for the given task, gradually improving their performance.

By combining the principles of GAs with NNs, NEAT provides an alternative approach to training

NNs, allowing for the evolution of their structures to better suit the task at hand.

In the simplest form of a NN, input data is provided as decimal numbers arranged in an array-like

structure. The number of input values corresponds to the number of input nodes in the NN. After perform-

ing computations, the NN generates an array of decimal values as output, typically with the same size as

the number of output nodes. To facilitate computation, the input and output values are often clamped or

normalized within a specific range, such as [-1, 1] Shao et al. [2020].

The connections between nodes in a NN consist of directed weighted edges. These edges propagate

values through the network, allowing information to flow from input nodes to output nodes. In a basic NN,

cycles are not allowed, meaning there are no feedback connections. The three main types of nodes in a

NN are input nodes, hidden nodes, and output nodes.

Input nodes store the initial input values, while the output nodes receive the final output values after the

computations. The hidden nodes, as the name suggests, are not directly connected to the input or output

but are located between them. Hidden nodes play a critical role in capturing and processing intermediate

information, enabling the NN to learn complex patterns and make accurate predictions.

Figure 2 illustrates a generalized structure of a NN, showcasing the arrangement of input, hidden,

and output nodes, as well as the connections between them.

10

...
...

...

I1

I2

I3

In

H1

Hn

O1

On

Input

layer

Hidden

layer

Ouput

layer

Figure 2: Example of a Neural Network Structure or Topology.

Activation functions play a crucial role in NNs as they determine how the nodes process and produce

output signals based on the input data P Sibi and Siddarth [2013]. When values from multiple edges

are combined into a node, the resulting sum can sometimes become large, which may not be desirable.

Activation functions help mitigate this issue by clamping the output of the nodes within specific bounds,

ensuring the stability and effectiveness of the NN’s computations.

There are several commonly used activation functions, including the sigmoid, the Hyperbolic Tan-

gent (tanh), and the Rectified Linear Unit (ReLU). The sigmoid function maps the input values to a

sigmoid-shaped curve between 0 and 1, while the tanh function maps the values to a curve between -1

and 1. The ReLU function, on the other hand, sets the output to zero for negative inputs and keeps the

positive inputs unchanged. These activation functions offer different properties and can be selected based

on the specific requirements of the problem at hand.

In the context of the NEAT algorithm, activation functions play a vital role in shaping the behavior and

performance of the evolved NNs. The NEAT algorithm aims to optimize the structure and weights of the

NNs by genetic evolution, and activation functions are an integral part of these NNs. They influence how

the nodes within the NNs process information and make predictions.

The integration of activation functions in NEAT occurs during the evaluation and propagation of the

NNs. During evaluation, input values are passed through the NN, and the activation functions determine

the transformed output values at each node. These transformed values are then propagated through the

network to generate the final output.

11

The choice of activation functions depends on the nature of the problem being addressed. For classi-

fication tasks, where discrete labels are assigned to the inputs, the activation functions help in selecting

the output node with the highest value, representing the most appropriate label for the given inputs. In

regression tasks, where continuous values are sought, the activation functions allow mapping the outputs

to larger numbers, potentially by scaling the output values to the desired range.

The use of activation functions and floating-point arithmetic in general is costly. In theNEAT algorithm

NNs are computed with a time complexity of O(|V|+|E|). There are however better ways to processNNs.

NNs can be represented as matrices, which in turn can be multiplied efficiently using open-source math

libraries Gaël Guennebaud et al. [2010]. The code for DQN is one such example that makes use of matrix

multiplications internally.

12

2.2 Evolutionary Algorithms

2.2.1 Genetic Algorithms

In the field of computer science and operations research, Genetic Algorithms (GAs) are metaheuristic

algorithms inspired by the principles of natural selection. GAs belong to the broader class of Evolutionary

Algorithms (EAs) and are widely utilized for solving optimization and search problems. These algorithms

employ biologically inspired operators such as mutation, crossover, and selection to generate high-quality

solutions.

GAs are particularly suitable for tackling optimization problems where finding the optimal solution

would be computationally expensive or time-consuming. They are capable of providing estimations of

solutions that are sufficiently good to handle such problems efficiently.

Evaluation Terminate? Termination

Selection

Crossover

Mutation

Initial
Population

YES

NO

Figure 3: Schematics of a standard Genetic Algorithm.

GAs can be applied to various types of optimization problems, including both single-objective and

multi-objective scenarios Mohammadi et al. [2017]. A general pattern can be observed in the execution

of GAs, as depicted in Figure 3. The optimization process revolves around the iterative execution of three

fundamental steps: evaluation, selection, and mutation.

13

Gene Genome

Population

Figure 4: Genetic Algorithm genetic encoding.

During evaluation, all candidate solutions1 in the population are tested, often in a simulated environ-

ment, and assigned fitness values based on their performance. The fitness values serve as a measure of

the quality or suitability of each solution.

Selection involves choosing a subset of solutions from the population to form the next generation.

Solutions with higher fitness values are more likely to be selected, as they exhibit superior performance.

In some variations of GAs, uniqueness or distinctiveness is considered during selection. Solutions are

categorized into species based on their distinctive qualities, enabling the promotion of innovation and

diversity within the population. This approach helps avoid getting trapped in local optima.

Mutation is a crucial operator in GAs, which involves making small random modifications to selected

solutions. It introduces exploratory changes that can potentially lead to improved solutions. In some cases,

crossover is also performed, where characteristics from two parent solutions are combined to create a new

solution.

Implementation details of GAs can vary depending on the specific problem and requirements. Pa-

rameters such as mutation rates, divergence search, and complexification strategies may be fine-tuned to

enhance the performance and convergence of the algorithm.

1 i.e. Each individual.

14

2.2.2 NeuroEvolution Challenges Addressed by NEAT

Competing Conventions Problem

The Competing Conventions Problem, also referred to as the Permutations Problem Radcliffe [1993],

poses a significant challenge in NeuroEvolution Montana and Davis [1989], particularly in the context

of weight optimization problems with NNs encoded in different ways. This problem arises when different

genomes encoding NNs produce the same solution but with different permutations or orders of certain

elements.

To illustrate this problem, let’s consider two NNs with their respective genome encodings: [A, B, C]

and [C, B, A]. These genomes represent the order of hidden nodes in the NNs. When these networks

undergo crossover or mating, the resulting offspring may have mixed or incorrect orderings, such as [C,

B, C] or [A, B, A]. These offspring representations have lost the correct ordering of nodes present in both

parents, resulting in suboptimal or non-functional solutions.

Crossover

 [A,B,C] x [C,B,A]

Offspring: [A,B,A] [C,B,C]

A

B

C

OutputInputs

C

B

A

OutputInputs

Figure 5: Illustration of a competing conventions problem. In this scenario, two neural networks perform

identical computations, despite their hidden units being arranged differently and represented by distinct

genetic information, rendering them unsuitable for standard crossover operations. The figure illustrates

that when applying single-point recombinations, both methods fail to include one of the three essential

elements from each solution. Adapted from Stanley and Miikkulainen [2002].

15

The consequence of this issue is that these bad solutions, which lack the correct ordering of nodes,

increase the computational time needed for the evolution process unnecessarily. It becomes crucial to

address the competing conventions problem inNeuroEvolution (NE) to ensure that the evolution process

can effectively converge towards optimal solutions.

By finding a solution to the competing conventions problem, NE algorithms can prevent the loss

of vital information during crossover operations and avoid generating offspring with incorrect or mixed

permutations. This enhances the efficiency of the evolutionary process by reducing the search space and

promoting the preservation of meaningful and functional genetic information within the population.

Topological Innovation Problem

The Topological Innovation Problem is a significant challenge faced by neuroevolutionary algorithms when

introducing new structures to NNs Stanley and Miikkulainen [2002]. When a new connection or node is

added to a network, it can impact the optimization process in two main ways.

Firstly, larger NNs with increased structures tend to optimize at a slower rate compared to smaller

networks. The complexity of the network increases with the addition of new connections or nodes, leading

to a more extensive search space. This increased complexity often requires more time and resources for

the EA to converge towards optimal solutions.

Secondly, when a new connection is added to a network, the fitness value of the network initially

decreases before the connection weights are properly optimized. This decrease in fitness is because

the newly augmented structure may not contribute positively to the overall network performance initially.

The weights associated with the new connection need to be optimized through further iterations of the

evolutionary process to improve the network’s fitness.

Due to the initial decrease in fitness caused by the addition of new structures, the newly augmented

structure is less likely to survive beyond a single generation. The lower fitness value associated with the

newly introduced structure makes it more susceptible to being removed or overwritten during the selection

and reproduction process of the evolutionary algorithm.

Addressing the topological innovation problem is crucial for neuroevolutionary algorithms to effectively

incorporate new structures into NNs. By employing mechanisms such as speciation, which protects and

allows for optimization within individual species, the algorithm can provide the necessary time and oppor-

tunities for the newly added structures to evolve and demonstrate their usefulness. This helps overcome

the initial fitness decrease and allows the augmented structures to potentially contribute to the network’s

performance in subsequent generations.

16

2.3 NEAT - Neuroevolution of Augmented Topologies

Neuroevolution of Augmented Topologies (NEAT) aims to achieve a delicate balance between the

fitness of evolved solutions and the diversity among them by dynamically adjusting both the weighting

parameters and structures of NNs. This algorithm is built upon three key techniques: tracking genes with

historical markers, speciation, and complexification, complemented by the fundamental genetic operators

of mutation and crossover Stanley and Miikkulainen [2002].

NeuroEvolution (NE) represents a type of Genetic Algorithm (GA) that leverages Genetic Al-

gorithms (GAs) as the foundation for its solution policies. It finds applications in diverse fields such

as general game playing, evolutionary robotics, and artificial life EvoStar [2019]. Particularly effective in

simulated environments, NEAT operates within the framework of GAs, displaying robust performance.

This section provides an in-depth exploration of NEAT’s operational principles, accompanied by practical

examples.

NEAT possesses the versatility to be applied to various problem domains Stanley and Miikkulainen

[2002]. It is well-suited for both discrete and continuous environments. Despite its general applicability,

NEAT operates on a fundamentally straightforward basis. Often, a simple reward function suffices as the

algorithm incrementally learns and adapts during its execution. For instance, a NEAT reward function

may focus on monitoring a single parameter’s behavior in a simulation, rather than attempting to capture

complex combinations of parameters over time.

NEAT generates randomNNs that serve as policies for AI agents. The primary objective is to enhance

these NNs by iteratively modifying their topologies and adjusting the connection weights. Similar to many

GAs, NEAT excels at rapidly approximating solutions, making it particularly valuable when confronted with

expansive state-spaces where finding an optimal solution within a reasonable timeframe is challenging.

NEAT places significant emphasis on safeguarding and promoting innovation. This entails preserving

seemingly suboptimal AIs with low fitness scores if they possess sufficiently unique characteristics. The

determination of what qualifies as uniqueness remains an active research question. At its core, innovation

in NEAT signifies that an AI’s NN exhibits a distinctive structure compared to other concurrently evolving

AIs. Innovation serves as a guiding principle within the evolutionary process, propelling it towards viable

solutions in complex problem spaces by helping overcome local optima.

In NEAT, both the network topology and connection weights evolve concurrently2, enabling the algo-

rithm to explore and discover optimal network architectures. However, as the complexity of the problem

2 Essentially classifying it as a TWEANN algorithm.

17

increases, the likelihood of finding an optimal network diminishes. Notably, NEAT operates without any

prior information about rewards; instead, it is the experimenter’s responsibility to make informed judg-

ments regarding score assignment following tests. Rewards are assigned only once to the entire solution,

rather than individual components.

By integrating historical markers, speciation, and complexification mechanisms, NEAT possesses the

ability to dynamically adapt NN structures and weights. This fosters innovation and facilitates navigation

through intricate problem spaces. A comprehensive understanding of NEAT’s principles and charac-

teristics contributes to a deeper appreciation of its efficacy and potential for addressing a wide array of

computational challenges.

Historical Markings

Historical markings play a crucial role in neuroevolutionary algorithms such asNEAT by providing essential

ancestral information about genes. These markings serve to establish the structural relationships between

genes, indicating whether they represent the same underlying NN structure, regardless of variations in

connection weights. InNEAT, a global innovation number is assigned to each newly created gene resulting

from structural mutation. These innovation numbers are permanent and immutable, serving as historical

markers throughout the evolutionary process Stanley and Miikkulainen [2002].

By utilizing historical markings, NEAT ensures the proper identification and preservation of structural

information within the population of neural networks. This mechanism allows for accurate tracking of

the evolutionary history of genes and enables the successful implementation of crossover operations.

Matching genes, characterized by having the same innovation number in both parents, can be selected for

crossover, promoting the exchange of genetic material and the potential emergence of novel combinations.

The utilization of historical markings within NEAT effectively addresses the challenge of maintaining

structural integrity during the evolutionary process, which essentially addresses the competing conventions

problem. By assigning unique innovation numbers to new genes and tracking their historical origins,NEAT

ensures the preservation of ancestral information and enables the exploration of diverse network topolo-

gies. This approach promotes the generation of undamaged offspring through crossover and contributes

to the algorithm’s ability to efficiently search and adapt to complex problem domains.

18

Genetic Encoding

Node
Genes

Connection
Genes

Genotype (Genome)

ID 1
In 1
Out 4
Weight 0.7
Enabled

ID 2
In 2
Out 4
Weight -0.5
Disabled

ID 6
In 1
Out 5
Weight 0.6
Enabled

ID 11
In 4
Out 5
Weight 0.6
Enabled

outputinput

ID 5
In 5
Out 4
Weight 0.4
Enabled

ID 4
In 2
Out 5
Weight 0.2
Enabled

ID 3
In 3
Out 4
Weight 0.5
Enabled

Phenotype (Neural Network)

Neuron 1
Input

Neuron 2
Input

Neuron 3
Input

Neuron 4
Output

Neuron 5
Hidden

1

3

2 45

Figure 6: A genotype (genome) to phenotype (Neural Network) mapping example. A genotype is de-

picted that produces the shown phenotype. Note that the second gene is disabled, so the connection

that it specifies (between nodes 2 and 4) is not expressed in the phenotype. ID is the global innovation

number. Adapted from Stanley and Miikkulainen [2002].

NEAT employs a genetic encoding scheme to represent theNN architecture such as depicted in figure

6 Stanley and Miikkulainen [2002]. This encoding scheme consists of two main categories: node genes

and connection genes. The node genes represent all the nodes within the network and are categorized

based on their type, which can be input nodes, hidden nodes, or output nodes. These node genes provide

a comprehensive description of the network’s structure.

The connection genes capture the connections present in the network. Each connection gene con-

tains information about the input node, the output node, the weight associated with the connection, an

enable/disable bit to indicate the status of the connection, and an innovation number that serves as a

unique identifier to track the origin of the gene. The innovation number is particularly important for track-

ing the historical relationships between genes and allows NEAT to identify matching genes during the

crossover process.

By using this genetic encoding scheme,NEAT effectively represents both the structure and the weights

of the NN in a compact and easily manipulable form. The combination of node genes and connection

19

genes enables NEAT to evolve the network’s architecture and weight values simultaneously, allowing for

the exploration of a diverse range of network topologies and facilitating the discovery of effective solutions

to the given problem.

The genetic encoding scheme of NEAT plays a crucial role in the algorithm’s ability to dynamically

adapt the network’s structure through mutations and crossovers, promoting innovation and exploring the

solution space effectively. It provides a means to maintain the historical information of genes, which is

essential for speciation and preserving diversity during the evolutionary process.

Speciation

Speciation is a key technique employed in NEAT, which involves dividing the population of NNs into

distinct species based on their similarities in network topologies. This approach addresses the challenge

of topological innovation and promotes the exploration of diverse solutions within the evolving population.

By creating species,NEAT provides a niche whereNN with unique topologies can optimize their structures

without being overshadowed by networks with different architectures.

The process of speciation in NEAT ensures that individual fitness is compared only among solutions

belonging to the same species when selecting individuals for the next generation. This way, NN with

similar topologies compete with each other, allowing them to evolve their structures effectively. However,

species with low average fitness may eventually become extinct as they fail to adapt and improve.

δ =
c1E

N
+

c2D

N
+ c3 ·W (2.1)

To determine whether two NN belong to the same species, a comparison is performed based on

the differences in connection weights and the number of dissimilar genes. The difference between two

networks is calculated using Equation 2.1 Szudzik [2006], where δ represents the total difference, c1, c2,

and c3 are coefficients adjusting the importance of each factor, N is the number of genes in the larger

genome, E represents the number of disjoint genes within the same numbered range, D represents the

number of excess genes outside that range, and W denotes the weighted differences between common

gene pairs.

20

ID 1
Weight 0.2

ID 1
Weight 0.7

ID 3
Weight 0.4

ID 5
Weight 0.6

Genome 1

Genome 2

disjoint

disjoint

disjoint excess

disjoint

ID 2
Weight 0.6

ID 4
Weight 0.3

ID 6
Weight 0.5

Figure 7: ID represents innovation number and the Weight represents the connection weight value. In this

example, E would be 1, since there is 1 excess gene, gene ID 6. D would be 4, since genes ID 2 and 4

are not in genome 2, and genes ID 3 and 5 are not in genome 1. W would be (|0.7 - 0.2| / 1) = 0.5,

since only gene ID 1 is shared between the two genomes.

If the calculated difference δ exceeds a fixed threshold, the two compared solutions are classified into

separate species. To expedite this process, comparisons are performed once for every possible species,

rather than comparing all solutions within the same species against each other. The threshold can be

dynamically adjusted to maintain a stable number of species, even as the population of NNs scales. If

there are too many species, the threshold is increased, and if there are too few species, the threshold is

decreased.

Speciation in NEAT serves as a protective mechanism for promoting and preserving topological inno-

vation within the evolving population Stanley and Miikkulainen [2002]. One of the challenges in evolving

NNs is that new changes introduced through mutations may not immediately prove useful or beneficial.

These changes need time to undergo further optimization and refinement before their potential benefits

can be fully realized.

By organizing the population into species based on similarity in network topologies, NEAT ensures

that NNs with unique structures are not immediately eliminated or overshadowed by networks with more

established architectures. This allows innovative solutions, even those initially exhibiting lower fitness

scores, to persist and have the opportunity to further optimize their structures over successive generations.

In traditional GAs, where all individuals compete directly with each other, new mutations that devi-

ate significantly from the existing solutions may struggle to survive and propagate. However, in NEAT’s

speciation approach, individual fitness is primarily compared within species rather than across the en-

tire population. This means that NNs with novel topologies have the chance to compete and improve

against other networks with similar architectures, rather than being directly pitted against well-established

solutions.

21

By providing a separate niche for species with unique topologies, NEAT allows for a more thorough

exploration of the solution space. It recognizes that innovative changes may not yield immediate improve-

ments in fitness, but they hold the potential to overcome local optima and eventually converge on superior

solutions which results in an effective solution when tackling the topological innovation problem. As a

result, NEAT strikes a balance between preserving diversity and promoting competition, enabling the

population to discover and exploit effective structures over time.

22

Crossover

The crossover process inNEAT is possible by the use of historical markings, which enable the identification

of genes and their corresponding matches between parents Stanley and Miikkulainen [2002]. Each gene

in a genome is assigned an innovation number, which serves as a unique identifier. Genes with the same

innovation number in both parents are considered matching genes. However, there are cases where a

gene in one parent does not have a corresponding match in the other parent. In such instances, these

genes are categorized as either disjoint or excess genes.

Disjoint genes are those with innovation numbers that fall within the range of innovation numbers

of the other parent, while excess genes have innovation numbers outside that range. During crossover,

matching genes are randomly selected from both parents and included in the offspring. All disjoint and

excess genes are always included in the offspring as well.

When it comes to selecting non-matching genes, the more fit parent contributes all of its non-matching

genes to the offspring. In cases where both parents have the same fitness value, these non-matching genes

are chosen randomly. This approach ensures that both parent genomes have an opportunity to contribute

their genetic material to the offspring, promoting diversity and preserving potentially beneficial genetic

information.

1

2

3

5 6 4

1
1 4
EN

2
2 4
DIS

3
3 4
EN

4
2 5
EN

5
5 4
DIS

6
5 6
EN

7
6 4
EN

9
3 5
EN

10
1 6
EN

OutputsInputs

1

2

3

5 4 OutputsInputs

1
1 4
EN

2
2 4
DIS

3
3 4
EN

4
2 5
EN

5
5 4
EN

8
1 5
EN

1
1 4
EN

2
2 4
DIS

3
3 4
EN

4
2 5
EN

5
5 4
DIS

6
5 6
EN

7
6 4
EN

9
3 5
EN

10
1 6
EN

8
1 5
EN

1

2

3

5 6 4 OutputsInputs

1
1 4
EN

2
2 4
DIS

3
3 4
EN

4
2 5
EN

5
5 4
EN

8
1 5
EN

1
1 4
EN

2
2 4
DIS

3
3 4
EN

4
2 5
EN

5
5 4
DIS

6
5 6
EN

7
6 4
EN

9
3 5
EN

10
1 6
EN

DISJOINT

DISJOINT

EXCESS EXCESSDISJOINT

Parent 1 Parent 2

CROSSOVER

Parent 1

Parent 2

Offspring

Figure 8: Crossover operation example inNEAT aligning genetic information across various network topolo-

gies through the use of innovation numbers. Adapted from Stanley and Miikkulainen [2002]

23

Mutation

Mutation plays a vital role inNEAT by introducing variation and allowing for exploration of the search space.

In NEAT, mutation can modify both the connection weights and the network structures of individuals in

the population Stanley and Miikkulainen [2002]. The mutation rate, which determines the probability of

each connection being perturbed, influences the extent of mutation in each generation.

The choice of mutation type depends on the specific scenario and the desired outcomes. The fun-

damental mutation is to alter the weight of a gene, but if this modification alone is insufficient, a more

significant change in the network topology becomes necessary. When mutation occurs, the decision of

what to mutate is typically made randomly to ensure diversity. To achieve a uniform distribution of muta-

tion choices, a weighted random selection can be employed, where all possible choices are assigned the

same weight.

It is important to note that an excessive number of mutations within a generation can potentially lead

to a significant decrease in performance. If there is only one optimal solution, any mutation is more

likely to be detrimental rather than beneficial. Hence, it is advisable to limit the number of mutations

per generation to mitigate the risk of performance degradation. NEAT encompasses four main types of

mutations, namely:

• Creating a new gene between existing nodes. (With the constraint of avoiding network cycles unless

it is a recurrent gene);

• Creating a new node. (By replacing a gene with two new ones and placing the node in between);

• Enabling or disabling a gene;

• Adjusting the weight of a gene.

By understanding the various mutation types and their implications, NEAT can strike a balance be-

tween exploration and exploitation, facilitating the discovery of novel and effective solutions. The careful

management of mutation rates and types ensures that NEAT can adapt and evolve over generations while

avoiding excessive disruption that could hinder performance improvement.

24

1

2

3

5 4 OutputsInputs

1
1 4
EN

2
2 4
DIS

3
3 4
EN

4
2 5
EN

5
5 4
EN

6
1 5
EN

7
3 5
EN

1

2

3 6

5 4 OutputsInputs

1
1 4
EN

2
2 4
DIS

3
3 4
DIS

4
2 5
EN

5
5 4
EN

6
1 5
EN

8
3 6
EN

9
6 4
EN

Mutate Add NodeMutate Add Connection

1

2

3

5 4 OutputsInputs

1
1 4
EN

2
2 4
DIS

3
3 4
EN

4
2 5
EN

5
5 4
EN

6
1 5
EN

Figure 9: The two types of structural mutation in NEAT. The top number in each genome represents

the innovation number assigned to that particular gene. “EN” indicates the gene expression is enabled.

“DIS” indicates the gene expression is disabled. Adapted from Stanley and Miikkulainen [2002].

In NEAT as shown in the figure 9 the process of adding a new connection and adding a new node

involves different genetic operations and strategies to ensure the preservation of genetic information and

facilitate effective crossover between genomes.

When adding a new connection through the add connection mutation, a new gene is created. This new

gene represents the newly established connection between two existing nodes in the NN. It is assigned a

unique global innovation number, which helps track the origin of the gene. Additionally, the gene is initially

enabled, meaning its expression is active in the network. (Notice on figure 9 how it simply adds a new

gene indicating the new connection (3 to 5) and that the gene expression is enabled.)

On the other hand, when adding a new node through the add node mutation, two new genes are

created. The first gene represents the connection from the previous node to the newly added intermediate

node, while the second gene represents the connection from the intermediate node to the previous destina-

tion node. These genes also receive unique global innovation numbers to track their origins. Importantly,

the previous gene that directly connected the original nodes is not removed but rather its expression is

disabled. By disabling the previous gene (setting its expression to disabled), the information regarding

25

the direct connection between the original nodes is preserved in the genome. (Notice on figure 9 how it

needs to create two new genes, one indicating a new connection between the previous origin and the new

intermediate node (3 to 6) and the other indicating a new connection between the intermediate node to

the previous destiny (6 to 4), also verify how the previous gene isn’t removed but instead its expression is

set to disabled (gene ID 3)).

This approach of adding new genes and disabling previous ones guarantees that no genetic infor-

mation is lost during the mutation process. It allows for seamless crossover to occur between genomes

during the reproductive phase of the algorithm. Crossover can recombine genes from different parents,

including genes representing connections and nodes, while maintaining the structural integrity of the neu-

ral networks encoded by the genomes. This preservation of genetic information and seamless crossover

mechanism enable the exploration and propagation of beneficial structural modifications in the population

over generations.

Complexification

In the case of NEAT, the algorithm starts with a minimal initial topology, typically consisting of input

and output nodes directly connected without any hidden nodes. Through a combination of mutation and

crossover operations, NEAT introduces structural changes to the network over successive generations,

allowing for the evolution of more complex topologies Stanley and Miikkulainen [2002]. This process

involves the addition and removal of nodes and connections, enabling the network to adapt and develop

more sophisticated architectures that better capture the problem at hand.

By evolving both the weights and the topology of theNN,NEAT explores a larger search space, seeking

to find optimal solutions to a given problem. The algorithm leverages the principles of natural evolution,

such as fitness evaluation and selection, to guide the evolutionary process towards solutions that exhibit

improved performance and adaptability.

NEAT’s Topology and Weight Evolving Artificial Neural Network (TWEANN) approach offers

the advantage of dynamically adjusting the neural network’s structure to match the problem complexity.

This capability allows NEAT to address a wide range of problem domains, from simple to highly complex,

and discover effective network architectures that optimize performance.

26

2.4 Related Work

In the realm of Artificial Intelligence (AI), extensive research has been conducted, exploring various

aspects related to machine learning and video games. This section aims to provide an overview and

summary of relevant work that intersects with these domains. The related work discussed herein sheds

light on crucial considerations and special circumstances within simulations, which can significantly im-

pact the performance of AI systems. By leveraging the insights gained from these contributions, further

advancements can be made to enhance the work presented in this thesis.

Numerous research studies have investigated the application ofML techniques in video games, with a

particular focus on training intelligent agents to play and excel in game environments. These studies explore

different aspects of AI, such as Reinforcement Learning, Evolutionary Algorithms, and Neural

Networks. By utilizing these methodologies, researchers have achieved remarkable results in developing

AI agents capable of competing against human players and achieving high levels of performance.

Furthermore, specific research contributions have emphasized the importance of addressing unique

challenges presented by video game simulations. These challenges include complex decision-making,

real-time constraints, and the need for adaptive behavior. By considering these factors, researchers have

devised novel approaches and algorithms to overcome these challenges and improve the effectiveness of

AI in gaming scenarios.

The insights gained from the related work in ML and video games provide valuable contributions to

the development of AI systems. They offer valuable guidance for designing algorithms and methodologies

that are tailored to the unique demands of gaming environments. By incorporating these findings, this

thesis aims to build upon the existing knowledge and push the boundaries of AI capabilities in the context

of video game exploitation.

27

2.4.1 Genetic Algorithms

In the early stages of Genetic Algorithm (GA) implementations, fitness was primarily based on perfor-

mance alone. However, more recent approaches have introduced alternative ways to define fitness, with

an emphasis on rewarding diverse behavior. This section highlights research that demonstrates how di-

versity can enhance the performance of GAs, along with techniques that can improve the overall structure

of evolved networks.

While it has been observed that excluding diversity can accelerate training for simple problems, such

an approach, akin to greedy algorithms, may fail to find the optimal solution due to the lack of randomness.

For many problems, solely rewarding novel solutions and disregarding fitness altogether is inefficient, as

it takes a considerable amount of time to generate meaningful results.

Surprisingly, ignoring fitness has been successfully employed as an evolution strategy inNeuroevolu-

tion of Augmented Topologies (NEAT). In a study conducted by Joel Lehman and Kenneth O. Stanley,

comparing the performance of using fitness versus ignoring fitness when training a biped-walker, it was

found that the biped walked farther when fitness was ignored Lehman and Stanley [2011].

Algorithms that promote both diversity and efficiency are referred to as Quality Diversity (QD) al-

gorithms. Within this domain, diversity is considered a prerequisite for using GAs Shimodaira [1997]

Ursem [2002]. QD GAs that reward diversity demonstrate improved resistance to deception Stanley and

Lehman [2015] Adam Gaier and Mouret [2019] Cazenille [2019]. Following paths that solely lead to a

specific goal can be deceptive, as they may prove ineffective. Effective QD algorithms come in various

forms, some of which involve reducing the reliance on fitness values and focusing instead on traits such

as behavior or solution divergence from historical attempts Mouret and Clune [2015] Brant and Stanley

[2017] Stephane Doncieux and Coninx [2019]. By reducing the need for fitness comparisons, it has been

observed that if the training environment co-evolves with the solutions, good solutions can still be gener-

ated. Gradually adapting the environment’s difficulty based on the existing set of solutions helps mitigate

local optima Wang et al. [2019].

An effective technique Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) can be

utilized to explore the space of possible solutions in a structured and efficient manner. This technique is

often employed in Evolutionary Algorithm (EA) to discover a diverse set of high-performing solutions.

The core concept of MAP-Elites involves dividing the solution space into a grid of cells, where each

cell represents a specific combination of characteristics or dimensions. The best-performing solution (elite)

is stored for each cell in the grid. As the algorithm progresses, the grid becomes populated with elites

from different cells, enabling a systematic exploration of the solution space.

28

Compared to other QD algorithms,MAP-Elites offers advantages in terms of simplicity and reliability

Mouret and Clune [2015]. It maps traits to a discrete space, allowing for effective representation and

exploration of diverse solutions. For example, in the vehicle routing problem, dimensions such as vehicle

type, delivery count, and emissions can be used Neil Urquhart and Hart [2019].

Another approach, known as Novelty Search (NS), incorporates historical information to direct evo-

lution and prevent redundancy. While it favors divergence, determining which type of divergence should

be prioritized remains a challenge Stephane Doncieux and Coninx [2019]. Subsequent algorithms, such

as Surprise Search (SS), build upon the objective of NS and demonstrate increased efficiency Yan-

nakakis and Liapis [2016] Daniele Gravina and Yannakakis [2018]. Combining SS andMAP-Elites in an

experiment has resulted in improved performance Daniele Gravina and Yannakakis [2019].

GAs have been employed in evolving behavior trees for the game Super Mario Michele Colledanchise

and Ögren [2018]. Behavior trees consist of modules arranged in a specific order, where each module

represents an action or specifies how other modules should be executed. The GAs used to evolve behavior

trees employed a strategy of initially introducing a high mutation rate and gradually decreasing it over time.

This concept of adjusting the intensity of mutations is similar to the process of Simulated Annealing

(SA) Scott Kirkpatrick and Vecch [1983]. Notably, the introduction of de-evolution was introduced as a

means to remove redundant modules. Experimental results demonstrated that complex trees could be

simplified without sacrificing performance.

Additionally, Grammatical Evolution (GE) approach was developed to map bit-strings to behavior

trees for Super Mario Perez et al. [2011]. GE exhibited fast mutation rates, as only bits needed to be

flipped. However, crossover operations posed a challenge, as an additional module type was required to

indicate crossover points. GE generated reactive solutions but was not well-suited for path planning.

29

2.4.2 NeuroEvolution

Evaluation
Fitness = Evaluation(Outputs)

Termination
Check

Selection

Mutation

Crossover

Inputs Outputs

Neural Network

Figure 10: NeuroEvolution Loop Schematics.

Neuroevolutionary algorithms typically follow a set of steps to evolve and converge towards improved

solutions. These steps are as follows:

1. Initialization: The algorithm begins by generating a random population of individuals. Each indi-

vidual is encoded in a specific representation, such as a genotype, which is then decoded into a

corresponding NN structure or phenotype.

2. Evaluation: The next step involves evaluating the performance of each NN in the population. The

NNs are subjected to the environment or task they are designed to solve, and their behavior or

output is assessed. Based on the performance, a fitness value is assigned to each genotype in

30

the population, indicating its quality or success in the given task. The algorithm may terminate if a

termination criterion, such as reaching a desired fitness threshold, is satisfied.

3. Reproduction: After evaluation, the algorithm creates a new generation of individuals through the

application of selection, mutation, and crossover operators to the population. Selection involves

choosing individuals from the current population based on their fitness values, giving preference to

those with higher fitness. Mutation introduces random changes to the genetic material of selected

individuals, exploring new regions of the search space. Crossover combines genetic material from

two or more selected individuals to create offspring with a combination of their characteristics.

These steps of evaluation and reproduction are typically iterated for multiple generations, gradually

improving the population’s overall fitness. Over time, the algorithm converges towards individuals that

exhibit better performance or solutions to the given problem.

By repeating the process of evaluation, selection, mutation, and crossover, neuroevolutionary algo-

rithms explore the search space of possible solutions, adapt the population to the environment, and pro-

mote the emergence of more fit individuals. Through this iterative process, the algorithm aims to converge

towards optimal or near-optimal solutions for the given task or problem.

In the section 2.3 it was explained what Neuroevolution of Augmented Topologies (NEAT) was

and how it functions. It was made clear that network topologies can both be optimized and made more

complex at the same time. It involves training NNs by selecting those that perform well in a given envi-

ronment, rather than updating their weights based on a specific learning rule. A lot of research has been

made for algorithms that use similar strategies as those applied in NEAT. Some of those research topics

are mentioned here.

Different mutation strategies for NeuroEvolution (NE) have been suggested. As NNs grow more

complex, changes to certain connections will have a vast impact on the output. One successful mutation

strategy handles this problem by scaling edge mutations with respect to the network as a whole. Ex-

periments showed that implementing scaled mutations resulted in a more stable and better-performing

training process that enabled simple networks to solve problems in high-dimensional domains that oth-

erwise would require deep or recurrent networks Lehman et al. [2018]. Another interesting notion is

Rechenberg’s mutation rate control Kramer [2017]. Its mechanisms are simple, increase the mutation

rate when some number of consecutive generations have had increased overall fitness or decrease it

otherwise. Experiments indicate that this increases performance.

Among other things,NEAT has been used in projects by artists forProcedural Content Generation

(PCG). What makes it interesting for PCG is that the algorithm at heart doesn’t require a goal. It is driven

31

by rewards, and there are no rules for how rewards should be assigned. It keeps mutating innovative

solutions if there is no hard-set target.

One example of where NEAT can and was implemented is to build an AI for the 2D game Flappy

Bird Cordeiro et al. [2019]. In Flappy Bird the goal is to prevent a bird from colliding with obstacles for

as long as possible. The bird may only move vertically by allowing it to fall due to gravity or fly upwards

by jumping. Obstacles move from right to left in the form of pillars with a hole that enables the bird to

potentially fly through. The holes are located at random positions to make navigation harder. If the bird is

controlled by a NN one may assume that relevant input nodes would contain information about its vertical

position, the vertical position of the center of the upcoming hole and the horizontal distance as well as the

current vertical velocity of the bird. These numbers would have to be compressed or normalized to scalar

values between -1 to 1 before being passed on to the NN. In total this translates to 4 input nodes. Lastly,

one single output node would be needed, telling the bird to jump or not to jump.

Gens: 3
Alive: 1

Score: 14

Bird Y

Top Pipe

Bottom Pipe
Bias

Weight = ?

Wei
ght
 =
?

Weight =
?

Weight = ?

Input Layer

Connections

Output Layer

Bird Y

Top
Pipe

Jump?
Bottom
Pipe

Vertical
Velocity

Figure 11: Neural Network schema for playing 2D game Flappy Bird. In NEAT, a bias is an input node

that is always set to 1.0 and that can connect to any node other than inputs; The bias connections are not

always needed depending on the solution. Stanley and Miikkulainen [2002]

To attempt to solve this Flappy Bird paradigm, NEAT starts out with a generation of randomly gen-

erated NNs. All solutions are then tested in simulations and assigned a fitness value based on how far

they made the bird travel without dying and, of course, a time limit is also necessary to prevent it from

potentially going on indefinitely.

Selected solutions change through mutations and crossover operations. A mutation makes changes

32

to the NN itself randomly. An example of performing a mutation is by randomly picking an element from

the earlier described array and changing its weight. Crossover combines innovations of two solutions into

one child. This is achieved by sorting two arrays from two NN representations such that they are ordered

by increasing ID numbers. If two IDs are the same then both NNs share a common edge. The child

gets a direct copy of the array from the parent with higher fitness. To make it a crossover, the child has

a chance to retrieve the weights in the parent with a lesser fitness. Any element with an ID that exists in

both arrays has a fifty-fifty chance of being from either parent. By repeating this process of selecting good

solutions and adding mutations, one will eventually emerge that always makes the bird jump at the right

moment.

Starting with a simple topology without hidden layers causes solutions to be less complex than nec-

essary. Furthermore, it is easier to analyze small networks. If one manages to generate a complex NN

through RL and back-propagation having 100 or more nodes that can play Flappy Bird, it is not easy to

see which edges make a difference. If on the other hand there is a shorter variant generated with NEAT

that only has 5 nodes it is easier to see directly from the edges how the bird will behave for specific states

without having to test it.

Using NEAT for Flappy Bird and similar games offers several advantages. Starting with a simple

initial topology allows for easy analysis of the network’s behavior. It also prevents unnecessary complexity

and facilitates understanding of the important connections between nodes. NEAT’s ability to evolve and

mutate the NNs allows for the discovery of innovative strategies and behaviors that may not have been

initially anticipated.

NEAT’s capacity to evolve and mutate NNs fosters the exploration of novel and unforeseen strategies,

unlocking innovative behaviors that may lead to superior game-playing performance. These advantages

make NEAT the ideal algorithm for the processing layer in this thesis, as it facilitates the development

of sophisticated game-playing agents capable of achieving high levels of performance and adaptability in

dynamic gaming environments. By starting with a simple initial topology, the behavior of the network

becomes more transparent and easier to analyze, promoting a deeper understanding of the critical con-

nections between nodes.

33

2.4.3 HyperNEAT - Hybercube-basedNeuroevolution of Augmenting Topolo-

gies

HyperNEAT introduces a novel approach to evolve large-scale NN by exploiting geometric regularities in

the problem domain Kenneth O. Stanley and Gauci [2009]. By representing the NN in a high-dimensional

space, HyperNEAT leverages the advantages of indirect encoding, allowing for the emergence of more

complex and structured NN.

Research in NeuroEvolution (NE), i.e. evolving ANNs through Evolutionary Algorithms, is in-

spired by the evolution of biological brains. Because natural evolution discovered intelligent brains with

billions of neurons and trillions of connections, perhaps NE can do the same. Yet while NE has pro-

duced successful results in a variety of domains, the scale of natural brains remains far beyond reach.

Hypercube-based Neuroevolution of Augmenting Topologies (HyperNEAT) aims to narrow that

gap. HyperNEAT employs an indirect encoding called connective Compositional Pattern Producing

Networks (CPPNs) that can produce connectivity patterns with symmetries and repeating motifs by in-

terpreting spatial patterns generated within a hypercube as connectivity patterns in a lower-dimensional

space Kenneth O. Stanley and Gauci [2009]. The advantage of this approach is that it can exploit the

geometry of the task by mapping its regularities onto the topology of the network, thereby shifting problem

difficulty away from dimensionality to underlying problem structure. Furthermore, connective CPPNs can

represent the same connectivity pattern at any resolution, allowing ANNs to scale to new numbers of

inputs and outputs without further evolution. The main conclusion is that the ability to explore the space

of regular connectivity patterns opens up a new class of complex high-dimensional tasks to NE. Kenneth

O. Stanley and Gauci [2009]

In short, HyperNEAT is an extension of NEAT that is based on a theory of representation that

hypothesizes that a good representation for an Artificial Neural Network should be able to describe

its pattern of connectivity compactly. This kind of description is called an encoding. The encoding in

HyperNEAT is called Compositional Pattern Producing Networks and is designed to represent

patterns with regularities such as symmetry, repetition, and repetition with variation. Thus HyperNEAT

is able to evolve ANNs with these properties. The main implication of this capability is that HyperNEAT

can efficiently evolve very large ANNs that look more like neural connectivity patterns in the brain (which

are repetitious with many regularities, in addition to some irregularities) and that are generally much larger

than what prior approaches to neural learning could produce.

The other unique and important facet of HyperNEAT is that it actually sees the geometry of the

34

problem domain. It is strange to consider, but most NE algorithms (and most neural learning algorithms

in general) are completely blind to domain geometry. For example, when a checkers board position is input

into an ANN, it has no idea which piece is next to which piece. If it ever comes to understand the board

geometry, it must figure it out for itself. In contrast, when humans play checkers, we know right away the

geometry of the board, we do not have to infer it from hundreds of examples of gameplay. HyperNEAT

has the same capability. It actually sees the geometry of its inputs (and outputs) and can exploit that

geometry to significantly enhance learning. To put it more technically, it computes the connectivity of its

NNs as a function of their geometry.

One implication of HyperNEAT’s ability to exploit geometry is that it gives the user a completely

new kind of influence over ANN learning. The user can now describe the geometry of the domain to

HyperNEAT, which means there is room to be creative. If someone believes that a domain can be

described best in a different geometry, it can be tested using this technique. Thus it opens up a new kind

of research direction for ANNs. Stanley et al. [2015]

Experiments have been made using both NEAT and Hypercube-based Neuroevolution of Aug-

menting Topologies (HyperNEAT) on the keepaway soccer game which is a ML benchmark problem

that requires high-level strategic decision-making and has a fractured decision space where the keepers are

charged with preventing the takers from taking the ball for as long as possible where results have shown

that although HyperNEAT improves upon NEAT for a relatively simple fractured problem that benefit

is simply not enough to compensate for that fact that HyperNEAT is very slow, even on a multi-core

processor Jessica Lowell and Grabkovsky [2011].

35

2.4.4 rtNEAT - Real-time Neuroevolution of Augmenting Topologies

Crossover
Mutate

1 low-fitness
agent

2 high-fitness
agents

X

New agent

Figure 12: The main replacement cycle in rtNEAT.

rtNEAT introduces the concept of real-time NeuroEvolution, allowing the evolution of Neural Net-

work to occur dynamically during the execution of the AI system. This real-time adaptation enables the

AI to continually adapt and respond to changing environments, making it well-suited for applications that

require real-time decision-making Kenneth O. Stanley and Hoang [2008].

Usually in EAs, the entire population is replaced at each generation in Neuroevolution of Aug-

mented Topologies (NEAT). However, in a real time game or a simulation, such a step would look in-

congruous since every agent’s behavior would change at once. In addition, behaviors would remain static

during the large gaps between generations. Instead, in Real-time Neuroevolution of Augmenting

Topologies (rtNEAT), a single individual is replaced every few game ticks. One of the worst individuals

is removed and replaced with a child of parents chosen from among the best. This cycle of removal and

replacement happens continually throughout the game as seen on figure 12 and is largely invisible to the

player. This replacement cycle presented a challenge to NEAT because its usual dynamics, i.e. protection

of innovation through speciation and complexification, are based on equations that assume generational

replacement. In rtNEAT, these equations are changed into probabilistic expressions that apply to a single

reproduction event Kenneth O. Stanley and Bryant [2005a]Kenneth O. Stanley and Bryant [2005b]. The

result is an algorithm that can evolve increasingly complex NNs fast enough for a user to interact with

evolution as it happens in real time. A new genre of games was made possible by rtNEAT, where the

player trains agents in real time3. Kenneth O. Stanley et al. [2003]

3 One of which is called NERO - Neuro Evolving Robotic Operatives.

36

One project worth mentioning is called NeuroEvolving Robotic Operatives (NERO). NERO is a

result of an academic research project in Artificial Intelligence, based on the Real-time Neuroevo-

lution of Augmenting Topologies (rtNEAT) algorithm. It is also a platform for future research on

intelligent agent technology. It is a new kind of Machine Learning game being developed at the Neural

Networks Research Group, Department of Computer Sciences, University of Texas at Austin. The goals of

the project are to demonstrate the power of state-of-the-art ML technology, to create an engaging game

based on it, and to provide a robust and challenging development and benchmarking domain for AI re-

searchers. Kenneth O. Stanley et al. [2003]

In NERO the player needs to train robots to battle other robots, in order to colonize a defended but

uninhabited planet. The behavior of each robot is controlled by an artificial NN, i.e. a “brain” and this

brain is scored on how well the robot performs within a given amount of time. Based on these scores

(or rewards), the Neuroevolution of Augmented Topologies (NEAT) then modifies the brains so that

they perform better in the future.

The observations acquired from rtNEAT, particularly NERO, significantly enhance and enrich the

main thesis by providing valuable insights into the dynamic adaptability and evolving behaviors of intelli-

gent agents. Through real-time learning and decision-making capabilities, NERO’s implementation offers

a deeper understanding of the agent’s responses to changing conditions, enabling the identification of

innovative strategies that optimize performance in challenging environments. These findings bolster the

main thesis, showcasing the effectiveness of rtNEAT in achieving sophisticated and optimized behaviors

in the context of the study’s domain.

The NERO video game demonstrates that evolutionary computation techniques such as rtNEAT

are now sufficiently flexible and robust to support real-time interactive learning in challenging sequential

decision tasks. While game playing is a significant application on its own, these techniques can also be

seen as a significant step towards building intelligent adaptive agents for human environments, such as

training environments, robot controllers, and intelligent assistants.

37

2.4.5 Reinforcement Learning

Reinforcement Learning (RL) has risen to prominence as a powerful and widely applied technique in

the development of AI systems Sutton and Barto [2018]. With its ability to learn from interactions with

complex environments and make informed decisions based on rewards, RL has become a pivotal area in

ML, and signaled as a popular alternative to Genetic Algorithms (GAs) and NeuroEvolution.

RL has been applied to various video games, including the widely known Super Mario Bros, to train AI

agents and achieve successful performance. In one Super Mario AI competition, a plain Q-Learning (QL)

algorithm was evaluated in a simplified environment, demonstrating competitive results compared to other

AI solutions Jyh-Jong Tsay and Hsu [2011]. Interestingly, the top-performing solutions in this competition

did not utilize RL but instead employed greedy path-finding approaches, sometimes combined with A*

algorithms Julian Togelius and Baumgarten [2010].

At Stanford University, a group of students implemented a Q-Learning algorithm for the Super Mario

Framework as part of an assignment Yizheng Liao and Yang [2012]. By reducing the problem space to a

smaller number of possible states, they were able to create AI agents that achieved high success rates

in completing single levels. Moreover, the same AI agents could generalize their learned behaviors to

overcome randomly generated obstacles, showcasing the versatility of the approach.

Convolution Convolution Fully connected Fully connected

No input

Figure 13: Diagram of DQN architecture for playing Atari games. Mnih et al. [2015]

38

Deep Q-Network (DQN) have been successfully employed in completing relatively easy Atari games

Kaiser et al. [2019]. This was accomplished by processing a large number of game screen images,

enabling the AI agent to make accurate predictions for different game states. However, training DQNs to

achieve optimal performance requires extensive fine-tuning, such as adjusting learning rates, batch sizes,

and exploration strategies. Parameter selection can be challenging, and a degree of trial and error is

often necessary. The notable work by Mnih popularized DQNs by demonstrating their ability to learn Atari

games directly from screen pixels to joystick actions (see Figure 13) Mnih et al. [2015].

Another approach explored in this domain is imitation learning, where AI agents imitate human be-

havior by recording actions performed by expert players in the game. This method relies on expert human

players and requires them to play the game multiple times to generate training data. Imitation learning

involves creating a reward function based on limited observations from the expert player in a Markov

Decision Process (MDP) environment Battle [2018]. Rewards are mapped to features in states based

on the player’s actions, and RL can then be applied using the derived reward function Lee et al. [2014].

In games with large state spaces, Q-Learning has been compared to Double Q-Learning (Double-

QL), showing that while training time did not significantly improve with Double-QL, the resulting AI agent

outperformed the solution generated by standard Q-Learning Schilperoort et al. [2018] Somasundaram

et al. [2018].

39

Chapter 3

The problem and its challenges

Platformer games present a significant challenge for computers to consistently find optimal solutions in

real-time due to their inherent complexity Aloupis et al. [2015]. However, AI systems have demonstrated

relatively strong performance in certain games, such as AlphaZero’s superior gameplay in chess compared

to human players Silver et al. [2018].

The difficulty of platformer games stems from the ever-changing environment and the presence of

random elements that introduce surprises. Limited information about the environment poses risks for

decision-making. In such cases, the circumstances should guide the AI based system to choose actions

with the highest probability of success. Similar to AI surpassing human performance in chess, prior

research has shown that AI can outperform humans in specific problems like path-finding. An effective

and adaptable AI should be able to handle changing environments, such as when new types of monsters

are introduced.

However, an essential requirement for real-time applications is the ability of AI to make prompt deci-

sions. The inference time of the NN plays a crucial role in achieving a viable product.

This chapter is divided into three distinct sections, as depicted in Figure 14 1. Each section explores

specific challenges and concerns raised by the thesis.

Player HP

D

S?
W

A

Player Y

Player X

Target HP

Sensory/
Input Layer

Motor/
Output Layer

Processing/
NEAT Layer

Figure 14: The three layers that compose a NEAT bot architecture.

1 Do note that this is merely a figurative example and not by any means the final architecture.

40

3.1 The Sensory/Input Layer

The Sensory/Input Layer of the system plays a pivotal role in facilitating the interaction between the game

world and the AI’s decision-making process. However, reverse engineering the memory address space of

World of Warcraft (WoW) presents significant challenges and requires specialized techniques, such as

the utilization of tools like Cheat Engine, to extract the necessary memory data.

Reverse engineering WoW’s memory address space involves comprehending the intricate structure

and organization of the game’s memory in order to identify and extract specific data points. This undertak-

ing necessitates an extensive understanding of the game’s internal workings and memory management

mechanisms. This thesis will explore the intricacies and complexities associated with this task and propose

potential strategies to surmount them.

The retrieval of relevant memory data is of utmost importance for the successful implementation of

the system’s input layer. This layer acts as the sensory interface through which the AI perceives and

interacts with the game environment. By accessing and analyzing the game’s memory, the AI can obtain

real-time information regarding various game elements, such as player and enemy positions, health and

mana levels, and other pertinent attributes.

The identification of essential data fromWoW’s memory poses a significant challenge. WoW’s mem-

ory address space is expansive and continually changing as the game progresses. This thesis will discuss

methodologies and techniques employed to locate and extract the pertinent memory data, including pat-

tern recognition, dynamic memory analysis, and debugging tools.

Moreover it will be shown the significance of selecting an appropriate set of memory data to provide

a comprehensive sensory input to the system. By carefully choosing the relevant data points, the system

can access the necessary information to make informed decisions and effectively respond to the dynamic

game environment.

Undoubtedly, reverse engineering is a formidable undertaking, particularly when software developers

employ countermeasures like Address Space Layout Randomization (ASLR) to fortify against mem-

ory exploitation vulnerabilities. ASLR introduces randomness to the positions of critical data areas in the

process’s address space Marco-Gisbert and Ripoll [2019], impeding an attacker’s ability to reliably locate

specific functions or data.

The reverse engineering process is arduous and time-consuming, requiring tenacity and expertise.

While no definitive guidebook for reverse engineering exists, the rewards can be substantial once the

essential information is acquired.

41

Once the relevant values from WoW’s memory layout are obtained, the subsequent challenge lies in

programmatically accessing those values. DLL injection proves to be a valuable technique in this regard.

DLL injection involves loading a Dynamic-link library (DLL) into another process’s address space,

enabling external programs to influence the behavior of the target program Iczelion [2002].

By employing DLL injection, the injected code can intercept and modify system function calls Shew-

maker [2006], facilitating the reading of the process’s memory. This technique, often utilized by reverse

engineering tools like Cheat Engine, offers opportunities to access the necessary data for the system’s

input layer.

However, it is important to note that DLL injection and code hooking can raise security concerns and

potentially violate the game’s terms of service or anti-cheat measures. Consequently, it must be exercised

caution and insurance to the adherence of legal and ethical standards.

By leveraging these techniques, the author can overcome the challenges associated with accessing

WoW’s memory and retrieve the pertinent data required for the system’s input layer. This approach

establishes a solid foundation for the system’s perception and comprehension of the game environment.

By delving into the intricacies of reverse engineering WoW’s memory address space and addressing

the complexities of retrieving relevant memory data, this thesis strives to establish a robust framework

for the system’s sensory/input layer, fostering a comprehensive understanding of the game world and

enabling informed decision-making processes.

42

3.2 The Processing/NEAT Layer

The Processing/NEAT Layer is a critical component of the system. The primary objective is to explore how

the selection of appropriate input values can enhance AI performance, enabling it to exhibit more natural

behavior. Additionally, the author will explore the necessity of adjusting the fitness function to provide

better suited individuals and discuss the idea of subdividing the problem into several domains.

The selection of suitable input values plays a vital role in shaping the behavior of the system. By

carefully considering which aspects of the game environment should be fed as input to the NN, the AI can

better understand and respond to the game dynamics. For example, variables such as player position,

enemy positions, power-up locations, and terrain features can significantly impact the AI’s decision-making

process. By incorporating relevant input values, the AI can exhibit more intelligent and natural behavior

in navigating the game world.

Moreover, it will be discussed the need to adjust the fitness function to guide the evolution of the AI

individuals. The fitness function serves as a measure of performance and determines which individuals

are selected for reproduction and further evolution. By fine-tuning the fitness function, the system can

prioritize desired behaviors and encourage the emergence of more effective strategies.

To tackle the complexity of the platformer game, this thesis proposes subdividing the problem into

several domains. Each domain represents a specific subset of the game, focusing on distinct challenges

or objectives. By breaking down the problem, the system can adapt and specialize in different aspects of

the game, leading to more efficient and robust performance.

This will imply the necessity to address the issue of interchangeably switching between domains.

This flexibility allows the system to dynamically adapt its focus based on the game’s current context. By

switching between different domains, the system can effectively handle changing environments, varying

levels of difficulty, and the introduction of new elements or challenges.

Feedback loops enable the system to receive information about the consequences of its actions, facil-

itating adaptation and refinement of the decision-making process by altering the fitness accordingly. This

feedback mechanism allow for the algorithm to evaluate the state of fitness of each individual by monitoring

game events and analyzing changes in game state which will then lead to the refinement of the system’s

behavior based on observed outcomes.

The NEAT or Processing Layer thus encompasses various considerations and techniques related to

selecting appropriate input values, adjusting the fitness function, subdividing the problem into domains,

and enabling seamless interchangeability between these domains. Through a comprehensive exploration

43

of these aspects, the author aims to enhance the system’s overall performance and adaptability in the

platformer game environment.

3.3 The Motor/Output Layer

The Motor/Output Layer is a pivotal component in the system, focusing on emulating the processed

input back into the running World of Warcraft (WoW) process. The objective is to establish seamless

interaction between the system and the game allowing it to influence the game world based on its decision-

making process.

Emulating the output back into the WoW process necessitates careful consideration of the game’s

mechanics and the potential impact of the system’s actions. This thesis will explore various strategies for

translating the system’s decisions into meaningful actions within the game, such as controlling the player

character’s movements, performing combat actions, and interacting with the environment.

One technique for emulating the output involves direct injection of commands or inputs into the game

process. This approach entails sending appropriate signals or instructions to the game, simulating user

input as if it were generated by a human player. The author will delve into the associated challenges and

considerations, including the need for synchronization, timing, and adherence to the game’s rules and

limitations.

The Output Layer assumes a critical role in bridging the gap between the system and the game world.

By discussing techniques for emulating the system’s output back into the running WoW process, this

thesis aims to empower the system to actively participate and exert influence over the game environment

based on its acquired behaviors and decision-making capabilities.

44

Part II

Core of the Dissertation

45

Chapter 4

Contribution

4.1 Introduction

The target application of this thesis is aMassivelyMultiplayer Online Role-playing Game (MMORPG),

which is implemented as a software program. Like most software applications, thisMMORPG is suscep-

tible to implementation bugs and design flaws that can be exploited by hackers or experienced software

developers.

The architecture of thisMMORPG follows a common pattern used by many similar games. A central

bank of servers facilitates real-time communication with individual players over the Internet. Players use

client programs on their own Internet-connected devices to interact with the game world.

The game client is a software program that runs on the player’s device. It receives input from the user

and communicates with the central servers over the Internet. The client software provides a graphical view

of the virtual world, displaying the player’s location, other players, and ongoing actions.

In order to handle the real-time interactions and actions of thousands of players, the game client

maintains a client-side state. The game engine, situated within the client software, processes user input

and updates the game state as time progresses. Similar to any computer program, the state of the game

is defined as the current values of memory locations, secondary storage, registers, and other components

of the system.

The challenge arises from the significant bandwidth required to transmit the entire game state from

the server to all clients in real-time. This limitation led MMORPG designers to allow the client software

to preserve and manage some portions of the game state. This approach ensures that the game actions

appear seamless to the players.

This technical detail regarding the client-side state preservation and management is crucial to the

feasibility of this project. By accessing this preserved state, it becomes possible to extract the specific

data required as input to the Neural Network (NN). The project involves constructing a sensory/input

layer, a processing/NEAT layer, and combining them with the motor/output layer to produce the desired

result.

46

4.2 Building the Sensory/Input Layer

The sensory layer, also known as the input layer, defines the structure and manner in which data is

input into NNs. In the context of analyzing game states, the input data may be obtained by utilizing

reverse engineering techniques to probe the memory of a running process, specifically that of the game’s

client application. The sensory layer is constructed by utilizing a variety of software tools that have been

developed over time, such as debuggers, decompilers, and disassemblers. These tools facilitate the

exploration and comprehension of software, allowing for the extraction of relevant information that can be

retained in order to build the sensory layer.

4.2.1 Scanning Memory using Cheat Engine

Cheat Engine is a powerful memory scanner that searches a game’s operating memory, which resides

in Random-Access Memory (RAM). Understanding a game’s state is a fundamental requirement for

effectively engaging with it, but unlike human cognition, it is complicated for software to discern a game’s

state by visual observation alone. However, the underlying memory space of a game program houses

a numerical representation of the game state, which software can comprehend effortlessly. As such,

numerical analysis of game state memory structures serves as a critical foundation for developing the

intended software. Memory scanners such as this one are utilized to locate the relevant values in a

game’s memory. Subsequently it is possible to access the memory in those specific locations to discern

the game’s state. This technique allows to gather information about a game’s internal state.

All data in the memory of a game is stored at a specific location, known as a memory address. In

essence, the memory can be thought of as a large array of bytes, and a memory address is an index that

points to a particular value in that array. When a memory scanner is instructed to search for a particular

value x in the memory of a game, it iterates through the byte array, searching for any values that are equal

to x. Whenever it finds a match, it adds the index of the match to a result list.

However, given the vast size of a game’s memory, x can potentially be present in hundreds of locations.

For instance, if x is the player’s current health, which is 500, it is highly likely that the value of 500 is present

in many other locations besides the one that represents the player’s health. To eliminate these extraneous

values, the memory scanner provides an option to rescan the result list, removing any addresses that no

longer hold the same value as x, whether x is still 500 or has changed.

To conduct effective rescans, the game’s overall state must have significant entropy or disorder. The

entropy can be increased by modifying the in-game environment, such as by moving around, killing crea-

47

tures, or changing characters. As the entropy increases, unrelated addresses are less likely to hold the

same value as x, and with enough entropy, a few rescans should filter out all false positives and leave the

true address of x. Additional details of this process are provided in the appendix A.1.

4.2.2 Pointer Scanning using Cheat Engine

Pointer scanning is a technique used to locate dynamic memory addresses by tracing chains of pointers

that lead to them. The process involves first identifying a static memory address that points to the dynamic

memory location we’re interested in. We then use Cheat Engine to scan the game’s memory to find all

addresses that contain that static memory address.

Once we have a list of addresses that reference the static address, we can begin the pointer scanning

process. The goal is to identify other static memory addresses that point to the first static address,

forming a chain of pointers. To do this, we use Cheat Engine’s pointer scanner to follow the pointer chain

and identify additional addresses that reference the dynamic memory location.

Pointer scanning can be a more complicated process than simple memory scanning, as it often re-

quires a greater understanding of the game’s memory structure and the relationships between different

memory locations.

The memory pointer is the starting address of the chain and the offsets make up the path to the

desired value. Each offset is essentially an instruction that tells the program to move a certain number

of bytes from the current address to reach the next address in the chain. By following the pointer chain,

Cheat Engine can ultimately locate the address in dynamically allocated memory that holds the value of

interest.

list[int] chain = [start, offset1, offset2, (...)]

The first value in this pointer chain (start) is called a memory pointer. It’s an address that starts the

chain. The remaining values (offset1, offset2, and so on) make up the route to the desired value, called a

pointer path.

This pseudocode show how a pointer chain might be read:

The function read_pointer_chain(chain) takes a pointer chain called chain as input, which is in-

terpreted as a list of memory offsets from the memory pointer located at chain[0] 1 .

Next, the function iterates over each offset in the pointer chain, adding each offset to the current value

of mem_value, and reads the value at the resulting memory address using the read() function. The

48

Algorithm 1 Pseudocode to read a pointer chain

procedure read_pointer_chain(chain)

1 mem_value = read(chain[0]);

for (i = 1; i ̸= chain.len− 1; i++) do

offset = chain[i];

mem_value = read(mem_value+ offset)

return mem_value

value read is then assigned tomem_value. This process is repeated for each offset in the chain until the

end of the chain is reached.

Once the end of the pointer chain has been reached, the final value of mem_value is returned as

the result of the function. In other words, the function reads a series of memory addresses located using

a pointer chain and returns the value at the last address in the chain.

Which with the loop unrolled and with a concrete example would look something like this:

Algorithm 2 Pseudocode to read a pointer chain with loop unrolled

procedure read_pointer_chain()

list < int > chain = {0xDEADCAFE, 0xBC, 0x11, 0x05}

mem_value = read(0xDEADCAFE)

mem_value = read(mem_value+ 0xBC)

mem_value = read(mem_value+ 0x11)

mem_value = read(mem_value+ 0x05)

return mem_value

Pointer chains are essentially lists of memory offsets that lead to a dynamically allocated memory

chunk. These chains are useful for those who want to modify values stored in dynamic memory. However,

because of their complex structure, pointer chains cannot be easily located using traditional memory

scanning methods.

To overcome this challenge, pointer scanning techniques were developed, which involve brute-forcing

every possible pointer chain until the desired memory address is located. The pointer scanning process

involves recursively iterating over the possible pointer paths and updating the value of a memory pointer

at each step until the target memory address is reached.

While it is possible to locate and analyze the assembly code to deduce the pointer path used to access

49

the desired value, this process is time-consuming and requires advanced tools. Pointer scanners are a

faster and more efficient method for identifying pointer chains and accessing dynamic memory.

To initiate a pointer scan in Cheat Engine, you first need to locate a dynamic memory address in your

cheat table. Once you’ve found the address you’re interested in, right-click on it and select “Pointer scan

for this address” from the context menu. This will open a dialog box asking you where to save the scan

results as a .ptr file.

When you’ve selected a location to save the scan results, click “Ok” and wait for the scan to complete.

This process can take a while, depending on the complexity of the game and the number of pointer chains

that need to be searched. Once the scan is finished, you’ll be presented with a list of possible pointer

chains that lead to the target memory address as shown on figure 15.

Figure 15: Cheat Engine’s pointer scan result to a dynamic memory address.

To identify the correct pointer chain, you’ll need to analyze the results and look for a chain of offsets

that leads from a static memory address to the dynamic address you’re interested in. This can be a time-

consuming process, but once you’ve identified the correct pointer chain, you’ll be able to use it to access

the desired value through it.

The pointer scanner in Cheat Engine offers a rescan feature that can help to reduce false positives.

However, in rare cases, rescanning using a rescan loop may still leave a large list of possible paths. In

such cases, it may be necessary to restart the game, locate the address that holds the value, and use the

rescan feature on this address to further narrow the results. It is important to leave the “Only filter out

50

invalid pointers” option unchecked and enter the new address in the “Address to find” field.

If the results are still not narrow enough, running the same scan across system restarts or on different

systems may help. If this still yields a large result set, each result can be safely considered static because

more than one pointer chain can resolve to the same address.

Once the result set is narrowed down, usable pointer chains can be added to the cheat table by double-

clicking on them. If multiple chains with identical offsets that start with the same pointer but diverge after

a certain point are found, it is possible that the data is stored in a dynamic data structure. In such cases, it

is recommended to select the chain with the fewest offsets. In Appendix A.2 there is additional information

about this method with a concrete example in order to facilitate comprehension.

Understanding the Representation of Variables and Data in Computer Memory

Manipulating a game’s state can indeed be a challenging task, as it involves understanding the structure

and layout of the game’s memory. Simply using tools like Cheat Engine to scan for values may not always

yield the desired results, especially when trying to manipulate multiple related values simultaneously.

To successfully manipulate game state, it is often necessary to identify patterns and structures within

the game’s memory. This may involve analyzing the game’s code and memory dumps, as well as reverse

engineering the game’s data structures.

In the development of memory reading tools, it may be necessary to reconstruct the original structures

within the code. This requires a deep understanding of how variables and data are laid out in the game’s

memory.

To gain this understanding, it may be necessary to use example code, OllyDbg memory dumps and

Hex-ray’s IDA Pro dissembled binaries, and tables to tie everything together. These resources are necessary

to identify the game’s memory structures and create effective tools that can manipulate game state.

51

4.2.3 Countermeasures Against Reverse Engineering

Reverse engineering is a challenging and complex process that involves analyzing software programs and

their code to extract information or data from them. One of the most significant obstacles in reverse engi-

neering is Address Space Layout Randomization (ASLR), a security technique employed by modern

operating systems to randomize the memory layout of a program during runtime, thereby making it more

difficult for attackers to exploit vulnerabilities in the software.

It is certainly within one’s capabilities to search for and modify data within a game program. However,

it is important to keep in mind that the game program itself is also capable of searching memory for any

alterations made to its own code or data. This is often achieved through the implementation of integrity

checking measures, which may scan for any injected code or data that has been placed into memory via

active malware scanning techniques.

Many of the techniques utilized in this process involve modifying code, adjusting data bits, and injecting

threads or DLLs into the game process. However, such activities are not without their drawbacks, as they

can be detected by certain game software. One example of this is Blizzard’s Warden, which serves as a

protective measure forWoW. As such, it is possible to hide from and defeat many forms of scanning, but

the process can often be complex and may require advanced measures.

In order to accelerate development an external memory reading library named Blackmagic was used

for this purpose.

While these countermeasures can make it more difficult to reverse engineer games, they are not

foolproof. There can often be found ways around them, and this creates an ongoing arms race between

game developers and reverse engineers. Despite this, using countermeasures to protect against reverse

engineering is an important step in ensuring the integrity and security of games and other software.

52

4.2.4 DLL Injection, Hooking and Process Memory Reading

Dynamic-link library (DLL) injection is used to inject a custom DLL into the memory space of the run-

ningWorld of Warcraft process. The injected DLL contains code that hooks into the game’s rendering

function, Endscene, and modifies its behavior to allow the reading of process memory.

The DLL injection process is carried out by the Inject.InjectDLL function, which is called in the

BmWrapper.Start function. This function loads the custom DLL into memory and then uses the Win-

dows API function CreateRemoteThread to execute the DLL ’s DllMain function in the context of the

World of Warcraft process.

Once the custom DLL is successfully injected into the game’s memory space, it sets up hooks to

modify the behavior of the Endscene function. This is done through the Endscene.Init function, which

allocates memory in the game’s process space using the AllocateCaves function. The allocated memory

is used to store the detour and code cave functions that will be executed by the hooked Endscene function.

The Endscene.Init function then sets up the detour function using the inject function to write as-

sembly code into the allocated memory. The detour function pushes the registers and then modifies the

ecx register to access the IDirect3DDevice9 interface, which contains the rendering data for the game.

Themov instruction then stores the Endscene function address in the allocated memory space, and the

detour function then jumps to the custom code cave function. The IsSceneEnd2 address is then used

to jump back to the original Endscene function once the custom code cave function has executed.

The custom code cave function is created using the CreateCodeCave function, which again uses

the inject function to write assembly code into the allocated memory space. This function is executed

within the detour function and is used to execute the custom code.

The CreateDetour function is used to create the second detour that is called only when the player

is in-game. This is done by checking the value of 0xB4B424, which is a pointer to a memory address that

holds a value indicating whether the player is in-game or not. If the player is in-game, the CreateDetour

function uses a pointer to the player object and calls the custom code cave function. The result of the

custom code execution is then returned to the hooked Endscene function, which can then modify the

game’s rendering output as needed.

Overall, the DLL injection process is critical to modifying the behavior of the game’s rendering function

to allow for the reading of process memory. The custom code executed within the code cave function can

then be used to gather information about the game’s state, which can be used to build automated tools

such as the one presented by this thesis.

53

Code Caves

A code cave refers to a block of unused memory space that is created within the target process to allow

the injection of custom code. Code caves can be used to modify the behavior of an application by hijacking

the execution flow of a particular function.

The code cave in the provided functions is created using the AllocateCaves function. The Inject

class allocates a block of memory within the process using the VirtualAllocEx function, which returns a

pointer to the allocated memory. The size of the memory block is specified in bytes as a parameter to the

function.

Once the memory is allocated, the code for the code cave is assembled into an array of strings that

represent the assembly instructions. These instructions are then injected into the allocated memory block

using the inject function. The injected code will overwrite the existing instructions at the memory address

specified by the code cave pointer.

In the provided functions, a code cave is used to execute custom code injected by the user. The Cre-

ateCodeCave function creates a code cave where the custom code is injected. When the IsSceneEnd

function is called, it will jump to the code cave instead of returning to the calling function. The custom

code will then execute and return a value that will be used by the calling function.

Overall, code caves provide a powerful technique for modifying the behavior of a process by injecting

custom code. They can be used for a wide range of purposes, including bypassing security measures,

debugging, and reverse engineering.

54

4.3 Building the Processing/NEAT Layer

For this layer an external framework was used called SharpNEAT.

SharpNEAT is an open-source software library that implements theNeuroevolution of Augmented

Topologies (NEAT) algorithm, which is a type of NeuroEvolution (NE). NE is a subfield of Artificial

Intelligence (AI) that combines Evolutionary Algorithms (EAs) with Artificial Neural Networks

(ANNs or NNs) as previously discussed. The NEAT algorithm is particularly useful for evolving NNs, as

it gradually increases their complexity over time, allowing them to perform better on a given task.

The NEAT algorithm is a form of Genetic Algorithm (GA) that evolves NNs by starting with a

minimal network architecture and then adding or modifying nodes and connections over time. This allows

the network to become increasingly complex and specialized for the task at hand.

SharpNEAT is written in C# and provides a range of tools and features for evolving NNs using the

NEAT algorithm. One of the key features of SharpNEAT is its user-friendly interface, which allows re-

searchers and developers to create and evolve NNs with ease. SharpNEAT also provides a range of

visualization tools, which can be used to explore and analyze the behavior of the evolved NNs.

SharpNEAT is capable of evolving NNs for a wide range of tasks, including classification, prediction,

and control. For example, it can be used to develop NNs that can recognize handwritten digits, predict

stock prices, or control a robot’s movements. It does this by providing a range of fitness functions, mutation

and crossover operators, and other parameters that can be tweaked to optimize the performance of the

evolved NNs.

The primary goal of SharpNEAT is to provide a flexible and efficient tool for researchers and devel-

opers who are interested in using GAs to evolve NNs. By making it easier to create and evolve NNs,

SharpNEAT can help to accelerate progress in the fields of AI,Machine Learning (ML), and computa-

tional neuroscience and in this particular case was crucial in obtaining a viable and polished product.

The objective at hand was divided into two domains: navigation and combat. Both domains were

implemented entirely within the SharpNEAT framework and then integrated by creating an interface that

enabled them to operate concurrently.

Additional details on how to define a domain in SharpNEAT and the process of the setting up the

default configuration files are provided in the appendices A.3 and A.4 respectively.

55

4.3.1 Navigation Domain and Strategy

In the navigation domain, the central objective is for an individual to proficiently navigate towards a pre-

determined target with the intention of initiating an attack. The individual continually evaluates its own

position in relation to that of a nearby enemy, and its performance is assessed based on the reduction of

distance between them. A shorter distance signifies a more effective navigation strategy, leading to higher

fitness scores and indicating superior performance.

Once the individual successfully reaches the designated target, a strategic transition occurs. This

transition involves the individual orienting itself towards the target and seamlessly transitioning to the

combat domain. This shift in focus represents the individual’s preparedness to engage in combat and

effectively confront the target.

The navigation domain plays a critical role within the broader framework, emphasizing the individual’s

ability to navigate tactically towards the target while maintaining an optimal position relative to the enemy.

By continually striving to minimize the distance between itself and the enemy, the individual demonstrates

its capability to execute a successful navigation strategy.

Domain Schematics

?
NEAT

BIAS

PLAYER X

PLAYER Y

TARGET X

TARGET Y

FACING?

DISTANCE

W

GOTO
COMBAT DOMAIN

NAVIGATION
DOMAIN

YES

NO NEAR TARGET?

Q

E

A

D

SPACE

Figure 16: Schematics of the Navigation Domain.

56

Inputs

The sensory/input layer of the domain utilizes the following inputs to provide information to the NN:

1. Bias: A constant input used to provide a bias or offset to the network’s computations.

2. Player X position: The X-coordinate of the player’s position in the virtual world.

3. Player Y position: The Y-coordinate of the player’s position in the virtual world.

4. Target X position: The X-coordinate of the target’s position in the virtual world.

5. Target Y position: The Y-coordinate of the target’s position in the virtual world.

6. If Player is Facing Target: This input represents whether the player is facing towards the target. It is

calculated using the atan2 function, which computes the angle between the player’s position and

the target’s position.

7. Distance from Player to Target: The distance between the player and the target in the virtual world.

By providing these inputs to the NN, the sensory/input layer conveys essential information about the

player’s position, the target’s position, and their spatial relationship. These inputs serve as the foundation

for the network to make decisions and generate appropriate outputs in response to the given task or

objective.

57

Outputs

The motor/output layer of the domain utilizes the LeakyReLU activation function and provides the following

possible outputs:

1. w: This output corresponds to the action of moving forward.

2. q: This output corresponds to the action of moving with a strafe to the left.

3. e: This output corresponds to the action of moving with a strafe to the right.

4. a: This output corresponds to the action of turning to the left.

5. d: This output corresponds to the action of turning to the right.

6. SPACE: This output corresponds to the action of jumping.

These outputs represent the possible actions that the entity or player can take in the given domain

or virtual environment. By selecting one or a combination of these outputs, the entity’s behavior can be

controlled and manipulated within the domain. The LeakyReLU activation function is applied to the outputs

to introduce non-linearity and capture complex relationships between the inputs and outputs, allowing for

more flexible and adaptive decision-making.

58

Fitness

In the given domain, the fitness of the entity or player is determined based on certain conditions after

testing the output. The fitness is increased under the following conditions:

1. Distance to target decreased: When the distance between the entity and the target decreases, the

fitness is substantially increased. This condition incentivizes the entity to approach the target and

rewards progress towards reaching it.

2. Player is currently facing the target: If the entity is facing the target, the fitness is slightly increased.

This condition encourages the entity to align its orientation with the target, potentially indicating a

more accurate or advantageous position.

By rewarding the entity for reducing the distance to the target and aligning its orientation, the fitness

function promotes behaviors that are conducive to successfully completing the task or objective in the

given domain. The fitness value serves as a measure of how well the entity is performing based on these

criteria, guiding the evolutionary process to improve the entity’s decision-making and overall performance.

Stop Condition

In the navigation task of the domain, the stop condition is defined as follows:

• The distance between the Player and the Target is less than X: The navigation task is considered

fulfilled when the distance between the Player and the Target becomes less than a specified thresh-

old value X, which in this case is set to 25. Once this condition is met, it indicates that the Player

has successfully reached the target location or is in close proximity to it.

Upon fulfilling the navigation task, a “flag” is raised to initiate the combat domain. This flag serves

as a signal or marker to indicate the transition from the navigation domain the combat domain. It triggers

the system or algorithm to switch its focus or behavior from navigation-related actions to combat-related

actions.

By establishing a clear stop condition based on the distance between the Player and the Target, the

system can determine when the navigation objective has been achieved and proceed to the next phase of

the domain, which in this case is the combat domain.

59

NEAT’s Parameters - Navigation Domain

Table 1: NEAT’s Parameters for the Navigation Domain.

Parameter Value

Name WoW Cheese

Is Acyclic False

Activation Function Name LeakyReLU

Evolution Algorithm:

Species Count 5

Elitism Proportion 0.2

Selection Proportion 0.2

Offspring Asexual Proportion 0.5

Offspring Sexual Proportion 0.5

Interspecies Mating Proportion 0.01

Reproduction (Asexual):

Connection Weight Mutation Probability 0.4

Add Node Mutation Probability 0.1

Add Connection Mutation Probability 0.3

Delete Connection Mutation Probability 0.025

Reproduction (Sexual):

Secondary Parent Gene Probability 0.1

Population Size 10

Initial Interconnections Proportion 0.1

Connection Weight Scale 5.0

Complexity Regulation Strategy:

Strategy Name Relative

Relative Complexity Ceiling 30

Min Simplification Generations 10

Degree of Parallelism 1

Enable Hardware Accelerated Neural Nets True

Enable Hardware Accelerated Activation Functions True

60

4.3.2 Combat Domain and Strategy

Within the combat domain, the primary objective is for an individual to successfully eliminate the desig-

nated target enemy. This is achieved through constant monitoring and comparison of the target’s health

status. The individual’s performance is evaluated based on its ability to diminish the target’s health, re-

sulting in higher fitness scores.

Throughout the combat engagement, the individual employs a strategic approach tailored to effectively

deplete the target’s health. It utilizes a range of offensive and defensive abilities and evolves and adapts its

combat strategy based on the target’s behavior, optimizing its chances of successfully slaying the enemy.

Upon achieving its objective, which is the elimination of the target enemy, the individual transitions

back to the navigation domain. This resumption of the navigation process marks the completion of the

combat phase and signifies the individual’s readiness to pursue subsequent objectives.

The combat domain represents a critical phase within the overall framework, where the individual’s

combat prowess and strategic decision-making abilities are put to the test. The efficiency with which the

individual reduces the target’s health directly influences its overall performance and fitness. By effectively

executing combat strategies and adapting to changing circumstances, the individual increases its chances

of successfully eliminating the target enemy.

Domain Schematics

?
NEAT

BIAS

PLAYER HP

PLAYER MANA

TARGET HP

TARGET MANA

FACING?

DISTANCE

GOTO
NAVIGATION DOMAIN

COMBAT
DOMAIN

YES

NO TARGET DEAD?

1

2

E

D

Figure 17: Schematics of the Combat Domain.

61

Inputs

The chosen inputs for this domain are as follows:

1. Bias: A constant input used to adjust the activation of neurons in the NN.

2. Player Health: The current health level of the player character. This input provides information

about the player’s remaining health, which can be used by the NN to make decisions based on the

player’s vulnerability or need for self-preservation.

3. Player Mana: The current mana level of the player character. This input represents the player’s

available magical energy or resource, which can be used for casting spells or performing special

abilities.

4. Target Health: The current health level of the target enemy or opponent. This input allows the NN

to assess the target’s vulnerability and make decisions based on the target’s remaining health.

5. Target Mana: The current mana level of the target enemy or opponent. Similar to the player’s mana

input, this provides information about the target’s available magical energy or resource.

6. If Player is Facing Target: This input is determined using the atan2 function, which calculates the

angle between the player and the target. It indicates whether the player is facing towards the target

or not, which can be crucial in determining the effectiveness of certain actions or attacks.

7. Distance from Player to Target: This input represents the Euclidean distance between the player

and the target. It provides information about the proximity of the target to the player and can be

used to guide decision-making related to engagement or pursuit.

By incorporating these inputs, the system can take into account various factors such as the player’s

and target’s health, mana levels, relative orientation, and distance to make informed decisions during

combat scenarios.

62

Outputs

For this domain, the chosen outputs for the NN are as follows:

1. 1: This output represents an action to inflict damage on the target enemy or opponent. The neural

network can activate this output to initiate an attack or offensive maneuver against the target.

2. 2: This output indicates an action to restore the player character’s health. Activating this output

can trigger healing abilities or actions to replenish the player’s health.

3. a: This output instructs the player character to turn or rotate in the left direction. It allows the neural

network to control the player’s movement and orientation during combat scenarios.

4. d: This output instructs the player character to turn or rotate in the right direction. Similar to the

”Turn Left” output, it enables the neural network to control the player’s movement and orientation.

The chosen activation function, LeakyReLU, is applied to the outputs to introduce non-linearity and

flexibility in the neural network’s decision-making process. By combining these outputs with the chosen

inputs, theNN can learn and adapt its behavior to optimize combat strategies, including attacking, healing,

and maneuvering based on the given inputs and desired outcomes.

63

Fitness

The fitness function for this combat domain is based on evaluating the performance of theNN in achieving

specific objectives. The fitness is increased under the following conditions:

1. Target Health Decreased: When the target’s health decreases, it indicates that the NN is effectively

inflicting damage and progressing towards defeating the opponent. This condition significantly

increases the fitness score, rewarding successful combat actions.

2. Player is Currently Facing the Target: If the player character is facing the target enemy, it demon-

strates good positioning and awareness in combat. This condition slightly increases the fitness

score, encouraging the NN to maintain an advantageous position relative to the target.

By rewarding the NN for reducing the target’s health and exhibiting appropriate orientation towards

the target, the fitness function incentivizes the development of combat strategies that prioritize damaging

the opponent and maintaining a favorable position. This encourages the NN to learn effective combat

techniques and improve its decision-making abilities during battles.

Stop Condition

In the combat task of the domain, the stop condition is based on the status of the target. The combat

task will be considered fulfilled when the target is defeated, indicated by the target’s health reaching zero.

Once the target’s health becomes zero, it signifies that the combat objective has been accomplished.

Upon fulfilling the combat task, a “flag” is raised to indicate the completion of combat, and the system

will proceed to restart the navigation task. This flag serves as a trigger for transitioning between tasks,

allowing the system to switch from combat mode back to navigation mode, where the entity will resume

its navigation behavior.

By setting the stop condition based on the target’s health reaching zero, the system ensures that the

combat task continues until the target is defeated. This enables theNN to learn effective combat strategies

and adapt its behavior to overcome challenges posed by different opponents.

64

NEAT’s Parameters - Combat Domain

Table 2: NEAT’s Parameters for the Combat Domain.

Parameter Value

Name WoW Combat Cheese

Is Acyclic False

Activation Function Name LeakyReLU

Evolution Algorithm:

Species Count 5

Elitism Proportion 0.2

Selection Proportion 0.2

Offspring Asexual Proportion 0.5

Offspring Sexual Proportion 0.5

Interspecies Mating Proportion 0.01

Reproduction (Asexual):

Connection Weight Mutation Probability 0.4

Add Node Mutation Probability 0.1

Add Connection Mutation Probability 0.3

Delete Connection Mutation Probability 0.025

Reproduction (Sexual):

Secondary Parent Gene Probability 0.1

Population Size 10

Initial Interconnections Proportion 0.1

Connection Weight Scale 5.0

Complexity Regulation Strategy:

Strategy Name Relative

Relative Complexity Ceiling 30

Min Simplification Generations 10

Degree of Parallelism 1

Enable Hardware Accelerated Neural Nets True

Enable Hardware Accelerated Activation Functions True

65

4.3.3 Atan2 - Determining if a player is facing a target

The atan2 function is a mathematical tool that plays a crucial role in many areas of computer science and

engineering. One such area is the field of video game development, where it is used to determine the

position of enemies on the screen relative to the player.

The atan2 function is a mathematical function that takes in two arguments, usually represented as x

and y, and returns the angle between the positive x-axis and the line connecting the origin to the point (x,

y). This angle is measured in radians and can range from -π to π.

The atan2 function is defined as follows:

atan2(y, x) = arctan(y/x)

However, unlike the arctan function, which has a limited range of −π/2 to π/2, the atan2 function

takes into account the signs of both x and y to determine the correct quadrant in which the angle lies. This

means that the atan2 function can return angles in all four quadrants of the coordinate plane.

In practical terms, this means that if we have a point (x, y) in a 2D coordinate system, we can use the

atan2 function to find the angle between the positive x-axis and the line connecting the origin to that point.

This angle can then be used to determine the position of the point relative to the player or another point

of interest.

(-2,3)

(2,-3)

(2,3)

(-2,-3)

atan2(3,2)
=56.3º

atan2(-3,2)
=-56.3ºatan2(-3-,2)

=-123.7º

atan2(3,-2)
=123.7º

Figure 18: Pratical examples of atan2.

In video games, the atan2 function is often used to check the position of enemies relative to the player.

By calculating the angle between the player’s position and the enemy’s position, it is possible to determine

the direction in which the enemy or the player is facing Marschner and Shirley [2009].

66

4.3.4 Saving and Loading State

In order to facilitate the preservation and seamless transition of the state between the navigation and

combat domains, the system incorporates mechanisms for saving and loading the current state of each

domain. This is achieved through the utilization of static variables within the navigation and combat

EvaluationScheme classes.

Specifically, the static variables _static_ea_runner, _static_neatPop, _static_ea_runner_combat, and

_static_neatPop_combat serve as repositories for storing the state of the navigation and combat domains,

including vital information such as the best genome and population.

Prior to switching from one domain to another, the system ensures that the current state of the active

domain is saved to the corresponding static variables. This preservation of state guarantees that essen-

tial information is retained and can be accessed when needed during subsequent domain switches. By

employing this approach, the system effectively enables a seamless context switching experience while

maintaining the integrity of the state between domains.

Saving To and Loading From File

To provide users with the capability to save and reload the state of each domain, the system incorpo-

rates functionality for saving to and loading from file. Specifically, the best genome and population of

both the navigation and combat domains can be saved to separate files, allowing for independent stor-

age and retrieval. These operations are facilitated through the utilization of the NeatGenomeSaver and

NeatPopulationSaver components.

When saving the state, the system employs the appropriate saver components to store the genomes

and populations of the navigation and combat domains separately. Each domain’s data is saved to its re-

spective file, ensuring that the information remains distinct and easily accessible. Subsequently, when the

need arises to reload a specific domain, the system leverages the saved files to retrieve the corresponding

state. By doing so, the system can seamlessly restore the previous state of the domain, including the best

genome and population.

The ability to save and load the state to and from file provides users with a valuable means of pre-

serving and sharing their work. It allows for the persistence of crucial data between different sessions and

facilitates the exchange of results or experiments among different instances of the system. Through the

implementation of these file-based operations, the system enhances usability and empowers users with

the flexibility to manage and manipulate their data effectively.

67

4.4 Building the Motor/Output Layer

Building the Motor/Output Layer involves establishing a mechanism for emulating the system’s output

and translating it into meaningful actions within the game. Initially, one approach considered was direct

injection of commands or inputs into the game process. However, this approach was ultimately discarded

due to several challenges and limitations.

Direct injection of commands or inputs involves sending signals or instructions directly to the game.

While this approach can provide real-time interaction with the game, it poses challenges in terms of syn-

chronization, timing, and adherence to the game’s rules and limitations. Ensuring that the system’s actions

are within the game’s constraints and avoiding actions that may be considered cheating or violating the

game’s terms of service is crucial1. Additionally, synchronizing the system’s actions with the game’s state

and events can be complex and prone to errors.

Instead of direct injection, a more discrete technique was adopted by embedding the AutoIt scripting

language into the C#2 environment. AutoIt provides a scripting interface that allows automation of user

actions and interactions with Windows-based applications. By utilizing AutoIt, the system can execute the

desired actions within the game, simulating user input as if it were generated by a human player. It can

control the player character’s movements, combat actions, and interactions with the environment, among

other things. This approach provides more control and flexibility in designing AI behaviors while ensuring

compliance with the game’s mechanics and rules.

1 It has to pass as unsuspicious to the game’s anti-cheating system.
2 Which was used as the main programming language.

68

4.4.1 Autoit - Scripting Language

Figure 19: Autoit scripting language. Ltd [2023]

AutoIt is a scripting language used for automating the Windows Graphical User Interface (GUI). It

provides various functions for automating tasks such as keystrokes, mouse clicks, and window manage-

ment. One of the most useful functions that AutoIt provides is the ControlSend function.

The motor layer was contructed using the AutoIt’s ControlSend function to send input to theWorld of

Warcraft (WoW) game window. The ControlSend function in AutoIt is particularly useful when it comes

to automating user input for applications. With ControlSend, we can send input to a specific window or

control within a window, making it an ideal tool for these type of automation.

To use ControlSend in a C# project, first we need to download the AutoItX DLL from the autoit website

then we need to import it. We can do this by selecting the DLL as a dependency to the project and

copying it to the source folder. Once we have imported the DLL , we can use the ControlSend function to

send any input to any running process with a GUI. Such input can come from a NN’s output, essentially

accomplishing what’s required to this stage.

To use the ControlSend function in our C# code, we first need to initialize the AutoIt environment

importing it: using AutoIt;. We can then call the AutoItX.ControlSend function, passing in the necessary

parameters.

The code snippet below shows an example of how we can use the AutoItX.ControlSend function to

send input to the WoW game window:

69

AutoItX.ControlSend(”World of Warcraft”, ””, ””, ”key”);

In this code, ”World of Warcraft” is the title of the game window, ”key” is the text or input to be

sent, and it’s also possible to change the mode in which to send the input, to allow for raw input, although

for this use case, the default parameters works just fine.

By having access to this tools and functions, it is not only possible, but rather trivial to send the NN

output as input to the running process.

However, when using ControlSend with the SharpNEAT framework or any other multithreaded envi-

ronment, it is essential to wrap the calls using a mutex to prevent race conditions that could cause errors

or crashes. In the code snippet below, it is demonstrated how to use a mutex to safely send input to the

World of Warcraft game window using ControlSend:

mutex.WaitOne();

AutoItX.ControlSend(”World of Warcraft”, ””, ””, ”key”);

mutex.ReleaseMutex();

Using AutoIt’s ControlSend function in conjunction with the output from a NN allows us to automate

complex user input tasks in video games, making it possible to create bots or other automated tools that

can play the game more efficiently. By combining different technologies, we can achieve impressive results

and explore the possibilities of automation and AI in video games and other applications.

70

4.5 Summary

This chapter focused on the development of a bot for game automation using the SharpNEAT frame-

work. The chapter explored various components involved in building the bot’s Sensory/Input layer, Pro-

cessing/NEAT layer, and Motor/Output layer. Additionally, it discussed the utilization of other tools and

technologies such as Cheat Engine and AutoIt to explore the application’s memory space.

The chapter began with an introduction to the topics covered, providing an overview of the subsequent

sections. It emphasized the importance of constructing an effective bot for game automation, highlighting

the significance of each layer in the overall architecture.

The building of the Sensory/Input layer was addressed, highlighting the utilization of tools like Cheat

Engine for memory scanning and pointer scanning. These techniques allowed for the retrieval of game-

related information from the memory space. Furthermore, countermeasures against reverse engineering

were discussed to safeguard the integrity of the game.

Next, the chapter delved into the processing/NEAT layer, which involved defining the domain in the

SharpNEAT framework. The process of configuring and setting up Neural Network evolution was ex-

plained, along with the utilization of default configuration files as a starting point for parameter adjustment.

The navigation domain and strategy were then explored, focusing on the objective of getting the bot

close enough to the target for initiating an attack. Inputs such as player and target positions, distance,

and facing direction were considered in the design. The fitness function aimed to minimize the distance

to the target, reflecting improved performance as the bot approached the objective.

Subsequently, the combat domain and strategy were discussed, wherein the bot’s goal was to defeat

the target enemy once engaged. Inputs such as player and target health, along with facing direction, were

incorporated into the combat domain. The fitness function was designed to encourage the reduction of

the target’s health, signifying successful combat performance.

Users can seamlessly switch between these domains while preserving the state and information spe-

cific to each. This is facilitated through the utilization of static variables that store the current state of the

active domain. Additionally, the system provides functionalities for saving and loading the state of each

domain, allowing users to save their progress and reload it at a later time. The saved state, including the

best genome and population, can be stored in separate files for independent retrieval. These file-based

operations enhance usability, enabling users to persist their work, share results, and conduct experiments

efficiently.

The atan2 function was used as a tool for determining if the player was facing the target. By calculating

71

the angle between the player’s position and the target’s position, the atan2 function provided valuable

information on the direction of the player’s orientation relative to the target. This feature was crucial for

effective decision-making in combat scenarios.

The chapter further explored the Motor/Output layer, highlighting the utilization of the AutoIt scripting

language and its ControlSend function for automating user input in the Windows GUI. By leveraging AutoIt,

the bot could send input commands to specific windows or controls, such as game windows. This func-

tionality enabled the bot to perform actions within the game environment based on its decision-making

processes.

In essence this chapter provided a comprehensive overview of the bot development process, empha-

sizing the integration of different layers and tools to create an efficient game automation system. The

combination of several technologies facilitated the exploration of automation and AI in gaming applica-

tions. It showcased the potential for creating sophisticated bots capable of automating complex tasks in

video games, opening up new avenues for research and innovation in the field.

72

Chapter 5

Application

5.1 Introduction

This chapter provides an overview of the architecture used in the project’s application and explains how the

different layers of the system interact. It describes the interaction between theGraphical User Interface

(GUI), Sensory/Input layer, Processing/NEAT layer, and Motor/Output layer. The chapter also explores

the management of context switching between the navigation and combat domains, discussing how the

system handles the transition between these domains and manages the entity’s behavior accordingly.

In addition, the chapter explains the setup process required for the application to execute effectively. It

covers the necessary configurations and preparations needed to ensure a smooth execution of the system,

as well as the steps involved in preparing the entity for its evolutionary process.

The chapter further discusses the data visualizations provided by the GUI, which enable users to mon-

itor the evolving complexity of the Processing/NEAT layer. It explores the various visualizations such as

graphs, charts, histograms, and rank plots, which help users gain insights into the behavior and perfor-

mance of the NEAT algorithm.

Moreover, the chapter presents the end result of the project and highlights relevant observations made

during its development. These observations provide valuable insights into the entity’s learning and decision-

making processes, showcasing its cognitive capabilities and the efficacy of the applied GAs.

Finally, the chapter concludes by summarizing the key points covered throughout, including the archi-

tecture, context switching, setup process, data visualizations, end result, and observations. It provides a

comprehensive overview of the applications chapter and its contributions to the project.

73

5.2 Architecture

GRAPHICAL USER INTERFACE

NAVIGATION
DOMAIN

COMBAT
DOMAIN

AutoIt

PR
ES
EN
TA
TI
ON

SE
NS
OR
Y/

IN
PU
T
LA
YE
R

PR
OC
ES
SI
NG
/

NE
AT
 L
AY
ER

Sh
ar
pN
EA
T

PROCESS
INPUT

EMULATIONMO
TO
R/

OU
TP
UT
 L
AY
ER

PROCESS
HOOKING

PROCESS
MEMORY
READING

C#

Figure 20: System’s Architecture. C# as the main language for the project.

The figure 20 illustrates the comprehensive interaction between the various layers comprising the

system architecture. This visualization aims to enhance the reader’s understanding of the system’s internal

workings.

The application incorporates an intuitive and user-friendly Graphical User Interface (GUI) to facil-

itate user interaction. One of the initial points of engagement involves hooking onto the target process, a

straightforward process accomplished seamlessly through the GUI. By establishing this connection, the

application gains the capability to directly access and read data from the target process memory. This

crucial functionality enables the domains developed using the SharpNEAT framework to acquire the neces-

sary information to train, evaluate, and evolve individuals within the system. Subsequently, the preferred

actions or outputs of these individuals are emulated back into the running process. This emulation is

made possible by leveraging AutoIt’s DLL, which grants the application the ability to execute input within

the target process space.

There exists a bidirectional arrow linking the SharpNEAT domains to theGUI. This linkage underscores

74

the fact that theGUI primarily comprises resources provided by the SharpNEAT framework, supplemented

by user-specific customizations. Furthermore, it signifies the architectural decision to indirectly manipulate

the GUI, thereby enabling efficient and intuitive context switching between domains. This design choice

arises from the interweaving of logic within the framework, as it directly retrieves information from the

textual data presently displayed in the GUI.

The system architecture is meticulously crafted to ensure seamless integration and communication

between the GUI, SharpNEAT domains, and the target process. The user-friendly GUI empowers users

to effortlessly hook onto the target process, extract pertinent data, train and evaluate individuals using

SharpNEAT, and effectively emulate preferred actions within the target process. By adopting this archi-

tecture, the application embodies a sophisticated framework that facilitates complex interactions while

maintaining user-friendly functionality.

Process Hooking

Processing hooking is a technique used to intercept and modify the behavior of a target process. It involves

injecting custom code into the process’s execution flow to gain control and access its memory. This

technique is commonly employed to perform various tasks, such as debugging, reverse engineering, and

system monitoring.

To implement processing hooking, several steps need to be followed, as explained on section 4.2.4.

Firstly, a hooking mechanism is employed to intercept function calls or system events within the target

process. This can be achieved through various means, including code injection, dynamic linking, or API

hooking Sikorski and Honig [2012].

Once the hook is established, the custom code is executed in response to the intercepted events. This

code can perform a range of actions, such as modifying function parameters, redirecting execution flow,

or reading memory from the target process.

In this case code injection was used to hook and read memory from the hooked process. By gaining

control over the target process’s execution, the hooking code can access and extract specific data stored

in its memory.

75

5.3 Domains and Automatic Context Switching

COMBAT
DOMAIN

NEAR TARGET?

TARGET DEAD?

NAVIGATION
DOMAIN

YES

YES

NO

NO

Figure 21: Automatic Context Switching Between Domains.

To enable seamless transition between domains, a sophisticated system was implemented to preserve

the state of each domain, allowing for later resumption of progress. Additionally, continuous monitoring in

the background ensures accurate determination of the active domain.

A dedicated background thread operates in parallel, consistently assessing whether the specified objec-

tive of the current domain has been achieved. Based on this evaluation, the system dynamically switches

between domains or continues within the same domain for subsequent generations.

Each domain incorporates a static variable functioning as a flag, signifying the fulfillment or pending

status of the domain’s primary objective. When this flag is modified, the background thread detects the

change and triggers the GUI to transition to the corresponding domain in the SharpNEAT experiment.

Consequently, the framework is primed to recognize and accommodate the desired configuration of the

experiment. The state of the domain is loaded from static variables that retain essential information

concerning the evolution algorithm and the entire population of individuals specific to the domain.

By adopting this approach, the system facilitates efficient domain switching while preserving the in-

tegrity of each domain’s progress. The background thread diligently monitors the status of the current

domain, ensuring smooth transitions and uninterrupted execution of the evolving process. This design

not only enhances the system’s flexibility but also enables effective coordination between the GUI and the

SharpNEAT framework.

The implementation of automatic context switching between domains demonstrates a sophisticated

mechanism that enables the system to seamlessly transition between navigation and combat domains.

This dynamic functionality, facilitated by the background thread and the state-preservation capabilities,

significantly enhances the overall performance and adaptability of the system.

76

5.4 Post Launch Application Priming

In this section, the necessary steps for preparing the application and witnessing the emergence of the AI

entity will be elucidated.

Upon starting the application, there are a few essential steps that need to be completed before the

entity can commence its actions. These preliminary procedures ensure the proper alignment of all com-

ponents involved. The following steps outline the initial setup process:

1. Attach to Process: The user begins by clicking the “Attach” button, which opens a pop-up window

displaying the available instances that can be hooked into. From this list, the user selects a suitable

instance to establish the necessary connection as depicted in figure 23.

2. Select the Domain: Within the application’s Graphical User Interface (GUI), the user navi-

gates to the “Experiment/Task” drop-down menu and chooses the appropriate domain. For exam-

ple, in the case of the navigation domain, the user selects “WoW NEAT Cheese1” from the options

as depicted in figure 24.

3. Load Default Parameters: To ensure consistent configuration, the user selects the “Load Exper-

iment Default Parameters” button within the GUI as depicted in figure 25. This action populates

the GUI fields with the default parameters defined in the configuration file.

4. Create Initial Population: The user has the option to generate an initial population based on the

configuration settings. By selecting the “Create Random Population” button, the application gener-

ates a population that adheres to the specified parameters2 as depicted in figure 26. Alternatively

the user can load a previously saved population. Additionally, the user can modify these settings

directly within the GUI if so desired as depicted in figure 28.

With these preparations complete, the application is primed for execution. By selecting the “Start/-

Continue” button, the AI entity springs to life as depicted in figure 27, and its behavior within the target

application becomes observable.

By following these systematic steps, users can effectively initialize the application and observe the AI

entity’s dynamic behavior as it evolves and interacts with the designated environment.

1 In video games, the term “cheese” is usually reserved to refer to unfair, unorthodox strategies.
2 On the experiments *.config.json file.

77

Figure 22: Default state of the application at

startup.

Figure 23: Hooking the application the relevant

WoW instance. We use the character’s in-game

name to better discern viable instances.

Figure 24: Changing the Experiment/Task toWoW

NEAT Cheese. - The Navigation Domain

Figure 25: Loading the experiment default param-

eters that we set in the configuration file for the

selected experiment.

78

Figure 26: Creating a random population of

genomes following the guidelines set in place.

Figure 27: Starting the Experiment/Task on the

Navigation Domain, eventually switching to the

Combat Domain.

There is also the possibility to change the following configurations directly in the GUI before starting3:

Figure 28: The possibility of changing Evolution and Reproduction settings directly through the GUI.

3 By selecting “Page 2” and then altering the intended parameters.

79

5.5 GUI Live Data Visualization

The SharpNEAT framework offers a range of powerful tools for live data visualization, providing users with

valuable insights into the ongoing NEAT algorithm.

One of these tools is the “Best Genome” visualization, which presents a graph representation of the

NN (i.e. the phenotype) of the current best individual in the domain. This visual depiction showcases the

input neurons positioned at the top, the output neurons at the bottom, and the hidden neurons and their

respective connections in between. By observing this graph, users can gain a deeper understanding of

the structure and connectivity of the NN.

Figure 29: Seeing the current best genome phenotype (NN) of the Navigation Domain through the GUI.

The “Charts” view in the GUI provides three major types of charts for live data visualization. The “Time

Series” charts offer three options: fitness (both best and mean), complexity (both best and mean), and

evaluations per second. These charts allow users to track the progress of fitness and complexity measures

over time, providing insights into the performance and evolution of the NEAT algorithm throughout the

execution.

The “Histograms” section within the Charts view offers a range of histograms for visual analysis.

Users can explore the distribution of species sizes, mean fitness, mean complexity, and genome fitness

and complexity. These histograms enable users to examine the population characteristics and understand

the variation and distribution of fitness and complexity values within the evolving population.

Lastly, the “Rank Plots” in the GUI provide further visualization options. Users can observe species

size by rank, species fitness by rank (both best and mean), species complexity by rank (both best and

mean), and genome fitness and complexity by rank. These rank plots offer a comprehensive view of how

80

species and genomes are ranked and provide insights into the relative performance and complexity of

different individuals.

Figure 30: Time Series, Histograms and Rank Plots that can be monitored through the GUI.

By leveraging these visualizations, users can gain valuable insights into the ongoing NEAT algorithm,

monitor its progress, and make informed decisions based on the observed trends and patterns. The

combination of graph representations, time series charts, histograms, and rank plots empowers users to

analyze and understand the dynamic behavior of theNEAT algorithm in a more professional and academic

manner.

81

5.6 End Result and Observations

During the initial stages of development, the entity experienced subpar performance due to a lack of clear

separation between domains and specific objectives. Without a well-defined sense of direction, the entity

struggled to process the input and select appropriate outputs, resulting in confusion and inefficiency.

Despite continuous modifications to the fitness function and feedback mechanisms, the entity’s behavior

remained far from the intended objectives, exhibiting erratic and unpredictable patterns.

To overcome this challenge, a significant breakthrough was achieved by adopting a divide-and-conquer

approach. The original objective was divided into smaller, more manageable sub-objectives, leading to im-

proved performance. Two distinct domains, namely navigation and combat, emerged as separate cognitive

zones within the entity’s framework. This strategic partitioning allowed for the development of desired be-

haviors and demonstrated noticeable generational improvements over time.

The subsequent observations and details gathered during the development process provided valuable

insights into the entity’s learning and decision-making processes. These observations shed light on the

intricacies of its cognitive capabilities and the effectiveness of the applied GA. The observations deepened

the understanding of how the entity adapts, learns, and makes decisions, providing valuable information

for further refinement and optimization.

Overall, the adoption of a divide-and-conquer approach and the emergence of distinct navigation and

combat domains proved to be pivotal in improving the entity’s performance. It will now be discussed some

observations that were made throughout the development process that led to the enhanced understanding

of the entity’s cognitive abilities and the efficacy of the GA employed.

82

5.6.1 Navigation Domain

Figure 31: Showing the application in action currently on the Navigation Domain.

The development of the navigation domain yielded few unexpected challenges, as the cognitive re-

gion(i.e. NEAT and the custom interface) responsible for navigation demonstrated effective strategies in

navigating the virtual environment. Notably, the emergence of successful navigation strategies showcased

the organism’s ability to adapt and overcome obstacles through genetic mutations.

To ensure continuous progress, the system incorporates a periodic change in the target object, pre-

venting the entity from becoming fixated on an unreachable objective. Although the initial movements may

appear random, over time, the entity refines its decision-making process, exhibiting increasingly precise

and natural movement patterns.

In certain instances, it was observed that the entity appeared to be trapped in a repetitive rotation loop.

However, with successive generations, the entity successfully transitioned to more effective strategies,

enabling it to break free from the loop and resume traversing a more conventional path.

Moreover, it is worth noting that the navigation domain exhibited a trend of diminishing returns,

whereby noticeable improvements in performance became less discernible after approximately the 100th

generation. While initial iterations showed favorable progress and visible advancements, subsequent gen-

erations demonstrated relatively smaller incremental enhancements that were not easily perceivable.

This observation highlights the potential limitations and constraints of the applied GA within the nav-

igation domain. After a certain point, the entity’s navigation capabilities may have reached a plateau,

suggesting that further optimizations or alternative approaches may be necessary to achieve significant

breakthroughs beyond a certain generational threshold.

83

5.6.2 Combat Domain

Figure 32: Showing the application in action currently on the Combat Domain.

The combat domain, while conceptually simpler in terms of cognitive capacity compared to the nav-

igation domain, unveiled intricate and nuanced behaviors that were not initially anticipated during the

preliminary trial runs of the system.

A notable observation in the combat domain was the emergence of unintended behavior in certain

generations. It was observed that some individuals exhibited a tendency to lock their direction to the target

and primarily focused on healing themselves rather than prioritizing damage to the target, which is the

primary objective and the behavior that yields greater rewards. This suboptimal strategy appeared to arise

due to lower mutation rates in the early generations, constraining the exploration of alternative strategies.

However, through increased mutation rates and greater room for exploration, the organisms adapted and

successfully adopted a more efficient strategy that emphasized damaging the target while occasionally

healing themselves to mitigate the risk of failure or death.

Similar to the navigation domain, the combat domain also demonstrated diminishing returns over time.

Beyond a certain point, generational improvements became significantly limited or barely noticeable, and

in some cases, less effective strategies emerged. This suggests the existence of an optimal performance

peak, beyond which further enhancements become challenging to attain. While one possible approach

to counteract this effect would be to disable mutation and crossover, maintaining the organism at its

peak performance, identifying and capturing this peak can be challenging in practice. Moreover, fixing the

strategy to the current best one could introduce rigidity to the phenotypes, potentially restricting adaptability

and responsiveness to changing conditions.

84

5.7 Summary

Chapter 5 provides a comprehensive overview of the implementation and results of the AI entity, focusing

on the navigation and combat domains. The chapter begins by describing the system architecture, high-

lighting the comprehensive interaction between different layers and the user-friendly GUI that facilitates

user interaction.

The chapter then delves into the concept of automatic context switching between domains, which

allows for efficient and seamless transitions between navigation and combat. It explains the meticulous

design of the system to preserve the state of each domain and ensure uninterrupted execution of the

evolving process. This sophisticated mechanism, facilitated by a background thread, enables the system

to dynamically switch between domains based on the fulfillment of objectives.

Post launch application priming is another important aspect covered in this chapter. It outlines the

necessary steps to prepare the application for the emergence of the AI entity. These steps include attaching

to the target process, selecting the domain, loading default parameters, and creating an initial population.

By following these steps, users can effectively initialize the application and observe the AI entity’s dynamic

behavior.

The chapter also discusses GUI live data visualization, which plays a crucial role in providing users

with valuable insights into the ongoing NEAT algorithm. It explains various visualization tools offered by

the SharpNEAT framework, including the “Best Genome” visualization, time series charts, histograms,

and rank plots. These visualizations enable users to monitor the progress, performance, and distribution

of fitness and complexity measures, gaining a deeper understanding of the NEAT algorithm’s behavior.

Finally, the chapter concludes with an analysis of the end results and observations. It highlights the

challenges faced during the initial stages of development, the breakthrough achieved through the divide-

and-conquer approach, and the entity’s adaptive capabilities in both navigation and combat domains. The

observations reveal the entity’s learning and decision-making processes, as well as the limitations and

diminishing returns observed over successive generations.

85

Chapter 6

Conclusions and future work

6.1 Conclusions

The development and exploration of the AI-based entity within the virtual realm of the WoW video game

have provided valuable insights into the challenges and potential solutions involved in creating intelligent

agents capable of navigating and combating within complex virtual environments.

One of the critical factors contributing to the success of the project was the subdivision of the problem

into two distinct domains: navigation and combat. By breaking down the monolithic objective into smaller,

more concrete objectives, the entity was able to focus on specific tasks and develop effective strategies

within each domain. This approach allowed for a more targeted and smooth exploration of the problem

space, leading to improved performance and generational advancements.

The utilization of the SharpNEAT framework played a vital role in enabling the development of the AI-

based entity. The framework’s live data visualization tools provided real-time monitoring and analysis of the

entity’s behavior, facilitating the identification of patterns, trends, and areas for improvement. Additionally,

the flexible architecture of the framework provided a solid foundation for the development process allowing

for personal user modification which led to the possibility of concurrent exploration of different domains

and objectives. Notably, this capability was not initially included or anticipated in the framework’s original

design.

The analysis of the process memory space and the preservation of crucial memory data locations have

enabled the creation of a virtual entity capable of emulating user behavior by utilizing acquired memory

data as sensory inputs, having those inputs processed by NEAT and by integrating AutoIt it was made

possible the ability to emulate the response, i.e. the outputs, back into the running process.

In conclusion, this dissertation has presented an unusual approach for the development of an AI-

based entity capable of simulating user behavior within theWoW video game. As technology continues to

advance, further research and experimentation in this area have the potential to lead for the development

of more sophisticated and intelligent virtual entities in the future.

86

6.2 Prospect for future work

The field of AI is rapidly evolving, and recent advancements in Natural Language Processing (NLP)

have opened up new possibilities for enhancing AI systems. Building upon the AI framework1 developed for

theWoW environment, there is a potential avenue for future work that involves integrating the application

with the ChatGPT API and leveraging its language processing capabilities2.

Instead obtaining possible solutions by evolving NNs using the NEAT technique, a novel approach

could involve retaining the sensory and motor layers of the existing framework while replacing the process-

ing layer with an integration of the ChatGPT API. This would entail sending HTTP POST requests with

the data being read from the WoW process, specifically instructing the ChatGPT model on the desired

actions based on the provided inputs. The returned response from the language model would provide the

AI agent with the best possible actions to take within the WoW environment.

The integration with the ChatGPT API would enable the AI agent to obtain context-aware and language-

based instructions for decision-making and action execution. Every second, theWoW process data would

be sent as input to the ChatGPT model, which would generate a response containing the recommended

actions to be taken. These actions, represented as key presses or commands, would then be parsed and

injected or emulated back into the WoW process, creating a continuous and operative entity.

This future work prospect leverages the recent advancements in NLP, particularly the capabilities of

OpenAI’s ChatGPTmodel 3.5, which has demonstrated impressive language understanding and generation

capabilities. The low inference time and complexity of the ChatGPT model 3.5 make it suitable for real-time

decision-making and action generation in dynamic environments like WoW.

By integrating the AI framework with the ChatGPT API, the AI agent would benefit from more sophis-

ticated and contextually aware decision-making, potentially enhancing its performance and adaptability

within theWoW environment. Furthermore, this approach opens up opportunities for exploring the combi-

nation of traditional sensory data with natural language understanding, allowing for a more comprehensive

and versatile AI system.

In conclusion, future work involving the integration of the WoW AI framework with the ChatGPT API

holds great potential for enhancing the decision-making and action execution capabilities of the AI agent.

The integration of NLP advancements in AI systems enables more natural and context-aware interactions

within virtual worlds like WoW, paving the way for exciting research and advancements in the field of AI

for complex environments.

1 Consider the AI framework, in this case, as the sum of all the tools developed for the sensory, processing and motor layers.
2 One of the current downsides involves having to pay OpenAI for a subscription to have access to their API.

87

1 . HTTP POST REQUEST WITH
 INSTRUCTIONS / GUIDELINES

 SENSORY DATA

2 . RESPONSE

3 .
PARSE RESPONSE BODY
 EMULATE INPUT INTO WoW

 RESTART PROCESS
Client

Application OpenAI
Server

Figure 33: Diagram demonstrating how a LLM can be used as the processing layer.

GRAPHICAL USER INTERFACE

AutoIt

CONSTRUCT
HTTP POST
REQUEST

OpenAI API
MODEL GPT-3.5

PARSE
API

RESPONSE

PR
ES
EN
TA
TI
ON

SE
NS
OR
Y/

IN
PU
T
LA
YE
R

PR
OC
ES
SI
NG

LA
YE
R

PROCESS
INPUT

EMULATIONMO
TO
R/

OU
TP
UT
 L
AY
ER

PROCESS
HOOKING

PROCESS
MEMORY
READING

C#

Figure 34: Updated architecture now using a LLM as the core component of the processing layer.

88

Bibliography

Game Freaks 365. How venezuelans took over video game gold farming, 2021. URL https:

//gamefreaks365.com/how-venezuelans-took-over-video-game-gold-farming/.

Alexander Asteroth Adam Gaier and Jean-Baptiste Mouret. Are quality diversity algorithms better at gen-

erating stepping stones than objective-based search? In Proceedings of the Genetic and Evolutionary

Computation Conference Companion, pages 115–116, 2019.

Greg Aloupis et al. Classic nintendo games are (computationally) hard. In Theoretical Computer Science

586, pages 135–160, 2015.

Steve Battle. Imitation learning. In Principles of Robot Autonomy. University of the West of England, Bristol,

2018.

Jonathan C Brant and Kenneth O Stanley. Minimal criterion coevolution: a new approach to open-ended

search. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages

67–74, 2017.

Leo Cazenille. Comparing reliability of grid-based quality-diversity algorithms using artificial landscapes.

In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 249–250,

2019.

Matheus G Cordeiro et al. A minimal training strategy to play flappy bird indefinitely with neat. In 2019

18th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pages 21–28.

IEEE, 2019.

Antonios Liapis Daniele Gravina and Georgios N Yannakakis. Quality diversity through surprise. In IEEE

Transactions on Evolutionary Computation 23.4, pages 603–616, 2018.

Antonios Liapis Daniele Gravina and Georgios N Yannakakis. Blending notions of diversity for map-elites.

In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 117–118,

2019.

89

https://gamefreaks365.com/how-venezuelans-took-over-video-game-gold-farming/
https://gamefreaks365.com/how-venezuelans-took-over-video-game-gold-farming/

Charles Darwin. On the origin of species. 1859.

Gérard Dreyfus. Neural Networks: Methodology and Applications. Springer-Verlag, 2005.

The Economist. Venezuela’s paper currency is worthless, so its people seek virtual

gold, 2019. URL https://www.economist.com/the-americas/2019/11/21/

venezuelas-paper-currency-is-worthless-so-its-people-seek-virtual-gold.

Blizzard Entertainment. Wow, 2004. URL https://worldofwarcraft.com/en-gb/story/

timeline/chapter-6.

EvoStar. Applications of evolutionary computation 22nd international conference. In Theoretical Computer

Science and General Issues, 2019.

Benoît Jacob Gaël Guennebaud et al. Eigen v3. 2010.

Iczelion. Tutorial 24: Windows hooks, 2002. URL https://web.archive.org/web/

20080801155929/http://win32assembly.online.fr/tut24.html.

Kir Birger Jessica Lowell and Sergey Grabkovsky. Comparison of neat and hyperneat on a strategic decision-

making problem. In CS 6140 Final Project, 2011.

Sergey Karakovskiy Julian Togelius and Robin Baumgarten. The 2009 mario ai competition. In IEEE

Congress on Evolutionary Computation, pages 1–8. IEEE, 2010.

Chao-Cheng Chen Jyh-Jong Tsay and Jyh-Jung Hsu. Evolving intelligent mario controller by reinforcement

learning. In 2011 International Conference on Technologies and Applications of Artificial Intelligence,

pages 266–272. IEEE, 2011.

Janusz Kacprzyk. Artificial neural network modelling. In Studies in Computational Intelligence, page 628,

2016.

Lukasz Kaiser et al. Model-based reinforcement learning for atari. 2019.

David D’ Ambrosio Kenneth O. Stanley and Jason Gauci. A hypercube-based indirect encoding for evolving

large-scale neural networks. In Artificial Life journal. MIT Press, 2009.

Risto Miikkulainen Kenneth O. Stanley and Bobby D. Bryant. Real-time neuroevolution in the nero video

game. In IEEE Transactions on Evolutionary Computation, pages 653–668, 2005a.

90

https://www.economist.com/the-americas/2019/11/21/venezuelas-paper-currency-is-worthless-so-its-people-seek-virtual-gold
https://www.economist.com/the-americas/2019/11/21/venezuelas-paper-currency-is-worthless-so-its-people-seek-virtual-gold
https://worldofwarcraft.com/en-gb/story/timeline/chapter-6
https://worldofwarcraft.com/en-gb/story/timeline/chapter-6
https://web.archive.org/web/20080801155929/http://win32assembly.online.fr/tut24.html
https://web.archive.org/web/20080801155929/http://win32assembly.online.fr/tut24.html

Risto Miikkulainen Kenneth O. Stanley and Bobby D. Bryant. Evolving neural network agents in the nero

video game. In IEEE Symposium on Computational Intelligence and Games, 2005b.

Risto Miikkulainen Kenneth O. Stanley and Xuan Huy Hoang. Real-time challenge balance in an rts game

using rtneat. In Proceedings of the 2008 Conference on Computer and Games, 2008.

Risto Miikkulainen Kenneth O. Stanley et al. Nero 2.0, 2003. URL https://nn.cs.utexas.edu/

nero/.

John R Koza. Genetic programming as a means for programming computers by natural selection. In

Statistics and computing, pages 87–112, 1994.

Oliver Kramer. Genetic algorithm essentials. Springer, vol. 679 edition, 2017.

Geoffrey Lee et al. Learning a super mario controller from examples of human play. In 2014 IEEE Congress

on Evolutionary Computation (CEC), pages 1–8. IEEE, 2014.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for novelty

alone. In Evolutionary computation 19.2, pages 189–223. IEEE, 2011.

Joel Lehman et al. Safe mutations for deep and recurrent neural networks through output gradients. In

Proceedings of the Genetic and Evolutionary Computation Conference, pages 117–124, 2018.

AutoIt Consulting Ltd. Autoit, 2023. URL https://www.autoitscript.com/site/.

Hector Marco-Gisbert and Ismael Ripoll Ripoll. Address space layout randomization next generation. In

Applied Sciences, 2019.

Steve Marschner and Peter Shirley. In Fundamentals of Computer Graphics. A. K. Peters, Ltd.63 South

Avenue Natick, MA, United States, 2009.

Ramviyas Parasuraman Michele Colledanchise and Petter Ögren. Learning of behavior trees for au-

tonomous agents. In IEEE Transactions on Games 11.2, pages 183–189, 2018.

Mnih et al. Human-level control through deep reinforcement learning,

2015. URL https://web.stanford.edu/class/psych209/Readings/

MnihEtAlHassibis15NatureControlDeepRL.pdf.

Arash Mohammadi et al. Openga, a c++ genetic algorithm library. In 2017 IEEE International Conference

on Systems, Man, and Cybernetics (SMC), pages 2051–2056. IEEE, 2017.

91

https://nn.cs.utexas.edu/nero/
https://nn.cs.utexas.edu/nero/
https://www.autoitscript.com/site/
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

D. J. Montana and L. Davis. Training feedforward neural networks using genetic algorithms. In Proceed-

ings of the Eleventh International Joint Conference on Artificial Intelligence, pages 762–767. Morgan

Kaufmann, 1989.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. 2015.

Silke Höhl Neil Urquhart and Emma Hart. An illumination algorithm approach to solving the micro-depot

routing problem. In Proceedings of the Genetic and Evolutionary Computation Conference, pages

1347–1355, 2019.

S Allwyn Jones P Sibi and P Siddarth. Analysis of different activation functions using back propagation

neural networks. In Journal of theoretical and applied information technology, pages 1264–1268, 2013.

Diego Perez et al. Evolving behaviour trees for the mario ai competition using grammatical evolution.

In European Conference on the Applications of Evolutionary Computation, pages 123–132. Springer,

2011.

N. J. Radcliffe. Neural computing and applications. In Genetic set recombination and its application to

neural network topology optimisation, pages 67–90, 1993.

Felix Richter. Are you not entertained?, 2022. URL https://www.statista.com/chart/22392/

global-revenue-of-selected-entertainment-industry-sectors/.

Stuart J Russell and Peter Norvig. Artificial Intelligence - A Modern Approach. Third international edition

edition, 2010.

Arthur L Samuel. Some studies in machine learning using the game of checkers. In IBM Journal of

research and development, pages 210–229, 1959.

Jits Schilperoort et al. Learning to play pac-xon with q-learning and two double q-learning variants. In 2018

IEEE Symposium Series on Computational Intelligence, pages 1151–1158. IEEE, 2018.

C Daniel Gelatt Scott Kirkpatrick and Mario P Vecch. Optimization by simulated annealing. In science,

pages 671–680, 1983.

Jie Shao et al. Is normalization indispensable for training deep neural network? In Advances in Neural

Information Processing Systems, 2020.

James Shewmaker. Analyzing dll injection, 2006.

92

https://www.statista.com/chart/22392/global-revenue-of-selected-entertainment-industry-sectors/
https://www.statista.com/chart/22392/global-revenue-of-selected-entertainment-industry-sectors/

Hisashi Shimodaira. DCGA: A diversity control oriented genetic algorithm. 1997.

Michael Sikorski and Andrew Honig. In Practical Malware Analysis: The Hands-On Guide to Dissecting

Malicious Software. No Starch Press, 2012.

David Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and go through

self-play. In Science 362.6419, pages 1140–1144, 2018.

Thamarai Selvi Somasundaram et al. Double q–learning agent for othello board game. In 2018 Tenth

International Conference on Advanced Computing (ICoAC), pages 216–223. IEEE, 2018.

Kenneth O Stanley and Joel Lehman. Why greatness cannot be planned: The myth of the objective.

Springer, 2015.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.

2002.

Kenneth O. Stanley et al. The hybercube-based neuroevolution of augmenting topologies (hyperneat) users

page, 2015. URL http://eplex.cs.ucf.edu/hyperNEATpage/.

Alban Laflaquière Stephane Doncieux and Alexandre Coninx. Novelty search: a theoretical perspective.

In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 99–106,

2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Matthew Szudzik. “an elegant pairing function. In Wolfram Research (ed.) Special NKS 2006 Wolfram

Science Conference, pages 1–12, 2006.

Rasmus K Ursem. Diversity-guided evolutionary algorithms. In International Conference on Parallel Prob-

lem Solving from Nature, pages 462–471. Springer, 2002.

Rui Wang et al. Paired open-ended trailblazer. In Endlessly generating increasingly complex and diverse

learning environments and their solutions, 2019.

Georgios N Yannakakis and Antonios Liapis. Searching for surprise. In ICCC, 2016.

Kun Yi Yizheng Liao and Zhe Yang. Technical report. In Cs229 final report reinforcement learning to play

mario. Stanford University, 2012.

93

http://eplex.cs.ucf.edu/hyperNEATpage/

Appendix A
Details of results

A.1 Additional Details of Memory Scanning Using Cheat En-
gine

1

2

3

4

5

6

Figure 35: Cheat Engine main screen with “WoW.exe” attached.

To begin scanning a game’s memory, one must select the “Attach” icon 1 to attach to a process

and then enter the scan value we wish to locate 3.

Cheat engine allows for the selection of two different scan directives called “Scan Type” and “Value

Type” 4 but for this particular use case, it can be left as is.

94

To initiate the initial scan for values, one must click on the “First Scan” 2 button. The scanner

then proceeds to conduct the scan and populates the results list 5. The results list contains addresses,

indicated in either green or black font, which respectively correspond to static or dynamically allocated

memory. While static addresses remain consistent across program restarts, dynamically allocatedmemory

is allocated at runtime and is thus variable. Upon initial population of the results list, the real-time value

of each address is displayed. During subsequent rescans, the value of each address during the previous

scan is also displayed, with real-time values updated based on a predetermined interval set.

After the initial scan, the “Next Scan” 2 button becomes available in the scanner interface, offering

six additional scan types for more targeted searches. These scan types allow the user to compare the

addresses in the results list to their values in the previous scan, providing a more refined search for

the specific game state value being sought. This process of iterative scanning and comparison helps to

narrow down the possible addresses that hold the desired value, reducing the number of false positives

and increasing the accuracy of the search. Ultimately, this approach allows for the location of the exact

memory address that holds the value of interest.

In order to effectively narrow down a large result list and locate the correct address, it is typically

necessary to employ multiple scan types. The process of eliminating false positives often involves creating

entropy within the game, adjusting scan directives strategically, and courageously utilizing the “Next Scan”

feature. This process may need to be repeated multiple times until only a single remaining address is

identified.

Once the correct memory address is found, it is possible to double-click it to add it to the cheat table

pane 6. Addresses in the cheat table pane can be modified, watched and saved to the cheat table files

for future use.

95

A.2 Obtaining Player Health Offsets Using Cheat Engine

This section provides a detailed demonstration of how to obtain a specific memory offset fromWoW. The

target value in this case is the player’s health.

To begin, the first step is to identify the player’s current health points, which in this case is currently

180. Enter this value in the scanner’s “Value:” field and initiate the scanning process to search for

addresses that hold this value.

After the initial scan, there will likely be multiple addresses that contain the desired value. To narrow

down the results, further filtering is necessary. One way to achieve this is by modifying the player’s health

points, for example by engaging in combat with a nearby NPC. Take note of the new health value and

enter it in the “Value:” field for a subsequent scan. By repeating this process, it is possible to identify

the address that corresponds to the desired health value. The number of iterations required may vary

depending on the specific target value.

Figure 36: Scanning the process memory for the
value ”180”.

Figure 37: Scanning the process memory for the
value ”160”, now ”152”.

96

While the obtained address is correct, it is important to note that it is a dynamic address that will

become invalid once the game is restarted. To obtain a static pointer chain of offsets, follow the subsequent

steps. Start by double-clicking the address to select it, then right-click on the address and choose the option

“Pointer scan for this address”.

Figure 38: Starting a pointer scan for the selected address.

After initiating the pointer scan, a window will display numerous results comprising possible pointer

chains that point to the desired final address. However, these results need to be further filtered. To

accomplish this, leave the window open and restart the game (WoW). Repeat the entire process, but this

time use the option to match against the previously obtained and saved pointer chain values. By repeating

this process several times, one can be confident in obtaining a static pointer chain that can be utilized in

any instance of the game to access the desired value.

Figure 39: Results of the first pointer scan for the selected address.

97

Figure 40: Manually checking a pointer chain for confirmation.

By following these steps, it is possible to obtain a static pointer chain that allows for consistent access

to the desired value in any instance of the game. This information can be invaluable for further analysis,

experimentation, or modifications within the game environment.

98

A.3 How to Define a Domain in SharpNEAT

This section explains the process of defining a new domain within the SharpNEAT framework.

To begin, navigate to the SharpNeat.Tasks project within the framework. Create a new folder with a

name that corresponds to the desired domain. For the purpose of this example, we will use [domain_name]

as a placeholder.

Once the folder is created, populate it with three essential files: [domain_name]EvaluationScheme.cs,

[domain_name]Evaluator.cs, and [domain_name]ExperimentFactory.cs. These files are necessary com-

ponents for defining and implementing the new domain within the framework.

src
SharpNeat.Tasks

[domain_name]
[domain_name]EvaluationScheme.cs
[domain_name]Evaluator.cs
[domain_name]ExperimentFactory.cs

File [domain_name]EvaluationScheme.cs

In the [domain_name]EvaluationScheme.cs file, you will define the evaluation scheme for the new domain.

The following steps outline the process:

1. Declare that the file extends the IBlackBoxEvaluationScheme<double> interface.

2. Define the number of input nodes using the InputCount property, and specify the number of output

nodes using the OutputCount variable.

3. Specify whether the problem is deterministic or not by setting the value of the IsDeterministic

boolean variable.

4. Use the FitnessComparer variable to track fitness values and determine their comparison order.

The NullFitness variable can be used to represent a null fitness value if needed.

5. Decide whether evaluators should be instantiated every time an evaluation is performed or if a

single static instance should be used by setting the EvaluatorsHaveState variable accordingly.

6. Implement the CreateEvaluator() function, which should return a new instance of the class defined

in [domain_name]Evaluator.cs. This evaluator will be responsible for evaluating the individuals in

the domain.

99

7. Define the TestForStopCondition(FitnessInfo fitnessInfo) function to check if the target objective

proposed by the algorithm has been achieved. This function can determine when to stop the

evolutionary process based on the provided fitness information.

By completing these steps and implementing the necessary functions, you can define the evaluation

scheme for the new domain within the SharpNEAT framework.

File [domain_name]Evaluator.cs

In the [domain_name]Evaluator.cs file, you will implement the evaluator for the new domain. Follow these

steps to define the evaluator:

1. Declare that the file extends the IPhenomeEvaluator<IBlackBox<double» interface.

2. Define the number of trials per evaluation using the _trialsPerEvaluation variable. This determines

how many times each individual will be evaluated.

3. Implement the Evaluate(IBlackBox<double> box) function. This function is crucial as it defines the

inputs to be fed into the neural networks (phenotypes) and the expected outputs. It is responsible for

activating the box (calling box.Activate()) and observing the outputs produced. Within this function,

you should also define the fitness function(s) that evaluate how well the Neural Network (NN)

performed on the given task after each trial. You can assess the outputs and calculate fitness based

on the desired behavior or objective.

By completing these steps and implementing the necessary functions, you can define the evaluator

for the new domain in SharpNEAT. The evaluator will determine how the NNs (phenotypes) perform on

the given task and assign fitness values accordingly.

100

File [domain_name]ExperimentFactory.cs

In the [domain_name]ExperimentFactory.cs file, you will define the experiment factory for the new domain.

Follow these steps to set up the experiment factory:

1. Declare that the file extends the INeatExperimentFactory interface.

2. Define a string variable Id which should match the name of your domain. This serves as a unique

identifier for the experiment.

3. Implement the function CreateExperiment(Stream jsonConfigStream). This function is responsible

for creating the experiment with the desired configuration parameters. You can retrieve the default

configuration parameters from the provided jsonConfigStream stream.

4. Instantiate a new instance of the evaluation scheme object specific to your domain.

5. Define a NeatExperiment object, passing in the evaluation scheme and any additional default set-

tings you want to configure. For example, you can specify whether the experiment is acyclic or

cyclic and set the desired activation function.

By completing these steps, you can create the experiment factory for your domain in SharpNEAT.

The experiment factory will handle the setup and configuration of the experiment, including the evaluation

scheme and other experiment-specific settings.

101

A.4 Default Configuration Files in SharpNEAT

Once you have defined the necessary files for your domain, the next step is to create the domain’s default

configuration files for the experiment. These configuration files will be loaded when selecting the desired

experiment through the user-friendly GUI.

To create the default configuration files, navigate to the SharpNeat.Windows.App project and locate

the config directory. In this directory, you can define the configuration files specific to your domain. These

files contain the default settings and parameters for the experiment, such as population size, mutation

rates, and other relevant parameters.

Having default configuration files allows users to quickly load and run experiments without manu-

ally specifying all the settings each time. The GUI interface will provide an option to select the desired

experiment, and the corresponding default configuration file will be loaded automatically.

By organizing the default configuration files within the config directory of the SharpNeat.Windows.App

project, you ensure that they are easily accessible and can be seamlessly integrated into the application’s

workflow.

src
SharpNeat.Windows.App

config
experiments-config

[domain_name].config.json
experiments-descriptions

[domain_name].txt
experiments.json

[domain_name].config.json

The [domain_name].config.json file is a configuration file that contains important parameters and settings

for the algorithm used in the domain. Here are the key elements of this configuration file:

• name: Specifies the name of the model or experiment.

• isAcyclic: Indicates whether the model is acyclic or not.

• activationFnName: Defines the activation function used in the NN.

The configuration of the EA is specified under the ”evolutionAlgorithm” section. It includes the follow-

ing parameters:

102

• speciesCount: Specifies the number of species in the population.

• elitismProportion: Defines the proportion of top-performing individuals that are preserved in each

generation.

• selectionProportion: Specifies the proportion of individuals selected for reproduction.

• offspringAsexualProportion: Defines the proportion of offspring generated through asexual repro-

duction.

• offspringSexualProportion: Specifies the proportion of offspring generated through sexual reproduc-

tion.

• interspeciesMatingProportion: Defines the proportion of offspring generated through mating be-

tween different species.

The ”reproductionAsexual” section contains parameters related to asexual reproduction:

• connectionWeightMutationProbability: Defines the probability of mutating a connection weight.

• addNodeMutationProbability: Specifies the probability of adding a new node to the NN.

• addConnectionMutationProbability: Defines the probability of adding a new connection between

neurons.

• deleteConnectionMutationProbability: Specifies the probability of deleting a connection between

neurons.

The ”reproductionSexual” section defines parameters related to sexual reproduction:

• secondaryParentGeneProbability: Specifies the probability of inheriting genes from a secondary

parent during sexual reproduction.

• populationSize: Specifies the size of the model’s population.

• initialInterconnectionsProportion: Defines the initial proportion of interconnections between neu-

rons in the NN.

• connectionWeightScale: Specifies the scale of the connection weights in the NN.

103

• complexityRegulationStrategy: Specifies the strategy used to regulate the complexity of the model,

including the strategy name, relative complexity ceiling, and minimum simplification generations.

• degreeOfParallelism: Defines the degree of parallelism used in the model.

• enableHardwareAcceleratedNeuralNets: Indicates whether hardware acceleration is enabled for the

NNs.

• enableHardwareAcceleratedActivationFunctions: Indicates whether hardware acceleration is en-

abled for the activation functions.

By modifying the values in the [domain_name].config.json file, you can customize the behavior and

performance of the EA according to the specific requirements of your domain.

[domain_name].txt

The [domain_name].txt file is a text file that provides a detailed description of the domain. It serves as a

contextual guide for individuals who wish to try the experiment and gain a better understanding of the task

being performed by the algorithm. Typically, the contents of the [domain_name].txt file include:

• Domain Name: The file begins by stating the name of the domain.

• Inputs: It describes the number and nature of inputs required by the domain. This helps users

understand the type of information or data the algorithm needs as input.

• Outputs: It specifies the possible outputs that can be generated by the domain. This information

gives users an idea of the expected results or actions produced by the algorithm.

• Task Description: A brief but informative description of the task being trialed by the algorithm

is provided. This description outlines the objective or problem that the algorithm aims to solve

within the specific domain. By providing this textual information, the [domain_name].txt file helps

users familiarize themselves with the domain and gain insights into the purpose and goals of the

experiment.

104

experiments.json

The experiments.json file plays a crucial role in integrating and configuring the domain within the SharpNEAT

framework. This file follows a standard JSON structure and is responsible for specifying the necessary

files related to the domain.

The contents of the experiments.json file include:

• Domain Name: The file begins by defining the name of the domain.

• Experiment Factory: It specifies the experiment factory file ([domain_name]ExperimentFactory.cs)

that was previously created. This file is responsible for creating the experiment instance.

• Configuration File: It identifies the configuration file ([domain_name].config.json) associated with

the domain. This file contains the parameters and settings for the algorithm.

• Description File: It denotes the description file ([domain_name].txt) that provides a detailed expla-

nation of the domain and the task being performed by the algorithm.

• Experiment UI Factory: This section defines the experiment UI factory. The framework provides

default values, but customization is possible if required for the specific domain.

Once all these files are created and populated, selecting SharpNeat.Windows.App as the main startup

project and launching the application will allow you to see your defined domain as one of the available

options. This integration ensures that your domain is recognized and accessible within the SharpNEAT

application, providing a seamless user experience for running experiments and analyzing results.

	List of Acronyms
	I Introductory material
	Introduction
	Thesis Topic and Approach
	Artificial Intelligence and Genetic Algorithms
	Video Games as Industry and Software
	Target Application - World of Warcraft

	State of the Art
	Artificial Neural Networks Concepts
	Evolutionary Algorithms
	Genetic Algorithms
	NeuroEvolution Challenges Addressed by NEAT

	NEAT - Neuroevolution of Augmented Topologies
	Related Work
	Genetic Algorithms
	NeuroEvolution
	HyperNEAT - Hybercube-based Neuroevolution of Augmenting Topologies
	rtNEAT - Real-time Neuroevolution of Augmenting Topologies
	Reinforcement Learning

	The problem and its challenges
	The Sensory/Input Layer
	The Processing/NEAT Layer
	The Motor/Output Layer

	II Core of the Dissertation
	Contribution
	Introduction
	Building the Sensory/Input Layer
	Scanning Memory using Cheat Engine
	Pointer Scanning using Cheat Engine
	Countermeasures Against Reverse Engineering
	DLL Injection, Hooking and Process Memory Reading

	Building the Processing/NEAT Layer
	Navigation Domain and Strategy
	Combat Domain and Strategy
	Atan2 - Determining if a player is facing a target
	Saving and Loading State

	Building the Motor/Output Layer
	Autoit - Scripting Language

	Summary

	Application
	Introduction
	Architecture
	Domains and Automatic Context Switching
	Post Launch Application Priming
	GUI Live Data Visualization
	End Result and Observations
	Navigation Domain
	Combat Domain

	Summary

	Conclusions and future work
	Conclusions
	Prospect for future work

	Details of results
	Additional Details of Memory Scanning Using Cheat Engine
	Obtaining Player Health Offsets Using Cheat Engine
	How to Define a Domain in SharpNEAT
	Default Configuration Files in SharpNEAT

