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Abstract

Reinforcement Learning (RL) consists of designing agents that make intelligent decisions without human

supervision. When used alongside function approximators such as Neural Networks (NNs), RL is capable of

solving extremely complex problems. Deep Q-Learning, a RL algorithm that uses Deep NNs, even achieved

super-human performance in some specific tasks. Nonetheless, it is also possible to use Variational

Quantum Circuits (VQCs) as function approximators in RL algorithms. This work empirically studies the

performance and trainability of such VQC-based Deep Q-Learning models in OpenAI’s gym CartPole-v0

and Acrobot-v1 environments. More specifically, we research how data re-uploading affects both these

metrics. We show that the magnitude and the variance of the gradients of these models remain substantial

throughout training due to the moving targets of Deep Q-Learning. Moreover, we show that increasing the

number of qubits does not lead to a decrease in the magnitude and variance of the gradients, unlike what

was expected due to the Barren Plateau Phenomenon. This hints at the possibility of VQCs being specially

adequate for being used as function approximators in such a context. We also use the Universal Quantum

Classifier as a function approximator in VQC-based Deep Q-Learning and implement VQC-based models

capable of achieving considerable performance in the Acrobot-v1 environment, a previously untapped

environment for VQCs.

Keywords Reinforcement Learning, Quantum Computing, Variational Quantum Circuits, Neural Net-

works
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Resumo

Reinforcement Learning (RL) consiste em projetar agentes que tomam decisões inteligentes sem super-

visão humana. Quando usado em conjunto com aproximadores de funções, como Redes Neuronais

(RNs), RL é capaz de resolver problemas extremamente complexos. Deep Q-Learning é um algoritmo de

RL que usa RNs profundas e que alcançou um desempenho super-humano em algumas tarefas específi-

cas. No entanto, também é possível utilizar Circuitos Variacionais Quânticos (VQCs) como aproximadores

de funções em algoritmos de RL. Este trabalho estuda empiricamente o desempenho e a treinabilidade

de tais modelos de Deep Q-Learning baseados em VQC nos ambientes CartPole-v0 e Acrobot-v1 do Ope-

nAI gym. Mais especificamente, investigamos como o data re-uploading afeta ambas estas métricas.

Demonstramos que a magnitude e a variância dos gradientes destes modelos permanecem substanciais

ao longo do treino devido aos alvos móveis do Deep Q-Learning. Além disso, mostramos que aumentar

o número de qubits não leva a uma diminuição na magnitude e variância dos gradientes, contrariamente

ao que era esperado devido ao Barren Plateau Phenomenon. Isto sugere a possibilidade dos VQCs serem

especialmente adequados para serem usados como aproximadores de funções neste contexto. Também

utilizamos o Universal Quantum Classifier como um aproximador de funções em Deep Q-Learning e imple-

mentamos modelos baseados em VQC capazes de alcançar um desempenho considerável no ambiente

Acrobot-v1, um ambiente anteriormente inexplorado para VQCs.

Palavras-chave Reinforcement Learning, Computação Quântica, Circuitos Variacionais Quânticos, Re-

des Neuronais

v



Contents

I Introductory material 1

1 Introduction 2

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Reinforcement Learning 8

2.1 The Reinforcement Learning Problem Statement . . . . . . . . . . . . . . . . . . . . 8

2.2 State and Value Functions and the Notion of Optimality . . . . . . . . . . . . . . . . . 12

2.3 Bellman Equations and Dynamic Programming . . . . . . . . . . . . . . . . . . . . 14

2.4 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Policy-Gradient Algorithms and Taxonomy of RL . . . . . . . . . . . . . . . . . . . . 24

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Quantum Computing 27

3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Single-Qubit and Multi-Qubit Systems . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Single-Qubit and Multi-Qubit Quantum Gates . . . . . . . . . . . . . . . . . 30

3.2.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Variational Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



3.3.2 Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.4 Barren Plateau Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Data Re-Uploading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 VQC-Based Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 VQC-Based Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 VQC-Based Policy-Gradients . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

II Core of the Dissertation 45

4 The Problem and Methodology 46

4.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 The Algorithm Implementation Choices . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Benchmark Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 CartPole-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Acrobot-v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Methodologies for Analysing Model’s Performance and Trainability . . . . . . . . . . . 51

4.4.1 Performance of a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 Trainability of a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Results and Discussion 55

5.1 Replication of Skolik et al. [2022]’s results . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Performance of the Universal Quantum Classifier . . . . . . . . . . . . . . . . . . . 59

5.2.1 The Single-Qubit Universal Quantum Classifier . . . . . . . . . . . . . . . . 60

5.2.2 The Multi-qubit Universal Quantum Classifier . . . . . . . . . . . . . . . . . 63

5.3 Trainability Analysis of Skolik et al. [2022]’s models . . . . . . . . . . . . . . . . . . 67

5.4 Trainability Analysis of the UQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Tradeoff between Moving Targets and Gradient Magnitude . . . . . . . . . . . . . . . 72

5.6 Gradient Behavior for Increasing System Sizes . . . . . . . . . . . . . . . . . . . . . 77

5.7 The Acrobot Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



6 Conclusions and future work 84

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Prospect for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

III Appendices 93

A Models’ Hyperparameters 94

A.1 Hyperparameters’ explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2 Hyperparameters used throughout this work . . . . . . . . . . . . . . . . . . . . . . 94

viii



List of Figures

1 The Agent-Environment Interface: The agent interacts with the environment at time step

t by taking actionAt. The environment then changes to state St+1 and produces reward

Rt+1, which are both passed back to the agent so that it can decide the next action. The

dotted lines indicate that this process repeats itself. Inspired by Sutton and Barto [2018]. 9

2 An example of an MDP - a grid world in which the goal of the agent is to find the shortest

path to the apple while not bumping into the bombs. . . . . . . . . . . . . . . . . . . 11

3 A neural network is composed of neurons, which are grouped into layers. Each neu-

ron receives m inputs {x1, ..., xm}, which are multiplied by the m respective weights

{w1, ..., wm} and summed. A bias b is also added. Finally, the result is passed through

an activation function φ, which produces the output. . . . . . . . . . . . . . . . . . . 20

4 A comparison between Q-Learning and Deep Q-Learning (DQN). Q-Learning is a tabular

approach, where the values of all the visited state-action pairs are stored in a lookup table.

DQN, on the other hand, uses a deep neural network as the Q-function approximator.

The Figure shows one of the possible architectures for the NN, where the input layer

receives the components of the state and the output layer outputs the Q-values for all

possible actions. See Morales [2020] for other possible architectures. . . . . . . . . . 22

5 A non-exhaustive taxonomy of the RL algorithms mentioned in this chapter. . . . . . . . 25

6 Representation of a Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 The building blocks of a VQC and how it is trained. In a typical VQC, data is encoded,

then processed by a parameterized unitary and, finally, the expectation value of some

observable is measured. Then, a cost function that depends on the expectation value is

calculated and a classical optimizer updates the parameters θ. . . . . . . . . . . . . 33

ix



8 Example of a hardware-efficient VQC. |x〉 is processed by layers of unitaries, each of

them composed of parameterized single-qubit gates followed by a cascade of entangling

gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9 The Data Re-Uploading technique in action. The same data encoding block S(x) is

repeated several times throughout the quantum circuit to increase the expressivity of the

quantum model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10 Deep RL versus VQC-based RL. The image on the left represents Deep RL, where Deep

Neural Networks are used as function approximators for either value functions or policies.

Similarly, the image on the right represents VQC-based RL, where VQCs are used for the

same effect. The algorithms themselves are identical, with the exception of the model

used as a function approximator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11 Architectures used in Chen et al. [2020] (Subfigure 11a), Lockwood and Si [2020] (Sub-

figure 11b) and Skolik et al. [2022] (Subfigure 11c) for n = 4 qubits, L layers, param-

eters θ and input x = [x0, x1, x2, x3]. The data encoding gates are green-coloured

and compose the blocks S(x). The variational gates are blue-coloured and compose

the blocks W (θl), where l is the layer, along with the entangling gates. When Data

Re-Uploading is used, as in Subfigure 11c, a layer is composed of the data encoding and

variational blocks U(x, θl). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

12 The CartPole Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 The Acrobot Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

14 Both figures represent the performance of two random models on the CartPole-v0 envi-

ronment. The thick lines are the mean returns for each model (in this case, 5 agents

were initialized per model) and the shaded areas the standard deviation. This is how the

performance of all models will be plotted. . . . . . . . . . . . . . . . . . . . . . . . 52

15 The functioning of the VQC-based Deep Q-Learning algorithm used by Skolik et al. [2022]

to solve the CartPole environment. When Data Re-Uploading is used, U(s, λ, θ) is re-

peated several times. Otherwise, just W (θ) is repeated. . . . . . . . . . . . . . . . . 57

x



16 Comparison of baseline (Subfigure 16a) and data re-uploading (Subfigure 16b) models

with and without trainable input and output scaling in the CartPole-v0 environment. The

optimal set of hyperparameters from Skolik et al. [2022] was used, see Table 6. The

thick lines are the average return over all the 10 agents for each model, while the shaded

areas indicate the standard deviation of the return over all agents. If an agent solves the

environment (average reward over the last 100 episodes ≥ 195), training is stopped. . . 58

17 Analysis of the performance of the single-qubit UQC and Skolik data re-uploading models

in the CartPole-v0 environment following the methodology defined in Section 4.4.1. 10

agents were initialized from each model. The full set of hyperparameters can be seen in

Table 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

18 Performance analysis of the two-qubit (see Subfigure 18a) and four-qubit (see Subfigure

18b) UQCs using the Partial and Full encoding techniques without entanglement. 10

agents were initialized from each model. The full set of hyperparameters can be seen in

Table 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

19 Performance analysis of the two-qubit (see Subfigure 18a) and four-qubit (see Subfigure

18b) UQCs using the Partial and Full encoding techniques with and without entangle-

ment. 10 agents were initialized from each model. The full set of hyperparameters can

be seen in Table 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

20 Performance Analysis of the best-performing models in the CartPole-v0 environment.

In concrete, the Skolik Data Re-Uploading model, the Single-Qubit UQC and the Full

Encoding Multi-Qubit UQC without entanglement. 10 agents were initialized from each

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

21 Comparison of the gradients of the baseline and data re-uploading models with and with-

out trainable input scaling in the CartPole environment. Subfigure 21a shows the mean

norm of the vector gradient throughout training and Subfigure 21b the variace in the

norms of the vector gradients throughout training. The optimal set of hyperparameters

from Skolik et al. [2022] is used, see Table 6. Moreover, 10 agents are initialized from

each model. If an agent solves the environment, training is stopped. These metrics are

stopped after the first agent solves the environment, hence why some curves are shorter

than others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xi



22 Return and Norm of the gradients for 3 random Baseline (see Subfigure 22a) and Data

Re-Uploading (see Subfigure 22b) agents. Both the return an the norm of the agents are

presented as moving averages to mitigate noise due to the unstable nature of DQN. . . . 69

23 Trainability analysis of the single-qubit UQC and Skolik data re-uploading models in the

CartPole-v0 environment from Figure 17 following the methodology defined in Section

4.4.2. Subfigure 23a shows the mean norm of the vector gradient throughout training

and Subfigure 23b the variance in the norms of the vector gradients throughout training.

10 agents were initialized from each model. . . . . . . . . . . . . . . . . . . . . . . 70

24 Trainability analysis of the two-qubit (see Subfigure 24a) and four-qubit (see Subfigure

24b) UQCs using the Partial and Full encoding techniques with and without entangle-

ment. 10 agents were initialized from each model. The full set of hyperparameters can

be seen in Table 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

25 The mean loss across the 10 agents of the data re-uploading model. The loss is only

shown until the first agent solves the environment. . . . . . . . . . . . . . . . . . . . 73

26 Analysis of the performance and the loss of the data re-uploading model with different

values of C . The other hyperparameters are constant. To analyse the performance and

the loss function, 5 agents were initialized from each model. Then, the performance was

measured following the methodology from 4.4.1 and the loss function was analyzed by

computing the mean loss function over all the agents. The full set of hyperparameters

is shown in Table 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

27 Analysis of the gradients of the data re-uploading model with different values of C . The

other hyperparameters are constant and 5 agents were initialized from each model.

Then, the gradient analysis was performed following the methodology from 4.4.2. . . . . 76

28 Performance and Trainability analysis of the multi-qubit UQCs as the number of qubits

increase. 10 agents were initialized from each model. The full set of hyperparameters

can be seen in Table 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

29 Performance and Trainability analysis of the Skolik Data Re-Uploading and three-qubit

UQC models on the Acrobot environment. 10 agents were initialized from each model.

The full set of hyperparameters can be seen in Table 10. . . . . . . . . . . . . . . . . 81

xii



List of Tables

1 Cartpole’s state space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Acrobot’s action-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Acrobot’s state-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Chosen observables for the two models tested in the Acrobot-v1 environment. . . . . . 80

5 An explanation of VQC-Based Deep Q-Learning’s hyperparameters . . . . . . . . . . . 94

6 Models’ hyperpameters from Figure 16 . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Models’ hyperpameters from Figure 17 . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Models’ hyperpameters from Figures 19 and 28. . . . . . . . . . . . . . . . . . . . . 96

9 Models’ hyperpameters from Figure 26 . . . . . . . . . . . . . . . . . . . . . . . . 96

10 Models’ hyperpameters from Figure 29. . . . . . . . . . . . . . . . . . . . . . . . . 97

xiii



xiv



Part I

Introductory material

1



Chapter 1

Introduction

1.1 Context

Intelligence has played a pivotal role in evolution. Loosely defined, intelligence is the ability to process

information and make decisions based on that information. Humans, in particular, possess unique cog-

nitive abilities that set them apart from all other animals. These abilities enable technological evolution,

complex communication, environmental manipulation, and music, among many others. Consequently, a

question arose - Can machines replicate these capabilities if humans build them? Alan Turing posed this

question in the 1940s in a public conference and, in 1950, published the seminal work Turing [1950],

which started the development of the research area known as Artificial Intelligence (AI). AI is the research

of machines performing tasks typically associated with human intelligence. Since then, the trajectory of AI

has featured waves of optimistic predictions, followed by disillusionment, and then a resurgence of hope.

However, the past decade has seen remarkable advancements in AI applications across diverse domains,

such as medicine Hamet and Tremblay [2017], education Holmes et al. [2023], finance Bahrammirzaee

[2010], and engineering Salehi and Burgueño [2018]. We currently find ourselves amidst a phase of pal-

pable optimism, where investment in AI has reached unprecedented levels Mou [2019]. Nonetheless,

some skepticism persists, with many anticipating a new wave of disillusionment after encountering some

unforeseen barrier. However, widely recognized that AI offers numerous practical applications. Although

the full extent of its impact remains uncertain, AI undoubtedly influences and will keep influencing the

world in significant ways.

At the core of AI lies the pursuit of designing agents that learn how to make informed decisions and

self-correct in possibly ever-changing environments without human supervision Russell and Norvig [2010].

Reinforcement Learning (RL) represents a significant stride toward realizing this vision. A RL agent learns

from interaction with its surrounding environment in a feedback loop, relying solely on a reward signal

to guide its actions. The concept of learning from interaction forms the bedrock of nearly all theories of
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learning and intelligence Sutton and Barto [2018], with some even conjecturing that rewards alone can

pave the path to achieving general AI agents Silver et al. [2021]. However, RL agents face a problem

unparalleled in other AI frameworks: acting in unknown environments resorts to discovering the optimal

balance between exploration and exploitation, also known as the exploration-exploitation tradeoff Kaelbling

et al. [1996]. RL techniques, successful in the past, found their use in low-dimensional problems because

of scalability limitations. This restriction meant RL couldn’t address real-world challenges, which often

involve complex and high-dimensional domains. Yet, recent advancements in RL, powered by Deep Neural

Networks (DNNs) as potent function approximators LeCun et al. [2015], have changed the landscape.

These algorithms now match or even exceed the performance levels of human experts in tasks like Chess

Silver et al. [2017], Go Silver et al. [2016], video-games Mnih et al. [2015], and communications and

networking Luong et al. [2019]. Nevertheless, state-of-the-art algorithms are extremely data-hungry and

often not efficiently learnable in the language of statistical learning theory Agarwal et al. [2019].

Given the significant potential impact of RL and AI on the future, a continuous effort exists to improve

and refine AI algorithms and systems. This momentum stems from the realization that, despite recent

advancements, AI has yet to achieve its full potential. Therefore, besides just enhancing and optimiz-

ing existing algorithms, exploring new methods and emerging technologies remains essential. One such

technology is quantum computing.

Richard Feynman introduced the concept of Quantum Computers Feynman [1982] that operate based

on quantum physics principles, leveraging quantum phenomena like superposition and entanglement to

manipulate quantum data. Nonetheless, it is also possible to use quantum computers to process classical

data as long as it is encoded into a quantum state. Remarkably, quantum computers, in theory, offer a

means to efficiently solve some problems that lack efficient classical algorithms. One such example is

Shor’s Algorithm for finding the prime factors of an integer, which is exponentially faster than the best-

known classical algorithm and holds the promise of breaking public-key cryptography schemes given a

quantum computer with a sufficient number of qubits Shor [1999]. Therefore, one might speculate that

quantum computers may outperform classical computers in machine learning tasks, even though the im-

mediate advantages remain somewhat uncertain Biamonte et al. [2017]. Nevertheless, ongoing research

actively explores the potential applications of near-term quantum computers in machine learning tasks,

primarily focused on seeking advantages in practical, real-world problems.

Having listed both the potential of Artificial Intelligence and Quantum Computing, and considering

how both technologies can be combined, the importance of exploring their intersection becomes obvious.

That is what this dissertation seeks to do. Specifically, the main goal is to research the field of variational
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quantum circuits and their application to reinforcement learning problems.

1.2 Motivation

Quantum computers yield complexity advantages over classical computers in some problems, assuming

enough qubits to implement error-correction codes to mitigate noise and errors due to decoherence Preskill

[1998]. Nonetheless, in near-term devices or Noisy Intermediate-Scale Quantum (NISQ) devices, the

algorithms that yield these advantages can not be implemented successfully to solve real-world problems

Preskill [2018]. The challenge thus revolves around devising quantum algorithms that are resource-friendly

and resilient to errors to harness near-term quantum computation’s potential.

Variational Quantum Circuits (VQCs) are especially suitable for NISQ devices, given their lower de-

mands in the number of qubits and circuit depth, which mitigates the effect of noise Cerezo et al. [2021a].

Consequently, integrating VQCs into machine learning algorithms has become an intriguing field of study.

As delineated by Schuld et al. [2021], VQCs can be seen as Partial Fourier Series in the data, where the

data encoding gates define the frequency spectrum. The authors also introduce a technique known as

Data Re-Uploading, which consists of repeating the data encoding gates several times throughout the cir-

cuit, effectively increasing the frequency spectrum accessible to the quantum model. This subsequently

broadens the scope of functions the model can approximate, rendering it more expressive. However, such

an increase in circuit depth is not without its trade-offs. On the one hand, noise escalation in actual quan-

tum hardware due to circuit depth could nullify the effectiveness of algorithms employing this technique in

NISQ devices. On the other hand, the Barren Plateau Phenomenon states that the partial derivatives of a

hardware-efficient VQC vanish exponentially with the number of qubits and layers McClean et al. [2018].

Thus, a balance between expressivity and trainability becomes essential. Given that Data Re-Uploading

enhances the expressivity of the quantum model through increased circuit depth, it could potentially make

the model more challenging to train.

Finally, VQCs as function approximators in RL problems have already been researched and proven

to work for two different main algorithms: REINFORCE Sequeira et al. [2022], Jerbi et al. [2021] and

Q-learning Chen et al. [2020], Lockwood and Si [2020], Skolik et al. [2022]. In all of these articles, VQCs

were used as function approximators and managed to solve benchmark environments. However, none of

them research the effect of Data Re-Uploading on the trainability of the RL models. Hence, that is the goal

of this work. The focus is solely on Q-learning for several reasons. First, Q-Learning stands out in the RL

domain because of recent accomplishments in addressing complex problems using this method Mnih et al.
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[2015]. Furthermore, while the trainability of quantum models based on the REINFORCE algorithm has

been researched, such as in Sequeira et al. [2022] and Jerbi et al. [2021], literature on models grounded

on Q-learning is nonexistent. This gap underscores the need for the proposed research.

1.3 Contributions

The first contribution is the re-utilization of the methodology developed in Skolik et al. [2022] to ana-

lyze VQC-based Deep Q-Learning models’ performance in benchmark environments. More specifically,

using this methodology, the effect of data re-uploading and trainable input/output scaling on models’

performance in the CartPole-V0 environment is empirically verified, reaffirming the importance of such

techniques.

Furthermore, a methodology for analysing models’ trainability throughout training in benchmark envi-

ronments is developed. It consists of observing the gradients’ norm and its variance throughout training

of agents initialized from said model in the benchmark environment. It is verified that the gradients’

norm and its variance remain substantial throughout training. Moreover, more expressive models appear

to have higher gradients, which is surprising given the expressivity-trainability tradeoff demonstrated in

Holmes et al. [2022].

Moreover, the tradeoff between the moving targets inherent to the Deep Q-Learning algorithm and the

magnitude of the gradients is empirically studied in the CartPole-V0 environment.

The single-qubit Universal Quantum Classifier (UQC) from Pérez-Salinas et al. [2020] is adapted to be

used as a function approximator in Deep Q-Learning and its performance and trainability are tested on the

CartPole-v0 environment. Then, the multi-qubit version of the architecture is also tested using the same

methods.

Finally, we developed VQC-based Deep Q-Learning models capable of achieving a considerable per-

formance (according to our methodology) on the more complex Acrobot-v1 environment, a previously

untouched environment for such models, to the best of our knowledge.

Some of the contributions of this work were accepted as posters at two different prestigious interna-

tional conferences:

• Theory of Quantum Computation, Communication and Cryptography (TQC) - Data Re-Uploading in

Quantum Variational Q-Learning, July 2023

• Quantum Techniques in Machine Learning (QTML) - Tradeoff between moving targets, gradient

magnitude and performance in quantum variational Q-Learning, November 2023
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1.4 Outline

As previously mentioned, this work’s goal is to research the effect of Data Re-Uploading on the perfor-

mance and trainability of VQC-based Deep Q-Learning models. To accomplish that goal, this dissertation

is organized as follows.

Chapter 2 introduces Reinforcement Learning (RL), a type of machine learning in which an agent learns

to make intelligent decisions by interacting with the surrounding environment in a feedback loop, a process

that resembles trial-and-error learning. Moreover, this chapter also introduces the mathematical framework

behind RL problems and some common methods for solving such problems. Furthermore, it introduces

function approximation as a means to solve more complex RL problems, with a special emphasis on Deep

Neural Networks (DNNs) and Deep RL. Finally, this chapter also introduces the Deep Q-Learning algorithm,

which is the most important algorithm for this work.

Chapter 3 explains the basic concepts of the circuit model of quantum computation, before delving into

Variational Quantum Circuits (VQCs) and some related concepts, such as the Barren Plateau Phenomenon

and the Data Re-Uploading technique, which will be relevant throughout this work. It then introduces VQC-

based RL, where VQCs are used as function approximators in Deep RL problems instead of the typical

DNNs. Finally, this chapter reviews some recent papers on VQC-based RL, with a special emphasis on

VQC-based Deep Q-Learning.

Afterward, Chapter 4 defines the problem this work attempts to research, using the knowledge acquired

in the previous chapters. Then, it introduces the benchmark environments that will be used to test the

VQC-based models and the methodologies that will be used throughout this work to analyze the models’

performance and trainability.

Chapter 5 shows and discusses the empirical results obtained throughout the work. It first starts by

analyzing the performance of the models from Skolik et al. [2022] in the CartPole-v0 environment with

and without data re-uploading and trainable input/output scaling and discussing the importance of each of

these techniques in the models’ performance. Then, the single-qubit and multi-qubit Universal Quantum

Classifiers are introduced and their performance is also analyzed in the same environment. Furthermore,

the effect of entanglement on performance is discussed. After that, we shift our focus to the trainability

of the models. We first start with the models from Skolik et al. [2022] and then repeat the procedure for

the Universal Quantum Classifier. Subsequently, we show the effect that the moving targets of Deep Q-

Learning have on the trainability of these models. Then, we study how the models’ trainability behaves as

the number of qubits increases. Finally, the performance and trainability of these models are analyzed in
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the Acrobot-v1 environment, a previously untapped environment for VQC-based Deep Q-Learning models.
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Chapter 2

Reinforcement Learning

The main goal of AI involves designing agents that make intelligent decisions without human supervision.

Reinforcement Learning (RL) agents achieve this by interacting with their surrounding environment in a

feedback loop. This learning method resembles the trial-and-error process seen in humans and other

animals, allowing RL agents to address various real-world problems and identify practical solutions. This

chapter explains RL based on Sutton and Barto [2018].

2.1 The Reinforcement Learning Problem Statement

Any RL problem has two primary constituents: the Agent and the Environment. The agent is the decision-

maker and the representation of that which learns. The environment is everything that surrounds the

agent and is affected by its decisions. The agent must learn which actions to take by interacting with

the environment and receiving a reward that indicates the goodness of that particular action concerning

the goal. This process is called trial and error search and is one of the defining characteristics of RL.

In addition, important to note that actions are taken in a sequence and can have an impact not only on

immediate rewards but also on all future rewards. This is commonly referred to as delayed reward.

Going into further detail, the agent interacts with the environment by taking actions at each moment

t. The environment receives these actions and produces a reward and a new state at the next moment

in time t + 1. The agent then receives the new state and the reward to determine the following action.

This iterative process forms what is termed The Agent-Environment Interface Sutton and Barto [2018],

illustrated in Figure 1.
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ActionRewardState

Figure 1: The Agent-Environment Interface: The agent interacts with the environment at time step t by

taking actionAt. The environment then changes to state St+1 and produces rewardRt+1, which are both

passed back to the agent so that it can decide the next action. The dotted lines indicate that this process

repeats itself. Inspired by Sutton and Barto [2018].

Time is discrete, which means it can be indexed t ∈ {0, 1, 2, ...}. Before going any further, it is

important to note that uppercase letters indicate random variables and lowercase letters indicate values

these variables can take. The states, actions and rewards may take several forms, depending on the

problem one is trying to solve.

• The states can be numbers, words, colors, shapes and images, for instance. In short, they have to

encode all the possible states of the environment. This set will be represented by S and so s ∈ S .

• In a given environment, the set of actions an agent can take may depend on the state it is in. If it

does, then a ∈ A(s). However, in general, A(s) = A, ∀s ∈ S . For example, in the game of

chess, the actions the agent can take depend on the pieces on the board and their position. This

set of actions may be continuous or discrete, depending on the problem at hand. For instance, if

the problem consists of driving a car autonomously from point A to B, then the set of actions may

include the steering angle, which is continuous. On the other hand, Chess has a discrete set of

actions, since there are only some possible actions from a certain position.

• The rewards are usually encoded as r ∈ R and indicate the goodness of the agent’s decisions con-

cerning the goal. Going back to the chess example, the rewards could be {−1, 0, 1} depending on

whether the agent loses, draws, or wins a game, respectively. The expected rewards are calculated

using the reward function Ra
s : S × A 7→ r, in which r ∈ R.
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However, the environment dynamics still need to be defined. How do the actions taken by the agent

change the state of the environment? The answer is given by the state transition probability function,

pas′s = Prob(St+1 = s′|St = s, At = a) (2.1)

Put in words, this is the probability that taking action a in state s at time t will lead to state s′ at time

t+1. The state transition probability matrixP defines a multi-dimensional array encoding the probabilities

of transitioning between states s and s′ once the agent takes action a.

One last important property is that states in a RL setting are Markov, which means that evolution only

depends on the current state, neglecting the past. A state is Markov if and only if Prob(St+1|St) =

Prob(St+1|S1, ..., St). Put simply, by knowing the present state of the environment, the agent has all

the necessary information to make a decision. Chess, for example, is a Markov game, since all the states

satisfy the Markov property. A player only needs to look at the board to decide what the best play is, there

is no advantage in knowing what plays led to that moment.

Now, one has all the ingredients needed to define the mathematical framework in which RL problems

are set. That is the Markov Decision Process (MDP). An MDP is a tuple 〈S,A,P , R〉 Sutton and Barto

[2018], where:

• S is a finite set of states.

• A is a finite set of actions.

• P is a state transition probability matrix.

• R is the reward function.

It is important to distinguish between two different types of MDPs - Partially Observable MDPs (POMDPs)

and Fully Observable MDPs Wiering and Van Otterlo [2012]. When the environment sends the new state

st+1 to the agent, then the environment is a fully observable MDP, since the agent always knows the state

it is in. For instance, Chess is an MDP, since both players have access to the full information about the

state they are in. However, if the environment sends an observation containing only partial information

about the new state st+1, then it is a POMDP. For instance, consider the game of Poker. Each player only

has access to his own hand of cards and to the ”community” cards (the ones shown at the center of the

table). However, the cards of the other players are not visible. Hence, Poker is a POMDP, since an agent

only has partial information about the state it is in and has to take into account the different possible cards

the other players may have and the cards yet to be revealed at the center of the table. In this work, only

fully observable MDPs will be considered.
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The behavior of the agent is given by the policy, which is a probability distribution of actions over states

π(a|s). It determines the probability the agent will take each action a from a particular state s. Then, the

agent samples randomly from this distribution to decide which action to take. However, policies can also

be deterministic, meaning there is no randomness involved, in which case only one action can be taken

from a certain state: a = π(s).

As an example of an MDP, consider Figure 2. This environment has 16 states, each represented by a

real number that indicates the agent’s position on the grid such that S ∈ {1, 2, ..., 16}. The agent has

four possible actions A ∈ {left, right, up, down} as long as they respect the limits of the grid world. For

example, if the agent is in state 1, then it can only move up or right. This shows how the actions can be

conditioned by the states. In this scenario, we want the agent to find the apple in the least number of

steps possible, so the environment will produce a −1 reward per time-step and a +10 reward for finding

the apple. If the agent moves into a state with a bomb, then it receives a −5 reward.

21 43

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2: An example of an MDP - a grid world in which the goal of the agent is to find the shortest path

to the apple while not bumping into the bombs.

Now, the question is: what makes for a good policy? Before answering that question, let’s introduce

one last concept - the Return. The return is the total discounted reward from time-step t.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.2)

where γ ∈ [0, 1] is the discount factor, which determines how much long-term rewards are valued

over short-term rewards. If γ = 0, then the agent only cares about the immediate reward. On the
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other extreme, if γ = 1, the agent values all future rewards equally. This means that γ needs to be

chosen carefully depending on the problem at hand and the desired behaviour of the agent. However, it

is important to note that, for the convergence of series, γ may not take the value 1, such that γ ∈ [0, 1).

The objective of a RL agent becomes clear: to identify the policy that maximizes the expected return

maxπ Eπ[Gt]. In essence, since rewards gauge the quality of the agent’s actions relative to its objective,

a policy accumulating substantial rewards indicates proficient and intelligent decision-making within the

environment. It is important to understand that, as a consequence of the defined framework, every RL

agent needs to have a well-defined goal and a reward function that reflects that goal in its actions. For

example, if the problem is a game of chess, the goal of the agent could be to win the game, and the

rewards {−1, 0, 1} depending on whether the agent loses, draws, or wins. In a race-like scenario, the

goal of the agent is to take as little time as possible to complete the task, so the reward function could be

−1 reward per time-step.

In this section, the mathematical framework in which RL problems are set was defined. Furthermore,

it was stated that the goal of a RL agent is to find the policy that maximizes the expected return. Now, the

important question is how to find such an optimal policy.

2.2 State and Value Functions and the Notion of Optimality

Let’s start by introducing two important functions: the State Value Function and the Action-Value Function.

The State Value Function vπ(s) defines how good it is for an agent to be in a certain state s. It is the

expected return starting from state s, and then following policy π:

vπ(s) = Eπ[Gt|St = s] (2.3)

This function can be broken down by conditioning on actions, creating the Action-Value Function

qπ(s, a), which defines how good taking a certain action from a particular state is. It consists of the

expected return starting from state s, taking action a, and then following policy π thereafter:

qπ(s, a) = Eπ[Gt|St = s, At = a] (2.4)

Furthermore, in any MDP, there exists an optimal state-value function and the optimal action-value

function Sutton and Barto [2018].

The optimal state-value function v∗(s) is the maximum value function over all policies
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v∗(s) = max
π

vπ(s) (2.5)

Similarly, the optimal action-value function q∗(s, a) is the maximum action-value function over all

policies

q∗(s, a) = max
π

qπ(s, a) (2.6)

The optimal value function specifies the best possible performance in the MDP. In other words, an

MDP is considered solved once the optimal value function is known. But how so? The goal is to find a

policy and not a value function. Even if these functions specify the best policy somehow, how can it be

extracted? First, let’s define a partial ordering over policies so that policies can be compared qualitatively.

A policy π is better than or equal to a policy π′ if, for all states, the value function generated by π is equal

or greater than the value function generated by π′:

π ≥ π′ if vπ(s) ≥ vπ′(s), ∀s (2.7)

Then, there is a theorem that states that, for any MDP Sutton and Barto [2018]:

• There exists an optimal policy π∗ that is better than or equal to all other policies, π∗ ≥ π, ∀π

• All optimal policies achieve the optimal value function, vπ∗(s) = v∗(s)

• All optimal policies achieve the optimal action-value function, qπ∗(s, a) = q∗(s, a)

Keeping this in mind, it becomes clear that, once one has the optimal action-value function q∗(s, a),

the optimal policy can be found by simply maximizing over it,

π∗(a|s) =

1 if a = argmaxa∈A q∗(s, a)

0 otherwise
(2.8)

This is obvious if one considers a very simple scenario. Imagine there is a state s in which the agent

can take two possible actions: a1 and a2. Now, imagine that q∗(s, a1) = 10 and q∗(s, a2) = 3. Put

in words, this means that, by taking action a1, the agent is expecting a return of 10 from then on, and

similarly, by taking action a2, it expects a return of 3. The best decision in this scenario would be to take

action a1. By applying this way of thinking to all possible states, one obtains the optimal policy. It is also

possible to obtain the optimal policy once the optimal state-value function is known, although harder. In

that case, the action chosen should always be the one that leads to the state with the higher value. This
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involves an extra step since the agent has to know the model of the environment to see the successor

states in order to choose the optimal action.

It is also important to note that, for any MDP, there always exists a deterministic optimal policy Sutton

and Barto [2018]. This means that, even if the policy is a distribution of actions over states, the goal is for

it to eventually converge into the deterministic optimal policy. However, this is not the case for POMDPs,

where the optimal policy may be stochastic.

Now the question is: How is the optimal action-value function found? There are many ways to solve

this problem, and some of them will be discussed in the next section.

2.3 Bellman Equations and Dynamic Programming

The Bellman Equation relates the value of a state to the value of its successor states:

vπ(s) = Eπ[Gt|St = s]

=
∑
a∈A

π(a|s)
∑

s′∈S,r∈R

p(s′, r|s, a)[r + γvπ(s
′)] (2.9)

Similarly, there is also a Bellman Equation for the action-value function:

qπ(s, a) =
∑

s′∈S,r∈R

p(s′, r|s, a)

[
r + γ

∑
a′∈A

π(a′|s′)qπ(s′, a′)

]
(2.10)

Both of these equations are valid for any policy π, all s ∈ S and all a ∈ A.

Additionally, Sutton and Barto [2018] states that the so-called Bellman Optimality Equations hold true

solely under an optimal policy, asserting that the value of any specific state, under such a policy, has to

align with the expected return for the best action available in that state.

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (2.11)

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ max
a′

q∗(s
′, a′)] (2.12)

One way of finding the optimal value functions and, consequently, the optimal policy, is by solving

a system of |S| equations, one Bellman Optimality Equation for each state s ∈ S , using any method

for solving non-linear equations. However, this solution is very rarely useful, since it is equivalent to an
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exhaustive search (making it unfeasible for complex problems with high dimensional state and action

spaces) and relies on the agent knowing the dynamics of the environment, a property known as Complete

Knowledge, which is an assumption that very rarely holds in real-world problems Sutton and Barto [2018].

This is a good opportunity to introduce the two major types of RL methods: Model-Based and Model-

Free Kaelbling et al. [1996]:

• In model-based methods, the agent has access to (or learns an approximated version of) the model

and can use it to plan. Since the agent knows the dynamics of the environment, it can use that

knowledge to simulate the different possible paths and their consequences, before taking an actual

action in the real environment. For example, in Chess, because the rules and the structure of the

game are known and the transitions are deterministic, the agent can search through the different

possible paths and, in a sense, think a couple of steps ahead. Then, using that knowledge, it can

choose the path that seems most favorable. An example of this is Silver et al. [2017].

• In model-free methods, the agent doesn’t have access to a model. These methods are simpler and

easier to implement, but also usually suffer from a higher sample complexity, since the agent has

to deal with the extra burden of not knowing the dynamics of the environment, and thus needs extra

interactions to reach a considerable level of performance.

Model-free methods are more popular and more researched than model-based methods for a couple

of reasons, with the main one being that, most of the time, the real model of the environment is not known.

Consequently, model-based algorithms have to learn an approximation of the model, which by itself may

be a complicated process, but this also leads to another problem. Since the model the agent is using to

plan isn’t a perfect model of the environment, the best performance in the model doesn’t have to translate

to the best performance in the actual environment. In other words, the policy of the agent will only be as

good as the model it built from the environment. In this work, we will only research a particular model-free

method known as Q-Learning Watkins and Dayan [1992].

Nonetheless, before getting into Q-Learning, it is important to explain what Dynamic Programming (DP)

is. DP is a collection of model-based algorithms that require access to the dynamics of the environment

p(s′, r|s, a) and that use value-functions as guides in the search for optimal policies Sutton and Barto

[2018]. These algorithms are of limited utility because they are computationally costly and require a perfect

model. However, they are extremely important from a theoretical standpoint and serve as the basis for Q-

Learning, as well as many other RL algorithms. In short, they turn the Bellman Equations into assignments

(update rules) that, every time they are applied, improve the approximations of the value functions, with

convergence guarantees as the number of updates tends to infinity.
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They work by intertwining two different processes: Policy Evaluation and Policy Improvement. In

Policy Evaluation, the goal is to approximate the value function given by the policy π. This is done by

sweeping over the entire state space using the Bellman Equation as an update rule. Then, as this process

is repeated time and time again, the approximation of the value function becomes better and better. In

practice, a stopping criterion has to be used. A common one is to define a small threshold θ > 0 and, if

the difference between the new values and the previous values is smaller than θ, the process is stopped. In

Policy Improvement, a new policy is created, one which is greedy with respect to the original value function.

This new policy is guaranteed to always be at least as good as the original policy Sutton and Barto [2018].

The alternation of any variation of these two processes is known as Generalized Policy Iteration (GPI) and,

as long as all the states continue to be updated, converges to the optimal value function and the optimal

policy.

In this section, the Bellman Equations and Dynamic Programming, which offer a means to solve the

RL problem, are introduced. In the next section, Q-Learning is explained.

2.4 Q-Learning

In model-free RL, the agent does not have access to the environment dynamics. In other words, a model

is neither known nor learned. Consequently, agents learn from experience - finite sequences of states,

actions, and rewards, in the format {s, a, r, s′}, which are called trajectories Sutton and Barto [2018].

However, learning from experience introduces some new problems.

The first problem has to do with the policy. The agent is learning from experience that has to be

generated by some policy π. Now, how is this policy chosen? On the one hand, the agent has to explore

the state space to find high-value states. On the other hand, the agent has to exploit the acquired knowl-

edge, taking actions that it knows yield high rewards and lead to good states. This problem is known as

the exploration-exploitation tradeoff Kaelbling et al. [1996] and has some practical solutions. Maybe the

simplest one, which will be used in this work, is an ϵ-greedy policy Sutton and Barto [2018], which chooses

a random action with probability ϵ and the greedy action with probability 1 − ϵ. It is typical to decay ϵ

over time. This idea comes from the understanding that, in the beginning, as the agent has very little to

no knowledge, exploration is crucial. Then, as the agent learns, exploitation becomes more important.

Still, a minimum value for ϵ is defined to ensure continuous exploration (a requirement for convergence

guarantees) Sutton and Barto [2018]. Nonetheless, the choice of the decaying scheduling of ϵ depends

on the environment and must be chosen carefully taking the aforementioned tradeoff into consideration.

16



In addition, model-free RL algorithms can be classified into two types: On-Policy and Off-Policy. On-

policy algorithms learn a policy π from experience generated from the same policy π, while off-policy

algorithms learn a policy ν from experience generated from a different policy π. The latter are noteworthy

as they enable agents to learn from humans or other agents and reuse experience generated from previous

policies. Notably, Q-Learning is an off-policy algorithm.

The second problem has to do with the value function the agent learns. In model-free methods, if

one wants to find the optimal policy (or a near-optimal one), the learned value function has to be the

action-value function Q(s, a). Learning the state-value function V (s) requires a model of the MDP for

greedy policy improvement, as the agent must identify the action leading to the highest valued state. To

do so, the agent must know the resulting state and reward for each action. Greedy policy improvement

over Q(s, a) is model-free and involves maximizing over actions, as mentioned in the previous section.

To estimate the action-value function and determine the optimal policy, two effective methods exist:

Monte-Carlo (MC) and Temporal Difference Learning (TD-Learning). Monte-Carlo techniques use averages

to approximate expected returns and GPI to derive a policy π that approximates the optimal policy π∗.

Specifically, these techniques use averages of returns for estimating the action-value functions in the Policy

Evaluation step and an ϵ-greedy policy in the Policy Improvement step. However, these methods apply only

to episodic environments where all trajectories terminate. In this scenario, each trajectory is often called

an episode. TD-Learning overcomes some MC limitations, by combining it with DP. Like MC methods,

it learns from raw experience but updates estimates with other learning estimates without waiting for an

outcome - bootstrapping. For instance, consider a robot that has to guess how many steps it needs to

take before reaching a goal using TD-Learning. Let’s say each step yields a −1 reward. In its original

position, the agent might think that 15 steps are necessary, and thus expects a return of −15 (assuming

γ = 1). Then, the agent takes one step and receives a reward of −1. However, now being closer to the

goal, the agent notices that it overshot its first prediction and now thinks only 10 steps are necessary to

reach the goal. Consequently, the agent updates its estimation of the original state toward the improved

estimation of the successor state. That is the idea behind TD-Learning - updating estimates with other

estimates. TD-Learning offers lower variance, updates state values at every time step, and functions in

non-episodic environments. For a more detailed explanation of MC and TD methods and their differences,

refer to Sutton and Barto [2018].

Finally, one has all the information needed to understand Q-Learning. In summary, it is an off-policy

algorithm that attempts to approximate the optimal action-value function q∗(s, a) using TD-learning. The

pseudo-code for the algorithm follows:

17



Algorithm 1 Q-Learning (Sutton and Barto [2018])

1: Algorithm parameters: step size α ∈ (0, 1], small ϵ ∈ [0, 1]

2: Initialize Q(s, a), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal_state, ·) = 0

3: loop for each episode:

4: Initialize S

5: repeat for each step of the episode:

6: Choose A from A(S) using policy derived from Q (e.g., ϵ-greedy)

7: Take action A, observe R, S ′

8: Q(S,A)← Q(S,A) + α[R + γ maxa Q(S ′, a)−Q(S,A)]

9: S ← S ′

10: until S is terminal

11: end loop

As previously explained, uppercase letters indicate random variables and lowercase letters indicate

values these variables can take. Hence, all the variables in the pseudo-code are uppercase letters. As

one can see from lines 6 and 7, the experience is generated from a behavior policy, which has to balance

the exploration-exploitation tradeoff. As previously mentioned, this work will use an ϵ-greedy policy for

simplicity. Then, line 8 establishes the update rule for the Q-Values. Put in words, the Q-values are

updated a little (depending on step size α) in the direction of the immediate reward plus the discounted

maximum Q-values of the successor states. There is much to unpack there, so let’s start one step at a

time.

• α is the step size and must be chosen depending on the problem. A larger α leads to more

pronounced updates. The larger the α, the more the agent considers recent information and

ignores prior knowledge.

• R + γ maxa Q(S ′, a) is the TD-target and consists of the immediate reward plus the discounted

maximum Q-values of the successor states. TD-Learning bootstraps by updating estimates using

other estimates. It is also possible to verify why Q-Learning is an off-policy algorithm. Even though

the experience is generated from a behavior policy π (e.g. ϵ-greedy), the agent always considers

the maximum Q-values of the successor states. In other words, the target policy (the one the agent

is learning) is greedy with respect to the Q-values.

• The difference δ = R+γ maxa Q(S ′, a)−Q(S,A) is called TD-Error and determines the update

to be done to the current estimates of the Q-values. It consists of the difference between the TD-
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target and the current estimates of the Q-values. These estimates are the updated in the direction

of the TD-error, scaled by the step-size α.

This section introducedmethods to determine the (near) optimal policy using value functions as guides,

such as Q-Learning. The next section will explain the scalability problem that undermines this algorithm

and introduce one of the possible solutions to solve it.

2.5 Deep Reinforcement Learning

The previous section outlines tabular approaches Sutton and Barto [2018], which use lookup tables of (at

most) dimensions S ×A to assign values to state-action pairs encountered by the agent. However, these

methods suffer from the curse of dimensionality, making them inadequate for handling large problems.

For instance, the game of Go has 10170 states, making it unfeasible to construct a lookup table with at least

10170 entries and determine values for each entry with current technology. Additionally, some problems

have continuous state and/or action spaces. To apply RL to real-world issues, the methods must possess

the capability to solve intricate, complex problems. Can model-free methods be expanded to tackle these

challenges?

The answer to the question is positive. In fact, there are several possible solutions, such as using state-

abstraction Andre and Russell [2002] and/or dimensionality reduction techniques Sorzano et al. [2014].

This work focuses on the most popular solution - using Function Approximation. The idea is to generalize

from seen states to unseen states by approximating a target function. Consequently, a new function is

defined:

q̂(s, a,w) ≈ qπ(s, a) (2.13)

where w is a vector of parameters that must be updated using TD-Learning or MC. It is important to

refer that function approximation is only useful if dim(w) � |S × A|, otherwise it would be the same

as the tabular regime.

There are many function approximators, each with pros and cons, such as linear combinations of

features and Kernel-based approximators Busoniu et al. [2017]. Nonetheless, the most used function

approximators, not only in RL but in machine learning in general, are Neural Networks (NNs). NNs are

popular because they are differentiable, accurately approximate complex functions, have strong generaliza-

tion capabilities, scale up to handle larger datasets, and benefit from GPU computing and groundbreaking

results in practice Morales [2020]. Neural networks (NNs) are made up of neurons that receive inputs,
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Figure 3: A neural network is composed of neurons, which are grouped into layers. Each neuron receives

m inputs {x1, ..., xm}, which are multiplied by the m respective weights {w1, ..., wm} and summed.

A bias b is also added. Finally, the result is passed through an activation function φ, which produces the

output.

each with a weight that is adjusted during training. The neuron multiplies each input by its weight and

sums all weighted inputs, adds a trainable weight called the bias, and passes the result through a non-

linear activation function to determine the neuron’s output. These neurons are organized into layers, with

the input layer receiving the data, and the output layer yielding the processed result. Any layer in between

is called a hidden layer. If a neural network has two or more hidden layers, it is known as a Deep Neural

Network (DNN). See Figure 3 for a visualization of a NN and a neuron. The more layers, the more complex

functions the NN can approximate. To train a neural network (NN), an objective function, commonly known

as a loss function, is defined. This function quantifies the discrepancy between the NN’s predicted outputs

and the desired outputs. The goal during training is to minimize this error. Typically, the learning algorithm

adjusts the network’s weights based on the gradient of this loss function. The gradient, for each weight,

indicates how much the error would change if that weight were perturbed by a small amount. The general

idea is to adjust the weights in the direction that reduces the error. This concept was extensively discussed

by LeCun et al. LeCun et al. [2015]. In practice, an optimization algorithm, often a variant of Stochastic

Gradient Descent (SGD), is employed. Instead of calculating the gradient using the entire dataset — which

can be computationally intensive — SGD approximates the gradient using a subset of the data. This subset,

called a mini-batch, is randomly sampled from the dataset. This approach not only reduces computational

requirements but can also introduce beneficial noise, potentially aiding in generalization and avoiding local

minima LeCun et al. [2015].

Any RL algorithm that uses DNNs as function approximators is considered Deep Reinforcement Learn-

ing (DRL). DRL has been applied to increasingly complex problems, with high-dimensional state-spaces
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and/or action-spaces, achieving comparable or better performance than humans in a variety of bench-

mark environments. In 2016, Deepmind’s Alpha-Go, a Go-playing computer program that used DRL and

Monte-Carlo Tree Search, defeated the European Go Champion by 5-0 Silver et al. [2016]. This result was

a breakthrough for DRL and AI in general since Go was considered the most challenging classic game for

artificial intelligence due to its vast search space. In 2017, a subsequent version of Alpha-Go, based solely

on RL, without human data, achieved super-human performance, beating the previous Alpha-Go version

by 100-0 Silver et al. [2017].

Even outside of the typical benchmark environments of board games and video games, DRL has

been applied with great success in real-world problems. Nvidia, a multinational technology company that

specializes in designing Graphics Processing Units (GPUs), has recently announced that they have used

DRL for designing more efficient arithmetic circuits Roy et al. [2021]. Deepmind has also shown that

DRL can be used to assist the operations of nuclear fusion Degrave et al. [2022].In quantum physics, it

has been applied to the many-body problem that consists of predicting the properties of systems made

of many interacting quantum particles. Since the numerical solution to this problem is intractable for

systems of moderate size, different methods that use approximations have been used to solve it. Recently,

NNs have been used to approximate the quantum states and DRL techniques have been employed to find

the ground-state and describe the unitary time-evolution of complex interacting quantum systems Carleo

and Troyer [2017]. DRL has been applied successfully in diverse fields, such as robotics Nguyen and La

[2019], finance Hu and Lin [2019], healthcare Yu et al. [2021] and communications/networking Luong

et al. [2019].

In this section, the need for function approximators in RL was made clear, considering the scalabil-

ity limitations of tabular approaches. In particular, DNN and, consequently, DRL were introduced. The

following section will explain how DNN can be used in Q-Learning.

2.6 Deep Q-Learning

To solve the dimensionality problem, function approximators can be used to approximate the Q-function

in Q-Learning Melo and Ribeiro [2007]. In the seminal work Mnih et al. [2015], a DNN is used as the Q-

function approximator and the resulting algorithm is named Deep Q-Network (DQN). A comparison between

Q-Learning and DQN can be seen in Figure 4.
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Figure 4: A comparison between Q-Learning and Deep Q-Learning (DQN). Q-Learning is a tabular approach,

where the values of all the visited state-action pairs are stored in a lookup table. DQN, on the other

hand, uses a deep neural network as the Q-function approximator. The Figure shows one of the possible

architectures for the NN, where the input layer receives the components of the state and the output layer

outputs the Q-values for all possible actions. See Morales [2020] for other possible architectures.

The pseudo-code for the algorithm follows:

Algorithm 2 Deep Q-Learning

1: Algorithm parameters: step size α ∈ [0, 1], small ϵ ∈ [0, 1]

2: Initialize replay buffer D to capacity N

3: Initialize action-value function Q with random weights θ

4: Initialize target action-value function Q̂ with weights θ− = θ

5: for episode= 1,M do

6: Initialize s1

7: for t = 1, T do

8: Choose at from st using ϵ-greedy policy

9: Take action at, observe rt+1, st+1

10: Store experience (st, at, rt+1, st+1) in replay memory D

11: Sample random mini-batch of transitions (s, a, r, s′) from D

12: Compute the TD-targets using target network (with old, fixed parameters θ−)

13: Perform a gradient descent step on
[
r + γ maxa′ Q(s′, a′; θ−i )−Q(s, a; θi)

]2
w.r.t pa-

rameters θ

14: Every C steps reset Q̂ = Q

15: Initialize st

16: end for

17: end for
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In the algorithm, several control constants warrant additional explanation. Firstly, the Experience

Replay Buffer is initialized with a capacity of N . This capacity determines the maximum number of

experiences that the buffer can hold. It is a hyperparameter that requires fine-tuning, since its optimal

value varies across different environments. In line 10, for clarity, only the storage of experiences in the

replay buffer was described. However, when the replay buffer reaches its capacity, older experiences are

discarded to accommodate newer ones. The parameter M denotes the number of episodes, T the steps

per episode, and C stands for the target network update frequency, which will be further elaborated in the

subsequent paragraph.

The authors demonstrated that this algorithm achieves super-human performance on a number of

arcade games. They also introduce two novel improvements over previous approaches: experience replay

and target network. The former consists of using a Replay Buffer, where all experiences - interactions

with the environment in the format (st, at, rt+1, st+1) - are stored. Then, batches of these experiences

are randomly sampled to compute the parameter updates. This way, temporal correlations between the

samples are broken, making the data appear more Independent and Identically Distributed (IID), which

stabilizes training. The Target Network consists of a second NN that is used to compute the TD-targets.

The target network has ”frozen” weights that are sporadically (every C steps) updated with a copy of the

parameters of the online network. The idea behind this is to make the targets more stationary, which also

stabilizes training. However, there is a tradeoff here between speed of convergence and stability which

must be accounted for when choosing C . For a more nuanced discussion on the necessity of these

techniques, the reader is referred to the original paper Mnih et al. [2015] and the book Morales [2020].

It is also important to note that there are algorithms that build on DQN, such as the Double DQN Hasselt

[2010] (DDQN) and the Dueling DDQN Wang et al. [2016]. Nonetheless, the concept is essentially the

same.

DQN has been applied successfully to various problems. Starting with the aforementioned research

paper that introduced DQN, which created a DQN agent that, receiving only raw visual input, achieved

a level of performance comparable to (and sometimes better than) that of a professional human games

tester in 49 games from the Atari 2600 games Mnih et al. [2015], which is one of the most exciting results

in DRL. It has also been used in stock market forecasting, proving to develop strategies better than a

typical benchmark strategy Carta et al. [2021]. Additionally, it has been employed in the path planning of

coastal ships, improving the safety, economy, and autonomous decision-making ability of ship navigation

Guo et al. [2021].

Nonetheless, there is an important caveat to DQN that must be mentioned - it is highly unstable and
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has no convergence guarantees Tsitsiklis and Van Roy [1996]. In fact, Sutton and Barto [2018] even go

as far as to define what they call the deadly triad - function approximation, bootstrapping, and off-policy

data. Every algorithm that uses these three elements, such as DQN, is unstable and likely to diverge. The

target network and experience replay techniques were introduced to DQN to ameliorate this problem.

2.7 Policy-Gradient Algorithms and Taxonomy of RL

So far, many different RL algorithms have been discussed. The first distinction made was between model-

free and model-based algorithms. Then, some model-free methods that use value functions as guides

in the search for the optimal policy were introduced and explained. These methods are usually referred

to as Value-Based. However, those are not the only model-free methods for solving RL problems. Some

try to learn the policy directly - Policy-Based algorithms. They typically work by parameterizing the policy

πθ(a|s), defining an objective function that serves as some performance measure J(πθ) and optimizing

the parameters θ by performing gradient ascent on an approximation of the gradient ∇J(πθ), which is

obtained using Monte-Carlo samples. Consequently, they are commonly referred to as policy gradient

methods. Some notable policy-gradient algorithms include REINFORCE Williams [1992], REINFORCE with

baseline Sutton and Barto [2018] and Proximal Policy Optimization (PPO) Schulman et al. [2017].

Policy-based methods have their pros and cons when compared with value-based methods. On the one

hand, unlike value-based methods, they can learn stochastic policies, which makes them more suitable for

problems with incomplete information (POMDPs). Additionally, the action probabilities change smoothly

with small changes to the parameters, whereas in value-based methods a small change to the estimated

action values may lead to a dramatic change in the action probabilities, meaning that the former have

better convergence guarantees Sutton and Barto [2018]. Perhaps the simplest advantage is that, in some

scenarios, it may be easier to learn the policy than a value function. On the other hand, since updates are

based on Monte-Carlo samples, they suffer from high variance, which may slow down training Greensmith

et al. [2004]. The important conclusion from this comparison is that both methods are useful and their

applicability vastly depends on the problem itself. Consequently, both are actively researched and equally

important. There is also another type of RL algorithm that combines both value-based and policy-based

methods, leveraging their strengths while undermining their weaknesses, called actor-critic algorithms

Konda and Tsitsiklis [1999]. In these, both the parameterized policy and the value function are learned,

where the former can be seen as the actor and the latter the critic. Actor-critic algorithms often yield

state-of-the-art performance in many DRL benchmark environments Morales [2020], Mnih et al. [2016].
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For a more detailed discussion on policy-gradient and actor-critic algorithms, along with their advan-

tages and disadvantages, the reader is referred to Sutton and Barto [2018].

A simple tree diagram to visualize the taxonomy of the RL methods learned so far can be seen in

Figure 5.

RL Algorithms

Model-Free RL Model-Based RL

Value-BasedPolicy-Based

Reinforce

Reinforce with
baseline

PPO

MC methods

Q-Learning
(DQN)

DP

Figure 5: A non-exhaustive taxonomy of the RL algorithms mentioned in this chapter.

2.8 Summary

Reinforcement Learning (RL) is a subset of machine learning where an agent learns to make decisions by

taking actions in an environment to maximize cumulative rewards over time.

The goal is to find the optimal policy, a distribution of actions over states, which can be thought of as

the optimal behavior in the environment. To search for the optimal policy, value functions can be used as

guides. These functions estimate the expected cumulative reward an agent can obtain from a given state

or state-action pair. Every single state is related to every successor state by the Bellman Equations. In

particular, under an optimal policy π∗, the Bellman Optimality Equations apply.

One way to find the optimal policy is to solve several systems of non-linear Bellman Optimality Equa-

tions, one for each state. Nonetheless, other methods reduce the computational cost. One such example

is Dynamic Programming (DP), which turns the Bellman Equations into update rules and is guaranteed to

25



converge to the optimal policy as the number of updates tends to infinity. However, these methods require

access to a model of the environment and are hence called model-based. A notable algorithm that doesn’t

require access to a model is Q-Learning, which works by having the agent interact with the environment

and using that experience to approximate the state-action values.

Nonetheless, it still suffers from scalability problems, as all the values have to be stored in a lookup

table. A solution to this problem is to use function approximators. In particular, Deep Neural Networks

(DNNs) are commonly used in RL algorithms, giving rise to Deep Reinforcement Learning (DRL). Deep Q-

Network (DQN) is an algorithm that uses DNNs to approximate the Q-values. Still, some methods attempt

to learn the policy directly, without using value functions. These algorithms are known as Policy-based

and have their advantages and disadvantages. Consequently, all methods and algorithms are actively

researched and used across diverse fields.
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Chapter 3

Quantum Computing

Quantum computers process data and solve problems by leveraging the principles of quantum physics.

By making use of such phenomena, they hold the promise of solving specific problems, like factoring

large numbers or simulating quantum systems, exponentially faster than the most advanced classical

computers. Nonetheless, building scalable and error-resistant quantum machines remains a significant

challenge. Consequently, the benefits of near-term quantum computing remain somewhat unclear.

This chapter begins by contextualizing and introducing the fundamentals of quantum computing. It

then delves into a specific subset of quantum circuits designed for near-term quantum computing, known

as variational quantum circuits. The latter sections introduce quantum reinforcement learning, with a

spotlight on strategies that utilize variational quantum circuits.

3.1 Context

During a conference in May 1981, Richard Feynman introduced the idea of a quantum computer. He argued

that classical computers could not efficiently simulate quantum systems, and suggested that computers

that could harness the principles of quantum physics would be better suited for the task Feynman [1982].

Then, in 1985, David Deutsch formalized quantum computers Deutsch [1985] and raised an important

question: Can quantum computers solve problems that have nothing to do with quantum physics more

efficiently than classical computers? Surely enough, in 1997, David Simon developed a quantum algorithm

that is exponentially faster than the best-known classical algorithm at finding the period of a function

Simon [1997]. Then, in 1999, Peter Shor found a quantum algorithm with a similar complexity advantage

over the best-known classical algorithm at factoring large numbers Shor [1999]. However, unlike Simon’s

algorithm, Shor’s has a very important practical application - the potential to break public-key cryptography

schemes which are widely used to protect digital information all over the globe. This discovery generated

considerable interest in quantum computing Preskill [2023].
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One hurdle remained - the implementation of these algorithms in quantum hardware. For the quantum

algorithm to work, the involved qubits (the quantum version of bits) have to remain in a superposition

during the whole process. However, these superpositions are extremely fragile and can suffer decoherence,

leading to computational errors Haroche and Raimond [1996]. Still, error-correcting codes were developed

Steane [1996] and Shor introduced fault-tolerant quantum computing, which allows for implementations

in noisy quantum hardware Shor [1996].

Nonetheless, present-day quantum computers are devices with up to a few hundred qubits with-

out error correction. These devices were coined Noisy-Intermediate Scale Quantum (NISQ) devices by

John Preskill Preskill [2018]. In 2019, the Google AI Quantum Group claimed they achieved ”quantum

supremacy” by getting a superconducting quantum computer to perform a task exponentially faster than

the best classical supercomputer at the time Arute et al. [2019]. However, while this task may be of

practical use in the future, that is not the case at the present time. Hence, most researchers in the NISQ

era have been trying to find practical problems where quantum computers outperform classical ones. A

particularly promising approach, which will be explained in more detail in the following sections, consists

of using hybrid classical/quantum algorithms to find approximate solutions to optimization problems Farhi

et al. [2014].

3.2 Quantum Circuits

3.2.1 Single-Qubit and Multi-Qubit Systems

There are different models of quantum computing. However, this work focuses solely on the circuit model

of quantum computing Nielsen and Chuang [2010].

A bit is the most basic unit of information in classical computing. It can only have one of two values:

0 and 1. The quantum bit (qubit) is the quantum analog of the classical bit. The main difference between

these two is that qubits make use of a quantum phenomenon known as superposition, meaning that they

can be in a linear combination of 0 and 1. Thus, the general state of a qubit is given by:

|Ψ〉 = α0 |0〉+ α1 |1〉 (3.1)

where α0 and α1 are complex coefficients that represent probability amplitudes α0, α1 ∈ C and |α0|2+

|α1|2 = 1. Furthermore, the states |0〉 = (1, 0)T and |1〉 = (0, 1)T make up the computational basis.

The complex conjugate of the general one-qubit state |Ψ〉 defined in equation 3.1 is given by:

〈Ψ| = α∗
o 〈0|+ α∗

1 〈1| (3.2)
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where α∗
0, α

∗
1 are the complex conjugates of α0, α1, respectively, and 〈0| = (1, 0), 〈1| = (0, 1).

Another difference between qubits and bits is that qubits cannot be examined to determine their state.

Instead, a measurement has to be performed. An observable (which is a quantum operator) is measured

and the state collapses to one of the eigenvectors of the observable - measurements are destructive.

Typically, qubits are measured in the computational basis {|0〉 , |1〉}. A single measurement yields only

a single bit of information about the state of the qubit.

If the qubit from equation 3.1 is measured in the computational basis:

• With probability |α0|2 - The result is 0 and the state of the qubit after measurement is |0〉.

• With probability |α1|2 - The result is 1 and the state of the qubit after measurement is |1〉.

A qubit can thus be in an arbitrary state parameterized by three angles γ, θ and φ:

|Ψ〉 = eiγ
(
cos

θ

2
|0〉+ eiφ sin

θ

2
|1〉

)
(3.3)

The factor eiγ can be ignored, since it has no observable effects - it is a global phase. The values

θ and φ define a point on the unit three-dimensional sphere, which can be thought of as the geometric

representation of a single-qubit state. This sphere is commonly known as the Bloch Sphere, see Figure 6.

If the qubit is in a pure state and not in a mixture of several states, then it is represented by a point on the

surface of the Bloch sphere Nielsen and Chuang [2010].

Figure 6: Representation of a Bloch Sphere

It is also possible to use several qubits to construct multi-qubit systems. A general N qubit quantum

state is given by:

|Ψ〉 =
∑

x∈{0,1}N
αx |x〉 (3.4)
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Where ∑
x∈{0,1}N

|αx|2 = 1 (3.5)

For example, considerN = 2. If one has two classical bits, then there are four possible combinations,

or states, 00, 01, 10 and 11. Similarly, a system with two qubits has four possible computational basis

states |00〉, |01〉, |10〉 and |11〉. Thus, a general state for the 2-qubit system is given by:

|Ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 (3.6)

Some multi-qubit systems can be built from single-qubit systems using the tensor product (⊗):

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉 ⊗ ...⊗ |ΨN〉 = |Ψ1Ψ2...ΨN〉 =
N⊗
i=1

|Ψi〉 (3.7)

However, not all multi-qubit states can be decomposed into tensor products of single-qubit states.

These states are said to be entangled. For example, consider the well-known Bell State, which is a very

important two-qubit state:

|Ψ〉 = 1√
2
(|00〉+ |11〉) (3.8)

This state is entangled because there is no way to express |Ψ〉 as a product of two separate qubit

states. This property, known as entanglement, is essential in quantum computing and is what allows for

information processing beyond what is possible in the classical world Nielsen and Chuang [2010].

3.2.2 Single-Qubit and Multi-Qubit Quantum Gates

To perform meaningful computations and solve tasks, one has to be able to manipulate the quantum

states. That is the goal of the elementary quantum operations, the quantum gates. These gates are

represented by matrices with a single constraint - they have to be unitary. That is, given a matrix U and

its adjoint U †, U is unitary if U †U = I , where I is the identity matrix. Let’s start with some well-known

single-qubit gates, such as the Hadamard gate H , which is used to create uniform superpositions:

H =
1√
2

1 1

1 −1

 (3.9)

Applying it to the computational basis yields:

H |0〉 = 1√
2
(|0〉+ |1〉) = |+〉 (3.10)

H |1〉 = 1√
2
(|0〉 − |1〉) = |−〉 (3.11)
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There are some other important single-qubit gates, such as the Pauli X , Y and Z gates and the

Identity gate I :

X =

0 1

1 0

 Y =

0 −i
i 0

 Z =

1 0

0 −1

 I =

1 0

0 1

 (3.12)

Even if one is not familiar with quantum computing, some of these gates are pretty intuitive. For

example, the identity gate I does nothing to a quantum state, such that I |Ψ〉 = |Ψ〉. The Pauli X gate

is the quantum analog of the classical NOT gate. It turns |0〉 into |1〉 and vice-versa. More importantly,

it turns a superposition α |0〉 + β |1〉 into α |1〉 + β |0〉. In other words, it acts linearly. This is a

characteristic of quantum computing - quantum gates act on quantum states via linear transformations.

The Pauli Z gate, also known as a phase-flip gate, flips the phase of the |1〉 state but leaves the |0〉 state

unchanged. The Pauli-Y gate transforms |0〉 to i |1〉 and |1〉 to −i |0〉. In other words, it applies both

Pauli-X and Pauli-Z operations simultaneously but with a complex coefficient.

From the Pauli matrices, one can also define the RX , RY and RZ rotation gates, which perform

rotations on a quantum state over the x, y and z axis of the Bloch Sphere, respectively:

RX = e−iθX/2 =

 cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

 (3.13)

RY = e−iθY /2 =

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

 (3.14)

RZ = e−iθZ/2 =

e−iθ/2 0

0 eiθ/2

 (3.15)

An arbitrary single-qubit gate can be decomposed as a product of these rotation gates:

U(θ, φ, λ) = RZ(θ)RY (φ)RZ(λ) =

 cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) eiφ+iλ cos(θ/2)

 (3.16)

Some of the main single-qubit quantum gates were introduced. However, to create entanglement

between multiple qubits and extract the full power of quantum computing, multi-qubit gates are needed.

The typical multi-qubit quantum gate is the Controlled-NOT or CNOT gate. It is given by the following

unitary matrix:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (3.17)
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It receives two inputs, a control qubit and a target qubit, and its action is very simple. If the control

qubit is set to 1, then a X gate is applied to the target qubit (in other words, the target qubit is flipped). If

the control qubit is set to 0, then nothing changes in the target qubit.

Using a CNOT and the arbitrary single-qubit gate defined in equation 3.17, it is possible to implement

any arbitrary n-qubit operation Nielsen and Chuang [2010]. Thus, the CNOT, RX , RY and RZ gates

form a universal set of gates. However, it is possible to build arbitrarily good approximations of any n-qubit

operations using fixed values of θ, φ and λ in the arbitrary single-qubit gate along with the CNOT gate. In

other words, it is possible to approximate any single-qubit gate using a finite set of quantum gates, which

are also considered universal gate sets.

Keeping all of this in mind, quantum computations are done through quantum circuits. These involve

a set of qubits, which are acted on by a circuit of quantum gates (which can be conditioned on classical

computations) and measured at the output (and possibly at intermediate steps) Nielsen and Chuang

[2010].

3.2.3 Measurements

An arbitrary state |Ψ〉 ∈ C2n is represented by:

|Ψ〉 =
2n−1∑
i=0

ci |Ψi〉 (3.18)

where |Ψi〉 are the basis states and ci the probability amplitudes associated with each of these

states. Measuring this state in the computational basis will collapse it into one of the basis states |Ψi〉

with probability |ci|2 Nielsen and Chuang [2010]. Furthermore, the expectation value of some observable

Ô is given by: 〈
Ô
〉
= 〈Ψ| Ô |Ψ〉 =

2n−1∑
i=0

λipi (3.19)

where λi is the eigenvalue associated with the eigenvector of Ô and pi = |ci|2 its respective proba-

bility. This notion of expectation values will be critical in Variational Quantum Circuits.

3.3 Variational Quantum Circuits

As was mentioned in section 3.1, fault-tolerant quantum computers are still not available and may remain

that way for years, maybe decades Cerezo et al. [2021a]. Instead, one has to make do with NISQ devices,

which have a limited number of qubits and circuit depth due to noise. Consequently, it is crucial to find
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Function
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Optimizer

Figure 7: The building blocks of a VQC and how it is trained. In a typical VQC, data is encoded, then

processed by a parameterized unitary and, finally, the expectation value of some observable is measured.

Then, a cost function that depends on the expectation value is calculated and a classical optimizer updates

the parameters θ.

practical applications for such devices. A promising approach consists of using hybrid classical/quantum

algorithms to find approximate solutions to optimization problems Farhi et al. [2014].

Variational Quantum Circuits (VQCs) are quantum circuits that depend on free parameters, which are

iteratively updated by a classical optimizer to minimize an objective function estimated frommeasurements

Ostaszewski et al. [2021]. Typically, VQCs can be divided into three main components: Data Encoding,

Ansatz, and Measurement and Cost Function, which will be explained in the next three subsections. In

Figure 7, one can see the general structure of a VQC.

3.3.1 Data Encoding

When dealing with classical data (as will be the case in this work), the data has to be encoded into a

quantum state so that it can be processed by a quantum computer. There are several techniques to

encode classical data into quantum states Schuld and Petruccione [2021]. However, this work will focus

solely on Angle Encoding. Using this technique, each component (also known as feature) of the input data

x is encoded by a single qubit using arbitrary Pauli rotations RX , RY , RZ , where the angle is usually

the feature itself after some classical pre-processing, e.g. normalization. Thus, given the input data

x = {x0, x1, ..., xn−1}, the resulting quantum state is given by:

|x〉 =
n−1⊗
i=0

Rα(ϕ(xi)) |0i〉 (3.20)

where Rα ∈ {RX , RY , RZ}, ϕ is some classical pre-processing function and |0i〉 is the ith qubit
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initialized in state |0〉.

This technique has pros and cons. On the one hand, it allows the encoding of a given input vector

using circuits of depth 1 Sequeira et al. [2022]. On the other hand, the number of qubits grows linearly

with the number of features of the input vector, which limits the dimensionality of the inputs one can

encode due to the reduced number of qubits in NISQ devices.

3.3.2 Ansatz

An architecture (sometimes referred to as ansatz) needs to be chosen for the VQC. What specific sequence

of gates applied to which qubits will be used to solve the task? There are several choices, some of them

are problem-inspired, meaning that knowledge about the problem is used to build them. These types of

ansatzes are commonly used in quantum chemistry Cao et al. [2019], as well as other tasks where the

physics behind the problem might help tailor the ansatz. However, in RL, to the best of our knowledge,

there aren’t any problem-inspired anstazes. Thus, a particular subset of problem-agnostic ones are typically

used - Hardware-Efficient Ansatzes. These ansatzes allow for implementations with reduced circuit depth

by bringing correlated qubits together for depth-reduction Cerezo et al. [2021a]. Furthermore, they usually

consist of a layered architecture composed of single-qubit parameterized gates followed by a cascade of

entangling gates Sequeira et al. [2022].

Usually, the ansatz U(θ) can be divided into layers, such that:

U(θ) = UL(θL)...U2(θ2)U1(θ1) (3.21)

An example of a Hardware-Efficient VQC may be seen in Figure 8.

...

Layer 1 Layer 2 Layer L

Figure 8: Example of a hardware-efficient VQC. |x〉 is processed by layers of unitaries, each of them

composed of parameterized single-qubit gates followed by a cascade of entangling gates.
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3.3.3 Cost Function

To use a VQC to solve a problem, one has to first encode the problem into a cost function, such that solving

the problem corresponds to finding the global optima of said function. Let fθ(x) be the expectation value

of some observable Ô as follows:

fθ(x) = 〈0|U †(x,θ)ÔU(x,θ) |0〉 (3.22)

where U(x,θ) is a quantum circuit that depends on the input x and a set of free parameters θ. In short,

it is a VQC.

Then, the cost function L(θ) is a function of the expectation value itself. In many scenarios, L(θ)

reduces to fθ(x). However, in the context of machine learning, classical post-processing is usually added

to the expectation value. For instance, consider the typical supervised learning scenario. Given a labeled

dataset D = {(xi, yi)}M , the typical cost function is the Mean Squared Error, which can be expressed

as follows:

L(θ) =
1

M

M−1∑
i=0

(fθ(xi)− yi)
2 (3.23)

Such a cost function will be important in the context of this dissertation applied to the RL problem, as

treated in Subsection 3.5.1.

In practice, the value of fθ for a specific input x is given by running the VQC multiple times and

averaging over the results. Then, typically, gradient-based methods are used to update the parameters

of the VQC. However, gradient-free methods also exist and have their advantages and disadvantages, see

Cerezo et al. [2021a].

When using gradient-based methods, as will be the case of this work, the gradient of the cost function

with respect to the parameters is calculated using the Parameter-Shift Rules Schuld et al. [2019]. These

rules state that the partial derivative of fθ(x) w.r.t a single variational parameter (assuming this parameter

is the angle of a Pauli-rotation) is given by:

∂fθ(x)

∂θi
=

1

2
[fθ(x; θi + π/2)− fθ(x; θi − π/2)] (3.24)

To compute the partial derivative of the cost function w.r.t a single parameter, two circuit executions are

needed. Thus, to compute the gradient of the cost function, which has p parameters, 2 × p executions

are necessary.

However, there is one problem that pertains to the gradients of hardware-efficient ansatzes, which will

be explained in the following section.
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3.3.4 Barren Plateau Phenomenon

There is a tradeoff one needs to take into account when using hardware-efficient VQCs. Since these

ansatzes take no inspiration from the structure of the problem itself, they need to be highly expressive so

they can be applied to any generic task Bilkis et al. [2021]. In this context, high expressivity means these

quantum circuits are able to nearly cover the full Hilbert space associated with its quantum register space.

Let L(θ) be a hardware-efficient VQC cost-function. The gradient of this function is given by:

∇θL(θ) =

{
∂L

∂θ1
,
∂L

∂θ2
, ...,

∂L

∂θk

}
, θ ∈ Rk (3.25)

where θ are the cost function’s parameters and k the number of parameters.

The Barren Plateau Phenomenon asserts that

V ar[||∇θL(θ)||] ∈ O
(

1

αn

)
, α > 1 (3.26)

where ||∇θL(θ)|| is the gradient’s L2-norm.

Put in words, the variance of the gradient of hardware-efficient VQC-based cost functions decays ex-

ponentially with system size McClean et al. [2018]. Furthermore, Holmes et al. [2022] demonstrated that

the more expressive the ansatz, the lower the variance in the cost gradient. Consequently, the cost land-

scape is flatter, making these circuits extremely hard to train. Nonetheless, it is important to emphasize

that Cerezo et al. [2021b] observed that the Barren Plateau Phenomenon highly depends on the locality

of the observable employed. To solve this issue, several strategies have been proposed, such as initial-

ization strategies Grant et al. [2019]. Nonetheless, the problem severely limits the applicability of hybrid

classical/quantum algorithms to solve practical problems, warranting further research.

3.4 Data Re-Uploading

In the previous section, it was explained that classical data needs to be encoded into a quantum state to

be processed by the VQC. Furthermore, from Figure 7, it seems as though this encoding is done just once

at the beginning of the circuit to prepare the quantum state. However, that doesn’t need to be the case.

Schuld et al. [2021] determined that the data encoding strategy used in the quantum circuit influences the

expressive power of the quantum model. Specifically, they show that a VQC may be written as a Partial

Fourier Series, where the accessible data frequencies are determined by the eigenvalues of the data-

encoding Hamiltonians. Furthermore, quantum models can access increasingly rich frequency spectra by

repeating simple data encoding gates multiple times either in series or in parallel, a technique called Data
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Re-uploading Pérez-Salinas et al. [2020]. To demonstrate this, the authors considered a standard quantum

model that consists of multiple layers, each made up of a data encoding block S(x) and a trainable block

W (θ) (see Figure 9), and assume that the input data is encoded using angle encoding, such that:

U(x,θ) = WL+1(θL+1)S(x)W
L(θL)...W

2(θ2)S(x)W
1(θ1) (3.27)

Where W i(θi) is the i-th parameterized trainable block, S(x) is a data encoding block that utilizes angle

encoding, and L is the number of layers.

.

.

.

...

Figure 9: The Data Re-Uploading technique in action. The same data encoding block S(x) is repeated

several times throughout the quantum circuit to increase the expressivity of the quantum model.

To exemplify the power of data re-uploading, the authors showed that a quantum model employing a

single Pauli-rotation encoding can only learn a sine function. In other words, if the encoding is done just

once, the VQC can only approximate functions with a single non-zero frequency in the frequency spectrum.

However, repeating Pauli encoding linearly extends the frequency spectrum, such that, if the encoding is

repeated n times, then the quantum model can approximate functions with up to n different non-zero

frequencies. The authors also verified that input scaling, a technique that consists of multiplying each

of the input features by a scaling factor, before encoding it as the angle of some Pauli rotation, scales

the frequency spectrum itself. Moreover, Pérez-Salinas et al. [2020] proposed making this scaling weight

trainable to allow for an ”adaptive frequency matching”.

3.5 VQC-Based Reinforcement Learning

VQCs have been extensively researched in supervised Mitarai et al. [2018], Schuld et al. [2020], Schuld

and Killoran [2019], Farhi et al. [2014] and unsupervised Coyle et al. [2020], Zoufal et al. [2021] machine

learning. However, research on Quantum RL remains scarce, and only recently have variational approaches

emerged Chen et al. [2020],Lockwood and Si [2020],Skolik et al. [2022], Jerbi et al. [2021], Sequeira

et al. [2022]. All of these references apply VQCs to RL in the same intuitive way. Just like NNs can be used
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to approximate either a value-function or a parameterized policy, so can VQCs, see Figure 10. The result

is a hybrid classical-quantum algorithm that generally works as follows. The agent observes some state st

and applies some classical pre-processing ϕ. Then, the result ϕ(s) is encoded into a VQCUθ(ϕ(s)) using

some data encoding technique. The VQC, with the current parameters θt, prepares a quantum state. An

observableOa is measured for each possible action. The expectation values of these observables 〈Oa〉s,θ
are post-processed and the result represents either the Q-values Qθ(s, a) in value-based methods or the

policy πθ(a|s) in policy-based methods. Then, the agent chooses an action at using these predictions

and executes it in the environment. The reward rt and the consecutive state st+1 are observed by the

classical optimizer. Using the parameter-shift rule, the gradients of the VQC w.r.t the parameters θt are

calculated. Finally, the classical optimizer determines the new parameters θt+1 Meyer et al. [2022].

Agent

Environment

ActionRewardState

Agent

Environment

ActionRewardState

Figure 10: Deep RL versus VQC-based RL. The image on the left represents Deep RL, where Deep Neural

Networks are used as function approximators for either value functions or policies. Similarly, the image on

the right represents VQC-based RL, where VQCs are used for the same effect. The algorithms themselves

are identical, with the exception of the model used as a function approximator.

It is important to note that this work will consider only VQCs being used as function approximators in

classical environments, even though they can also be used in quantum environments Jerbi et al. [2021].

For a survey that encompasses all of the quantum approaches to RL, the reader is referred to Meyer
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et al. [2022]. Some of the aforementioned references apply VQCs to the policy-based algorithm named

REINFORCE with baseline. These references will be reviewed in subsection 3.5.2. Others apply VQCs to

the value-based algorithm Q-Learning (DQN), which will be reviewed in subsection 3.5.1. Even though this

work is particularly concerned with Q-Learning, it is important to understand the methodologies used in

the policy-based algorithm as well as the results obtained, since some details translate from one algorithm

to the other.

3.5.1 VQC-Based Q-Learning

To the best of our knowledge, Chen et al. [2020] was the first paper to use VQCs as function approximators

in RL algorithms. Specifically, the authors used VQCs to approximate the Q-function in a Deep Q-Learning

algorithm. The pseudo-code of the algorithm follows:

Algorithm 3 Variational Quantum Deep Q-Learning

1: Algorithm parameters: step size α ∈ [0, 1], small ϵ ∈ [0, 1]

2: Initialize replay buffer D to capacity N

3: Initialize action-value function Q (quantum circuit) with random parameters θ

4: Initialize target action-value function Q̂ (target quantum circuit) with parameters θ− = θ

5: for episode= 1,M do

6: Initialize s1 and encode into the quantum state

7: for t = 1, T do

8: With probability ϵ select a random action at, otherwise select at = maxa Q∗(st, a; θ) from

the output of the quantum circuit

9: Execute action at in emulator and observe rt+1, st+1

10: Store experience (st, at, rt+1, st+1) in replay memory D

11: Sample random mini-batch of transitions (s, a, r, s′) from D

12: Compute the TD-targets using target quantum circuit (with old, fixed parameters θ−)

13: Perform a gradient descent step on
[
r + γ maxa′ Q(s′, a′; θ−i )−Q(s, a; θi)

]2
w.r.t pa-

rameters θ

14: Every C steps reset Q̂ = Q

15: Initialize st and encode into the quantum state

16: end for

17: end for
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The authors used computational basis encoding Schuld and Petruccione [2021] to encode the states

into the VQC. Then, they used an ansatz composed of a ladder of CNOTs that connects the nearest

neighbors followed by general-single qubit gates with three parameters per qubit, see Figure 11a.

...

(a)

...

(b)

...

(c)

Figure 11: Architectures used in Chen et al. [2020] (Subfigure 11a), Lockwood and Si [2020] (Subfig-

ure 11b) and Skolik et al. [2022] (Subfigure 11c) for n = 4 qubits, L layers, parameters θ and input

x = [x0, x1, x2, x3]. The data encoding gates are green-coloured and compose the blocks S(x). The

variational gates are blue-coloured and compose the blocks W (θl), where l is the layer, along with the

entangling gates. When Data Re-Uploading is used, as in Subfigure 11c, a layer is composed of the data

encoding and variational blocks U(x, θl).
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Finally, the authors measured Pauli-Z observables on a number of qubits equal to the number of actions

in the environment. The authors tested the algorithm in two very simple benchmark environments, with low-

dimensionality state and action-spaces, and claimed that the VQC performed as well as a NN. Furthermore,

they claimed a ”memory consumption advantage”, since VQCs required one order of magnitude less

parameters than NNs to achieve a comparable performance.

In the context of this work, the term ”performance” holds significant relevance and will be frequently

mentioned. In RL, performance typically refers to the return achieved by a model in a specific environment.

Essentially, it is an evaluation of the policy generated by the model. While the highest possible return is

the ultimate goal, when multiple models achieve it, the one requiring fewer samples is deemed superior.

However, interpretations of performance can vary. Some papers average the returns of N agents derived

from a specific model. Others employ a single agent, using a moving average of its return as the perfor-

mance metric. Given this subjectivity and variations in definitions, the reader is referred to the original

papers for a detailed description of the methodology used.

Then, the paper by Lockwood and Si [2020] changed some aspects of the algorithm. Notably, they

introduced a new data encoding method named scaled encoding, capable of encoding continuous states.

In short, it scales each feature si of the input state s to the range [0, 2π], which is then encoded using

two single-qubit Pauli rotations - angle encoding. Consequently, each feature of the input state has to be

encoded into a different qubit. In particular, they used RX and RY rotations to encode the inputs. The

ansatz of the VQC then consisted of an entangling block composed of nearest-neighbor CNOTs followed

by parameterized RX , RY and RZ rotations per qubit, see Figure 11b. They also used two different

methods to obtain the Q-values from the VQCs. The first method feeds the measurement of the VQC into a

classical single dense layer with a number of nodes equal to the number of possible actions. The second

one uses a technique known as quantum pooling Cong et al. [2019]. Then, the algorithm was tested in

slightly more complex benchmark environments than Chen et al. [2020] and similar results were verified:

the VQC-based agents achieved a level of performance comparable to or better than the NN-based agents,

with a reduced parameter count.

Finally, the most important paper for this work is the one by Skolik et al. [2022], which also uses VQCs

in a Deep Q-Learning algorithm. The authors studied the effect of the data encoding techniques on the

performance of the agents. Furthermore, they also investigated the role of the observables and different

post-processing techniques. The data encoding technique was very similar to the one used by Lockwood

and Si [2020]. Features are scaled to the finite interval [−π/2, π/2] by applying the arctan function, and

the results are encoded as Pauli-rotations. Moreover, input scaling is used, meaning that each feature
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is scaled by a classical trainable weight before being fed to the arctan function and encoded into the

quantum circuit, which allows for adaptive frequency matching between the target function and the output

of the quantum model Schuld et al. [2021]. The encoding block is repeated several times throughout

the quantum circuit, following the data re-uploading technique Pérez-Salinas et al. [2020], Schuld et al.

[2021]. The ansatz used is a hardware-efficient one composed of an entangling block of circular CZ

rotations, followed by two parameterized Pauli-rotations per qubit, see Figure 11c. Then, to decode the

action values from the VQC, the agents measure the expectation value of a number of observables equal

to the number of actions allowed, such that:

Q(s, a) =
〈
0⊗n

∣∣U †
θ(s)OaUθ(s)

∣∣0⊗n
〉

(3.28)

where s is the state encoded into the VQC, Uθ(s) is the VQC and n is the number of qubits.

Furthermore, the authors also multiply the expectation values by classical trainable weights, such that

the Q-values that the quantum model outputs are given by:

Q(s, a) =
〈
0⊗n

∣∣U †
θ(s)OaUθ(s)

∣∣0⊗n
〉
× wi (3.29)

The reason for using such a strategy is actually quite simple. Q-values Qπ(s, a) are the expected

return after taking action a from state s and then following the policy π thereafter. Thus, the range of the

optimal Q-values varies from environment to environment, depending on its structure and reward function.

Moreover, for an agent to achieve optimal or near-optimal performance in an environment, it needs to

be able to approximate the optimal Q-values with good precision. This is not a problem for NNs, since

the range of the output values can change arbitrarily during training. However, the same is not true for

VQCs. Expectation values of observables are bounded, e.g. the expectation value of the Pauli-Z observable

is bounded by [−1, 1]. Consequently, a VQC can’t approximate the optimal value functions of some

environments, which will significantly impact performance. Hence the need to multiply the expectation

values by classical trainable weights. Then, the resulting Q-values can also have any arbitrary range, which

means they can approximate the optimal Q-functions in all environments.

The authors tested their algorithms in benchmark environments and verified that the VQC-based agents

were able to solve them. Moreover, the performance in one of the environments is compared to the

performance of a NN-based agent with the same number of parameters, with the VQC-based agents

achieving a higher average return, hence performing better in the environment. Furthermore, the effect

of the input scaling and output scaling was empirically tested. As for the input scaling, it was noticed that

it improves the performance of the agent, likely due to the adaptive frequency matching and consequent
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increased expressivity. Furthermore, having a trainable output weight instead of multiplying the expectation

values by a fixed scalar also seems to improve the performance of the agent.

It is important to note that the three mentioned articles Chen et al. [2020], Lockwood and Si [2020]

and Skolik et al. [2022] used the Mean Squared Error cost function seen in algorithm 3. Moreover,

although any observable may be used to extract the information from the VQCs, all of the papers used

Pauli-Z observables. This choice was not due to some insight into the correct choice of observables, but

rather because measurements in the computational basis are common and because it works.

3.5.2 VQC-Based Policy-Gradients

Jerbi et al. [2021] and Sequeira et al. [2022] adapted the VQC-based approach to Q-Learning from Chen

et al. [2020] to policy-based methods. More precisely, they used VQCs as function approximators for the

policy in the REINFORCE with baseline algorithm. However, there are some dissimilarities between the

two references, particularly the architecture of the VQCs. While Jerbi et al. [2021] used a more expressive

architecture with Data Re-Uploading and trainable input scaling Schuld et al. [2021], Sequeira et al. [2022]

chose a simpler variational architecture with a single encoding layer. Both proposals used observables

encoding the numerical preference of a given action and a softmax function to process these values and

yield probabilities for each action, such that:

π(a|s, θ) = eβ⟨a⟩θ∑
b e

β⟨b⟩θ
(3.30)

where 〈a〉θ is the respective expectation value and β is an hyperparameter that controls the policies’

greediness.

Furthermore, both references tested the algorithms in some of the same benchmark environments

and the VQCs managed to solve them with a level of performance similar to or even better than DNNs.

Furthermore, Sequeira et al. [2022] noted that even simpler circuits with decreased depth and fewer pa-

rameters could be used to solve the environments, claiming that the loss in expressivity compared to the

VQCs used by Jerbi et al. [2021] could be compensated by better generalization properties and reduced

parameter count. Although not as relevant to this work in particular, Jerbi et al. [2021] built RL environ-

ments based on the discrete logarithm problem and empirically verified a separation between classical

and quantum agents, which was to be expected, since Shor’s algorithm solves the discrete logarithm

problem with an exponential speedup over the best known classical algorithm Shor [1999]. Furthermore,

they empirically verified that input scaling improves the performance of the agent and explained that this

is probably due to the increase in the expressivity of the VQC Schuld et al. [2021]. Moreover, Sequeira
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et al. [2022] empirically verified that the VQCs were less prone than Neural Networks to plateaus in the

optimization landscape, using the empirical Fisher Information matrix Ly et al. [2017].

3.6 Summary

This chapter started by contextualizing the reader about the history of quantum computing and its current

state. Then, it introduced the circuit model of quantum computing, covering the essential concepts for the

understanding of this work. Furthermore, it introduced Variational Quantum Circuits (VQCs), explaining

their key aspects and why they are such a promising approach in the NISQ era. Finally, it tied everything

together with the previous chapter on Reinforcement Learning by explaining and reviewing proposals of

VQCs being used as function approximators in both policy and value-based RL algorithms.
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Chapter 4

The Problem and Methodology

In the preceding chapters, we laid the groundwork by introducing the core concepts central to this work.

We began by explaining the RL problem, discussing its mathematical framework and highlighting notable

algorithms. The need for using function approximators to solve complex RL problems was emphasized.

Of significant relevance to this work, the Deep Q-Learning algorithm was introduced. Afterward, the fun-

damentals of Quantum Computing were explored and VQCs were introduced as promising approaches in

the NISQ era. Finally, we explained the intersection between RL and Quantum Computing, in particular

using VQCs as function approximators in RL algorithms.

In this chapter, we aim to delve deeper into the specific problem this thesis addresses and the method-

ology employed.

4.1 The Problem

In Section 3.5, we discussed the main VQC-based RL algorithms. For the VQC-based Reinforce algorithms

detailed in Section 3.5.2, Jerbi et al. [2021] employed a VQC with data re-uploading and assessed the

performance of models in benchmark environments. Conversely, Sequeira et al. [2022] used a simpler,

hardware-efficient ansatz without data re-uploading, comparing its performance and trainability against

classical DNNs. Intriguingly, the impact of data re-uploading on model trainability remains unexplored.

Given that data re-uploading increases the VQC’s circuit depth and expressivity, it could have negative

effects in the trainability, as suggested by McClean et al. [2018] and Holmes et al. [2022].

The picture is even less clear when it comes to VQC-based Deep Q-Learning algorithms, detailed in

Section 3.5.1. Both Chen et al. [2020] and Lockwood and Si [2020] used simple VQCs without data

re-uploading, centering their studies on performance in benchmark environments and comparisons with

DNNs. On the other hand, Skolik et al. [2022] integrated data re-uploading and analyzed its impact on

performance. Yet, to the best of our knowledge, no research has been done on the trainability of VQC-based
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Deep Q-Learning models.

This work aims to directly address these questions. Specifically, we seek to investigate the impact of

data re-uploading on both the performance and trainability of VQC-based Deep Q-Learning models. While

data re-uploading can enhance model expressivity Schuld et al. [2021], increasing performance in VQC-

based RL algorithms, it may also reduce the trainability. If this reduction is considerable, the practical use

of data re-uploading becomes questionable. Conversely, if the reduction is minimal, then the increased

expressivity more than compensates for it. We plan to empirically study this tradeoff, testing the algorithms

in benchmark environments and evaluating both performance and trainability metrics. In the following

sections, the implementation of the algorithm, the benchmark environments and the methodologies used

during this research will be explained.

4.2 The Algorithm Implementation Choices

The first step toward completing the aforementioned goal is to implement VQC-based Deep Q-Learning in

a quantum differentiable programming language. The algorithm to be implemented is the one from 3. So,

all that’s missing is choosing the programming language. There are several possibilities, the main ones

being IBM’s Qiskit Qiskit contributors [2023], Xanadu’s Pennylane Bergholm et al. [2018] and TensorFlow-

Quantum Broughton et al. [2020]. All of them have their pros and cons. Qiskit is more general and has

direct integration with IBM’s quantum machines. However, it is less abstract than the other languages

and suffers from some performance problems, which would rather complicate this task. Pennylane, on

the other hand, is designed to integrate seamlessly with machine learning libraries, which would be useful

for this work. Nonetheless, the chosen language was tensorflow-quantum for a few reasons. It has inte-

gration with TensorFlow, a popular machine learning library, offers high-level abstraction in the design and

training of hybrid quantum-classical algorithms and is compatible with high-performance quantum simu-

lators Broughton et al. [2020]. Moreover, being built on TensorFlow, it is highly optimized for machine

learning. Finally, Jerbi et al. [2021] and Skolik et al. [2022] implemented their VQC-based algorithms on

TensorFlow-Quantum and even created a tutorial, which facilitates the beginning of the implementation.

Building upon the insights from the tutorial mentioned earlier, code was written using predominantly

Python objects. This design choice promotes high customizability and adaptability, especially in compo-

nents like the policy, the VQC architecture, the classical pre-processing technique, input scaling, output

scaling, and more. A fitting analogy is to compare the code structure to Lego. It is designed in a way that

allows for easy swapping of individual ”pieces” or components. In addition to this, the training function is
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parallelized, enabling simultaneous training of multiple agents. For those keen to delve deeper,the code

is available in Coelho [2023].

4.3 Benchmark Environments

This study will focus on numerical analysis of the developed algorithms. In particular, they need to be

tested in benchmark environments to analyse and compare them.

OpenAI Gym, an open-source Python library, offers a standardized API that bridges learning algorithms

with a standard set of environments, providing a platform to analyse and compare RL algorithms. Two

specific environments were chosen: CartPole-v0 and Acrobot-V1. The preference for these is twofold:

firstly, they are established benchmark environments that have been frequently adopted in academic re-

search for algorithm testing and comparison. Secondly, these environments strike a balance in complexity;

they present sufficient challenges to test the robustness of VQC-based algorithms, yet remain tractable for

experimental purposes. While CartPole has already been the subject of investigation in several studies, Ac-

robot presents a heightened degree of complexity and intriguingly, hasn’t yet been solved using VQC-based

Q-Learning.

4.3.1 CartPole-v0

RightLeft

Figure 12: The CartPole Environment

A cart moves on a frictionless track. There is a pendulum placed upright on the cart attached by a joint.

The goal is to balance the pole by applying forces in the left and right direction on the cart, see Figure 12.

Consequently, the action can take the values {0,1} indicating whether the cart is pushed with a fixed force

to the left or right, respectively. The state-space, on the other hand, is composed of 4 features:
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Feature Range

Cart Position [−4.8, 4.8]

Cart Velocity ]−∞,∞[

Pole Angle [−0.418, 0.418] rad

Pole Angular Velocity ]−∞,∞[

Table 1: Cartpole’s state space

For the starting state, all the features are assigned a value between −0.05 and 0.05. The episode

ends if one of three conditions is verified:

• The Pole Angle is greater than ±0.214 rad

• The Cart Position is greater than ∓2.4

• Episode length is greater than 200

The reward function is very simple: the agent receives a +1 reward per time-step. Consequently, the

third condition asserts that the maximum return possible in an episode is 200 if one considers γ = 1.

This environment is considered solved if the average return over the previous 100 episodes is greater than

195.

4.3.2 Acrobot-v1

Actuated joint

Fixed, non-
actuated joint

Figure 13: The Acrobot Environment
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Two links are linearly connected to form a chain, with one end of the chain fixed. The joint between the

two links is the one we can act upon and the goal is to apply torques to this joint to swing the free end of

the chain above a given height while starting from the initial position of hanging downwards, see Figure

13. There are three possible actions:

Action Unit

Apply −1 torque to the actuated joint Torque (Nm)

Apply 0 torque to the actuated joint (do nothing) No unit

Apply 1 torque to the actuated joint Torque (Nm)

Table 2: Acrobot’s action-space

There are two important angles for the definition of the state-space. First, θ1 is the angle of the first

joint, where an angle of zero indicates the first link is pointing directly downwards. Moreover, θ2 is relative

to the angle of the first link, where an angle of zero corresponds to having the same angle between the

two links. Then, the state-space can be defined:

Action Range

Cossine of θ1 [−1, 1]

Sine of θ1 [−1, 1]

Cossine of θ2 [−1, 1]

Sine of θ2 [−1, 1]

Angular Velocity of θ1 [−4π, 4π]

Angular Velocity of θ2 [−9π, 9π]

Table 3: Acrobot’s state-space

The starting state is defined as follows. Each feature of the state is initialized uniformly between−0.1

and 0.1, such that the links are pointing downwards with some initial stochasticity. The goal is for the

free end to reach a given height in as few steps as possible. Consequently, every step that does not reach

the goal receives a reward of −1 and achieving it results in termination with a reward of 0. Moreover, the

maximum number of steps in an episode is 500, after which the episode also terminates.
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4.4 Methodologies for AnalysingModel’s Performance and Train-

ability

As outlined earlier, this study seeks to empirically assess the impact of data re-uploading on the perfor-

mance and trainability of VQC-based Q-Learning models. To achieve this, we must establish methodologies

for analyzing both metrics. The subsequent sections detail these methodologies.

4.4.1 Performance of a Model

In any RL problem, the goal is for the agent to find the optimal or a near-optimal policy, which translates

to the behaviour that accumulates the most rewards. Consequently, performance is typically measured

by the return models achieve in benchmark environments. However, there are several methodologies to

measure this performance.

We are particularly concerned with keeping the randomness inherent to Deep Q-Learning to a mini-

mum. The algorithm has several stochastic parts. For example, since the initialization of the parameters

is random, some agents may be initialized in a good spot in the optimization landscape, such as near a

good local minimum, while others may be initialized in poor spots. To evaluate models fairly and make

results reproducible, the methodology for testing the performance of a model on a particular environment

is the following: N agents are randomly initialized according to the model. These agents are then trained

in the environment over M episodes. Should an agent solve the environment before completing the M

episodes, its training ceases (i.e., no further updates to the model’s parameters), but the agent continues

interacting with the environment using its learned knowledge until all episodes conclude. The returns from

each episode are collected for all agents. Ultimately, we average the returns across all N agents for each

episode, compute the standard deviation, and plot the results. An advantage of this methodology is that

the randomness inherent to Q-Learning is mitigated by using mean returns of N agents.

However, how is performance compared between different models? Imagine we apply this methodol-

ogy to two different models in a particular environment. How can we claim one of the models is superior

to the other when it comes to performance? Let’s use Figure 14 as an example.

Let’s begin by analysing the two models from Figure 14a. In this scenario, it is easy to decide which is

the best performing model. The blue model achieved an average return much higher than the red model.

In other words, the agents generated from the former were able to derive a policy much better than the

agents derived from the latter. Consequently, the blue model is the best performing model out of the two.
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Figure 14: Both figures represent the performance of two random models on the CartPole-v0 environment.

The thick lines are the mean returns for each model (in this case, 5 agents were initialized per model) and

the shaded areas the standard deviation. This is how the performance of all models will be plotted.

Figure 14b represents a different scenario. In this case, both models were able to achieve a similar

average return. Nonetheless, the blue model was able to achieve that average return much sooner than

the red model. This reveals an advantage in sample complexity, since it requires less samples to learn

a good policy. Consequently, the blue model is also the best performing model out of the two in this

scenario.

However, it is important to note that some cases are not as easy to analyse. For example, some

models may achieve a very high return with fewer samples but then keep unlearning, with the average

return decreasing as training goes on. Nonetheless, we are not particularly interested in being able to

perfectly distinguish the performances of all models. We are simply concerned with being able to gauge

considerable differences in performance between models.

The standard deviation is particularly interesting for measuring the instability of the models. If it is

substantial, then it means different agents initialized from the same model performed very differently on

the environment. Some may have achieved high returns during training, while others might have gotten

stuck in low returns. Conversely, if it is small, then it means that the agents achieved similar returns

throughout training. Consequently, the best model would be one that achieves and maintains the highest

possible return in the fewest amount of episodes and exhibits minimal standard deviation.

52



4.4.2 Trainability of a Model

There are several methods for analyzing a model’s trainability. For instance, Sequeira et al. [2022] used

the empirical Fisher Information matrix Ly et al. [2017]. Another prevalent and straightforward approach

is examining the gradient of the cost function, defined in Equation 3.25.

In the training of machine learning models, including Neural Networks (NNs) and Variational Quantum

Circuits (VQCs), parameters are updated iteratively using variations of Gradient Descent. Essentially, an

approximation of the gradient is calculated, and parameters are updated in an inverse proportion, aiming to

minimize the cost function. If these partial derivatives are large, the updates to parameters are significant,

potentially causing unstable training. Conversely, if these derivatives are small, then the parameter updates

are also small, which leads to the opposite problem, in which the model gets stuck on the optimization

landscape. While both extremes are problematical, we are particularly concerned with the latter. Let L(θ)

be a hardware-efficient VQC-based cost function as defined in Subsection 3.3.3. The Barren Plateau

Phenomenon, detailed in Subsection 3.3.4, asserts that

V ar[||∇θL(θ)||] ∈ O
(

1

αn

)
, α > 1 (4.1)

where ||∇θL(θ)|| is the gradient norm.

As a result, we will analyse the gradients of the cost function for each model to draw conclusions about

their trainability using the following methodology: When using the methodology for measuring model’s per-

formance described in the previous section, we also store the gradient of the cost function with respect to

the parameters at each training step, which is every step where the parameters are updated. Subsequently,

we compute the norm of these gradients for every training step. To mitigate the effects of stochasticity, we

calculate the average norm of the gradients across theN agents and the variance of these norms at each

training step. However, since agents cease training once the environment is solved, different agents have

a different number of training steps. As a result, we limited our procedure to only encompass the steps

up until the first agent successfully solved the environment. To facilitate the visualization of the results, a

rolling average of the last 100 training steps is used for both the norm of the gradients and the variance

of the norms.

4.5 Summary

In this chapter, we started by defining the precise issue addressed in this research. The primary focus

is centered on investigating the performance and trainability of VQC-based Deep Q-Learning models, with
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a special emphasis on understanding the potential implications of data re-uploading on those metrics.

Furthermore, we explained the reasoning behind the selection of Tensorflow-Quantum as the preferred

language for implementing the VQC-based Deep Q-Learning models. Subsequently, we introduced the

benchmark environments chosen for testing the models and outlined the methodologies that will be em-

ployed to analyse their performance and trainability.
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Chapter 5

Results and Discussion

The previous section explained the benchmark environments that will be used to test the Deep Q-Learning

models throughout this work. Moreover, the methodologies for analyzing a model’s performance and

trainability were explained. In this chapter, we aim to test different VQC-based Deep Q-Learning models

on the aforementioned environments and analyze their performance and trainability.

5.1 Replication of Skolik et al. [2022]’s results

Having implemented the algorithm in TensorFlow-Quantum, it was imperative to test it. Since this work

is going to build upon the paper by Skolik et al. [2022], it is only natural that the first step should be to

replicate their methods and compare the results. If the algorithm is well implemented, then the results

should be equivalent.

Skolik et al. [2022]’s VQC solved the CartPole environment using a VQC-based algorithm with the

defining characteristics (see Figure 15):

• Classical Pre-Processing and Data Encoding method - To allow for the encoding of continu-

ous features, each feature was passed through an arctan function which normalized it to the interval

[−π/2, π/2]. Then, a Pauli-X rotation with the result as the angle was used to encode the data

into the VQC. The authors named this technique Continuous Encoding. Consequently, each feature

si of the input state vector s was encoded as RX(arctan(si)). Since CartPole state-space has

four features which have to be encoded by different qubits, the VQC has four qubits.

• Trainable Input Scaling - When applicable, each feature si of the state-space s is multiplied

by a classical trainable weight Pérez-Salinas et al. [2020], such that the encoding is given by

RX(arctan(si × λi)), where λi is the input scaling weight.

• Ansatz - The ansatz is a hardware efficient one, composed of two parametrized rotations over the y
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and z axis per qubit, followed by a cascade of CZ gates in a circular setup (all nearest-neighbours

are connected and then the last qubit is connected to the first one).

• Data Re-Uploading - When applicable, to increase the expressivity of the quantum model, the

data encoding block is repeated several times throughout the circuit. Specifically, it is repeated

once every layer, such that the VQC is expressed as:

U(s,λ,θ) = WL+1(θL+1)S(s, λL)WL(θL)...W 2(θ2)S(s, λ1)W 1(θ1) (5.1)

where s is the input state, S(s, λi) is the data encoding block, W i(θi) is the i-th parametrized

trainable block and L the number of layers.

• Measurement and Trainable Output Scaling - The expectation value of one observable has

to be measured for each possible action. Since CartPole’s action-space has two possible actions,

two observables need to be measured. In particular, Skolik et al. [2022] used 〈Z0Z1〉 for the ”left”

action and 〈Z2Z3〉 for the ”right” action, where Z is the Pauli-Z observable and the numbers 0 to 3

indicate the qubit in which the observable is measured. Moreover, output scaling is used, meaning

each of the two expectation values is multiplied by a classical trainable weight to allow for arbitrary

Q-values, as explained in section 3.5. Consequently, the two Q-values are given by:

Q(s, left) =
〈
0⊗n

∣∣U †
θ(s)Z0Z1Uθ(s)

∣∣0⊗n
〉
× w0 (5.2)

Q(s, right) =
〈
0⊗n

∣∣U †
θ(s)Z2Z3Uθ(s)

∣∣0⊗n
〉
× w1 (5.3)

• Parameters Initialization - The rotational parameters are randomly initialized by sampling from a

uniform distribution between 0 and π. Moreover, the input and output scaling weights are initialized

as 1s.

• Cost Function - The Mean Squared Error (MSE) cost function is used, according to algorithm 3.

Skolik et al. [2022] tested the effect of data re-uploading and trainable input scaling in the performance

of the agents in the CartPole environment. In particular, they verified that agents which used just one of the

techniques couldn’t solve the environment in up to 5000 episodes. However, when both techniques were

used together, the models were able to solve the environment using a set of optimal hyperparameters and

sub-optimal hyperparameters (as defined by the authors after a search over some of the hyperparemeters).

According to the authors, this result demonstrates the importance of both these techniques in increasing

the expressivity of the VQC, as described in Schuld et al. [2021]. However, we are also concerned with the
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...

Figure 15: The functioning of the VQC-based Deep Q-Learning algorithm used by Skolik et al. [2022] to

solve the CartPole environment. When Data Re-Uploading is used, U(s, λ, θ) is repeated several times.

Otherwise, just W (θ) is repeated.

effect of output scaling on the performance of the agents. Consequently, we implemented the VQC-based

Deep Q-Learning algorithm with the 8 different combinations of:

• Using Data Re-Uploading or not (a model that doesn’t make use of data re-uploading will be referred

to as baseline)

• Using trainable input scaling or not

• Using trainable output scaling or not

Since the goal was to replicate the work by Skolik et al. [2022], all the models were trained using

their set of optimal hyperparameters, which can be seen in Table 6, in the CartPole-v0 environment.

Furthermore, each agent was composed of 5 layers of the circuit architecture from Figure 15. Figure 16

shows the results after using the methodology described in section 4.4.1 to analyse the performance of

the models, which were trained using a noiseless simulator.

Models without trainable output scaling (represented by the purple and orange lines in Subfigure 16a

and by brown and cyan lines in Subfigure 16b) perform very poorly, maintaining an average return just

above 0, while models that use the technique can perform well and even solve the environment. This

result underscores the significance of matching the outputs of the VQC to the range of the optimal Q-

values. However, there is also a clear problem with using trainable output weights: it becomes difficult to

differentiate the contributions of the quantum model from the classical trainable weights. There are some

ways to overcome this problem, such as multiplying the expectation values by scalar weights. Nonetheless,

Skolik et al. [2022] show that, while it is possible to achieve a good level of performance using that

technique, agents that use trainable output scaling still perform better.
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Figure 16: Comparison of baseline (Subfigure 16a) and data re-uploading (Subfigure 16b) models with

and without trainable input and output scaling in the CartPole-v0 environment. The optimal set of hyper-

parameters from Skolik et al. [2022] was used, see Table 6. The thick lines are the average return over all

the 10 agents for each model, while the shaded areas indicate the standard deviation of the return over all

agents. If an agent solves the environment (average reward over the last 100 episodes ≥ 195), training

is stopped.

From Subfigure 16a, it is also possible to see that the baseline model without input scaling doesn’t

perform well, achieving an average return close to 50 throughout training (green line). However, when

trainable input scaling is used (red line), the performance increases drastically. To understand this dif-

ference in performance, let’s review the effect of trainable input scaling on a model. The baseline model

consists of a single encoding block followed by L parametrized blocks, where L is the number of layers.

Consequently, according to Schuld et al. [2021], this VQC can only fit a Fourier series with a single non-zero

frequency (a sine function). Furthermore, trainable input scaling simply scales the frequency spectrum

the VQC has access to, which allows for an adaptive frequency matching between the function that the

VQC outputs and the target function. In other words, the baseline model with trainable input scaling can

still only fit Fourier series with a single non-zero frequency, except this frequency is scaled. Thus, one

can conclude that the optimal Q-function of this environment is relatively simple, since the baseline model

with input scaling achieved a considerable level of performance, meaning it is possible to approximate this

Q-function with a Fourier series with a single non-zero frequency. Nonetheless, since the baseline model

without trainable input scaling performs poorly, there is probably a mismatch in the non-zero frequency of

the function the VQC outputs and the optimal Q-function.

Moreover, Figure 16 clearly shows that data re-uploading models perform better than baseline models.

While both data re-uploading models that did not use trainable output scaling performed very poorly (brown
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and cyan lines in subfigure 16b), the two which used (black and blue lines) performed better than the

correspondent baseline models. First, the model which did not use trainable input scaling also performed

well, unlike the baseline model without trainable input scaling, which only managed to obtain an average

return of approximately 50 throughout training. This shows the importance of data re-uploading. Since

it increases the frequencies accessible to the VQC, it can represent a wider range of functions Schuld

et al. [2021]. However, even though this VQC has access to a frequency spectrum with more non-zero

frequencies, it seems like there is still a frequency mismatch between the optimal Q-function and the

function the VQC outputs, since the data re-uploading model with trainable input scaling performs better.

Actually, this model achieves the best performance of all the tested models as expected, since it has access

to more frequencies and is also capable of adaptive frequency matching, thus being the most expressive

VQC and the one capable of best approximating the optimal Q-function.

Finally, it is important to note that the algorithm is very unstable, as one can see by the considerable

standard deviations for each of the tested models. This result is due to a couple of reasons. As explained

in section 2.6, DQN is inherently unstable, since it uses the deadly triad, as Sutton and Barto [2018]

called it: Bootstrapping, TD-Learning and off-policy data. Moreover, as also explained in section 2.6, the

targets in DQN are obtained from the target network, which is a network with frozen parameters that

are updated every some steps to match the parameters of the online network. This technique stabilizes

training by making the targets more stationary, thus facilitating the optimizer’s job. However, the optimal

set of hyperparameters found by Skolik et al. [2022] used in this replication study updates the parameters

of the target VQC to the parameters of the online VQC at every interaction with the environment (every

single step). Consequently, in practice, there is no target VQC since both VQCs always have the same

parameters, which makes the algorithm even more unstable. As we will see in section 5.5, this instability

has several consequences.

In conclusion, these results match the results obtained by Skolik et al. [2022], proving the significance

of the data re-uploading, trainable input scaling and trainable output scaling techniques.

5.2 Performance of the Universal Quantum Classifier

In the previous section, we observed that data re-uploading and trainable input/output scaling indeed in-

crease the performance of the tested VQC-based Deep Q-Learning models in the CartPole-v0 environment.

However, these results might be VQC-dependent. In other words, these results may be true only for the

models employed by Skolik et al. [2022]. Thus, it is imperative to test other VQCs with different ansatzes.
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Hence, in this section, we introduce and test a different type of data re-uploading VQC that also uses

trainable input/output scaling - the Universal Quantum Classifier (UQC) Pérez-Salinas et al. [2020].

The UQC is particularly interesting because it allows the encoding of a given input vector using an

arbitrary number of qubits. In other words, it allows us to control the width of the circuit, while the Skolik

et al. [2022]’s models always have a number of qubits that grows linearly with the number of features of

the input vector. We will start by delving into the single-qubit UQC and analyzing its performance in the

CartPole-v0 environment.

5.2.1 The Single-Qubit Universal Quantum Classifier

The authors of Pérez-Salinas et al. [2020] introduce the single-qubit UQC and compare it with a NN with

a single hidden layer. To understand the architecture of the UQC, let’s consider some input vector s⃗ =

(s0, s1, ..., sn−1) and some vector θ⃗ that contains all the parameters to be updated by the classical

optimizer. The single-qubit UQC is defined as:

U(s⃗, θ⃗) =
L−1∏
i=0

Li(s⃗, θ⃗i) (5.4)

where L is the number of layers and Li the fundamental gate defined as:

Li(s⃗, θ⃗i = (w⃗i, αi, φi)) = Ry(2φi)Rz(2w⃗i · s⃗+ 2αi) (5.5)

where

w⃗i · s⃗ =
n−1∑
j=0

wijsj (5.6)

This model is trained over the parameters w⃗, α⃗ and φ⃗.

One can see from Equations 5.4 and 5.5 that this architecture uses data re-uploading, since the input

vector s⃗ is encoded in every single gate Li. Moreover, since the weights w⃗ and α⃗ are trainable, this

architecture also makes use of trainable input scaling.

The authors proved that such a quantum circuit can approximate any classification function up to

arbitrary precision, using the Universal Approximation Theorem (UAT) of NNs Hornik [1991]. Moreover,

this circuit can encode an input vector independently of the number of features. For instance, a CartPole’s

state could be encoded into a single qubit, since theRz rotation angle is given by the dot product between

the state and some weight vector plus a bias. One simply has to ensure that the weight vector has a

dimension that matches that of the input vector. It is also important to note that, even though the Ry and

Rz rotations are used, the only requirement is that two orthogonal rotation axis are used. Hence, it also

works with Rz and Rx, for example.
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To the best of our knowledge, the single-qubit UQC was never used as a function approximator in a RL

algorithm. Thus, we decided to test its performance in the CartPole-v0 environment to see if this universal

approximant is capable of solving the environment using a single-qubit. However, some choices had to be

made for the architecture to be suitable for the task:

• Classical Pre-Processing: We experimented with different classical pre-processing techniques.

Whether we used continuous encoding from Skolik et al. [2022] or just directly fed the data to the

UQC, the performance of the models was remarkably similar. This could be because the UQC

may adjust its weights and biases that best process the data. The UQC is very similar to NNs, as

Pérez-Salinas et al. [2020] reference several times throughout the paper, and in particular w⃗ and α⃗

are the analogs of the weights and biases of NNs. In NNs trained in the CartPole-v0 environment,

while pre-processing the data may have some benefits, it isn’t strictly required. Hence, since we

saw no difference in performance, we opted for the most simple method of feeding the UQC the

raw data.

• Observables: The single-qubit UQC, being a single-qubit model, posed a unique challenge. Our

approach to VQC-based Deep Q-Learning demands measuring the expectation value of one observ-

able per action. However, given that the UQC has one single qubit, it is only possible to measure

one observable per circuit execution. To solve this issue in the CartPole environment, we used 〈Z〉

for the ”left” action and 〈X〉 for the ”right”. In other words, two different Pauli observables were

measured on the same qubit. However, the drawback is the need to execute the quantum circuit

twice: once for each observable.

• Trainable Output Scaling: For the same reasons mentioned for the Skolik et al. [2022]’s archi-

tectures, in particular, being able to match the range of the output values of the quantum model to

the range of the optimal Q-values for the environment, trainable output scaling is used.

• Parameter Initialization: There are several ways to initialize the parameters of the UQC. Taking

into consideration the similarities between the UQC and classical NNs, as Pérez-Salinas et al. [2020]

mentioned throughout the paper, we opted for an initialization strategy that is typically used in NNs.

More precisely, we initialize the weights w⃗ by sampling from a normal distribution with mean 0 and

with a low standard deviation of 0.01 and the biases α⃗ as zeros. Finally, taking inspiration from

Skolik et al. [2022], the rotational parameters φ⃗ were initialized uniformly between 0 and π. The

output scaling weights were initialized as ones. Nonetheless, an informal search was performed on

other typical initialization strategies, but none achieved superior performance in the environment.

61



• Set of Hyperparameters: For an accurate comparison between our UQC model and the other

tested quantum models from Skolik et al. [2022], we decided to use the same set of hyperparame-

ters, see Table 7, ensuring that any performance differences can be attributed more to the models

themselves than to the hyperparameters.

Figure 17 compares the performance of the single-qubit UQC and the best performing model from

Skolik et al. [2022] (the blue model with data re-uploading and trainable input and output scaling from

Figure 16b), which from now on will be named Skolik Data Re-Uploading model.
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Figure 17: Analysis of the performance of the single-qubit UQC and Skolik data re-uploading models in the

CartPole-v0 environment following the methodology defined in Section 4.4.1. 10 agents were initialized

from each model. The full set of hyperparameters can be seen in Table 7.

From Figure 17, the single-qubit UQC appears to reach the highest possible average return faster than

the data re-uploading model and with a lower standard deviation. This suggests superior performance.

However, we should be cautious in our interpretation. The observed differences might be influenced by

the statistical variance tied to our performance testing method. Given that we initialize only 10 agents for

each model (due to limitations in computational resources), even one poorly initialized agent can skew the

average return and increase the standard deviation. Nonetheless, it is fair to say that the single-qubit UQC

is able to generate near-optimal policies in the CartPole environment.

This result has an intriguing consequence. A product state is a quantum state that can be factorized

as the product of states of its individual parts. A multi-qubit system with no entanglement, for instance,

is a product state. A single-qubit quantum circuit is also, by definition, a product state. Product states

are classically simulable, since their description does not grow exponentially with the number of qubits.

Hence, if the single-qubit UQC managed to generate near-optimal policies in the CartPole environment,
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then it doesn’t showcase any quantum advantage. After all, we can replicate its behaviour with classical

means. However, this observation carries a caveat: the CartPole environment is very simple. More

intricate environments, specially those inspired by complex physical phenomena, might demand quantum

resources such as entanglement to generate good policies.

5.2.2 The Multi-qubit Universal Quantum Classifier

It is possible to generalize from the single-qubit UQC to a multi-qubit UQC. The main reason for doing so

is that the UQC allows for the choice of an arbitrary number of qubits. Thus, it would be interesting to

study if increasing the number of qubits also leads to an increase in performance. That is the goal of this

section.

Nonetheless, a data encoding technique has to be defined. We experiment with two different types of

encoding:

• Full Encoding: Using full encoding, the whole input vector is encoded into all the qubits. For

instance, consider the CartPole environment which has four features per state s⃗ = [s1, s2, s3, s4]

and a full encoding multi-qubit UQC with five qubits. Then, the whole state vector s⃗ would be

encoded into the five different qubits. Consequently, the number of parameters grows linearly with

the number of qubits.

• Partial Encoding: In this data encoding technique, we divide the number of the input vector

features by the number of qubits used and encode a different subvector in each qubit. Let’s consider

the CartPole environment once again. Then, if a partial encoding multi-qubit UQC with two qubits is

used, the first two features are encoded into the first qubit and the last two into the second qubit. A

limitation of this method is that the number of qubits has to be smaller than or equal to the number

of features of the input vector.

The reason for using these two types of encoding is two-fold. On the one hand, these two techniques

allow us to study the impact of introducing entanglement on the performance of the models in the CartPole-

v0 environment. We will see how throughout this section. On the other hand, the Full Encoding technique

allows us to encode a given input vector in an arbitrary number of qubits that may even be greater than the

number of features of the input vector. Thus, we may study how the performance and trainability behave

as the number of qubits increases, see Section 5.6.

We also modified the observables used in the model. In the single-qubit version of the UQC, the

expectation values of the Z and X observables were measured on the same qubit, serving as Q-values that
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encode the two potential actions in the CartPole environment (after being multiplied by a classical trainable

weight - output scaling). However, in the multi-qubit UQC, the necessity to measure the observables on

the same qubit across different circuit executions is eliminated. Consequently, in the two-qubit UQC, we

designate the expectation value of the Pauli-Z observable on the first qubit, denoted as 〈Z0〉, to represent

the ”left” action, and 〈Z1〉 the ”right” action, where 0 and 1 are the indices of the two qubits. Extending

this approach to the four-qubit UQC, we employ 〈Z0Z1〉 as the observable indicating the ”left” action, and

〈Z2Z3〉 for the ”right” action, a strategy in line with the methodology outlined in the work of Skolik et al.

[2022].

In the previous section, we observed that the single-qubit UQC, which is a product state, is capable of

solving the CartPole-v0 environment. Expanding on those results, we would like to see if multi-qubit UQCs,

without entanglement, are also capable of solving the environment. Thus, we first start by testing how the

two-qubit UQC and the four-qubit UQC perform without entanglement with the two different data encoding

techniques, see Figure 18.
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Figure 18: Performance analysis of the two-qubit (see Subfigure 18a) and four-qubit (see Subfigure 18b)

UQCs using the Partial and Full encoding techniques without entanglement. 10 agents were initialized

from each model. The full set of hyperparameters can be seen in Table 8.

Analyzing Figure 18, it is clear that the different encoding techniques have a significant impact on

the performance of the model when entanglement is not used. This result has a simple but interesting

explanation. Let’s consider the two-qubit UQC.

When Partial Encoding is used, see the orange line of Subfigure 18a, the first two features of the

CartPole’s state-space are encoded into the first qubit, and the last two are encoded into the second qubit

(remembering that CartPole’s state-space has four features). Moreover, the expectation value of the Z

observable is measured on the first qubit as the Q-value for the ”left” action and the expectation value of
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the Z observable is measured on the second qubit as the Q-value for the ”right” action. Thus, it is clear to

see why this model is not capable of generating optimal or near-optimal policies. The Q-values for each of

the two actions are approximated using just a subset of the features of the state-space. For instance, the

Q-values for the ”left” action are being approximated using only the cart’s position and the cart’s velocity,

without any information about the pole angle and the pole angular velocity, see Table 1. Thus, the models

are capable of learning a little bit and achieving an average return of 30 but are not capable of learning

near-optimal policies, since some information is missing. Nonetheless, it is important to note that these

models could still be able to achieve near-optimal performance in an environment where certain features

are not as relevant as others. That does not seem to be the case with CartPole-v0.

On the other hand, when Full Encoding is used, models without entanglement are capable of solving

the environment, similar to what was observed for the single-qubit UQC. This result is expected, since

each qubit, which is a universal function approximant, has full information about the CartPole’s state-

space, thus being capable of approximating with good precision the optimal Q-value of the corresponding

action. Consequently, the models, which are composed of two of these qubits each approximating the

Q-value of one of the actions with good precision, generate a good approximation of the optimal Q-function

and, hence, near-optimal policies. Surprisingly though, this model is the most stable of all the models

tested so far, with small deviations from the maximum average return of 200 achieved around episode

200.

Analyzing Subfigure 18b, the results seem to be similar for the four-qubit models. The Partial Encoding

model is not capable of learning near-optimal policies, since the Q-values for the two actions are approxi-

mated using partial information about the state-space. When Full Encoding is used, the model achieves the

highest possible average return, although this model appears to have a worse performance than the Full

Encoding two-qubit UQC since it takes more episodes to achieve the same average return and also suffers

from a higher standard deviation. Thus, interestingly, it appears that increasing the number of qubits and,

consequently, the number of parameters, does not necessarily lead to an increase in performance.

To see if the performance changes when entanglement is used, we added a circular layer ofCZ gates

after every processing layer and tested the models in the CartPole-v0 environment, see Figure 19. For

a comprehensive analysis, we have also included comparisons with the multi-qubit UQC models without

entanglement.
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Figure 19: Performance analysis of the two-qubit (see Subfigure 18a) and four-qubit (see Subfigure 18b)

UQCs using the Partial and Full encoding techniques with and without entanglement. 10 agents were

initialized from each model. The full set of hyperparameters can be seen in Table 8.

The first notable observation from Figure 19 is that the models that use the Partial Encoding technique

and entanglement can generate near-optimal policies, unlike the models that do not use entanglement.

Although interesting, it is not surprising. Even though each qubit only encodes a subset of the features

of the state-space, entanglement introduces strong correlations between the qubits, such that the output

state depends on all the features. Thus, the Q-values for each action are approximated using all the

available information about the state-space. In fact, this is similar to what the models from Skolik et al.

[2022] do. They encode each feature into a different qubit and then use entanglement to correlate all of

the subsystems.

Another interesting observation is that, for the Full Encoding models, it seems that introducing en-

tanglement does not lead to a considerable increase in performance. In fact, for the two-qubit UQC, see

Subfigure 19a, introducing entanglement decreased the model’s performance. For the four-qubit UQC,

see Subfigure 19b, it is not so clear which model performs the best at the end of the training, but the

model without entanglement learns much faster than the model with entanglement.

Finally, having tested all of the different models, Figure 20 compares the performance of the best-

performing models obtained in the CartPole-v0 environment. Consequently, we included the Skolik Data

Re-Uploading Model, the Single-Qubit UQC, and the Multi-Qubit UQC without entanglement.
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Figure 20: Performance Analysis of the best-performing models in the CartPole-v0 environment. In con-

crete, the Skolik Data Re-Uploading model, the Single-Qubit UQC and the Full Encoding Multi-Qubit UQC

without entanglement. 10 agents were initialized from each model.

Interestingly, Figure 20 shows that the best-performing model is the Full Encoding Two-Qubit UQC

without entanglement. Thus, it seems that increasing the number of qubits of the UQC from one to two

increased the average return obtained in the environment and improved the model’s stability, as one can

see by the small deviations from the average return. However, increasing it beyond two qubits negatively

impacted the performance of the models.

Moreover, out of the three different models, the Skolik Data Re-Uploading appears to be the worst-

performing model both in terms of the average return obtained as well as in stability.

5.3 Trainability Analysis of Skolik et al. [2022]’s models

In the previous sections, we analyzed the performance of the models from Skolik et al. [2022] and the

single/multi-qubit UQC. Nonetheless, our goal is to study the trainability of these models by observing the

norm and the variance of the gradients throughout training. That will be done from this section onwards.

We start by applying the procedure described in 4.4.2 to the four models from Figure 16 which used

output scaling (the red, green, blue and black lines), since the others achieved a level of performance so

poor that further study is not relevant. The results can be seen in Figure 21.

From Figure 21, it is clear that both the norm of the gradients and the variance of the norm appear to

be closely tied to the model’s performance in the environment. The model with the poorest performance

among the four (as shown in Figure 16) also exhibits the lowest average gradient norm and variance of

that norm, and vice versa. Moreover, the difference in the gradients’ norm and its variance is substantial
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between the different models, but particularly between the data re-uploading model with input scaling and

all the other models.
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Figure 21: Comparison of the gradients of the baseline and data re-uploading models with and without

trainable input scaling in the CartPole environment. Subfigure 21a shows the mean norm of the vector

gradient throughout training and Subfigure 21b the variace in the norms of the vector gradients throughout

training. The optimal set of hyperparameters from Skolik et al. [2022] is used, see Table 6. Moreover,

10 agents are initialized from each model. If an agent solves the environment, training is stopped. These

metrics are stopped after the first agent solves the environment, hence why some curves are shorter than

others.

The data re-uploading model with input scaling, depicted as the top-performing model in Figure 16,

is noteworthy in several ways. Despite its greater circuit depth and enhanced expressivity, it exhibits the

highest variance in the gradient norm among all models. This promising finding is in stark contrast to

our initial expectations derived from Holmes et al. [2022], which suggests a trade-off between expressivity

and trainability. In particular, Barren Plateaus are to be expected when using hardware-efficient ansatzes

with high expressivities. However, in this case, the most expressive model is also the one with the highest

gradients’ magnitude and variance. In fact, at a certain point during training, this model achieved a

gradient norm of 1000 and a variance in this norm of 2, 000, 000! This result is the exact opposite of

the Barren Plateau Phenomenon. The norm of the gradients and its variance are so high that parameter

updates should be very large and lead to unstable training. Nonetheless, this model achieves the best

performance. It is crucial, however, to set these observations in their proper context: they are specific to

RL and the CartPole-v0 environment, and any broader generalizations would be premature. Still, these

results warrant further investigation.

Finally, examining Figure 21 also reveals intriguing patterns in the training process. The norm of the
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gradients and its variance display similar trajectories: both increase in the early stages of training, achieve

a maximum value, and then start to decrease as training progresses. However, from Figures 16 and 21,

determining the exact performance at which the model’s gradients begin to decrease is challenging due to

their distinct x-axes. While Figure 16 uses episodes for the x-axis, Figure 21 employs training steps. Thus,

there isn’t a direct correlation, as each episode can entail an arbitrary number of steps. To address this,

we opted to analyze three randomly-selected agents from the Data Re-uploading and Baseline models,

plotting both performance and gradient norm against training steps. This choice, over averaging returns

and gradients across all 10 agents, offers a clearer visual representation of the potential performance

disparities between agents within the same model, highlighting the inherent instability of the algorithm.

Furthermore, the three agents displayed for each model represent the ten agents well, as similar results

are observed across all of them. These results are illustrated in Figure 22.
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Figure 22: Return and Norm of the gradients for 3 random Baseline (see Subfigure 22a) and Data Re-

Uploading (see Subfigure 22b) agents. Both the return an the norm of the agents are presented as moving

averages to mitigate noise due to the unstable nature of DQN.
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In Subfigure 22b, representing the three data re-uploading agents, there is a common trend: as the

return increases, so does the norm of the gradients. Upon reaching a stabilization point between 150 and

200 of return, the gradient norm peaks before gradually descending to a lower value. Two of the baseline

agents follow a similar pattern. However, one agent peaks at return 150, concurrent with the gradient

norm’s maximum, after which both metrics decline. Section 5.5 delves deeper into the potential reasons

behind this behavior.

5.4 Trainability Analysis of the UQC

After analyzing the trainability of the models used by Skolik et al. [2022], we applied the same methodology

to study the trainability of the single-qubit and multi-qubit UQCs. Figure 23 shows the trainability analysis

of the single-qubit model, using the Skolik Data Re-Uploading model for reference (the analysis of the

performance of these two models was done in Figure 17 and the color scheme is the same).
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Figure 23: Trainability analysis of the single-qubit UQC and Skolik data re-uploading models in the CartPole-

v0 environment from Figure 17 following the methodology defined in Section 4.4.2. Subfigure 23a shows

the mean norm of the vector gradient throughout training and Subfigure 23b the variance in the norms of

the vector gradients throughout training. 10 agents were initialized from each model.

The gradient norms and their variance were already notably large for the data re-uploading model. Yet,

they’re even more pronounced for the single-qubit UQC. This reaffirms the idea that Deep Q-Learning’s

inherent instability can result in models with significant gradient magnitudes, yet these models can still

excel in the given environment. Notably, the magnitude of the gradients and its variance seem to be

influenced by the choice of model. The reason why the single-qubit UQC shows much larger gradient

magnitudes than the Data Re-uploading model is still a topic for further investigation.
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Now, let’s study the trainability of the multi-qubit UQC models. Figures 24a and 24b show the trainabil-

ity analysis of the two-qubit UQC and the four-qubit UQC with and without entanglement in the CartPole-v0

environment. Once again, the same set of hyperparameters is used and all quantum circuits have 5 layers.
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Figure 24: Trainability analysis of the two-qubit (see Subfigure 24a) and four-qubit (see Subfigure 24b)

UQCs using the Partial and Full encoding techniques with and without entanglement. 10 agents were

initialized from each model. The full set of hyperparameters can be seen in Table 8.

The trainability analysis reveals insights into the behavior of the gradients as we increase the number

of qubits in the UQC and also the effect that entanglement has on this behavior. The first observation is

that the Partial Encoding models without entanglement have a much lower gradient norm and variance,

which is to be expected since these models perform poorly (see Figure 19) and we have already seen that

performance and gradient magnitude are deeply correlated.

Moreover, interestingly, the Full Encoding models without entanglement achieve a higher gradient

norm and variance than the models with entanglement. In fact, these models have the highest gradient

norms and variances out of all the tested models. One possible explanation for this result is that the

models with entanglement have a worse performance than the models without entanglement (see Figure
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19) which, according to the connection between performance and gradients, might lead to this decrease

in the gradients’ norm and variance.

Finally, the decrease in the variance does not seem to be exponential as the number of qubits in-

creases. In fact, the four-qubit UQC without entanglement has the highest variance out of all the tested

models. These observations reinforce the possibility of using the inherent instability of Deep Q-Learning to

mitigate the Barren Plateau Phenomenon. The following section explains some of the main causes behind

this instability.

5.5 Tradeoff betweenMoving Targets andGradientMagnitude

As we have seen in the previous section, the magnitude of the gradients and their variance throughout

training behave differently from expected. Concretely, they continuously increase as the agent learns, reach

substantial values when the agent achieves the maximum return, and then start decreasing until the end

of training. Moreover, the performance of the agents and their gradients seem to be deeply correlated,

which might be useful for VQC-based Deep Q-Learning. If the more expressive models, which typically

perform better on the environment since they can better approximate the optimal Q-function, also have

higher gradients due to this observed behavior, then the Barren Plateau Phenomenon might be mitigated.

However, this is only a possibility for now, since the results pertain only to the CartPole environment,

specific models, and the MSE cost function. Consequently, further research is required.

In this section, we attempt to comprehend the reasons behind this behavior. Let’s start by looking at

the mean loss function across the 10 different agents initialized from the Data Re-Uploading model (the

blue lines from Figures 16b, 21a and 21b), see Figure 25.

Immediately after the start of training, the loss increases in a manner that is similar to the norm and

variance of the norm of the gradients. It reaches a maximum when the agent achieves the highest return,

then decreases throughout the rest of training. This loss curve reveals why the behavior of the gradients is

different from the expected. The gradient is a vector containing the partial derivatives of the loss function

w.r.t all the parameters. If the loss function increases sharply at the beginning of training, the partial

derivatives should also increase, leading to a higher norm of the gradients. But why does the loss function

behave in such a way?
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Figure 25: The mean loss across the 10 agents of the data re-uploading model. The loss is only shown

until the first agent solves the environment.

To contextualize this anomaly, let’s examine how loss functions typically behave in more conventional

machine learning tasks. Consider a supervised learning task, such as a classifier. Given a dataset of

input-output pairs, the goal is for the model to learn to predict the output for a new input by minimizing

some loss function, such as the mean squared error, between the predicted outputs and the actual outputs

during training. Since the training dataset is static, meaning it doesn’t change throughout training, as the

agent learns and gets better at predicting outputs, the loss function decreases. Consequently, the typical

behaviour of the loss function in such tasks is to steadily decrease throughout training, while the accuracy

of the model (its performance in the context of a classifier) increases.

Contrasting this with our problem, the behavior of the loss function is clearly atypical: it first increases

as the agent learns, peaks when the maximum return is achieved, and then decreases throughout training,

while still converging to a somewhat considerable value. Thus, now the question is: Why is the loss

function behaving in such a way? The discrepancy arises from the fundamental differences between Deep

Q-Learning and supervised learning. While there are many reasons that could influence this behaviour,

one of the primary reasons is the fact that Deep Q-Learning targets are non-stationary - moving targets.

Since the targets keep changing during training due to the agent’s evolving knowledge, predicting Q-

values becomes increasingly challenging. This is specially pronounced in the beginning of training, when

the agent is focused on exploring the state-space. The more states explored, the higher the variance in the

return and, consequently, the higher the loss. Take, for instance, the CartPole environment. An agent in

the beginning of training chooses mostly random actions and, thus, achieves modest returns in the early

episodes - let’s say, for illustration, in the range [5, 10]. However, as the agent begins to learn, it discovers

sequences of states and actions that yield returns in the range of, say, [50, 100]. This increased range can
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make the task of accurately predicting Q-values more challenging, leading to an increase in the TD-error.

When employing the mean squared error loss function, which squares the TD-errors, large errors have a

disproportionately large impact on the loss. This explains the sharp increase in the loss function in the

early stages of training, when the agent is exploring the state-space. Eventually, as the agent becomes

more knowledgeable, the loss is expected to steadily decrease since the agent improves at predicting the

Q-values for the most visited states. Nonetheless, it is important to note that, while this is the typical

behavior observed so far in the CartPole environment, this decrease in the loss isn’t guaranteed, specially

in complex environments or if the agent maintains a substantial level of exploration throughout training.

Due to the instability that arose from the moving targets, the original paper Mnih et al. [2015] in-

troduced the concept of a target network. The targets are calculated using this network that has frozen

weights, which are updated every C steps to match the weights of the online network. Hence, for C steps

at a time, the targets appear stationary. Here, C is an hyperparameter that should be chosen taking into

account the tradeoff between speed of convergence and trainability. If C is set too high, the targets move

slowly and the model takes longer to train. If C is too low, then the targets change frequently and the

algorithm becomes unstable. As previously mentioned, Skolik et al. [2022] used C = 1, which means no

target network was used. We also used the same hyperparameters, which explains the observed behavior.

Figure 26a shows how the data re-uploading model performs on the CartPole environment for different

values of C . Figure 27b shows the behavior of the loss function for each of those models.

Starting from Figure 26a, it is possible to see how the speed of convergence is affected by the different

values of C . From C ∈ [1, 100], there doesn’t appear to be a significant difference in the models’

performance. In other words, when the target network is updated every 1 to 100 steps, the models

perform similarly. However, when C = 500, the model takes noticeably more episodes to learn, although

the difference is still not substantial. Then, when C = 1000, it is possible to see the full extent of the

the negative impact the choice of C has on the speed of convergence. This model takes significantly

more episodes to learn than all the aforementioned models, although it still eventually reaches a similar

average return. When C = 2500, the model isn’t even capable of learning and the performance remains

mediocre throughout training.

Turning to Figure 27b, it is possible to see the other side of the tradeoff. In other words, it is possible

to see how the loss function is affected by the choice of C . The first observation is that, as C increases,

the loss function becomes more stable and the maximum values it achieves start decreasing. For C = 1

andC = 10, it achieves maximum values over 2500. However, whenC = 1000, it achieves a maximum

value of just over 2.5, even though this model is still capable of learning. This shows that increasing C
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stabilizes training. Moreover, as C increases, the dynamics of the moving targets become more evident.

For example, whenC = 2500, the loss peaks in the first training step. However, sinceC = 2500, for the

next 2499 steps, the loss decreases and converges close to 0. Then, in the training step number 2500,

we can see the targets changed, since there was a sudden increase in the loss.

0 50 100 150 200 250 300
Episode

0

25

50

75

100

125

150

175

200
M

ea
n 

Re
tu

rn
C = 1
C = 10
C = 100
C = 500
C = 1000
C = 2500

(a) Performance of the data re-uploading model for different values of C .
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(b) Mean loss of the agents initialized from the data re-uploading model with different values of C .

Figure 26: Analysis of the performance and the loss of the data re-uploading model with different values of

C . The other hyperparameters are constant. To analyse the performance and the loss function, 5 agents

were initialized from each model. Then, the performance was measured following the methodology from

4.4.1 and the loss function was analyzed by computing the mean loss function over all the agents. The

full set of hyperparameters is shown in Table 9.

To see how the choice of C affects the gradients of the models, see Figure 27.
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(a) Norm of the Gradients of the data re-uploading model for different values of C .
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(b) Variance of the norm of the gradients of the data re-uploading model with different values of C .

Figure 27: Analysis of the gradients of the data re-uploading model with different values of C . The other

hyperparameters are constant and 5 agents were initialized from each model. Then, the gradient analysis

was performed following the methodology from 4.4.2.

From Figure 27, it is interesting to verify that both the norm of the gradients and the variance of the

norm behave similarly to the loss function for all values of C . In particular, we can see how the maximum

values of both metrics decay and how the dynamics of the moving targets become more evident as C

increases.

This analysis is of utmost importance for VQC-based Deep Q-Learning. In the previous sections, we

observed that well-performing models exhibit substantial gradient magnitudes and variances throughout

training. This section has empirically demonstrated the influential role of moving targets and the target

network update frequency C on the behavior of both the loss function and, consequently, the gradients.

In particular, we saw that increasing C stabilizes the loss function, which contributes to more controlled

magnitudes of gradients and their variance. However, it is important to highlight that even with relatively

lowC values — where the gradients’ magnitudes and variances were pronounced — the models showcased
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impressive performance. They were capable of achieving maximum returns in as few episodes as other

more ”stable” models with higher values of C .

This raises an interesting question. It is known that hardware-efficient VQCs suffer from the Barren

Plateau Phenomenon McClean et al. [2018], such that the variance of the gradients decays exponentially

with system size. However, it appears that Deep Q-Learning is an inherently unstable algorithm. Intrigu-

ingly, certain hyperparameter configurations seem to allow Deep Q-Learning models to effectively learn

good policies while sustaining considerable gradient magnitudes and variances. This hints at a poten-

tial advantage: might this inherent instability help counteract the Barren Plateau Phenomenon? In other

words, could the utilization of highly expressive VQCs (such as data re-uploading ones) in such a context

be somewhat resistant to Barren Plateaus? It is crucial to underscore, however, that our empirical ob-

servations are specifically tied to the CartPole environment and the MSE loss function. While these initial

findings are promising, they underscore the need for broader and more comprehensive research.

There are a few key factors to consider. First, while the moving targets contribute to the substantial

gradients observed throughout training, the impact of the loss function must not be undervalued. The

observed behavior in these results is so pronounced because the loss function is the MSE, which squares

the TD-errors, leading to the massive loss and gradient values. Nonetheless, there are some techniques

and some other loss functions that might counteract this effect. For example, gradient-clipping, which

consists of clipping the norm of the gradients at a certain pre-defined value, could be used Zhang et al.

[2019]. Moreover, it would also be possible to use other loss functions that might be less sensitive to

outliers, such as the Huber loss function Huber [1964], which employs a similar technique to gradient

clipping. This is to say we are not claiming that there are no solutions for solving this instability and

controlling the gradients. Even choosing a more stable set of hyperparameters with a larger target network

update frequency could achieve that. We are simply stating that this instability might help counteract the

Barren Plateau Phenomenon and thus could be desirable (up to a certain degree) in VQC-based Deep

Q-Learning.

5.6 Gradient Behavior for Increasing System Sizes

One of the advantages of the multi-qubit UQC architecture is that, using the full encoding method, one

may encode any input vector into an arbitrary number of qubits. In particular, it is possible to increase

the number of qubits even further than the number of features of the input vector. To test how the norm

of the gradients and its variance change as the number of qubits increases, we trained the full encoding
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multi-qubit UQC model with the set of even numbers of qubits from 2 to 12 in the CartPole-v0 environment.

Using a similar technique to Skolik et al. [2022], for a given number of qubits n, each action’s observable

considers half the qubits, such that the observables are [Z0...Zn
2
−1, Zn

2
...Zn−1]. For instance, the four-

qubit UQC uses [Z0Z1, Z2Z3], while the six-qubit model uses [Z0Z1Z2, Z3Z4Z5]. The performance

and trainability analysis are represented in Figures 28a and 28b, respectively.
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qubits.

Figure 28: Performance and Trainability analysis of the multi-qubit UQCs as the number of qubits increase.

10 agents were initialized from each model. The full set of hyperparameters can be seen in Table 8.

First, from the performance analysis shown in Figure 28a, it seems that the performance slightly

decreases as the number of qubits increases in the range [2, 12]. One can see that by the lower average

return at the beginning of training and by the higher standard deviation exhibited by models that use a

higher number of qubits.

Nonetheless, the most relevant observation comes from Figure 28b. Both the magnitude of the gradi-

ent and its variance behave similarly during training for all models, while also achieving a similar range of

values. This is particularly interesting because it confirms the suspicions that arose throughout this work.

The Barren Plateau Phenomenon states that the gradients decay exponentially with system size. How-

ever, for the VQC-based Deep Q-Learning algorithm, using the multi-qubit UQC model in the CartPole-v0

environment with the MSE loss function, that doesn’t seem to be the case. This hints at the possibility of

hardware-efficient VQCs being especially suitable to be used as function approximators in Deep Q-learning

since they might be somewhat resistant to the Barren Plateau Phenomenon due to the moving targets’

effects on the gradients of this algorithm.

However, it is important to note that these results are preliminary and insufficient to draw general

conclusions. Several factors require a more in-depth analysis. For instance, we only considered cost
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functions that use half the qubits. However, the locality of the observables used influences the norm and

the variance of the gradients Cerezo et al. [2021b], such that different cost functions that consider other

observables should be tested. Moreover, how these gradients change as the depth of the circuit increases

should also be researched. Unfortunately, due to a lack of time and computational resources, we could

not afford to do such a study. Thus, these results should serve as the basis for more nuanced studies.

5.7 The Acrobot Environment

In previous sections, we focused our discussion on the CartPole-v0 environment. However, as highlighted

in section 4.3, the CartPole is relatively simple. The Acrobot-v1 environment, on the other hand, presents

a more complex scenario. In fact, to the best of our knowledge, no VQC-based Deep Q-Learning model has

yet been tested in this environment. Moreover, we have noted substantial gradient magnitudes and vari-

ances in the CartPole environment. We are keen to investigate whether similar behavior can be observed

in the Acrobot environment.

Consequently, in this section, we will delve into the performance and trainability of VQC-based Deep

Q-Learning models in the Acrobot environment. We plan to test two models that have achieved some of the

best performances so far: the Skolik Data Re-Uploading model with four qubits and the Full Encoding Multi-

Qubit UQC with three qubits and entanglement. In fact, the multi-qubit UQC models without entanglement

performed better than themodels with entanglement, but due to the computational demands of the Acrobot

environment, we decided to test just the model with entanglement.

Nevertheless, it is necessary to make a few adjustments before proceeding with these tests:

• Hyperparameter Search - In our previous experiments, we utilized a consistent set of hyperpa-

rameters across all models to facilitate fair comparisons and isolate the influence of hyperparameter

variations. However, given the shift to a different and more complex environment, it became neces-

sary to conduct a hyperparameter search to optimize the learning potential of the models. We used

optuna Akiba et al. [2019] to perform a smart search method that usually reduces the number of

combinations tested before finding a near-optimal set of hyperparameters when compared with a

grid-search method. Details of the final hyperparameter set can be found in Table 10. One particu-

larly important hyperparameter is the target network update frequency, which we set to C = 250.

• Classical Pre-Processing - The state-space of the Acrobot environment encompasses six fea-

tures: [cos(θ1), sin(θ1), cos(θ2), sin(θ2), ω(θ1), ω(θ2)] where ω is the angular velocity, as de-

tailed in section 4.3.2. We reduced the dimensionality of the state-space to include only [θ1, θ2,
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ω(θ1), ω(θ2)], and normalized all features to fall within the range of [−2π, 2π].

• Observables - In the Acrobot environment, the set of actions is given by A = {−1, 0, 1}, with

each of the actions corresponding to applying the respective torque to the actuated joint. This

requires the measurement of three different observables to accurately represent these actions.

The observables used for the two tested models are seen in Table 4.

Expectation Values

Action Skolik Data Re-Uploading 3-Qubit UQC

−1 〈Z0〉 〈Z0〉

0 〈Z1Z2〉 〈Z1〉

1 〈Z3〉 〈Z2〉

Table 4: Chosen observables for the two models tested in the Acrobot-v1 environment.

There is also a significant difference that must be mentioned. In the CartPole environment, if an agent

gets a return greater or equal to 195 over the past 100 episodes, the environment is considered solved and

training is halted. However, the Acrobot environment has no such condition, so the goal is to obtain the

maximum return possible in a finite number of episodes. The results of the performance and trainability

analysis of these models with a varying number of layers can be seen in Figure 29

Let’s start by analysing the performance of the models. It is important to note that fairly good per-

forming NN-based Deep Q-Learning agents on the Acrobot environment typically achieve an average return

close to or less than −100 OpenAI [2023]. From Figure 29a, one can observe that the Skolik Data Re-

Uploading model is able to perform considerably well in this environment. Nonetheless, there is a clear

improvement in the performance when the number of layers is increased from five to ten. From Figure

29b, one can see that the three-qubit UQC is also capable of achieving a high average return. However, in-

creasing the number of layers of this model doesn’t seem to considerably impact performance. Moreover,

the UQC appears to achieve the mark of −100 average return sooner than the Skolik Data Re-uploading

models. Once again, we emphasize that, to the best of our knowledge, this is the first implementation of

VQC-based Deep Q-Learning models in the Acrobot environment.
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(a) Performance and trainability analysis of the Skolik

Data Re-Uploading model on the Acrobot environment.
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(b) Performance and trainability analysis of the three-

Qubit UQC model on the Acrobot environment.

Figure 29: Performance and Trainability analysis of the Skolik Data Re-Uploading and three-qubit UQC

models on the Acrobot environment. 10 agents were initialized from each model. The full set of hyperpa-

rameters can be seen in Table 10.

Next, we proceed to analyze the trainability of the models, focusing particularly on the gradient be-

havior observed during the training process. We verify a similar gradient behavior to the observed in the

Cartpole environment, where both the norm of the gradients and its variance escalate to substantial val-

ues. However, unlike what was verified in the CartPole environment, the gradients don’t peak and then

decrease sustainably throughout training. Instead, they continuously increase (with the exception of the

variance of the gradient norm of the three-qubit UQC). These results suggest that the observed behav-

ior might not be intrinsically linked to the characteristics of the environment, but possibly influenced by
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another variable or parameter.

Based on the analysis conducted thus far, it is reasonable to assume that the two most important

factors for this gradient behavior are the target network update frequency and the cost function, as seen

in section 5.5. The former due to the tradeoff between moving targets and gradient magnitude. The

latter because the MSE cost function squares the (already large due to the moving targets) TD-errors,

exacerbating the gradients.

Although replicating all experiments conducted in the CartPole environment would be interesting, the

associated computational expenses are prohibitively high. Nonetheless, we were still able to create VQC-

based models capable of achieving a considerable performance in the previously untapped Acrobot-V1

environment and seeing a substantial gradients’ norm and variance, which hints at the possibility that the

results obtained in the Acrobot environment would be similar to those obtained in the CartPole environment.

Thus, further research is needed to confirm or deny these claims.

5.8 Summary

In this chapter, we examined the performance and trainability of various VQC-based models within the

CartPole-v0 and Acrobot-v1 environments.

Initially, we replicated the study conducted by Skolik et al. [2022] in the CartPole environment, reaf-

firming the significance of data re-uploading as well as trainable input and output scaling in enhancing the

models’ performance. After that, we used the single-qubit UQC as a function approximator in VQC-based

Deep Q-Learning which, to the best of our knowledge, had never been done. Moreover, the multi-qubit

UQC was also introduced and tested in the CartPole environment.

Subsequently, we analyzed the trainability of these models and found that the gradient norms and

variances reached significant values, especially in highly expressive models that use data re-uploading.

This result is in stark contrast with what is expected since models with an increased circuit depth and

expressivity should lead to smaller gradients Holmes et al. [2022].

Afterward, we empirically verified that the gradients’ behavior is affected by a characteristic inherent

to Deep Q-Learning - moving targets. This instability is further exacerbated by the mean squared error

loss function. These results suggest that this inherent instability to Deep Q-Learning might counterbalance

the effects of the Barren Plateau Phenomenon. If confirmed, this would be a promising result for VQC-

Based Deep Q-Learning, since highly expressive VQCs could be used as function approximators without the

negative effects of the vanishing gradients. However, it is important to note that these findings are confined
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to the models explored within the CartPole environment and the mean squared error loss function.

Afterward, we verified that increasing the number of qubits does not seem to considerably affect the

gradients’ magnitudes nor their variance in the CartPole environment.

Finally, we used VQC-based Deep Q-Learning models to achieve a considerable performance in the

slightly more complex Acrobot-v1 environment which, to the best of our knowledge, has not been previously

done. It was also verified that the gradients’ magnitudes and their variance remain significant even in this

more complex environment.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This work researched the intersection between Quantum Computing and Deep Reinforcement Learning.

More concretely, the main goal was to study the effects of data re-uploading on the performance and

trainability of VQC-based Deep Q-Learning models. It was already empirically shown by Skolik et al. [2022]

that using data re-uploading increases the performance of these models in the CartPole environment,

possibly due to its increased expressivity, which allows the approximation of more intricate functions Schuld

et al. [2021]. Throughout this work, we implemented and tested different data re-uploading models on

the CartPole environment and the results match those by Skolik et al. [2022] and Schuld et al. [2021].

Moreover, we adapted the Universal Quantum Classifier (UQC) Pérez-Salinas et al. [2020], which also uses

data re-uploading, to be used as a function approximator in this setting and achieved the best performance

of all VQC models tested thus far on the CartPole environment. Furthermore, we tested different data re-

uploading models on the more complex Acrobot-v1 environment and achieved a considerable level of

performance. To the best of our knowledge, this was the first implementation of a VQC-based Deep Q-

Learning model in the Acrobot environment. From these results, we conclude that data re-uploading indeed

increases the performance of the Deep Q-Learning models.

However, a concern would be that the increase in expressivity and circuit depth that arises from the use

of data re-uploading could decrease the trainability of these models due to the Barren Plateau Phenomenon

McClean et al. [2018]. To investigate such a concern, we analyzed the norm of the gradients and the

variance of this norm. From this analysis, we verified that the gradients achieve substantial values and

actually increase when data re-uploading is used versus when it is not used. Furthermore, we empirically

showed that this increase is due to an instability that is inherent to Deep Q-Learning, which is the fact

that the targets are non-stationary. Alongside the Mean Squared Error loss function, this leads to a very

unstable algorithm with substantial gradients. Moreover, we also verified that increasing the number of
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qubits of the multi-qubit UQC in the CartPole environment does not lead to a decrease in the gradients’

magnitude or variance.

Nonetheless, it is important to note that these results pertain only to the CartPole and Acrobot envi-

ronments, specific data re-uploading models and sets of hyperparameters, and the mean squared error

loss function. Thus, while promising, it is still too preliminary to generalize.

6.2 Prospect for future work

For future work, it would be very interesting to develop a different methodology to analyze the trainability

of VQC-based models. The magnitude and variance of the gradients already give some insights into the

trainability of a model, but a more complex and intricate methodology that could add more information to

this analysis would be interesting. For instance, it may be possible to study the eigenvalues of the Hessian

Matrix.

Another interesting possibility would be to analyze these models from a Fourier Analysis perspective.

Schuld et al. [2021] show that VQCs may be seen as Partial Fourier Series in the data and that using data

re-uploading increases the frequencies the VQC ”has access to”. Thus, it may be possible to analyze the

optimal Q-functions of certain environments and the Fourier Series that the VQCs are approximating. This

might reveal some insights into what is happening behind the scenes.

Finally, while the results of this work hint at the possibility of the inherent instability of Deep Q-Learning

counteracting the effects of the Barren Plateau Phenomenon, they are still insufficient for making such

a claim. However, if this were true, then VQCs would be especially adequate for being used as function

approximators in such a setting. Thus, it would be interesting to build upon this work and analyze the

trainability of VQC-based Deep Q-Learning models on different, more complex environments, with different

loss functions and sets of hyperparameters. It might even be possible to theoretically derive bounds for

the gradients of these models, which could reinforce the empirical analysis.
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Appendix A
Models’ Hyperparameters

A.1 Hyperparameters’ explanation

Some of the hyperparameters for the VQC-based Deep Q-Learning models are explained in the following

table:

Hyperparameter Explanation
qubits The quantum circuit’s number of qubits
layers The quantum circuit’s number of layers
γ The return’s discount factor
trainable input scaling whether trainable input scaling is used or not
trainable output scaling whether trainable output scaling is used or not
learning rate of parameters θ the learning rate of parameters θ
learning rate of input scaling parameters the learning rate of input scaling parameters
Learning rate of output scaling parameters the learning rate of output scaling parameters
batch size the batch size
decaying schedule of ϵ-greedy policy defines the decaying schedule of the ϵ-greedy policy (e.g exponential)
ϵinit the initial value of ϵ
ϵdec the decay rate of epsilon per episode
ϵmin the minimum value of ϵ
update model the update model’s frequency
update target model the target model’s update frequency
data re-uploading whether data re-uploading is used or not

Table 5: An explanation of VQC-Based Deep Q-Learning’s hyperparameters

A.2 Hyperparameters used throughout this work

The set of hyperparameters used for the VQCs in Figures 16, 21 and 22, can be seen in table 6.
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CartPole-v0
qubits 4
layers 5
γ 0.99
trainable input scaling yes, no
trainable output scaling yes, no
learning rate of parameters θ 0.001
learning rate of input scaling parameters 0.001
learning rate of output scaling parameters 0.1
batch size 16
decaying schedule of ϵ-greedy policy Exponential
ϵinit 1
ϵdec 0.99
ϵmin 0.01
update model 1
update target model 1
size of replay buffer 10000
data re-uploading yes, no

Table 6: Models’ hyperpameters from Figure 16

The set of hyperparameters used for the single-qubit UQC in Figure 17 can be seen in table 7.

CartPole-v0
qubits 1
layers 5
γ 0.99
trainable input scaling yes
trainable output scaling yes
learning rate of parameters θ 0.001
learning rate of input scaling parameters 0.001
learning rate of output scaling parameters 0.1
batch size 16
decaying schedule of ϵ-greedy policy Exponential
ϵinit 1
ϵdec 0.99
ϵmin 0.01
update model 1
update target model 1
size of replay buffer 10000
data re-uploading yes

Table 7: Models’ hyperpameters from Figure 17

The set of hyperparameters used for the multi-qubit UQCs in Figures 19 and 28 can be seen in table

7.
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CartPole-v0
qubits 2, 4, 6, 8, 10, 12
layers 5
γ 0.99
trainable input scaling yes
trainable output scaling yes
learning rate of parameters θ 0.001
learning rate of input scaling parameters 0.001
learning rate of output scaling parameters 0.1
batch size 16
decaying schedule of ϵ-greedy policy Exponential
ϵinit 1
ϵdec 0.99
ϵmin 0.01
update model 1
update target model 1
size of replay buffer 10000
data re-uploading yes

Table 8: Models’ hyperpameters from Figures 19 and 28.

The set of hyperparameters used for the models of Figure 26 can be seen in table 9.

CartPole-v0
qubits 4
layers 5
γ 0.99
trainable input scaling yes
trainable output scaling yes
learning rate of parameters θ 0.001
learning rate of input scaling parameters 0.001
learning rate of output scaling parameters 0.1
batch size 16
decaying schedule of ϵ-greedy policy Exponential
ϵinit 1
ϵdec 0.99
ϵmin 0.01
update model 1
update target model 1,10,100,500,1000,2500
size of replay buffer 10000
data re-uploading yes

Table 9: Models’ hyperpameters from Figure 26

The set of hyperparameters used for the multi-qubit UQC and Skolik Data Re-uploading models in

Figure 29 can be seen in table 10.
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Skolik Data-Reup Acrobot-v1 Multiqubit UQC Acrobot-V1
qubits 4 3
layers 5, 10, 15 5, 10, 15
γ 0.99 0.99
trainable input scaling yes yes
trainable output scaling yes yes
learning rate of parameters θ 0.001 0.001
learning rate of input scaling parameters 0.001 0.001
learning rate of output scaling parameters 0.1 0.1
batch size 32 32
decaying schedule of ϵ-greedy policy Exponential Exponential
ϵinit 1 1
ϵdec 0.99 0.99
ϵmin 0.01 0.01
update model 5 5
update target model 250 250
size of replay buffer 50000 50000
data re-uploading yes yes

Table 10: Models’ hyperpameters from Figure 29.
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