EFFECT OF METHANOCENCIC INHIBITORS, INOCULA TYPE, AND TEMPERATURE ON BIOHYDROGEN PRODUCTION FROM FOOD COMPONENTS

Anthony S. Danko, Francisco Pinheiro, Ângela A. Abreu, M. Madalena Alves

Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-57 Braga, Portugal

Abstract

Dark fermentation hydrogen production from a mixture of food components using two different methods of methanogenic inhibition (autoclaving and BES) and three different temperatures (37, 60, and 70 ºC) was examined in batch assays for two different mixed anaerobic cultures - one suspended sludge (S) obtained from an anaerobic digester and one granular sludge (G) obtained from a brewery wastewater treatment plant. In general, BES-inhibition of sludge was more robust when compared against heat-treated inoculum. Also, hydrogen, VFA, and sCOD production were affected by increases in temperature although the effects were less severe for G than for S. In addition, differences in individual VFAs were observed between the two inocula. S produced more acetate as a percentage of VFA TOTAL compared to G. Conversely, G produced more butyrate compared to S. Differences in the microbial communities were likely responsible for the diverse behaviour of the two inocula.

Keywords: biohydrogen, fermentation, food waste, mixed cultures

1. Introduction

The rise in global pollution and diminishing reserves of fossil fuels has lead to an increase in investment and research into alternative fuel technologies. Hydrogen may be an ideal candidate as an alternative fuel because it is CO₂-neutral and it has the highest energy per mass content of fuels (Boyles, 1984; Kotay and Das, 2007). A wide range of biological technologies can be used to produce hydrogen including photolysis and fermentation. However, rates of hydrogen production from photolysis are less than those from fermentation (Das and Veziroglu, 2001; Levin et al., 2004).

Biohydrogen production from municipal solid waste has been well studied (Lay et al., 1999; Liu et al., 2006; Ueno et al., 2007; Valdez-Vazquez et al., 2005; Valdez-Vazquez et al., 2006). Even though municipal solid waste is comprised of 20-65% kitchen waste (Tchobanoglous et al., 1993), there have only been a few studies concerning hydrogen production from food waste. Okamoto et al. (2000) observed hydrogen production when individual food components such as carrots, cabbage, and rice were used as the substrates (Okamoto et al., 2000). The inoculum used for these experiments was heat treated anaerobic digester sludge. Shin et al., (2004) observed hydrogen production batch reactors using a mesophilic and thermophilic inocula from laboratory scale acidogenic reactor incubated at 37 or 55 ºC (Shin et al., 2004). Hydrogen production has also been observed from semicontinuous reactors using inocula from anaerobic digesters (Shin and Youn, 2005; Kim et al., 2008) or a pilot scale acidogenic reactor (Li et al., 2008). Kim et al. (2008) also used heat treatment to suppress methanogenic activity.

Previous studies carried out with other substrates have shown that the different methods to inhibit methanogens can affect hydrogen production (Cheong and Hansen, 2006; Kraemer and Bagley, 2007; Oh et al., 2003; Valdez-Vazquez et al., 2006; Zhu and Béland, 2006). In addition, different inocula
sources and temperature can affect the amount of hydrogen produced (Danko et al., 2008; Lay et al., 1999; Li and Fang, 2007; Lin et al., 2006; Shin et al., 2004; Valdez-Vazquez et al., 2006; Van Ginkel et al., 2001; Yu et al., 2002).

There are conflicting reports in the literature as to effects of temperature on hydrogen production. Several studies have shown that hydrogen yields and rates increase as the temperature increases (Lin and Chang 2004; Morimoto et al., 2004; Valdez-Vazquez et al., 2005; Yu et al., 2002). However, increasing temperature can also have detrimental effects on hydrogen production and rates (Lin et al. 2008; Valdez-Vazquez et al. 2006). Lin et al. (2008) showed that even increases of just 5 ºC can impact hydrogen production and rates by as much as 25% (Lin et al., 2008). The work presented herein examines the effect of different methanogenic inhibitors and temperature on hydrogen production for two different anaerobic mixed cultures.

2. Experimental

2.1. Inoculum

A granular sludge and suspended sludge were used in this study. The granular sludge (G) was obtained from an upflow anaerobic sludge blanket reactor treating brewery wastewater located in Oporto, Portugal. The suspended sludge (S) was obtained from a wastewater anaerobic digester supplemented with fat near Coimbra, Portugal.

Prior to use, G was first filtered using a 0.2 mm sieve. Sludge retained on top of the sieve was used as the G inoculum for batch reactors. S was prepared by centrifuging (5,000 rpm), washing in media, and centrifuging (5,000 rpm). Two different methods were used to inhibit methanogenic activity in both G and S: heat treatment by autoclaving (30 min) and bromoethanesulfonate (BES) (25 mM).

2.2. Batch experiments

Batch experiments were performed in 125 mL serum bottles with 20 mL liquid volume containing media, food components, and inoculum. The media contained a bicarbonate buffer with micro- and macro-nutrients as previously described (Abreu et al., 2007; Zehnder et al., 1980). The initial pH of the batch experiments was adjusted to 6.5 by flushing with 100% CO₂. The initial amount of biomass used in batch experiments was approximately 10 g/L VS.

The substrate used for these experiments was simulated food waste. The composition of the food waste was prepared by mixing pork lard, cabbage, chicken breast, and potato flakes to simulate lipids, cellulose, protein, and carbohydrates, respectively. Previous research has shown that this simulated food waste adequately represents a real restaurant waste (Neves et al., 2008). The composition of the food waste was manipulated in order to achieve an equal amount of COD for each component of the food waste. This corresponded to 4 g COD/L of each component or a total of 16 g COD/L for the four components in each batch reactor.

The characteristics of the food components are as previously described (Neves et al., 2008). The amount of food components used in the batch experiments are presented in Table 1.

<table>
<thead>
<tr>
<th>Food Component</th>
<th>Range (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat (Lipids)</td>
<td>0.04 – 0.08</td>
</tr>
<tr>
<td>Chicken (Protein)</td>
<td>0.24 – 0.28</td>
</tr>
<tr>
<td>Cabbage (Carbohydrates)</td>
<td>1.35 – 1.60</td>
</tr>
<tr>
<td>Potato (Cellulose)</td>
<td>0.06 – 0.09</td>
</tr>
</tbody>
</table>

* mass of raw waste expressed in grams of wet mass

Batch cultures were incubated at three different temperatures: 37 ºC (± 2 ºC), 60 ºC (± 2 ºC), and 70 ºC (± 2 ºC). Experiments at each temperature were performed in triplicate.

2.3. Analytical methods

The biogas content of the batch reactors were monitored for hydrogen and methane production using a Hayesep Q column (80/100 mesh) and a Porapak Q (180 to 100 mesh), respectively, with thermal conductivity detector as previously described (Danko et al. 2008). Gas pressure was released using the Owen method (Owen et al., 1979) using a 20 or 50 mL glass syringe.

Production of volatile fatty acids (formate, acetate, propionate, n- and i-butyrate, valerate) and ethanol were determined using high pressure liquid chromatography (Jasco, Japan) using a Chrompack column (6.5 x 30 mm²) with 0.7 mL/min sulfuric acid (0.005 mM) as the mobile phase. Detection was accomplished using a UV (210 nm) or refractive index detector (ethanol). The column temperature was set at 60 ºC.

Hydrogen production potential and rates were determined using the Modified Gompertz equation (Eq. 1) (Lay et al., 1999; Zwietering et al., 1990):

\[H(t) = P \exp \left\{ - \exp \left[\frac{R_e e^{(\lambda - t)}}{P} + 1 \right] \right\} \]

where:
- \(H(t) \) is the cumulative hydrogen production (mL)
- \(P \) is the hydrogen production potential (mL),
- \(R_e \) is the maximum hydrogen production rate (mL/hr)
- \(\lambda \) is the duration of the lag phase (hr)
- \(t \) is time (hr),
- \(e \) is approximately 2.718.
3. Results and discussion

Hydrogen production occurred for both inoculum but there were differences in the amounts depending on the temperature or type of methanogenic inhibition (Fig. 1). Methane production was not detected in any of the batch experiments.

The Modified Gompertz equation was used to calculate the values for the maximum hydrogen production rate, hydrogen production potential, and duration of the lag phase for all batch reactors. In addition, the R^2 values listed are the ranges of the values obtained for modelling the individual triplicate bottles. The results are shown in Table 2.

BES-inhibited G and S produced in general more hydrogen at higher production potentials with smaller lag times when compared against heat treatment.

There was little difference in hydrogen production between BES and heat treatment for G at mesophilic temperatures (average difference of 1.9 mL H$_2$). However, the differences in the amounts of hydrogen production for heat and BES treatments were larger at thermophilic (8.3 mL H$_2$) and hyperthermophilic temperatures (3.1 mL H$_2$) for G.

The largest difference between the BES-inhibited biomass and the heat treated biomass was observed with the S inocula at 37 ºC where the hydrogen production by BES inhibition was three times larger than for the autoclaved inoculum.

Differences were also observed for hydrogen production rates and lag times. In general, BES inhibited biomass had higher production rates and smaller lag times when compared against heat treatment. The largest average difference in lag time (~ 66 hours) was observed for S at thermophilic temperatures.

Fig. 1. Biohydrogen production from the S (Panels A, C, and E) and G (Panels B, D, and F) inocula at different temperatures and inhibition. The temperatures for the batch experiments were the following: 37 ºC for A and B, 60 ºC for C and D, and 70 ºC for E and F. Error bars represent one standard deviation of triplicate bottles.
Table 2. Modified Gompertz equation parameters for the two different sludges and two different methanogenic inhibitors where P = the hydrogen production potential, Rm = maximum hydrogen production rate, and λ = lag phase. The R² values listed are the range of the values obtained for modelling the individual triplicate bottles.

<table>
<thead>
<tr>
<th>Type of Inocula</th>
<th>Temperature (ºC)</th>
<th>Inhibition Treatment</th>
<th>P (mL)</th>
<th>Rm (mL/hr)</th>
<th>λ (hr)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 37</td>
<td>Heat</td>
<td>11.23±0.15</td>
<td>0.64±0.23</td>
<td>14.96±1.82</td>
<td>9.01±2.67</td>
<td>0.9953-0.9980</td>
</tr>
<tr>
<td></td>
<td>BES</td>
<td>31.39±0.87</td>
<td>1.99±1.08</td>
<td>20.21±1.40</td>
<td>4.30±0.52</td>
<td>0.9999-0.9999</td>
</tr>
<tr>
<td>G 37</td>
<td>Heat</td>
<td>12.51±0.39</td>
<td>0.73±0.14</td>
<td>9.01±2.67</td>
<td>4.30±0.52</td>
<td>0.9750-0.9949</td>
</tr>
<tr>
<td></td>
<td>BES</td>
<td>14.38±0.54</td>
<td>0.86±0.06</td>
<td>4.30±0.52</td>
<td>0.9315-0.9989</td>
<td></td>
</tr>
<tr>
<td>S 60</td>
<td>Heat</td>
<td>0.38±0.12</td>
<td>0.01±0.00</td>
<td>12.80±21.96</td>
<td>0.9942-0.9969</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BES</td>
<td>2.29±0.29</td>
<td>0.09±0.06</td>
<td>63.39±22.83</td>
<td>0.9999-0.9999</td>
<td></td>
</tr>
<tr>
<td>G 60</td>
<td>Heat</td>
<td>9.65±0.03</td>
<td>0.11±0.01</td>
<td>16.02±6.19</td>
<td>0.9809-0.9986</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BES</td>
<td>16.98±0.99</td>
<td>0.35±0.11</td>
<td>3.64±1.65</td>
<td>0.9300-0.9976</td>
<td></td>
</tr>
<tr>
<td>S 70</td>
<td>Heat</td>
<td>ND*</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>BES</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>G 70</td>
<td>Heat</td>
<td>3.72±0.00</td>
<td>0.02±0.00</td>
<td>242.69±19.08</td>
<td>0.9993-0.9999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BES</td>
<td>6.63±1.98</td>
<td>0.16±0.09</td>
<td>227.05±2.15</td>
<td>0.9933-0.9977</td>
<td></td>
</tr>
</tbody>
</table>

*ND means not determined

Previous studies have also indicated that heat treatment can be detrimental to hydrogen production when compared to other methods (Cheong and Hansen, 2006; Valdez-Vazquez et al., 2006; Zhu and Béland, 2006). G and S also showed significant differences for the effects of temperature. G was more robust with the effect of temperature for both BES and autoclaved biomass. Hydrogen production increased when the temperature was increased from 37 ºC to 60 ºC for BES inhibited sludge. However, hydrogen production potential decreased as the temperature increased from mesophilic to thermophilic temperatures.

As temperatures were increased a further 10 ºC from 60 ºC to 70 ºC, hydrogen production decreased approximately 55%. Similar results were observed when temperatures were increased from 50 to 55 ºC, although, hydrogen production and rates decreased only 25% (Lin et al., 2008).

For the S inocula, hydrogen production, potentials, and lag times were adversely affected as temperatures increased. Maximum hydrogen production for S was observed at 37 ºC (approximately 31 mL H₂) for BES-inhibition and decreased dramatically at 60 ºC (3 mL H₂). The amount of hydrogen produced from autoclaved S also decreased from 10 mL at 37 ºC to approximately 0.4 mL H₂ for 60 ºC. Hydrogen production was sporadic at hyperthermophilic conditions (70 ºC) as only one batch reactor (out of three) for each inhibition treatment produced hydrogen and therefore values for hydrogen production, potentials, and lag times were not determined for this experiment. Previous studies have shown that temperature can have a detrimental effect on hydrogen production (Lin et al., 2008; Valdez-Vazquez et al., 2006). This may be attributed to differences in microbial communities (Lin et al., 2008; Valdez-Vazquez et al., 2006).

The high degree of correlation between the data and the model for both inocula suggested that the Modified Gompertz Equation adequately described the data.

Results for the amount of sCOD, VFA, and ethanol production are shown in Table 3. Similar results on the effects of temperature and the type of methanogenic inhibition were observed with the amount of soluble COD (sCOD) and total VFA (VFATOTAL) that was produced for the G and S inocula. BES inhibited sludge produced on average more sCOD and VFATOTAL than the autoclaved sludge. In addition, the S inoculum was more adversely affected by the increases in temperature than was G, as was previously mentioned. For example, at 37 ºC, BES and autoclaved S inoculum produced 11600 and 6500 mg/L sCOD and 5800 and 3900 mg/L VFATOTAL, respectively. However, as the temperatures increased to 60 and 70 ºC, the amount of sCOD and VFATOTAL produced decreased significantly to levels less than 5400 mg/L and 2300 mg/L, respectively.

Also, the amount of sCOD and VFATOTAL produced was related to the amount of hydrogen that was generated. For example, the amount of sCOD and VFATOTAL was low (< 5500 mg/L and 2600 mg/L, respectively) when H₂ production was less than 6.5 mL. An increase in VFATOTAL was observed by Shin et al. (2004) when temperatures increased from mesophilic to thermophilic temperatures (Shin et al., 2004). However, Valdez-Vasquez et al. (2005) observed a decrease in VFATOTAL under the same temperature conditions (Valdez-Vazquez et al., 2006). Possible differences between the two studies may be attributed to differences in the microbial communities.
were also observed in individual VFAs. Differences decreased as temperatures increased. Differences in metabolic percentage (as VFA TOTAL) for both inoculum Formate and ethanol were generally the lowest observed between S and G for individual VFAs. sCOD, and VFA TOTAL production all dramatically increased with temperature values. Differences in metabolic percentage of HAc and HBu was calculated to be between approximately 77 and 90% of VFA TOTAL for both inocula. However, the percentage of acetate (as VFA TOTAL) was generally higher in S compared to G. Conversely, S was also observed to have a lower percentage of HBu compared to G over the three temperature values. Differences in metabolic products at different temperatures have also been observed previously and may have been caused by the diverse behaviour of the two inocula.

4. Conclusions

The effect of methanogenic inhibitors, inoculum type, and temperature on biohydrogen production using food components was examined. In general, BES-inhibited sludge produced more hydrogen with higher rates and smaller lag times than heat treated suspended (S) and granular (G) inoculum. In addition, G was less sensitive to the effect of temperature as hydrogen production was observed for all three temperatures (37, 60, and 70 °C) with the maximum hydrogen production observed at 60 °C. S was severely affected by temperature as hydrogen, sCOD, and VFA TOTAL production all dramatically increased as temperatures increased. Differences were also observed in individual VFAs. Differences in the microbial communities were likely responsible for the diverse behaviour of the two inocula.

Acknowledgements

We gratefully acknowledge the financial support awarded to Anthony Danko (SFRH/BPD/24221/2005) and to Ângela Abreu (SFRH/BPD/29823/2006) through individual grants and the project (POCTI/ENR/57786/2004) from the Fundação para a Ciência e a Tecnologia (Portugal).

References

Table 3. Production of sCOD, H2, and VFA during fermentation with two different inocula and two types of methanogenic inhibitors with food components

<table>
<thead>
<tr>
<th>Type of Inocula</th>
<th>Temperature (°C)</th>
<th>Inhibition Treatment</th>
<th>H2 (mL)</th>
<th>sCOD (mg/L)</th>
<th>VFA TOTAL (mg/L)</th>
<th>HFo (%)</th>
<th>HAc (%)</th>
<th>HPr (%)</th>
<th>HBu (%)</th>
<th>EtOH (%)</th>
<th>HAc+HBu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 37 Heat</td>
<td>11.1±0.9</td>
<td>6 500</td>
<td>3 900</td>
<td>1.5%</td>
<td>33.1%</td>
<td>12.6%</td>
<td>52.5%</td>
<td>1.4%</td>
<td>85.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 37 Heat</td>
<td>12.4±0.4</td>
<td>7 200</td>
<td>3 500</td>
<td>4.8%</td>
<td>20.2%</td>
<td>8.6%</td>
<td>63.0%</td>
<td>3.5%</td>
<td>83.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BES 14.2±0.5</td>
<td>12 900</td>
<td>4 500</td>
<td>2.4%</td>
<td>26.6%</td>
<td>8.9%</td>
<td>58.7%</td>
<td>3.9%</td>
<td>83.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 60 Heat</td>
<td>0.4±0.1</td>
<td>4 200</td>
<td>700</td>
<td>4.3%</td>
<td>35.7%</td>
<td>15.1%</td>
<td>41.3%</td>
<td>2.6%</td>
<td>77.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BES 2.4±0.4</td>
<td>5 400</td>
<td>2 300</td>
<td>0.8%</td>
<td>27.7%</td>
<td>13.5%</td>
<td>56.1%</td>
<td>1.9%</td>
<td>83.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 70 Heat</td>
<td>0.4±0.6</td>
<td>4 100</td>
<td>700</td>
<td>10.1%</td>
<td>46.2%</td>
<td>12.0%</td>
<td>30.9%</td>
<td>2.6%</td>
<td>77.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BES 6.6±1.1</td>
<td>4 700</td>
<td>900</td>
<td>2.3%</td>
<td>42.8%</td>
<td>14.1%</td>
<td>44.6%</td>
<td>1.8%</td>
<td>87.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 37 BES</td>
<td>34.0±0.1</td>
<td>4 300</td>
<td>1 900</td>
<td>1.6%</td>
<td>16.1%</td>
<td>5.4%</td>
<td>74.0%</td>
<td>2.7%</td>
<td>90.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BES 6.5±2.1</td>
<td>5 500</td>
<td>2 600</td>
<td>1.7%</td>
<td>22.9%</td>
<td>8.1%</td>
<td>63.1%</td>
<td>2.6%</td>
<td>86.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Percentage of VFA TOTAL
HFo, HAc, HPr HBu, EtOH stand for formate, acetate, propionate, butyrate, and ethanol, respectively.