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2. OBJECTIVES
This research aims to evaluate the ideal composition of coaxial Phase Change
Fibres (PCFs) composed of cellulose acetate as the sheath (CA, Mn 30,000 and
50,000) and polyethene glycol (PEG) 2000 as the core, produced by the wet
spinning method.

Nomenclature for fibres

Figure 2: PCF representation. 

Core: PEG2000
40-60-80 wt. %, in dH2O

Ejection velocity: (0.130-0.140-0.150 mL/min)

Sheath: CA, Mn 30,000 and Mn 50,000
10-20-30 wt. %, in Dimethylformamide (DMF)

Ejection velocity: 0.165 mL/min 

T (°C)

T (°C)

Table 1: Nomenclature for PCFs.

3. METHODOLOGY

Wet spinning process

Figure 3: Scheme of production of PCFs.

• The dissolutions were removed from the
magnetic stirrer half an hour before starting
production to reach room temperature and left to
rest to avoid air bubbles;

• Coagulation bath: dH2O (T = 20 °C);
• Injection port (core): 21 gauge = 0.723 mm;
• Injection port (sheath):11 gauge = 2.304 mm;

Dissolution 1 
• CA
• DMF 
• 50 °C
• Overnight

Dissolution 2 
• PEG2000
• dH2O
• 50 °C
• Overnight

1. INTRODUCTION
Urban resilience in the face of climate challenges is a concern, impacting well-

being due to environmental, economic and social influences. Asphalt pavements

aggravate the Urban Heat Island (UHI) by retaining and releasing heat. The

development of polymeric coaxial fibres with phase change materials (PCM) for

application in asphalt mixtures has emerged as a promising solution to improve

thermoregulation and mitigate UHI problems.

Figure 1: Thermal effects.

This issue is directly related to the
United Nations (UN) goals SDG9,
SDG11 and SDG12, associated with
resilient and sustainable cities, and
represents a considerable challenge
that must be addressed.

5. CONCLUSION
The PCFs were successfully produced by wet spinning. The ejection velocity
influenced the structure of the PCF, with the best velocity of 0.130 mL/min. By
FTIR, the characteristic peaks of PEG and CA were observed. Bright-field
Microscopy revealed the coaxial structure, indicating that PEG is in the core and
CA is the sheath of the PCF. TGA showed the ability of PCFs to withstand higher
temperatures than those used in the production and compaction of the asphalt
mixtures (~160 °C). DSC confirmed the phase change of PCF with a change peak
close to virgin PEG2000. The phase change temperature of the PCF is therefore
compatible with application in infrastructures subjected to moderate
temperatures between 50-60 °C.
The next step of this work is to evaluate the thermal behaviour of the asphalt
mixtures composed of the produced PCF.
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4.3. Thermogravimetric Analysis (TGA) 
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Virgin Materials
- CA: ≈ 300 °C
- PEG2000: ≈ 350 °C

Elimination of the dH2O molecules and DMF

Figure 6: TGA curves of the PCFs. 
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4.4. Differential Scanning Calorimetry (DSC)

Figure 7: DSC curves of the PCFs. 
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CA (Mn 50.000)
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4.2 Fourier Transform Infrared Spectroscopy 
(FTIR)

Figure 5: Comparative FTIR between PCFs and virgin materials. 

4.1 Bright-field Microscopy

Figure 4: PCFs observed under the microscope (Magnification: 5×).  
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4. RESULTS AND DISCUSSIONS    

Virgin Materials
- CA: ≈ 230-235 °C
- PEG2000: ≈ 53-55 °C

CA 

DMF 
PEG2000 


