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Resumo 

A área automóvel desde a sua criação está repleta de novas invenções e inovações tendo 

evoluído de sistemas puramente mecânicos para cada vez mais elétricos/eletrónicos (E/E). De 

entre as várias novas inovações surgiu o X-by-Wire cujo objetivo é melhorar o desempenho e 

segurança do veículo, num contexto onde as partes hidráulicas e mecânicas do sistema são 

parcialmente substituídas por sistemas elétricos e/ou eletrónicos [1].  

Um sistema Steer-by-Wire substitui um sistema de direção convencional trocando a direção 

mecânica por uma completamente elétrica. É esperado por um destes sistemas dois serviços 

principais: o controlo da direção das rodas de acordo com o pedido do condutor e que 

proporcione uma força que emite o feedback que convencionalmente obtido quando se usa um 

volante tradicional [2]. 

Quando se opera neste tipo de sistemas “autónomos” é obrigatório que eles sejam fiáveis 

(fail-safe/fail-operational) sendo por norma classificados como sistemas de segurança critica de 

controlo, onde um estado de falha num componente não pode levar a falha do sistema completo 

[2]. Um destes sistemas é o Steering Angle Sensor (SAS) que calcula a posição e velocidade do 

volante durante a sua operação e utilizando o protocolo CAN transmite esses dados para uma 

unidade central para posterior processamento e tomada de decisões. 

Com esta dissertação implementou-se um driver de comunicação CAN (Controller Area 

Network) que suporta os protocolos CAN clássico e CAN-FD com flexibilidade quer nas suas 

configurações como nas mensagens que envia e recebe. Importante também que cumpra com 

as restrições elevadas de ambientes safe e tolerantes a falhas aproveitando as vantagens da 

escolha deste protocolo. Para isto, aplicou-se normas internacionais tais como a ISO 26262 

(Functional Safety Standard) com os seus dois pontos chave: Segurança (Safety) e Qualidade 

Intrínseca [3] e outros guias como o MISRA. Complementando isto criou-se um GUI capaz de 

decifrar, analisar e simular mensagens CAN neste contexto. 

Palavras-chave: Protocolo CAN; Drivers de dispositivos; Sistemas embebidos; ISO26262; 

Segurança Crítica; 



  

 
vi 
 

Abstract 

The automotive field was always filled with new inventions and innovations. It started by being 

completely mechanical and in recent years with successful iterations using many more electric 

and electronic subsystems. Among all the innovations, the X-by-Wire has the objective of 

improving the performance and safety of the vehicle, by replacing several mechanical and 

hydraulic parts of the system with their electronic or/and electric counterparts [1].  

A Steer-by-Wire system replaces the conventional direction car system by eliminating the 

physical connection between the steering wheel and the wheels of a car by using electrically 

controlled motors to change the direction of the wheels [4]. It is expected for the system to 

guarantee two main services: the control of the wheels in accordance with the driver and that the 

steering wheel produces a feedback force that is usual from a traditional steering wheel [2].  

In this type of “autonomous” systems is mandatory for them to be fail-safe, whereby normally 

are classified as critical safety control systems, defined by having a safe state where even if a 

component fails the whole system does not crumble to dust [2]. One of these systems is the 

Steering Angle Sensor, which calculates the position and velocity of the steering wheel during its 

operation and by using the CAN protocol transmits the calculated data to a central unit for further 

processing and decision making. 

This dissertation has for its primary goal the implementation of a safe and flexible CAN 

communication driver with the objective of fulfilling the high restrictions of safe and fault-tolerant 

environments. Doing so by taking advantage of design standards and the CAN protocol. 

Standards such as the ISO 26262 (Road Vehicles – Functional Safety) focused on Safety and 

Intrinsic Quality and guidelines such as MISRA [3]. The driver must support both classical and 

CAN-FD configurations as well any type of messages. Adding to the driver, a GUI is also to be 

developed with display, analysis, and simulation capabilities for CAN messages. 

Keywords: CAN Protocol; Device drivers; Embedded Systems; ISO26262; Safety-Critical; 
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Chapter 1  

Introduction 

The automotive industry has been subjected to an exponential evolution in technology nowadays. 

Most of the advances seen in vehicles are the result of better electronics (hardware and software), 

which consequently increase the complexity of those systems [5]. Where recent cars may contain 

up to 80 ECUs (Electronic Control Units) and hundreds of Megabytes in Software [6]. All this 

complexity is not free of faults, which can arise from many reasons, from natural causes to 

mistakes made in the assembly process, for example. Eliminating all the events that could lead 

a system to a failure state is at very least challenging if not impossible. However, with the usage 

of fault-tolerant approaches, the system can be compliant with safety requirements. But how can 

safety be measured? A safe system is one that must not harm people, not even put them in 

dangerous situations. This hypothetic situation, often called residual risk, can be measured in 

three factors [7]: Severity – The potential injury; Exposure – The probability of occurrence; 

Controllability – The ability of the system to avoid the specified harm. These are the pillars in 

which an ASIL (Automotive Safety Integrity Level) system must comply with to achieve the 

standards regulated [7]. An ASIL system has a classification from A to D, where D is the stringent 

one at the rigorous level. 

This dissertation addresses the issue of fault-tolerant chip architectures for automotive 

applications in a multiprocessor environment with lockstep. In lockstep architecture, two 

processors execute the same code in a synchronized way, normally with one system clock cycle 

apart. The outputs produced by both cores feed a checker unit, allowing it to identify possible 

inconsistencies between them. If any of that is detected, then the system must recover itself to 

a safe state and report the error, complying with the requirements of reliability and safety. The 

mechanism studied since the end of the twentieth century for its safety achievements is 

conducting the interest of the industry, especially the automotive one, because of its growth and 

more restrict demands on safety.  
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1.1 Contextualization 

Since its creation, the automotive field has been barraged with new inventions and innovations. 

This led to improvements in the overall comfort and efficiency of vehicles all around. However 

these commodities come at a price of complexity, having increased the number of ECUs 

exponentially as well as the amount of data traded between them. 

 The amount of data drove improvements on different communication protocols to 

accommodate the larger loads. However not all data needs to be treated the same way as 

protocols such as MOST address the transfer of video and sound data across the different 

dedicated actuators, for example display screens and sound speakers. The requirements for 

automotive communications depend on the subsystems. However they can be summarized by 

fault tolerance, determinism, bandwidth, flexibility and security [8]. 

 To improve on those requirements protocols such as CAN were forced to improve, resulting 

in a new improved version the CAN-FD. This new version increases the payload supported, the 

maximum data rates, enhanced reliability with improvements on the cyclic redundancy check 

and backward compatibility with CAN classic nodes in case it is required to mix both protocols. 

 With such improvements, a system with CAN-FD can handle more data at a faster rate 

increasing the number of applicable use cases, such as electric vehicles, ECU flashing, robotics, 

trucks, buses, secure CAN implementations and ADAS with safe driving. A good example of 

enhancing vehicle safety and performance is the implementation of X-by-wire systems. These 

systems require hazard studies and fail-operational system architecture following safety and 

reliability standards such as ISO26262.  

1.2 Motivation 

Safety is evermore present in everyday objects, it has become a necessity and mandatory for 

commercial systems. This pushes the markets to develop and implement systems and 

architectures fail-operational capable. Redundancy solutions and the rapid growth of the market, 

create an immeasurable amount of systems that require to trade information. Part of it is crucial 

information that requires safe and reliable communication protocols. 

 In the automotive field there are several used communication protocols, each with strong 

points and focused applications. Since the criticality of information for the radio is not the same 

as the speed and direction of the wheels to the central unit for example. Also the increased 
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number of ECU in a car has increased drastically, could even top 80 per car. All this information 

needs to be transferred and interpreted with different grades of safety.  

 This is why it is important when devising an automotive project to clearly set the 

communication protocol to be used and which design guidelines and standards to use. In order 

to create clearness and objectiveness in the software developed. 

1.3 Objectives 

After taking into consideration the motivation, the final product of the dissertation is the creation 

of critical safe middleware for a CAN driver to interface the user and the microcontroller, using 

safety guidelines for the code, supporting the driver there will be the development of a GUI to 

provide better testing capabilities and visualization of the capabilities of the working driver. 

Therefore, the main goals of this dissertation are as follows: 

• Analysis of CAN protocol, as a safe protocol; 

• Development of CAN driver functional in the S32Kxxx NXP’s microcontroller family; 

• Development of graphical interface capable of simulation, analysis, test and validation of 

CAN; 

• Develop a user-friendly graphical user interface; 

• Software implementation following guidelines from MISRA and ISO 26262 standards to 

achieve a safe system; 

• Analyse and validation of data on the CAN interface; 

• Tests and validation of the CAN driver. 

1.4 Dissertation Structure 

The following document is split into six chapters, it has a top-down approach where its structure 

follows a logical order according to the development process that occurred during this Master’s 

Thesis. 
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 The first chapter introduces the current technological concepts, referring to the context and 

the motivation for the development of this project, as well as its objectives. 

 The second chapter focus on all basic concepts integrated into this project or that influenced 

it in different ways. Describing a more in-depth approach of developing critical safe software as 

well as associated standards. It also grasps concepts on different communication protocols with 

their diverse pros and negatives. Diving deeper into the used protocol of CAN and its close variant, 

CAN-FD. 

 The third chapter gives an overview of the system, and a further selection of which 

components were chosen and the reasoning for those choices. 

 The fourth chapter is divided into two sections corresponding to the hardware and software 

implementations. It focuses on how this project was developed, and explains the path taken. 

 Chapter five shows the tests that were made, along with some considerations about the 

obtained results. 

 Chapter six presents the main conclusions relative to this project, as well as future 

improvements that can be made. 
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Chapter 2  

State of the Art 

This master’s dissertation is framed into the scope of safety in communication in Embedded 

Systems, and as of such in this chapter there will be explanations about the essential concepts 

about this theme.  

The first section deals with concepts regarding embedded systems description. In the section 

2.2, Critical Safety in Embedded Systems is addressed and explained in the context of the 

master’s thesis, where important notions such as the ISOs (Standards) are explained. In the final 

section concepts and explanations about communication protocols will be addressed, as well as 

its implications, and which situations are applicable.  

 In this chapter, there is a collection of technological views and discussions on the topics 

previously mentioned varying in relevance for this dissertation. 

2.1 Embedded Systems 

Embedded systems cover a wide range of systems in our current world, as they crept into pretty 

much every type of device designed by mankind. Even so it is acknowledged that an embedded 

system is, in contrary to a general-purpose system, a system dedicated to performing a small 

number of tasks, varying in complexity [9]. It can also be defined citing Michael Barr, as “A 

combination of computer hardware and software, and perhaps additional mechanical or other 

parts, designed to perform a dedicated function. In some cases, embedded systems are part of 

a larger system or product” [10]. This means that the personnel computers are excluded from 

being considered an embedded system, but even with the number of new CPUs growing per 

year, around ninety-eight percent of all microprocessors manufactured are used in embedded 

systems [11]. Its fast growth can be explained by several main reasons: they function as a 

replacement for discrete logic-based circuits, provide functional upgrades, provide easy 

maintenance upgrades, improves mechanical performance and others [12].  

The case is that the need for embedded systems is growing every year as they have already 

been applied in numerous fields, such as industrial control systems, information appliances, 
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communication equipment, medical instruments, intelligent instruments, and many others. As 

processors become more powerful, electronic products become more complex, including 

graphical user interfaces, communication networks, and databases [13]. Practical examples of 

such are microwave ovens, cell phones, calculators, digital watches, etc. [10].  

At the architectural level, an embedded system represents the interaction between hardware 

and software elements, whose details maintained hidden in a way to have only information about 

the behavioural and relational levels. These elements can be internally implemented in the 

embedded system device or externally implemented interacting with the internal elements as well 

as with the external environment [14]. 

2.2 Critical Safety in Embedded Systems 

As electronic control systems increase in both complexity and control authority there must be a 

commensurate increase in our ability to design and implement these systems safely. But a 

completely “safe” software cannot be guaranteed, within a reasonable engineering effort [15]. 

The explosive growth in microprocessor technology as well as ever-increasing application 

demands, has stimulated customers to demand increasingly higher levels of functionality and 

performance in the systems they procure. The large or more complex design solutions, which 

are delivered as a result pose complex safety and operational problems, and which are not 

addressable by conventional "hardwired logic" approaches, as in the past. Where safety provision 

is addressed purely in hardware, ALL potential hazards need to be identified in advance of the 

actual event, and suitably allowed for in the system design (not the easiest of tasks in large or 

complex systems). Also, the "law of diminishing returns" will apply in such hardware respects, in 

that the more safety provision that is made in hardware, the greater the potential for the protective 

mechanisms themselves to fail with time (and in turn the more backup circuits that will need to 

be provisioned, etc.) [15]. 

Microprocessor-based control systems are now commonplace in vehicles. These systems 

usually have a well-defined safe state. Many manufacturers and component suppliers are now 

experimenting with systems whose failure can have much more serious consequences such as: 

control by wire and supervisory systems, which can override the driver’s inputs: and complex 

inter-connected systems where one failure can affect several others.  
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The safety record of automotive electronic systems has been very good, but to maintain this 

situation, the safety and reliability attained by these systems must increase at a rate equal to 

their complexity [16]. 

As electronic control systems increase in both complexity and control authority there must be 

a commensurate increase in our ability to design and implement these systems safely. The use 

of common specifications, hardware and software are all seen as potentially hazardous for very 

high integrity systems. Diversity is regarded as the best approach for providing the safety levels 

required and the preferred approach is to provide this by utilizing checking and back-up systems 

that are designed against a different requirement and have less functionality than the main 

control system. In this way the integrity of these systems can be kept high at a reasonable cost 

[17]. 

2.2.1 Basic Concepts and Considerations 

As stated before is not possible to create a totally safe software no matter what the type or nature 

of its development, as safety is as likely to be as much dependent upon the underlying hardware 

or interaction with humans as upon any particular provision in software [15]. First, it is important 

to define some concepts such as Safety Critical System [18] being a system in which any failure 

or design error has the potential to lead to injury or loss of life, loss or severe damage to 

equipment and/or property, extreme financial losses or serious environmental damage [19] [20].  

Fault – An abnormal condition that occurs inside a system. These failures can be classified 

depending on their persistence, where they can be transient, if they occur in a brief space of 

time, or permanent, in the opposite situation. But software faults are always permanent, what 

can vary it is their reproducibility, being divided into solid (hard or bohrbugs [21]) or elusive (soft 

or heisenbugs [21]).  

Error – It is defined by being a discrepancy between the value obtained by the system and 

the theoretical value previously calculated. An error is also a part of the system state that may 

cause a subsequent failure [22]. 

Failure – Results from the system having faults and errors, culminating in its inability to 

provide a certain pre-determined function [22]. There are at least 3 sources of failure [16]:  

• Random Failures: of electrical components, connection, wiring and mechanical 

devices are amenable to statistical prediction and used to estimate hazard potential, 

even though that task is not simple and failure probabilities can be produced; 
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• Systematic Errors: can occur in the system requirements, the hardware design or 

the software design. They are not random, with the same initial conditions will result 

in the same incorrect behavior. It results from human errors in the designing process 

or the tools used in the process. The adoption of internationally agreed standards on 

classification systems (e.g. ISO 26262) in order to minimize these types of errors and 

liability claims; 

• Intermittent Failures: failures that are hard to predict and depend on factors 

outside the suppliers’ control, such as EMC (Electromagnetic Compatibility) or the 

environment that the vehicle operates in. In a similar strategy as before the use of 

internationally agreed test standard is advised.  

In summary there is a tight relation between fault, error, and failure, where a fault is a defect, 

an error is a corrupted state, and a failure is an event to be avoided [22]. 

2.2.2 Design and Implementation 

Developing software for monitoring, control, or display of safety-critical functions is both 

challenging and expensive. Software for when safety is taken into account is perfect for powerful 

diagnostics and error handling techniques to be applied during run time. However, this requires 

the software to be developed in a more disciplined and scientific manner. Using well specified 

design and development policy is a necessity when intending to create safety systems, from the 

language, operating systems, tools, platforms, targets and others.  

Good development methods and practices at each and every stage of developing is required 

to guarantee the quality and reliability of the system. The key concerns in software design are 

uncontrolled complexity and undetected change from the expected result. Therefore, the 

development methods and processes should aim at these issues.  

Both can be addressed by different analytical techniques and rigorous configuration 

management (underlays all that takes place through the development life cycle and extends to 

subsequent operational and maintenance phases) and control procedures [15]. 

2.2.3 Test and Validation 

Validation is the process of ensuring that the requirements are correct and complete. (Are we 

building “the right house”?). Verification, on the other hand, is the process of ensuring that the 

implementation satisfies the requirements. (Are we building “the house right”?) Validation of 
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requirements can be accomplished by four processes: traceability, reviews and analysis, 

simulation, and experience. Validation of requirements is expensive, but it is also money well 

spent. Identifying and eliminating errors early in the life cycle is cheaper and reduces “risks” later 

in the life cycle. Verification consumes almost 20-50 percent of the resources during the 

development of safety-critical software. Suitable for system analysis are also proposed for 

software analysis e.g. software FTA (fault tree analysis) [23]. 

Formal methods are extremely valuable by allowing precise mathematical analysis of 

specifications and designs, enabling more rigorous examination and therefore certification. 

Besides, they are ready for automation of test sequences and data. However, these methods can 

be difficult to apply depending on the environment and difficult to understand. The extent of the 

testing and validation process may depend on the safety certification expected to be achieved, 

therefore developers to achieve successful results need to ensure a comprehensive metrics 

policy, appropriate for their environment [15]. 

2.2.4 ISO 26262 – Road Vehicle – Functional Safety 

ISO 26262 is an international standard focused on the safety of automotive electrical/electronic 

systems (E/E systems). It is with that premise that the ISO guides the developed embedded 

systems for road vehicles (e.g., cars, motorbikes, trucks, and other vehicles under the weight of 

3000Kg) to be designed with an appropriate level of rigor for their intended application. 

To understand what an appropriate level of rigor entails, it is necessary to first analyze the 

two aspects of the system development that the ISO 26262 covers: Safety and Intrinsic Quality, 

to a lesser extent. Where Safety focuses on ensuring that failures in the system software do not 

lead to (external) conditions that could cause harm to people, Intrinsic Quality emphasizes 'good' 

design, its simplicity, robustness, maintainability, testability, and others. In a design with high 

Intrinsic Quality is expected for it to perform more safely, and therefore easier to be readily 

demonstrable to be safe. [3]  

However, no system is completely safe, but this standard has guidelines with the purpose of 

avoiding and control failures, therefore reducing the risk of people getting injured and possibly 

dying. To do this it has three pillars upon which is evaluated the risk and dangerous events [12]:  

• Severity (S) – it is defined by the seriousness of the damage to one’s life. In which 

S1 would be the lowest classification, with only light injuries, and S3 with be the 

highest and worst category.  
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• Exposure (E) – it determines the probability of exposure to a dangerous situation. 

And similarly, to the classification in severity, E1 would be the least probable exposure 

and the E4 would be the highest.  

• Controllability (C) – it is defined by the degree of control the driver has over its 

automotive when there is a failure in the system, where having a C1 classification 

means losing only a small part of the control and C3 a big loss in the vehicle control.  

 

Weighing the classifications above it is possible to classify the risk of the system into a level 

of ASIL. The Automotive Safety Integrity Level (ASIL) is a classification system defined by the ISO 

26262 and evaluates the risk and dangerous events to a client [24]. It can be divided into four 

classifications from ASIL A, where safety requirements for the system are the most basic to ASIL 

D, where safety requirements are the most complex and severe. There is still a classification for 

hazards that are identified as QM which do not dictate any safety requirements [25]. 

The standard is an extensive document that is divided into 12 parts, where in Figure 2-1 

shows an overview of the standard ISO 26262:  

➢ Part 1: Vocabulary;  

➢ Part 2: Management of functional safety;  

➢ Part 3: Concept Phase;  

➢ Part 4: Product development at the system level;  

➢ Part 5: Product development at the hardware level;  

➢ Part 6: Product development at the software level;  

➢ Part 7: Production, operation, service and decommissioning;  

➢ Part 8: Supporting Processes;  

➢ Part 9: Automotive safety integrity level (ASIL) – oriented and safety-oriented analysis;  

➢ Part 10: Guidelines on ISO 26262;  

➢ Part 11: Guidelines on application of ISO 26262 on semiconductors;  

➢ Part 12: Adaptation of ISO 26262 for motorcycles.  
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Figure 2-1: Overview of the ISO 26262 series standards [26] 

From all these parts only some of them are relevant to the work in hands, where some take 

the job of being more informative and others are intended to serve as guidelines when developing 

the system and code. Part 1 defines the language of ISO 26262 its terms, abbreviations, 

acronyms, and others [27]. Part 2 is a guide focusing on the management of safety requirements, 

both from a project and organizational point of view [28].  

Parts 4 and 6 are more directed for instructions during developing phases of the project, 

where part 4 is concerned with systems-level development, which entails detailed requirements 

analysis, system synthesis, functional and logical allocation, and system evaluation, validation 

and verification [7] and part 6 it reflects on general topics for product development at the software 

level and specification of the software safety requirements as well software architectural design , 

unit design and implementation, unit verification, integration and testing of the embedded 

software [29].  

And finally, part 9 gives requirements and guidance concerning safety analyses and in 

particular, all aspects related to ASIL-oriented requirements [30]. And part 10 provides an 

overview of the ISO 26262 series of standards, as well as giving additional explanations, and is 

intended to enhance the understanding of the other parts of the ISO 26262 series of standards, 
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being of informative character only where its explanation expands from general concepts to 

specific concepts [31].  

Since the ISO 26262 is not a process, it only applies additional constraints to the process 

already being implemented, focused on the system safety aspects using a classical V-model 

(standard way of describing the relationship between development artefacts) framework to 

organize its requirements, as shown in Figure 2-2. 

 

Figure 2-2: Classic V Model [32] 

2.2.5 C programming language standards and guidelines 

There are one million different ways to program the same snippet of code. However when 

working within a team all contributing to the whole project, there is a need to create certain rules 

and guidelines, so each piece of code can be read and understood by all the members. That is 

the reason to create documents such as the MISRA and coding rules by the AUTOSAR 

organization. 

The MISRA guidelines for C were first created in the year of 1998. Providing coding standards 

for developing safety-critical systems. There are checking software capable of understanding if a 

code was written used such guidelines, this ensures that the code produced is safe, secure, 

reliable and portable for different compilers. 

Nevertheless achieving MISRA compliance takes knowledge, skill, and the right tools [33]: 

• Know the rules: You need to know the MISRA coding rules pertinent to which 

version of C or C++ you’re using; 

• Check your code constantly: Continuously inspecting your code for violations is 

the best way to improve quality. 
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• Set baselines: Embedded systems come with legacy codebases. By setting 

baselines, you can focus on making sure your new code is compliant. 

• Prioritize violations based on risk: You could have hundreds or even thousands 

of violations in your code. That’s why it’s important to prioritize rule violations based 

on risk severity. Some static code analysis tools can do this for you. 

• Document your deviations: Sometimes there are exceptions to the rule. But when 

it comes to compliance, every rule deviation needs to be well-documented. 

• Monitor your MISRA compliance: Keep an eye on how MISRA compliant your 

code is. Using a static code analyser makes this easier by automatically generating a 

compliance report. 

• Choose the right static code analyser: Choosing the right static code analyser 

makes everything else easy. It takes care of scanning your code — new and legacy — 

for violations. It prioritizes vulnerabilities based on risk. 

The compliance with the MISRA goes deep into the development process and the development 

team skills. From the framework, training, style guide, metrics, tool management, compiler and 

its configuration, static analysis tools and their configuration and validation, and ending at the 

run-time behaviour. All these steps are required to be at some degree evaluated for a software to 

be compliant [34]. 

The MISRA C coding standard was originally written for the automotive industry. But today, 

MISRA standards for C and C++ are widely used by embedded industries — including aerospace, 

military defence, telecommunications, medical devices, and many others. Most of these 

industries have a compliance requirement to use a coding standard [33]. There are many other 

standards for programming in C, however, in the automotive field, there is a need to mention 

about the specification of C Implementation Rules, from the AUTOSAR organization, which aims 

to enhance software quality by avoiding the use of risky language constructs and ease portability 

to other compilers or microcontroller platforms [35].  

2.3 Communication protocols in Automotive 

A communication protocol is defined by being a system of rules that allow two or more entities 

to exchange information via any kind of variation of a physical quantity. The protocol defines the 

rules, syntax, semantics and synchronization of communication and possible error recovery 
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methods [36]. However, only some protocols are automotive ready where safety is of the highest 

importance, and that why protocols such as CAN, FlexRay, MOST, ethernet and LIN where born. 

As mentioned above there are several automotive protocols and variations from the most 

established ones, which makes it impossible to cover every single one of them. Because of that 

only the most important ones and most similar in scope to the CAN protocol (which is the main 

protocol that will be implemented in this thesis) will be briefly introduced. 

2.3.1 Communication principles in automotive 

Integral functionalities such as driver assistance and autonomous driving and others created 

variable applications that demand information exchange between the ECUs, sensors and 

actuators. These applications require diverse qualities of service, being data transmission rates 

one of the most important [37]. Variable requirements in combination with large number of 

communication nodes and limited bus capacities led to a functional separation of bus segments 

into subsystems. Communication requirements addressed by different fieldbus technologies 

include [8]: 

• Fault-tolerance: fault tolerant (normally safety-critical) communications are built to 

tolerate defective circuits, line failures and other types of failure. They do this by using 

redundant hardware and software architectures. Moreover, this type of communication 

should provide error containment. 

• Determinism: deterministic communications guarantee timeliness, allowing to know 

exactly the transmission time for a message. This is required for safety critical automotive 

systems with strong real-time requirements. Examples of determinism are messages 

being sent within precise time intervals or at predefined time instants. 

• Bandwidth: normally there is a trade-off between required bandwidth, the cost of 

providing such bandwidth and the level of subsystem integration possible with a single 

shared communication bus. However, recent automotive communication protocols 

provide high bandwidth allowing for the latest automotive subsystems working together 

with high degree system integration. 

• Flexibility: the ability of a communication protocol has to handle, for example, event-

triggered and time-triggered messages, the capacity to cope with varying loads and/or 

number of messages and accesses into the network, scalability and extensibility of a 

network. 
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• Security: guarantee the security of the system (i.e. no authorized accesses to the 

system are possible) in case of the communication is reachable from the outside of the 

automotive, especially in diagnostics tools, wireless connections and telematics. 

In an automotive system there are several subsystems that rely on networking with different 

and defined jobs. Of all automotive subsystems there are eight typical types that can be 

distinguished [8]: 

• Chassis systems: part of the vehicle active safety systems which require feedback 

control. Systems such as ESP, designed to assist the driver in over-steering, under-

steering and roll-over situations, and ABS, designed to help the driver maintain 

steering capabilities and avoid skidding during breaking. 

• Air-bag systems: part of vehicle passive safety systems responsible for the 

operation of the airbags in a vehicle. From the sensors that detect abnormal situations 

to the appropriate response depending on the type of situation. 

• Powertrain: is the set of parts responsible for taking power from the engine of the 

vehicle to the driving axis, passing through the gear box. This engine control oversees 

coordination of fuel injection, engine speed, valve control, cam timing and others. 

• Body and comfort electronics: these types of systems normally rely on driver 

interaction, are not safety-critical and require discrete control.  

• X-by-Wire: subsystems that replace hydraulic and mechanical parts with electronics 

and computer (feedback) control systems. For example, steer-by-wire, shift-by-wire, 

throttle-by-wire, and break-by-wire. 

• Multimedia and infotainment: systems include for example, car stereos, 

speakers, GPS, monitors, video games, voice processing, HMI, Internet connectivity 

etc. 

• Wireless and telematics: intercommunication of wireless devices and telematics 

functions such as traffic information, fleet management systems, maintenance 

systems and anti-theft systems. 

• Diagnostics: diagnosing of components and properties, service and maintenance 

with the possibility of downloading and updating software. 

With an overview about the subsystems and the main requirements it is possible to map the 

level for each requirement to a subsystem, in the  
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 Communication requirements 

Subsystem Fault-tolerance Determinism Bandwidth Flexibility Security 

Chassis Yes Yes Some No No 

Airbag Yes Yes Some No No 

Powertrain Some Yes Yes Some No 

Body and Comfort No Some Some Yes No 

X-by-Wire Yes Yes Some No No 

Multimedia / 

Infotainment  

No Some Yes Yes No 

Wireless / Telematics No Some Some Yes Yes 

Diagnostics No Some No Yes Yes 

Table 2-1 - Automotive subsystems and influence of principal requirements 

A segmented topology (divided by subsystems or partial subsystems) brings great advantages 

in the dependability of the communication for critical applications: 

• Only a small number of components is accounted and interconnected by a single 

segment.  

• Every single bus segment can be configured in a way that is exactly matching the 

specific application requirements.  

On the other hand, the application functions of the vehicles become more complex and require 

information exchange across several bus segments. This leads to an additional load for the ECU’s 

acting as gateways between bus segments [37]. 

2.3.2 LIN Protocol 

The LIN protocol was created in 1990, by the LIN Consortium and counted with the participation 

of automotive manufacturers such as BMW, VW, Audi, Volvo Mercedes-Benz, Volcano Automotive 

and Motorola. Its last iteration and standardization occurred in 2016 with the release of ISO 

17987:2016 [38]. 

 LIN bus works as a supplement to CAN bus. It offers drastically lower costs at the expense of 

lower performance and reliability, where fault tolerance is not critical. It uses a master-slave 

implementation up to 16 slaves with a single 12V wire (plus ground) based on ISO 9141 (K-line) 

physical layer. Achieving maximum speeds of 20kbps and bus length distances up to 40 meters. 
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 LIN protocol supports wake up, sleep, and time-triggered scheduling with guaranteed latency 

time operations with variable data length (1 to 8 bytes). For safety it includes error detection and 

checksums. 

 The LIN protocol has seen an increase in the number of nodes in the automotive field being 

sued in door systems, windshield wiper motors, rain sensors, headlight levelling motors, signal 

indicators and many others. It also started gaining traction in non-automotive applications, such 

as remote switch panels, washing machines, dryers, printers and many other applications and 

devices [39]. 

 A LIN frame consists of a header and a response part. Only the master can to initiate 

communication by sending the header part of the frame. If the master wants to send data to the 

slave it also sends the response, otherwise the master is requesting data and the slave send the 

response part [40]. 

  

 

Figure 2-3: LIN message frame 

 On the Figure 2-3 it is possible to see the mentioned LIN message frame structure. 

• Synch Break Field (SBF) - acts as a “start of frame" notice to all LIN nodes on the 

bus, is composed of synch break and the synch break delimiter. 

• Synch Field - The 8 bit Sync field has a predefined value of 0x55 (in binary, 

01010101). This structure allows the LIN nodes to determine the time between 

rising/falling edges and thus the baud rate used by the master node. 

• Identifier - The Identifier is 6 bits, followed by 2 parity bits. The ID acts as an 

identifier for each LIN message sent and which nodes react to the header. Depending 

on the ID the slaves can react differently: 

o Ignore the subsequent data transmission. 

o Listen to the data transmitted from another node. 

o Publish data in response to the header. 

• Data – when a slave is polled data is sent to the master and since LIN 2.0 the data 

length depends on the ID range (ID 0-31: 2 bytes, 32-47: 4 bytes, 48-63: 8 bytes). 
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• Checksum - checksum field ensures the validity of the LIN frame. 

To conclude the LIN topic, it is required to talk a little about the six different types of frames 

that exist, as shown in the Table 2-2 below. 

 
Unconditional Frames 

The default form of communication where the 
master sends a header, requesting information 
from a specific slave. The relevant slave reacts 
accordingly 

 
Event Trigger Frames 

The master polls multiple slaves. A slave responds 
if its data has been updated, with its protected ID 
in the 1st data byte. If multiple respond, a collision 
occurs and the master defaults to unconditional 
frames 

 
Sporadic Frames 

Only sent by the master if it knows a specific slave 
has updated data. The master "acts as a slave" 
and provides the response to its own header - 
letting it provide slave nodes with "dynamic" info 

 
Diagnostic Frames 

Since LIN 2.0, IDs 60 and 61 are used for reading 
diagnostics from master or slaves. Frames always 
contain 8 data bytes. ID 60 is used for the master 
request, 61 for the slave response 

 
User Defined Frames ID 62 is a user-defined frame which may contain 

any type of information 

 
Reserved Frames Reserved frames have ID 63 and must not be 

used in LIN 2.0 conforming LIN networks 
Table 2-2: Types of messages on LIN protocol 

2.3.3 FlexRay Protocol 

FlexRay is an automotive network communications protocol that was developed by the FlexRay 

Consortium (by BMW, Bosch, Daimler-Chrysler and Philips in 2000) [41] to govern on-board 

automotive computing [42]. It is designed to be faster and more reliable than CAN and TTP, but it is 

also more expensive. The FlexRay consortium disbanded in 2009, but the FlexRay standard is now a 

set of ISO standards, ISO 17458-1 to 17458-5. It supports communications up to 10Mbits/s [43], it 

uses a time-triggered communication method with characteristics as deterministic and fault-tolerant 

with its two independent data channels. Except for x-by-wire systems, it is also interesting for the 

safety-critical and real-time system-related field in advanced automotive control applications. 
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Figure 2-4: FlexRay data frame [41] 

FlexRay ensures the transport of extraordinarily large quantities of data within the active 

chassis system in an extremely short period and reliably between the central control module and 

the ECUs [44]. And for that it uses depicted cycles. Where one communication cycle consists of 

four segments: static segment (ST), dynamic segment (DYN), symbol window (SW) and network 

idle time (NIT) as shown in Figure 2-4 [41]. 

A FlexRay frame consists of three segments: header segment, payload segment and trailer 

segment as represented in Figure 2-4. The first five bits are defined as the basic features of the 

frame. Frame ID (11 bits) is defined as the slot position in the static segment. For the dynamic 

segment, frame ID is used to define the priority of the frame: a lower identifier indicates higher 

priority. Payload length (7 bits) is defined as the data length (two times the payload length minus 

the number of data bytes). Header CRC (11 bits) is a cyclic redundancy check, which is computed 

over the Sync frame indicator (1 bit) is the serial number of the frame defined locally in the node. 

Payload segment (0 to 256 bytes) contains main data. Trailer segment (24 bits) is for cyclic 

redundancy check, which is computed over the header segment and the payload segment [41]. 
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2.3.4 CAN Protocol 

To overcome the limitations and the weakness of centralized control system fieldbus 

communication systems were developed answering difficulties such as modification/extension, 

extensive wiring and high installation costs. The limitation of fieldbus systems lies mainly in 

transmission expansion, a limited variety of topologies and transmission media. These limitations 

can be overcome by a network-based control system that distributed real-time control is possible 

[45]. 

The CAN protocol was originally developed to satisfy distributed real-time control needs in 

automotive applications. The use of CAN technology has been extended to other custom 

applications, including industrial control applications. Various application layers have been 

developed with Specifications Specifically oriented to industrial and process control applications, 

control networks for heavy-duty trucks and buses, distributed control Systems, and control 

networks for cars [46]. 

The CAN technology is described by six ISO documents:  

• Part 1: Data link layer and physical signaling;  

• Part 2: High-speed medium access unit;  

• Part 3: Low-speed, fault-tolerant, medium-dependent interface;  

• Part 4: Time-triggered communication;  

• Part 5: High-speed medium access unit with low power mode;  

• Part 6: High-speed medium access unit with selective wake-up functionality.  

However, for the beginning there is only the need to focus on the first three parts. Where the 

Part 1 describes the CAN protocol, it specifies the Classical CAN frame format and the newly 

introduced CAN Flexible Data Rate Frame format. The Classical CAN frame format allows bit 

rates up to 1 Mbit/s and payloads up to 8 byte per frame. The Flexible Data Rate frame format 

allows bit rates higher than 1 Mbit/s and payloads longer than 8 byte per frame [47]. It also 

covers the logical link control (LLC) sub-layer, medium access control (MAC) sub-layer and 

physical coding (PLS) sub-layer. Describing up to three implementation methods fusing the use 

or not of the standard CAN with CAN flexible. 

Part 2 specifies the high-speed physical media attachment (HS-PMA) of the controller area 

network (CAN), a serial communication protocol that supports distributed real-time control and 

multiplexing for use within road vehicles. This includes HS-PMAs without and with low-power 
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mode capability as well as with selective wake-up functionality [48]. Finally, Part 3 [49] specifies 

characteristics of setting up an interchange of digital information above 40 kBit/s up to 125 

kBit/s. This part of ISO 11898 describes the fault tolerant behavior of low-speed CAN 

applications, and parts of the physical layer according to the ISO/OSI layer model.  

A CAN network consists of several CAN nodes which are linked via a physical transmission 

medium (CAN bus). In practice, the CAN network is usually based on a line topology with a linear 

bus to which several electronic control units are connected via a CAN interface. The passive star 

topology may be used as an alternative [50]. 

 

Figure 2-5: Conventional Networking vs CAN Bus Networking [50] 

A CAN bus communication has solid foundations that lay on some very important principals 

[50]:  

• Decentralization - Safety-critical applications, such as those in the powertrain area, 

place severe demands on a communication system’s availability. So, it would be 

disadvantageous to assign responsibility for bus distribution to just a single bus node. 

Failure of this vulnerable bus node would cause all communication to fail. A much more 

elegant solution is to decentralize bus access, so that each bus node has the right to 

access the bus.  

• Event-Driven - That is why a CAN network is based on a combination of multi-master 

architecture and line topology: essentially each CAN node is authorized to place CAN 

messages on the bus in a CAN network. The transmission of CAN messages does not 

follow any predetermined time sequence, rather it is event-driven. The communication 

channel is only busy if new information needs to be transmitted, and this allows for very 

quick bus accesses.  
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• Receiver-selective addressing - A method of receiver-selective addressing is used in 

a CAN network to prevent dependencies between bus nodes and thereby increase 

configuration flexibility: Every CAN message is available for every CAN node to receive 

(broadcasting). A prerequisite is that it must be possible to recognize each CAN message 

by a message identifier (ID) and node-specific filtering. Although this increases overhead, 

it allows integration of additional CAN nodes without requiring modification of the CAN 

network.  

To ensure a high level of availability and reliability of the information being transferred in the 

CAN bus there are also several techniques applied to its protocol. And so, to detect corrupted 

messages, the CAN protocol defines five mechanisms: Bit Monitoring (every bit sent is 

automatically read from the bus line to ensure compatibility), Form Check (monitoring of the 

message format), Stuff Check (monitoring of the bit coding), ACK Check (evaluation of the 

acknowledgement) and Cyclic Redundancy Check (verifying the checksum). The bit 

monitoring and ACK check error detection mechanisms are performed by the sender. 

Independent of acceptance filtering, the receivers perform the form check, stuff check and cyclic 

redundancy check. 

The use of a single line for every node means that every node needs to be able to respond 

within a specific time frame defined in CAN 2.0. Thus, there is a maximum bus line length that 

each baud rate can have, this relation is represented in the Figure 2-6. 

 

Figure 2-6: Data rate relation with the bus line length 
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 CAN Classic 

CAN classic is the first iteration of the CAN protocol before the development of CAN-FD. With its 

ISO’s described in the previous section it can support baud rates up to 1Mbps and really slow 

communications in order to increase range of the network. It also supports different types of 

message frames depending on the objective of the message. 

 The CAN data frame is the most important frame since it is the one responsible the 

transmission of data between different nodes. It is in this frame that different aspects of the frame 

are defined, such as the message length and the type of ID. Each segment has its proper name 

and different functions, as shown in Figure 2-7: 

• Start of frame (SOF); 

• Identifier (ID) can either have 11 or 29 bits long depending on being a standard or 

extended ID message where lower values have higher priority; 

• Remote Transmission Request (RTR) indicates whether a node sends data or 

requests dedicated data from another node; 

• Control Field (CTRL) contains the Identifier Extension Bit (IDE) and the Data Length 

Code (DLC) that specifies the length of the data bytes to be transmitted (0 to 8 bytes) 

and the reserved bit for future improvements to the protocol; 

• CRC Field containing a fifteen bit cyclic redundancy check code used to ensure data 

integrity; 

• Acknowledge Field (ACK) indicates that at least one node in the network which has 

acknowledged and received the data correctly; 

• End of Frame (EOF); 

• Inter Transmission Message (ITM); 

 

Figure 2-7: CAN Classic data frame 

A CAN remote frame are used in polled networks with the objective of requesting a particular 

message to be put on the message. However there it requires that a specific node on that network 

to be ready to receive this type of message [51]. The message layout is the one in Figure 2-8. 
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Figure 2-8: CAN remote frame 

The CAN error frame is a special frame that is sent to the bus when a frame has been detected 

to have an error (one or multiple of the described above in section 2.3.420). This type of frame 

will cause an error to every node to guarantee that the previous transmitted frame encountered 

an error and the network is notified. 

 CAN-FD 

CAN with flexible data rates was the response from the CAN protocol to answer automotive 

harsher bandwidth requirements and explosion in data in vehicles. Keeping the strengths of CAN 

but improving the throughput up to six times and diminishing the protocol overhead. To achieve 

this there were made some small changes to the layout of the data frame (shown in Figure 2-10), 

while keeping the error frame the same and removing the support for the remote frame, the 

notable changes to its layout are the addition of different bits and the function change of others: 

• Remote Request Substitution (RRS) since remote frames are not supported at all 

this bit is always dominant (“0”). 

• Flexible Data Frame (FDF) is the bit indicating the use of CAN FD data frame. 

• Bit Rate Switch (BRS) can be dominant (“0”), meaning that the CAN FD message 

data is sent at the arbitration rate or that is sent at a higher bit rate. 

• Error Status Indicator (ESI) bit is by default dominant (“0”) or error active. If the 

transmitter becomes error passive is indicated by being recessive (“1”). 

 

 

Figure 2-9: CAN Error frame 
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Figure 2-10: CAN-FD data frame 

 Other improvements can be described in terms of [52]: 

• Increased Length – support up to 64 bytes per data frame reducing the protocol 

overhead and improving the data efficiency from around 50% to up to 90%. 

• Increased Speed – support for dual bit rates one for the arbitration (nominal) up to 

1Mbps and the data bit rate that supported up to 5Mbps by the ISO, however can achieve 

higher speeds depending on the network topology and transceivers. 

• Better reliability – improvements of the cyclic redundancy check which lower the risk 

of undetected errors. 

• Smooth transition – CAN and CAN FD ECUs under some specific conditions which 

allows for a certain integration of CAN FD nodes making it less expensive to transition 

for OEMs. 

 CAN Applications 

Recently, in many systems of various application areas, such as airplanes, cars, building 

automation, and industrial automation systems, the network-based control system using fieldbus 

has been introduced. The network-based control system is usually composed of controllers, 

sensors, and actuators. The network-based control system can execute efficiently mutual 

functions between network components, such as multiple real- time controls and the exchange 

of information. Also, sensor signals and control signals generated by the network components 

are required to be transmitted in real-time to the corresponding network nodes [15] [23].  

And it was among this necessity that the development of systems X-by-Wire started more than 

two decades ago, first within the military then it was adapted to commercial airplanes and only 

more recently into terrestrial vehicles [51]. The throttle-by-Wire system is a system that has been 

widely accepted by the automotive industry in contrast to the Brake-by-Wire and Steer-by-Wire 

systems that only brands like Mercedes and Toyota have decided to integrate these technologies 

into a small group of models of their cars. All these systems use backup strategies so that in the 

event of a main system failure, a secondary system can be entered to ensure the task is 

performed.  
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To fully grasp what is a Steer-by-Wire system, one must go back to more conventional systems. 

The manual steering system, shown in Figure 2-11, is the oldest form of steering where the 

steering wheel controls are mechanically used to drive the front wheels [52]. However, it is 

particularly hard to maneuver. Improvements come in the form of what is now called the power 

steering, shown in Figure 2-11. While still giving enough feeling of the road it made maneuvering 

much easier. These make use of a hydraulic unit to assist the driver in turning moments of the 

steering wheel. When the difference between the measured steering wheel torque (driver 

direction) and wheel torque is greater than a certain value, hydraulic fluid is released into the 

system, making steering more comfortable. Currently, hydraulic systems are mostly used by 

trucks or heavy vehicles [53], but most land vehicles use electric steering [52]. This is very similar 

to the hydraulic system but uses an electric motor to adjust the torque. 

 

Figure 2-5a: Manual steering [54] Figure 2-5b: Hydraulic power 

steering [55] 

Figure 2-5c: Electric power 

steering [55] 

Figure 2-11: Steering wheels different implementations. With early implementations of a purely manual 
steering wheel (5a) and future implementations using hydraulic parts (5b) and electronic motors(5c) 

The attempt to replace the traditional steering system with the SbW system occurs in the 1990s 

[52]. A traditional SbW system can be subdivided into three subsystems, shown in Figure 2-12: hand 

wheel, front tires and electronic control unit [51]. Where in the hand wheel there is the responsibility 

of measuring the steer angle and providing feedback to the driver of the feeling of the road. The 

second subsystem consists of an angular sensor and a motor responsible for changing the direction 

of the front wheels. The last subsystem concerns the ECU, which has hardware and software 

components capable of analysing incoming data and making decisions regarding vehicle steering. 

This is just a possible application where the transmission and assurance of the data transfer is crucial 

for the correct operation of the whole system. 
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Figure 2-12: Steer-by-Wire Steering 

 Other important applications brought by the CAN FD are in Electric Vehicles since their 

powertrains require far higher bit rates with added complexity with new control units related to 

the DC/DC inverter, battery, charger, range extender and others. Ability to ECU flashing with 

higher bit rates that allow for software updates and upgrades via CAN. Applications in real time 

robotics such as multiple axis arm movements transitioning from CANOpen to CAN FD with its 

increased efficiency. Increasingly, Advanced Driver Assistance Systems (ADAS) are being 

introduced in passenger cars and commercial vehicles. This pressures the bus load of Classical 

CAN, yet ADAS is key to improving safety. Here, CAN FD will be key to enhancing safe driving in 

the near future. And the ability to prevent hacks on the CAN buses by securing CAN Bus by 

implementing CAN FD authentication via the Secure Onboard Communication (SecOC) module 

may be a key roll-out driver. 

2.4 Conclusions 

This chapter gave an overview of topics related to development practises in embedded systems 

for safety and reliability. It also dove deep into different protocols of communication with an 

emphasis on automotive and fault-tolerant protocols with different safe guards. It ended with an 

understanding of CAN protocol and its successor the CAN-FD protocol which are the main focus 

of this dissertation. 

 To summarize, this chapter builds the basic blocks to understand the future decisions made 

during the creation of the dissertation, as well as, the guidelines and standards used in it, to 

ensure a reliable and safe communication driver.  
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System Specification 

Chapter 2 describes technology available in safe embedded communication and its principles. It 

also describes methods and requirements for its development and testing stages. 

 To add context, the main goal of this dissertation is to develop a safe driver of CAN 

communication following standard guidelines, which can be used in any type of application with 

the mentality of plug-and-play. 

 This chapter will describe all the design, architecture, and specification of the system. Starting 

by describing all requirements and constraints required by the stakeholder and further down the 

implications they have on the requirements of the system. Followed by the detailed AUTOSAR 

based system architecture and its brief description and explanation. Finally, the last part of this 

chapter describes all the hardware used and its possible variations supported. 

 Summarizing, taking in consideration the principles studied in Chapter 0 it is given a general 

overview of the whole system architecture. 

3.1 Project Requirements 

To properly design and conceive the system, it is crucial to define all requirements and 

constraints in advance, as it is essential to fulfil them for the correct operation of the system. The 

project requirements are divided into two groups: the stakeholder group that defines the basis of 

the project and facts as the basis for the second group of system requirements, with more specific 

and clear requirements. 
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Stakeholder Requirements 

ID Description Priority Owner 

SKH-1.  CAN driver shall be created to fit in an 

AUTOSAR based system architecture with 

Steering Angle Sensor (SAS) 

High Bosch 

SKH-2.  The CAN driver shall be implemented within 

the family of the NXP devices S32Kxxx 

High Bosch 

SKH-3.  The GUI shall be created using CANoe Vector 

tool and called LWS-Demo Panel 

Moderate Bosch 

SKH-4.  The GUI shall be composed of several 

panels, being able to do demonstrations, 

configurations, simulations and calibrations 

for the Steering Angle Sensor (SAS) 

Moderate Bosch 

SKH-5.  The GUI shall be able to receive, send and 

analyse CAN frames 

Moderate Bosch 

Table 3-1: Stakeholder Requirements 

System Requirements 

ID Description Type 
Derived 

From 

SYS-1.  The system shall follow the AUTOSAR Stack name 

designation 

Architecture SKH-1 

SYS-2.  The system shall be composed of a microcontroller 

(CAN capable), a sensor to provide data and a 

physical bus line 

Architecture SKH-1 
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SYS-3.  The transceiver shall differ depending on the 

microcontroller used 

Architecture SKH-2 

SYS-4.  The system shall support the use of CAN 

transceivers or  no CAN transceiver operations 

Hardware SKH-2 

SYS-5.  The system shall be most independently possible 

from the transceiver used 

Hardware SKH-1 

SYS-6.  The software layers above MCAL shall be work 

independently of it and therefore be universal for 

every devices 

Software SKH-1 

SYS-7.  The software shall support sleep and stop operations Software SKH-1 

SYS-8.  The software shall support wake-up from frame, 

pattern and interrupt 

Software SKH-1 

SYS-9.  The software shall support polling and interrupt 

operations 

Software SKH-1 

SYS-10.  The software layer of the transceiver shall isolate the 

operations for the transceiver configuration and 

operation. 

Software SKH-1 

SYS-11.  The software shall be able to handle bus off event 

with a measured time frame 

Software SKH-1 

SYS-12.  The software shall support Classic CAN and CAN FD Software SKH-1 

SYS-13.  The software shall support messages from 0 to 64 

bytes 

Software SKH-1 

SYS-14.  The software shall support any message matrix and 

format within the size range 

Software SKH-1 
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The stakeholders are responsible to form the basis of the system requirements, as well as the 

system validation. The whole GUI, named LWS-Demo Panel, has the intent of demonstration, 

simulation and tests, with the help of Vector tool CANoe as stated in the requirements SKH-3, 

SKH-4 and SKH-5 . It is possible to demonstrate the current steer angle or the different gear 

positions and their respective angles. Other important tasks are pre-configured messages to 

change the operation mode, sensor calibration commands, real-time CAN configurations, 

message filters and others. 

The choice of the microcontrollers done previously comes as a requirement of the project, 

which means that all the features to be implement are directly or indirectly affected by this former 

decision (SKH-2). But since it is the same family means that the CAN controller in each device 

will be similar, resulting in only some adjustments for the MCAL which is the most dependent 

layer of the physical hardware implemented (SKH-2). 

The decisions done by the stakeholders affect to some degree all the system requirements. 

The stack of the AUTOSAR architecture inspired the System Architecture stack with a normal 

CAN bus line (SKH-1). This physical layer will be dependent on if there are transceivers being 

used or if an approach without transceivers was chosen, both versions supported. 

SYS-15.  The GUI shall have the demonstration panel as the 

main panel 

GUI SKH-3 

SYS-16.  The GUI shall support Classic CAN and CAN FD 

frames 

GUI SKH-5 

SYS-17.  The GUI shall be able to simulate a working 

communication 

GUI SKH-4 

SYS-18.  The GUI shall be able to reconfigure the CAN bus 

while running 

GUI SKH-4 

SYS-19.  The GUI shall have messages for calibration, 

message type, manage CAN Power Boxes and 

software version. 

GUI SKH-4 

Table 3-2: System Requirements 
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Onto the software, there are behaviours that are isolated for each layer, for example, the 

transceiver software component is responsible for the configuration and preservation of operation 

of the transceiver used (SYS-5). Since there are CAN bus transceivers with very different 

behaviours and supported features, ranging from simple conversions to CAN high and low lines 

to error detection, selective wake up, “ground shift detection” and many other features. It also 

must support different type of message with different payloads in Classic CAN and CAN FD (SYS-

12). The handling of certain errors is a crucial and mandatory feature in which the bus off stands 

out. This operation is of crucial control, from its detection to the recovery of the CAN controller 

where the time it takes to go from the loss of operation to reinstating communication must be a 

very well-timed event, depending on the different application (SYS-11).  

Following the stack, the bottom layer is where data and errors are stored and caught. 

Afterwards, they are propagated to the upper layers, where the decision for what to do with the 

errors and data is done and afterwards broadcasted downwards until the bottom layer. It falls 

on the software to fill any shortcomings of the hardware, but also to keep it in control 

be either functionalities or energy power efficiency. For this the driver supports sleep and stop 

operations as well different wake-up methods (either be pattern, frame or interrupt) even if the 

CAN controller does not support wake-up there are solution of transceivers that fit that roll (SYS-

7 and SYS-8). 

 

Figure 3-1: Representation of the relations between the system, software and hardware 

3.2 System Architecture 

As mentioned in the preceding sections, the goal is to develop the code (firmware) for a CAN 

communication protocol capable of handling end-to-end communication, from receiving, sending 

and other different features, such as wake up on CAN. Taking into consideration the previous 

study and all the requirements, it is possible to define and visualize the system components. 

Firstly, the system as most embedded systems are divided into two major layers: the hardware 
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layer and the software layer. The full system stack, containing all the different layer divisions and 

elements, is depicted in the Figure 3-2. The different elements that compose the hardware layer 

of the system are the microcontroller and the transceiver or capable layer for communication 

that will be addressed after this.  

Above this, there is the software layer. It is the microcontroller that will interface the hardware 

and the software layers, and thus will contain all the software elements. The software layer will 

follow closely the stack from AUTOSAR, the reasoning for this is because is a software stack that 

was already built for having different layers for communications and obviously many other drivers. 

Above the “AUTOSAR layer” there will be the application layer. This layer normally holds the 

“users” configurations as well as other user applications. 

 
 

 
 
 
 
 
 
 
 

 

Figure 3-2: AUTOSAR Partial System Stack 

▮SL (Service Layer) 

▮CDD (Complex 

Device Drivers) 
▮ECUAL (ECU 

Abstraction Layer) 
▮MCAL 

(Microcontroller 
Abstraction Layer) 
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The actual stack used for the software application was divided into the hardware layer and 

the software layer. Starting from the top the software layer was divided into two sub-layers, the 

upper one, is where lies the configuration done by the user and other software components that 

interact with sublayers, such as function wrappers. Function wrappers are APIs that serve to use 

basic and important functionalities of the CAN driver with ease, a good example would be the 

printf() function that is an abstraction layer to serial communication, where with only a function 

it is possible to send a message via COM without the hassle of configuring everything till then. 

The bottom software layer starts with the service layer responsible for the management of the 

state of the CAN controller and software, as for the Network Management it is more responsible 

for the node management and how is the connection to it currently. Under this layer lies the 

ECUAL responsible to interface the upper layers with the MCAL and with detailed configurations 

about the transceiver. Finally, the MCAL where the messages are transmitted, received, and 

errors are handled. 

The hardware layer is composed of the microcontroller where the software runs and 

more specifically the CAN Module (with the CAN controller) and the CAN transceiver or physical 

layer responsible for the proper propagation of the CAN frames. 

 

Figure 3-3: System Stack 
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3.3 Hardware Specification 

 After describing the project requirements and the system architecture and stack, the 

Hardware Specification envisions to provide more detailed information about the hardware 

components of the system. As seen in Figure 3-3, the hardware layer is composed of MCU, and 

below it lays the two main components for CAN communication. The CAN module responsible 

for sending the message in the correct format as well as validating messages and their form, 

close to it there is the CAN physical layer. The physical layer can be defined into two types by the 

use of transceivers to create a differential two-wire communication bus line or by the non-use of 

transceiver, creating a simpler one-wire communication. This section will have a top-down 

approach from the MCU to the hardware responsible for the communication itself. 

3.3.1 Microcontroller 

The microcontrollers used were from the family of NXP microcontroller S32Kxxx, more 

specifically the S32K116 and S32K2TV (Test Vehicle for the next generation). 

The S32K116 (shown in Figure 3-4) is a 32-bit general-purpose automotive microcontroller 

based on the Arm Cortex-M0+ core, with several key features. 

• Operating characteristics: 

o Voltage range: 2.7 V to 5.5 V 

o Ambient temperature range: -40 °C to 105 °C for High Speed RUN mode, -40 

°C to 150 °C for RUN mode 

• Arm™ M0+ core, 32-bit CPU 

o Supports up to 112 MHz frequency (HSRUN mode)with 1.25 Dhrystone MIPS 

per MHz 

o Arm Core based on the Armv7 Architecture and Thumb®-2 ISA 

o Integrated Digital Signal Processor (DSP) 

o Configurable Nested Vectored Interrupt Controller(NVIC) 

o Single Precision Floating Point Unit (FPU) 

• Clock interfaces 

o 4 - 40 MHz fast external oscillator (SOSC) with up to 50 MHz DC external square 

input clock in external clock mode 

o 48 MHz Fast Internal RC oscillator (FIRC) 
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o 8 MHz Slow Internal RC oscillator (SIRC) 

o 128 kHz Low Power Oscillator (LPO) 

o 32 kHz Real Time Counter external clock (RTC_CLKIN) 

• Power management 

o Low-power Arm Cortex-M0+ core with excellent energy efficiency 

o Power Management Controller (PMC) with multiple power modes: HSRUN, RUN, 

STOP, VLPR, and VLPS 

o Clock gating and low power operation supported on specific peripherals 

• Memory and memory interfaces 

o Up to 2 MB program flash memory with ECC 

o 64 KB FlexNVM for data flash memory with ECC and EEPROM emulation 

o Up to 256 KB SRAM with ECC 

o Up to 4 KB of FlexRAM for use as SRAM or EEPROM emulation 

o Up to 4 KB Code cache to minimize performance impact of memory access 

latencies 

o QuadSPI with HyperBus™ support 

• Debug Functionality 

o Serial Wire JTAG Debug Port (SWJ-DP) combines 

o Debug Watchpoint and Trace (DWT) 

o Instrumentation Trace Macrocell (ITM) 

o Test Port Interface Unit (TPIU) 

o Flash Patch and Breakpoint (FPB) Unit 

• Communications interfaces 

o Up to three Low Power Universal Asynchronous Receiver/Transmitter 

(LPUART/LIN) modules with DMA support and low power availability 

o Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA 

support and low power availability 

o Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support 

and low power availability 

o Up to three FlexCAN modules (with optional CAN-FD support) 

o FlexIO module for emulation of communication protocols and peripherals (UART, 

I2C, SPI, I2S, LIN, PWM, etc). 
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o Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous 

Audio Interface (SAI) modules. 

• Timing and control 

o Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 

standard channels (IC/OC/PWM) 

o One 16-bit Low Power Timer (LPTMR) with flexible wake up control 

o Two Programmable Delay Blocks (PDB) with flexible trigger system 

o One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels 

o 32-bit Real Time Counter (RTC) 

• ASIL B capable. 

 

 

Figure 3-4: S32K116 development board 

 
The S32K2TV (shown in Figure 3-5) is a much more powerful microcontroller with three 32-

bit microprocessors one dual Arm core M33 and a M7 Arm cortex core. 

• Operating characteristics 

o Voltage range: 2.97 V to 5.5 V 

o Ambient temperature range: -40 °C to 125 °C for all power modes 

• Arm™ Cortex-M33/M7 core, 32-bit CPU 

o M7 supports up to 320 MHz frequency with 2.14DMIPS / MHz 

o M33 supports up to 160 MHz frequency with 1.5DMIPS / MHz 

o Arm Core based on the Armv7 and Armv8 Architecture and ThumbR-2 ISA 

o Integrated Digital Signal Processor (DSP) 

o Configurable Nested Vectored Interrupt Controller (NVIC) 

o Single Precision Floating Point Unit (FPU) 
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• Clock interfaces 

o 8 - 40 MHz Fast External Oscillator (FXOSC) 

o 48 MHz Fast Internal RC oscillator (FIRC) 

o 32 kHz Low Power Oscillator (SIRC) 

o 32 kHz Slow External Oscillator (SXOSC) 

o Up to 320 MHz System Phased Lock Loop (SPLL) 

• Power management 

o Low-power Arm Cortex-M33/M7 core with excellent energy efficiency, balanced 

with performance 

o Power Management Controller (PMC) with simplified mode management (RUN 

and STANDBY) 

o Supports peripheral specific clock gating. Only specific peripherals remain 

working in low power modes. 

• Memory and memory interfaces 

o Up to 4 MB program flash memory with ECC 

o Up to 256 K of flexible program or data flash memory 

o Up to 768 KB SRAM with ECC 

o Data and instruction cache for each core to minimize performance impact of 

memory access latencies 

o QuadSPI support 

• Debug functionality 

o Serial Wire JTAG debug Port (SWJ-DP), with 2 pin Serial Wire Debug (SWD) for 

external debugger 

o Debug Watchpoint and Trace (DWT), with four configurable comparators as 

hardware watchpoints 

o Serial Wire Output (SWO)-synchronous trace data support 

o Instrumentation Trace Macrocell (ITM) with software and hardware trace, plus 

time stamping 

o CoreSight AHB Trace Macrocell (HTM) 

o Flash Patch and Breakpoints (FPB) with ability to patch code and data from code 

space to system space 
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o Serial Wire Viewer (SWV): A trace capability providing displays of reads, writes, 

exceptions, PC Samples, and print 

o Full data trace for up to 16 output wide 

o Embedded Cross Trigger (ECT) is used for multicore run-control and trace cross 

triggering, using CoreSight Cross Trigger Interface (CTI) 

• Communications interfaces 

o Up to 20 serial communication interface (LINFlexD) modules, with UART and 

DMA support 

o Up to ten Low Power Serial Peripheral Interface (LPSPI) modules with DMA 

support and low power availability 

o Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support 

and low power availability 

o Up to eight FlexCAN modules (with optional CAN-FD support) 

o FlexIO module for flexible and high-performance serial interfaces 

o One Ethernet module 

o 2-ch FlexRay module 

o Up to three Serial Audio Interface (SAI) modules 

o One Secured Digital Host Controller (SDHC) 

• Timing and control 

o Up to three enhanced modular I/O system (eMIOS), offering up to 96 timer 

channels (IC/OC/PWM) 

o Up to three System Timer Module (STM) 

o Up to two Logic control units (LCU) 

o Full cross triggering support for ADC / timer (BCTU) 

o One Trigger MUX Control (TRGMUX) module 

o Up to four Periodic Interrupt Timer (PIT) modules 

o 32-bit Real Time Counter (RTC) with autonomous periodic interrupt (API) 

function 

• ASIL B or ASIL D 
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Figure 3-5: S32K2TV development board 

3.3.2 CAN Module 

A CAN Module (or CAN controller) is a hardware peripheral capable of sending and receiving CAN 

frames, while also handling all the error and form checking. On the NXP family, the module used 

is the FlexCAN module, which is a CAN protocol engine with a very flexible mailbox system for 

transmitting and receiving CAN frames. The mailbox system is composed of a set of message 

buffers (MB) that store configuration and control data, time stamp, message ID, and data. The 

memory corresponding to the first 38 MBs can be configured to support a Legacy FIFO reception 

scheme with a powerful ID filtering mechanism. This mechanism can check incoming frames 

against a table of IDs (up to 128 extended IDs or 256 standard IDs or 512 8-bit ID slices), with 

individual mask register for up to 32 ID filter table elements.  

For Classical CAN frames, simultaneous reception through Legacy FIFO and mailbox is 

supported. For CAN FD frames, reception is supported through mailboxes and Enhanced Rx FIFO. 

For mailbox reception, a matching algorithm makes it possible to store received frames only into 

MBs that have the same ID programmed in the ID field. A masking scheme makes it possible to 

match the ID programmed on the MB with a range of IDs on received CAN frames. For 

transmission, an arbitration algorithm decides the prioritization of MBs to be transmitted based 

on the message ID (optionally augmented by 3 local priority bits) or the MB ordering. 

The FlexCAN module is also able to receive and transmit messages in CAN FD format. The 

message buffers are sized to adequately store the quantity of data bytes selected by the FD 

control fields. The quantity of FD MBs available for a given quantity of data bytes is described in 

the FD control register. [56] 



41 
 

 
 

Chapter 3. System Specification 

And for the most part the CAN modules between the families are basically equal. Discounting 

the CAN FIFO that are not going to be used the differences are listed in the Table 3-3. 

 
Characteristic S32K116 S32K2TV 

Number CAN Channels 1 8 

Number of message buffers 32 32 

Maximum baudrate 8 Mbps 8 Mbps 

CAN-FD Yes Yes 

Partial Network Support No support 

External Time Tick Yes Yes 

Table 3-3: Differences between CAN modules 

3.3.3 CAN Transceiver 

The most basic capability of a transceiver is translating the Tx and Rx lines of CAN into two 

differential lines called CAN High and CAN Low, thus implementing a CAN bus line. They can 

achieve different maximum transfer speeds while also adding a certain delay that is transceiver 

dependent. 

 

 

 

Figure 3-6: CAN transceiver 

 Selective Wake-Up CAN transceiver 

This selective wake-up can be performed in two ways, by forming a wake-up pattern or a wake-

up frame, being that the latter only works in classic CAN. This wake-up can also be triggered by 

a system interrupt via wire, and then scaled to the transceiver and/or CAN module. 
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Figure 3-7: Transceiver with Wake-Up 

 Isolated CAN transceiver 

An isolated CAN transceiver is expected to have an isolation barrier between the CAN Tx and Rx 

lines and the CAN High and CAN Low lines. This extra isolation layer is used for safety and 

preventing unwanted currents to flow in case of some type of flaw. 

 

 

Figure 3-8: Transceiver with Galvanic Isolation 

3.3.4 CAN Transceiverless 

A no transceiver approach is based on connecting directly both Rx and Tx lines into a bus line 

without creating the differential lines of CAN High and CAN Low. 

This type of architecture can work for distances below one meter. However, by decreasing the 

distance between CAN controllers it lowers the possible noise disturbance in the lines and 

increases the possible bit rates. To reduce the noise and disturbance it is possible to add an 

isolation barrier. 



43 
 

 
 

Chapter 3. System Specification 

The diodes, represented in Figure 3-9, assure the correct direction of the current in the lines 

as well as the correct state of them, since the Tx lines must perform as open drains. Adding to 

this hardware, a voltage regulator may be required to use the pull-up resistor, with voltage 

typically being either 3V or 5V, depending on the TTL of the microcontroller and implemented 

baud rates [57].  

 

Figure 3-9: Connection of CAN nodes without CAN transceiver [58] 

3.4 Conclusion 

A good analyse aims to break down bigger goals to examine and better understand smaller parts 

and tasks. That is why it is of great importance to start by defining the requirements of the project. 

Starting by the stakeholders and going down to smaller parts of the system. On contrary of many 

systems, normally there is first the general list of the essential requirements and then there is 

the choice of hardware and software implementation. On this case, the stakeholders chose 

previously the microcontroller family and for that reason, some solutions were impacted. For 

example, the transceivers selection and the drivers wake-up functionalities. However, having the 

requirements listed makes the task of choosing which hardware and software to use simpler and 

swifter. 

After selecting devices and hardware components the development phase can be initiated. 

Being possible to start designing and creating the software for the CAN driver as well, the GUI 

where its functionality will be tested and demonstrated.



 

 

Chapter 4  

Implementation 

After defining all the system specifications and components required, it was possible to proceed 

to the implementation of a communication driver, specific to CAN and capable of answering all 

the requirements as well as a complementary graphical interface for posterior demonstration and 

validation. 

Therefore, this chapter provides an overview of how the system came to be. Since the 

hardware was previously provided or required only small adjustments it will not be mentioned in 

this chapter heavily. The two main focus points will be the two bigger pieces of software. The 

CAN driver, which composes the bigger part of this work, and the graphical panels, which become 

a great asset for posterior test and validation. 

The hardware mostly consisted of changing the connections between boards, or them, and 

the computer. There was a small modification in the physical bus line, mentioned in Chapter 3. 

The software was developed around the AUTOSAR stack concept and structured as such. 

Creating a distinct and thoroughly designed stack is an important step in order for the code to be 

clearer and understandable while minimizing errors. On another hand, the demonstration panels 

were developed with the support of a specialized tool, the CANoe from Vector.

4.1 Software Implementation 

This chapter section is composed of all the steps taken when developing the software. It includes 

the development environment, the software layers and all the GUI development. It will explain 

briefly about different guidelines used when writing code and little cares about cleanness and 

clarity of the written code. It will also explain the different roles of each software layer for a better 

understanding of the development as a hole. 
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4.1.1 Development Environment 

The CAN driver software for the S32K116 was developed in a complimentary Integrated 

Development Environment (IDE) for automotive and ultra-reliable Power Architecture, the S32 

Design Studio for Arm, using C programming language. This IDE allows developing, managing, 

building and debugging embedded software. The S32DS IDE is a straightforward development 

tool based on open-source software, including Eclipse IDE, GNU Compiler Collection (GCC), and 

GNU Debugger (GDB), with no code-size limitations that enable editing, compiling, and debugging 

of designs [59]. 

However, the driver was created to be completely independent of the IDE and ready for porting 

into a different IDEs and compilers. However, for the S32K2TV, it was developed in the S32 

Design Studio for S32 platforms, from the same company, NXP semiconductors. 

All the code developed for the driver was following guidelines from the MISRA-C. MISRA C is 

a set of software development guidelines for the C programming language developed by the 

Motor Industry Software Reliability Association (MISRA). The guidelines aim to facilitate code 

safety, security, portability, and reliability in embedded systems. MISRA has evolved into a widely 

accepted model for best practices by leading developers in sectors such as automotive [60]. 

Complementing the MISRA-C Guidelines is the document Specification of C Implementation Rules 

[35], created by AUTOSAR. 

The development boards contain an on-board programmer and debugger, the OpenSDA for 

S32K116. As well as, JTAG for flashing and debugging purposes. For the S32K2TV, a probe from 

NXP was used for flashing and debug using the Cortex Debug Connector with 10 pins and support 

for interfaces such as Serial Wire and JTAG. 

The rules for development for the panels were a little less restricted. Nonetheless, rules such 

as correct commentary and clear and objective of the code were maintained.  The tool for 

development of the demonstration panels was the CANoe from Vector. 

  

Figure 4-1: S32 Design Studio (left) and MISRA (right) logos 
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CANoe is the comprehensive software tool for the development, test and analysis of individual 

ECUs and entire ECU networks. It supports network designers, development and test engineers 

throughout the entire development process – from planning to system-level test.  

Versatile variants and functions provide the appropriate project support. Therefore, its versatile 

functions and configuration options are used successfully by OEMs and suppliers worldwide [61]. 

 

 

Figure 4-2: CANoe logo 

 

As stated, CANoe is an extensive tool where its support of CAN protocol and graphical 

interfaces makes it a great platform for the development of demonstration panels. 

The two keys tools that will be used are Vector CAPL Browser and Panel Designer. Vector 

CAPL Browser is a text editor based on C with some restrictions, that makes the bridge between 

the graphical panels and the messages received in the CAN bus lines as well the users of the 

GUI. The GUI developed in Panel Designer is aimed to be the most user friendly as possible while 

packing different tools into it.  

4.1.2 Software Guidelines 

There are several guidelines that can be chosen for the same purpose, the most important 

aspect is to remain consistent, to choose a specific way to develop and stick to it throw the whole 

development cycle, this improves readability and testability of the code created. One way to do it 

is to create a document with all the guidelines to be followed during the development, this 

document can include rules such as: 

• Naming conventions – these can include different ways to name variable and 

functions, by using camel notation or underscore notation.  

• Coding Guidelines - these guidelines must be followed during implementation and 

are intended to make readable and testable code. They can include the use of 

language subsets, use of defensive implementation techniques (for example for each 
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“if” statement there must be an “else” statement), enforcement of strong typing and 

others. 

• Design Principles – these principles include a wide variety of design rules to be 

followed during development, such as the level of restriction when using pointers, the 

return of functions, the use of recursions, type conversions and many others. 

• Project structure – which should reflect the layered software architecture of the 

project. 

• Software Modules - collection of software files (code and description) that define 

certain software functionality present on an ECU. 

• Software Interfaces - interface which describes an interface (header) file 

containing functions and datatype definitions. 

4.1.3 Software Layers 

As seen in the previous chapter the Figure 3-3 depicts the software layer, which could be divided 

into an upper and the bottom layer, where the upper layer focuses on user interface configuration 

and add-ons and the bottom layer into core features and functions. The upper layer is composed 

of the application layer, which per turn has the CAN configurations and other software 

components. The bottom layer is divided into three smaller layers each one with a purpose that 

will be explained in the next sections. These smaller layers are the Service Layer, the ECU 

Abstraction Layer and Microcontroller Abstraction Layer. On the IDE it looks something like in the 

Figure 4-3. 

 

Figure 4-3: Project system stack folders 

 Application Layer 

The application layer is the highest layer of abstraction in the software stack. It is home for any 

specific application components that will run on the top of the stack as well as ensuring proper 

communication between devices. On this case it is achieved by a series of wrappers that act as 

interfaces between the hardware and the communication protocol to send and receive CAN 

messages. 
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 Service layer 

The service layer for the CAN driver has two important modules the State Manager and the 

Network Management.  

The first one implements the control flow for the CAN bus. It interacts with the Microcontroller 

Abstraction Layer and the Application Layer. On this layer, each network is defined with a unique 

network handle. Additionally, the CAN State Manager is responsible for the control flow 

abstraction of CAN networks. 

The Network Manager has for its main purpose the coordination of the transition between 

normal operation and bus-sleep mode on a network. Beside, optional features such as detection 

of all present nodes or detection of nodes that are sleeping can be implemented. 

 ECU abstraction layer 

The ECUAL similar to the service layer is composed of two components the CAN Interface and 

the CAN Transceiver. 

The CAN Interface represents the interface to the services of the CAN Driver for the upper 

communication layers to manage different CAN hardware device types like CAN Controllers and 

CAN Transceivers used by the defined ECU hardware layout. It covers services as transmission 

requests, transmission confirmation, reception indication, controller mode, PDU control mode 

and others. Additional applications are the operation mode, via an interrupt, polling or even a mix 

of the two. 

The CAN Transceivers is the module dedicated to the transceiver for which the controller 

is connected. There are several types of transceivers and each one can operate in a different 

manner, which increases the complexity of this module. To keep things simpler there were 

modules configured such as SPI ready for the eventual need for external configuration of the 

transceiver. There was also supported Standby mode in the transceivers, as well as watchdog 

features and partial network. 

 Microcontroller abstraction layer 

The closest layer to the hardware is the MCAL and this layer is responsible for all the hardware 

access while making available for upper layers an extensive API capable of initiating transmission 

and calls the callback function of the CAN Interface module for notifying events, independently 

from the hardware. Furthermore, it provides services to control the behaviour and state of the CAN 

controller. It monitors Bus-off and Wake-up events and notifies them via callbacks. In summary, the 
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CAN driver is a software module responsible to access all the hardware resources directly connected 

to the CAN controller.  

4.2 Software Workflow 

The software workflow characterizes the different processes of operation of the CAN Firmware. 

From basic operations such as transmitting a message or receiving one, and the configuration of 

the working module to bus-off recovery and wake-up operations. This is a standalone module. 

This means that it will work without any other module attached. The process starts on the 

configuration file for the CAN, where is possible to configure each channel. Starting from the type 

of CAN that will operate (classic CAN or CAN-FD) to the velocity (data rates and respective sample 

point), the capture mode (polling or interrupt), transmission order, use of local priority and many 

more.  The extensive configuration enables a more complex but flexible driver, where most 

configurations are compatible and if not an error is produced and the CAN channel not initialized. 
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4.2.1 State Machine 
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Figure 4-4: CAN Driver State Machine 

A state machine allows linking the “state” of the system at a particular point in time and 

characterize the behaviour of the system based on that state, where a sequence of transitions 

driven by events and inputs describe the behaviour of the system [62]. In this case, the system 

is the CAN driver and its different operations, and the finite state machine in Figure 4-4 describes 

the behaviour of the system, allowing throw the state to know what operations the system is able 

to perform.  

The operation of the CAN driver revolves around five states, and of those, it will stay for 

the most of its time in the RUN operation. When the module is configured and started the 

operation begins at the RUN mode, it is in this mode that the CAN driver is capable of sending 

and receiving messages. From there it can go to STOP state or Bus-Off state for the latter it would 

require a bus-off event to jump to it. This means that the communication has been cut and the 

module requires recovery to be able to send messages again, and is with exactly a bus-off 

recovery event that the state goes back to RUN. 

 When a stop request happens, the module stops sending messages and is a controlled event. 

It is from here that the module can transition to SLEEP state powering down the entire module 
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and normally most of the microcontroller. From the sleep more only a preconfigured interrupt 

can wake-up it and make a brief transition to WAKE-UP state before going back to STOP mode 

where can be started again. 

4.2.2 Initialization 

The initialization is a straightforward process. It starts with the load of the configurations for the 

correct channel, afterwards it checks for the type of CAN, between the slower classic CAN and 

the faster CAN-FD. There is also a pre-processing of the sample point before the advancing of 

the initialization. Having met all the conditions, the clock for the CAN is enabled and with it the 

enable for a stable configuration. 

The next step would be to configure the data rate for that channel, which cannot change 

after configuration. Afterward, there is a memory cleaning and further configuration of the 

reception masks as well, general operation definition. The last two configuration before starting 

the module would be the configuration of the reception boxes and the partial network if the driver 

supports it and requires it.  

Upon starting, there is a final check to see if the actual module started, and if not produce 

an error and finish the process. 
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Figure 4-5: Initialization Flowchart 

4.2.3 CAN wake-up 

Summarizing wake-up is a feature where the CAN module has the ability to go from sleep (or 

standby) mode to normal operation throw the capture of a frame or a pattern. It is depicted into 

three parts: Configuration, Sleep mode, and trigger Wake-Up throw frame or pattern. The wake-

up from the frame is a method only supported by CAN classic and it is also known as pretended 

networking (or partial network), since the module in this mode only has the ability to receive 

messages. The configuration of the pretended network as shown in Figure 4-6, is a process where 

several filters are set up for the ID, DLC, payloads as well the number of matches to trigger the 

wake-up with a safety time-out to make it leave sleep mode if no messages are being captured. 
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 Figure 4-6a: Wake-up configuration flowchart 
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Figure 4-6b: Wake-up frame configuration 
flowchart 

 

Figure 4-6: The wake-up process begins with configuration. There are two defined processes for wake-up 
via pattern (6a) which requires no extra configuration and wake-up via frame (6b) 

To replicate this on CAN modules without neither of the wake-ups, this means that when sleep 

mode is enabled the entirety of the CAN module is turned off. There is a need to configure external 

transceivers with these capabilities. By norm, these configurations are done via SPI and much 

like on the controller there are a series of registers that allow a very similar configuration to the 

microcontroller. The transceiver detects the wake-up event, who then propagates it throw an 

interrupt pin to the microcontroller, waking it. 

The second phase, after the configuration, is placing the microcontroller to sleep mode, this 

process is completely dependent on the microcontroller, but also on the microprocessor and how 

many of them. The common factor is disabling of the peripherals, in this case the CAN module 

is disabled beforehand and acts as the first step to sleep mode. 
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Figure 4-7a:  Standby configuration for 
S32K116 flowchart 

 

 
 

Figure 4-7b:  Standby configuration for S32K2TV flowchart 

Figure 4-7: The standby process differs within the family S32Kxxx because of the number of cores present 
in which one and the level of security enable in each one. Still the common ground starts by disable all the 

peripherals and start application shutdown. 

In the S32K2TV, the process is more complex due to the presence of three microprocessors 

instead of one. This requires a higher level of coordination between cores and the present 

modules. 

When the board is in sleep mode, the only thing that is left is to wait for a wake-up event. As 

stated before this can be in form of a frame or a pattern. Both are compliant with the ISO-11898-

2:2016 [63] and therefore standard. The wake-up via frame requires the capture of valid frames 

that are posteriorly compared with the filters configured beforehand. If there is a match the count 

for wake-up is incremented once that count reaches the specified number a wake-up event is 

triggered and the microcontroller transitions to the previous running state. 

The wake-up via pattern is broader in the fact that it allows for both classic CAN and CAN-FD 

frames to be the trigger for the wake-up event. The pattern has timed filters that go from dominant 

(logic “0”) to recessive (logic “1”) to dominant once again. The time it has to validate a dominant 

is filter dependent having two values for assessment, long filters from 0.5 to 5 microseconds and 

short filters with timings between 0.15 to 1.8 microseconds.  
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4.2.4 Bus-off Event 

A bus-off event occurs when a transmission error overflows the 255 count. The recovery process 

has two possibilities automatically recover or with processor intervention. In the automatic 

process the node that is allowed to become error active, and therefore participate again in the 

bus arbitration process, after 128 occurrences of 11 consecutive recessive bits on the bus. 

With manual recovery where the processor intervenes, the process is more controlled. 

However, it still must respect the timings of the recessive bits. There are several ways to handle 

this, logging the state, recover normally, clear messages boxes before recover and many other 

possible approaches. The chosen for this implementation passes throw reconfiguration of the 

CAN module. This means a clean slate to further communications. In this process it is guaranteed 

that all the messages boxes are cleared, eliminating in the process the faulty message and 

possible any error module associated. This configuration is described in the topic above in Figure 

4-5. Only afterward, when the configuration is finished the actual bus-off recovery and 

reconnection to the line are done. By clearing the field called BOFFREC the recovery process is 

switched to automatic and with this, the count of recessive bits starts. Once it is completed, there 
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Figure  4-8a: Wake-up frame flowchart 
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Figure 4-8b:  Wake-up pattern flowchart 

 

Figure 4-8: Flowcharts describing the wake-up processes in order to leave standby, via wake-up frame and 
preconfigured messages (8a) and via wake-up pattern depicted in the ISO 11898:2-2016 (8b) 
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is a check for re-synchronization. Which marks the point, where it is again possible to participate 

in the bus arbitration process and send messages. After recovery, the BOFFREC is once again 

set (disabling automatic recovery) and the state of CAN is updated. To finalize the recovery, the 

flags signalling the bus-off occurrence and its recovery are cleared. 
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Figure 4-9: Recover from Bus-Off flowchart 

4.2.5 Read and Write operations 

As in most protocols, CAN protocol with its multi-master approach that allows for the transmission 

and reception of messages, each process has its own unique features, however, both occur in 

the same area of memory, a space dedicated to the division of message boxes capable of sending 

and receiving messages depending on how they are configured.  

The writing operation described on the left flowchart of Figure 4-10, starts with the data 

to be transmitted and saving it. After it chooses a message box and verifies if it is already being 

used, if so abort the transmission and clear the message box. After having a clear message box, 

the data is registered and the header of the message of configured (DLC, ID, bit rate switch, and 

others). For the message to enter the arbitration process and compete for a spot on the bus it is 

required a specific code on the message box. 
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The opposite operation, and opposite for full communication capabilities, starts by 

running throw all the receive flags to find if any message box flagged for the reception. When the 

flags are set, the process starts by checking the message and storing all the data, as well as the 

code, DLC, ID, timestamp and any other relevant information, as described in the Figure 4-10. 

All the data is saved into a PDU and the timer of the module is read in order for the message box 

to be available to receive a new message as soon as possible. After that, the flag is cleared and 

reception confirmation is sent across the layers. 
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Figure 4-10a: CAN Transmission flowchart 
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Figure 4-10b: CAN Reception flowchart 

Figure 4-10: CAN main operations are the writing operation where there is the transmission of data to the 
CAN bus (Figure 4-10a) and the complementing operation of reading throw the reception of frames (Figure 

4-10b) 

4.3 CANoe Software 

All the software in CANoe is implemented using CAPL (Communication Access Programming 

Language) programming language. The GUI would use the help of a panel designer as the main 

block with support of API on CAPL for further operations. 
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4.3.1 CANoe Environment 

Before starting coding and designing the CANoe Panels, it is important to understand the tools 

that will be used and the ones that will support the whole program. The base program allows for 

the creation of global variables to link events between the CAPL and the GUI, it also allows for 

graphical analysis in real-time, with extensive tooling for automation. Figure 4-11 shows the base 

environment required to start developing. Each ECU will have CAPL code and will have panels 

associated to them, combined with what CANoe calls environment variables that will bridge the 

Panels and CAPL. 

 

Figure 4-11: CANoe Environment 

 Other supported tools that are relevant for the Panels are the use of databases with messages 

pre-configured, this enables for faster analysis of the recognized frames. Other powerful tool is 

the ability to plot graphs while data is being received, this is great to understand how signals are 

progressing in time. 

4.3.2 CANoe panels use cases 

This section will describe the different and varied use cases that each panel has. Each of the four 

panels has different objectives and core functions, however they all provide enhancements or 

complements to the main panel and function of displaying the current angle of the steering angle 

and the current position with a visual representation of an actual steering wheel. Each of these 

panels graphical interface can be seen in Appendix A – Panels GUI. 

 Demonstration Panel 

The demonstration panel is the main panel for the LWS Fail-Op demo, it is in this panel that is 

possible to access the other 3 panels. It works as a standalone panel, what it is meant is that 
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without any other type of configuration, the main purpose of this GUI is achieved: the visual 

representation of the current angle for the steering wheel. Its feature list includes start/stop the 

program, display the current angle and speed value, error values, visual representation of the 

current steering angle position, open and closing other panels, naming them from the top left to 

the top right are the simulation panel, the calibration panel, and the configuration panel. 
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Figure 4-12: Use case demonstration panel 

 Simulation Panel 

The simulation panel, serve the purpose as the name implies of simulating a working bus line 

transmitting messages to the demonstration panel. In this panel is possible to simulate most of 

the features.  
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Figure 4-13: Use case simulation panel 

The maximum turns represent the number of turns the steering wheel can turn either rotate 

to the right or left and the velocity is the number of degrees per second the steering wheel will 

turn. This simulation can be stopped and started at any point, as well as being reset. 

 Calibration Panel 

The role of the calibration panel is more on the support side. It has the ability to send different 

types of messages that can change the way the sensor is currently working. The command of 

calibration allows for zero point calibration of the sensor and the command decalibration to stop 

the sensor sending more messages with the angle calculated. The command for MM3 and MM6 

change the type of message that the sensor will be sending. One is the pure raw data and the 

other normalized data from the sensor. The button SW version, just waits for a returning version 

of the software implemented in the microcontroller. And finally, the power on and off buttons 

send commands to change the state of the power supply if that is supported in the system where 

the sensor is installed. 
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Figure 4-14: Use case calibration panel 

 Configuration Panel 

The final panel is the configuration panel. This panel has two distinct features, the first is the 

ability to configure the CAN channels in while the program is running, either to be classic CAN 

as well CAN-FD. The other more extensive feature is the possibility to define a new type of 

message, this entails the ID and the type of it (by default standard 11-bit identifier), signals to be 

included in the frame up to 12. The size of these signals must respect the maximum size available 

for the current type of CAN (8 bytes for classic and 64 bytes for FD). The name allows for 

connecting the message signal with the demonstration panel, for example if it is named Angle it 

will, in fact, turn the steering angle when receiving that message even if it is not in the databases. 

The other configurations for the signals are the byte order to read them and the factor to multiply 

the received value. The final message is being shown responsively in the message layout with 

the colour codes attached on top. 

 The final three features are the ability to reset all fields, save the current message, and load 

a previous done message. 
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Figure 4-15: Use case configuration panel 

4.4 Conclusion 

This chapter described the steps taken during the development phase in order to achieve a fully 

functional CAN driver capable of sending and receiving messages, handle error events, and work 

agnostically with different CAN transceivers. All the developed code followed rules from MISRA 

and ISO26262, to reduce safety hazards that could be introduced by the developer. Also, the 

future use of an ASIL-D compiler can provide the full coverage for an ASIL-D approved code.
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Tests and Results 

This chapter covers the validations and verification of the requirements for the implemented 

system. It was intended to understand if the CAN driver was correctly implemented, and all the 

features are working on accord with it. It was necessary to check if it works properly in both 

classic CAN and flexible data rates CAN, with different message sizes. 

 The CAN driver will be tested in both microcontrollers, the S32K116 and the S32K2TV, where 

the scenarios will change a bit, however, there will always be present, the microcontroller, the 

connection to the computer (VN1610), and the CANoe for analysis. The transceivers used are 

different on both boards, and some have limitations, that will be explained in further detail 

afterwards. 

 The tests sets will include testing the message system, the transceiver and non-transceiver 

application, the bus-off error and recovery, standby operations (standby/sleep mode and leave 

such state) and finalize with tests on the panels created. 

5.1 Message system validation 
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Figure 5-1: Test scenario for the S32K116 

The message system is composed by the ability to transmit and receive messages from a 

microcontroller in a valid bus line, in this case the CAN bus created will be between the 

microcontroller and a VN1610 that will convert the data to USB so it can be read or written in 

the CANoe software. 

The first test is the simple validation of the transmission and reception of messages. To 

do this, there will be a message sent from the CANoe to the microcontroller, which will respond 

by echoing the same data into a new ID, for easier identification. The test result is shown the 

Figure 5-2, the configuration is the filter on time, which shows the difference in time between the 

same messages and the interactive generator that enables the easy creation of a message to be 

sent. The baud rate and type of CAN do not affect this test, however, for record purposes it was 

CAN-FD at 2Mbps. Three messages were sent the first one is from the microcontroller to test the 

transmission of the CAN, the second one is from the CANoe and the last one is the echo from 

the message transmitted from the CANoe, it has a different ID just for easier identification, 

however the data is kept the same. Also to note, the order shown is the order that each message 

was received, the zero on the time indicates that only one of each was transmitted. 

 

Figure 5-2: Communication between the CANoe and the microcontroller 

 The CAN driver can operate in a wide range of data rates. However, since the applications 

normally are intended from some considerable data transfers only velocities above 250 kbps up 

to 8 Mbps are tested. Nevertheless, slower speeds are possible. For this test the message has 8 

bytes for payload and the busload is the measure to understand the velocity at which the 

messages are being sent. Busload is the percentage at which relevant bits are travelling on the 

bus, all the idle time reduces the busload, on a specific period. 

Baud rate Expected Result (us) Result (us) 

Classic: 250 kbps 452 454 
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Classic: 500 kbps 226 227 

Classic: 1000 kbps 113 113 

FD: 500kbps and 2Mbps 104 107,7 

FD: 1000kbps and 2Mbps 77 79,1 

FD: 500kbps and 4Mbps 79 82,7 

FD: 1000kbps and 4Mbps 52 54,5 

FD: 500kbps and 5Mbps 74 77,8 

FD: 1000kbps and 5Mbps 47 49,2 

FD: 500 kbps and 8Mbps 66.25 70,3 

FD: 1000 kbps and 8Mbps 39.25 41,9 

Table 5-1 - Latency of messages at different baud rates 

In Table 5-1, it is possible to see the impact that the transmission rate of the arbitration 

phase has on the overall transmission latency, and it is worsen by the small payload, in the tests 

below it will be possible to see how the payload affects the efficiency. It is also possible to see 

that the messages are being sent with the correct baud rates to the bus, as the theoretical value 

corresponds to the real result. 

 All these values were recorded, and all the tests will be annex, the Figure 5-3 there is a 

difference in the average velocity because of the busload. In the first figure, it is possible to see 

that the busload is only around 60%, this is justified for the fact of how the driver works combined 

with the CAN controller. In the image on the right, it is possible to see already that the busload 

is near 100%. Done the math, the average message time is around the same, even if the results 

are not, and is more efficient to send different messages, in terms of busload. 
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Figure 5-3 - Messages being transmitted at 2Mbps in the data phase and 500 kbps in the arbitration phase 

Testing the message payloads and the overall efficiency CAN-FD was possible to get 

some data, where the messages ranged from 0 bytes payload up to the maximum of 64 bytes, 

with data carefully chosen to reduce the number of stuff bits to 0. This was achieved by just 

sending several 0xA, since the binary is 1010b which makes it impossible to activate the bit 

stuffing mechanism. All this data was organized and displayed in Table 5-2. From this table it is 

also possible to draw graphical representation, making it clear the increase in efficiency by 

sending bigger CAN-FD messages, in Figure 5-4. 

Message 

Size 

(bytes) 

Transmission 

Time 

CAN-FD 2Mbps 

(us) 

Average data 

rate (Mbps) 

Transmission 

Time 

CAN-FD 8Mbps 

(us) 

Average data 

rate (Mbps) 

0 47,5 1,284 34,5 1,768 

4 63,5 1,465 38,6 2,416 

8 79,5 1,572 42,6 2,934 

12 95,5 1,644 46,6 3,369 

16 115,25 1,683 49,6 3,810 

32 178 1,781 67,2 4,717 
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64 306,5 1,869 99,5 5,759 

Table 5-2 - Average data rates for different CAN velocities 

The ramp-up in the, more noticeable in the 8 Mbps transmission is due to the increase in 

the CRC size on messages above 16 bytes, since the CRC is still on the higher transmission rate 

it makes the average raise. Any message bigger than 64 bytes will have to be split into different 

messages, since the driver does not support chained messages as of the moment. 

 

Figure 5-4 - Graphical representation of the average bit rate with different baud rates 

 Additionally, all the extra tests can be found in the annex part of the document, all of which 

will be similar to the images in Figure 5-4. The key data to take from these images is the data 

size (since the data in itself is on the same spectre) and the time that took to send a message. 

  

Figure 5-5 - Transmission time for 8 Mbps baud rate and 500 kbps on a 8 byte payload and 16 byte payload 
respectively 
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5.2 Bus-off event validation 

The bus-off state in a microcontroller is described by its inability to communicate, but this only 

happens to one CAN channel/bus at a time and is data rate independent. This means that even 

if, one channel needs recovery the other channels may still be communicating. To enter this state 

there must happen an accumulation of errors, which can be easily triggered by shunting both the 

CAN High and Low. 

That is the scenario that will be followed, first, there will be a trigger for the bus-off and the 

CANoe should stop receiving messages, and the program will start trying to recover the bus line 

failing every time until both lines are separated. As shown in Figure 5-6, until the second 27th the 

CANoe is receiving several messages per second, then there is a bus-off occurrence and it stops 

receiving messages, after a few seconds, on the 57th second to be more precise the bus-off trigger 

is stopped and successful recovery is completed, making it possible to receive new messages on 

the CANoe. 

 

Figure 5-6 - Bus-off event and subsequently recover from the bus-off 

5.3 Non-transceiver validation 

Validating a non-transceiver application passes throw proving that the messages are being sent 

and acknowledged. It is also important to understand that how the physical layer is set up can 

very well influence the maximum transmission rates and the recovery time of the lines. To 

consider is also the delay added by isolation layers. Where the first affects the sample point and 

the second affects an added delay on feedback. 
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 Figure 5-7, shows a Picoscope view configured into two windows. The top windows are 

measuring the non-transceiver communication and the bottom is monitoring both high and low 

CAN bus lines from the differential transceiver. The same message is sent into both 

communications, however since the communication without transceivers cannot be easily 

decoded by the CANoe, the mirror message serves as an easier visual representation as well 

validation of the information on the message. 

 The main points to decode in the message are the ID and the data, it is also interesting to see 

the point at which the data goes throw acceleration (immediately after the BRS – bit rate switch 

- bit) and goes back to the arbitration velocity on the validation of the Acknowledge. Starting by 

the ID, it is possible to see that the bits are 10101010101b, translated to hexadecimal 0x555 

which is the same that is translated in the CANoe in Figure 5-8. As for the data is 01010011b in 

binary as for hexadecimal is 0x53, that exactly matches the received CAN message. 

 

Figure 5-7 - No transceiver measure and differential CAN bus measure 

 

 

Figure 5-8 - Message mirroring the message sent on the no transceiver communication 

5.4 Standby operations validation 

The standby entry is characterized by the fall of consumption from a development board and 

when it wakes the consumption rises once again until it picks once every configured peripheral 

is again running and the amount of load in the processor. 
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The test scenario will be as follows have two buttons for inputs, the first will trigger the 

configuration and the latter will trigger the sleep or standby mode. From the initial state, the 

board will initialize will the default clocks and security configurations, followed by the start of the 

core application, that will turn on the green light and only check for button inputs. The first button 

trigger runs the configuration of the CAN and the ADC, and turns the blue light on. At this point 

it is possible to see the maximum consumption that will be registered in this configuration and 

both lights on. On the second trigger, both lights are turned off and the system is shutdown, 

entering standby mode. Once the wake-up trigger happens the core application is resumed 

turning on again the green led and waits for a new configuration. 

 Event Consumption (mA) Visual Queue 

 Initial State 

60 
 

 

 Start running 

61 
 

 

 Configuration trigger 

114 
 

 

 Standby trigger 

52 
 

 

 Interrupt and Standby leave 

61 
 

 

 Configuration trigger 

114 
 

 

Table 5-3 - Test scenario testing the standby operation 
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5.5 Panels validation 

The LWS-Fail-OP Demo is as stated before, a group of graphical panels intended to help users 

visualize the working within a steering angle sensor. It supports extra configuration functions, 

simulation and calibration. 

5.5.1 Demonstration panel 

The demonstration panel is the main panel that holds the core function of the LWS Fail-Op demo, 

which is to visualize all the data from the steering wheel message. In Figure 5-9 is possible to 

see the message and the reaction of the panel. The message brings a collection of information 

where the value of the Steer Wheel Angle determines the current position of the steering wheel 

on the panel that mirrors the position of the real steering wheel. 

 

 

Figure 5-9 - Demonstration Panel and the analysed message 

Depicting the rest of the message, there are 2 extra signals with angular values, the Psi 

and the Theta, that represent the angle of each of the gears. Besides that, there are 14 bits 

reserved for extra information in the future. And bit to indicate the status of the sensor and 

another to show if the sensor is calibrated or not. In case of error, the panel signals by turning 

on the error LED and if it enters in fail-degraded, meaning only one of the microcontrollers is 

transmitting, the other LED turns on, as shown in Figure 5-10. That message induces the panel 

to turn on both LEDs. The fail-degraded is indicated by the FAIL_OP_Status bit of the message 
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that is one, and the error is indicated by the fact that the angle value is 0x7FFF even though that 

the sensor is calibrated, which indicates an error. 

 

Figure 5-10 - Demonstration panel status and error indication 

5.5.2 Configuration panel 

The configuration panel has 2 main features: the ability to reconfigure the CAN bus on run time 

and configure a new message on run time capable of identifying a part of its elements to display 

them on the main panel. 

 To test the first mentioned feature, the CANoe bus line was configured to CAN-FD with 

500kbps at the arbitration phase and 1 Mbps at the data phase. However, the messages being 

sent by the microcontroller were at 2 Mbps instead of the 1Mbps, these means that all the 

received messages will produce an error since the sample point will miss every time once the bit 

rate switch starts. This event is shown in Figure 5-11, where the first messages are received with 

an error and are signaled with red. After a reconfiguration signaled with a success message, the 

CAN is restarted with the new values and is now possible to receive the messages that are now 

marked with black and it is possible to decode the frame. 
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Figure 5-11 - Reconfiguration of the CAN bus line 

The other function on the configuration panel is the ability to redefine a message so it 

can be translated. In this case the configured message has 6 different signals. Being the first one 

the Angle, this is important, because is the name of the signal tells where to acquire data in this 

case, the first 16 bits. And as expected from the first 16 bits in intel endianness, 0x73B9 and 

the factor of 0x033 it comes around 977º as represented in the picture. Also the ID must match 

with one of the received messages, in this case 0x567 in hexadecimal (1383 in decimal). The 

big advantage of this is being able to work in both CAN classic and CAN-FD. 
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Figure 5-12 - Custom message to receive data from a new message 

5.5.3 Calibration panel 

The calibration panel is responsible for a series of commands that aid or support the 

functionalities of the main demonstration panel. Since they are only commands, they only send 

a message when a button is pressed and the state is changed depending on the standard 

message received. 

 The three main functions of the calibration panel are the ability to zero-point calibration or 

reset calibration of the sensor via a command, change the incoming messages from standard to 

prior calculating points, with MM6 and MM3 with raw data or the calculated gear angles 

respectively. And finally, the power box, this power box is a supporting tool for testing and 

development that allows to power cycle the board with a CAN command. The last least important 

feature is just the request of the current version, as shown in the Figure 5-13. 

All these commands use the same configuration message ID with different data. Except 

for the power box which has its own ID and configuration. In Figure 5-14, is possible to see the 

messages for calibration and decalibration and how they affect the standard message as 

expected. The LED turns green when the state changes in this case from calibrated state to 

decalibrated state as can be also seen in the standard message Calibration bit. For the other 

commands it works the same way, indicating the state of the messages at any time. 

 

Figure 5-13 - Command requesting the software version 
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Figure 5-14 - Calibration and Decalibration of the sensor and its standard message 

5.5.4 Simulation panel 

There were extensive tests on all the capabilities and limits for the simulation panel, however the 

only relevant test on the scope of this document is to understand if the steering wheel does really 

turn according to the simulation. This can be hard to prove via images, nevertheless, Figure 5-15 

compiles a collection of images from different stages of the simulation. From rotating it to the 

maximum in the defined turns, then rotating it in the opposite direction. And finally rotating it at 

a maximum velocity of 1080º per second. Even though in the last one, the GUI cannot keep up 

with the fast update rate. 
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77 
 

 

Chapter 5. Tests and Results 

 

Figure 5-15 - Different stages of simulation 
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Chapter 6  

Conclusion and Future Work

This chapter aims to summarize and provide an overview of the implemented steps and obtained 

results from either the development of the CAN driver as well as the GUI, and respective tests 

and results performed on each part. As a final note, this chapter also intends to suggest future 

improvements or additional features that could benefit both implementations. 

6.1 Conclusion 

More than ever, nowadays everything is connected, either being cars or personal objects. This 

communication link can be implemented by using dozens of different protocols. However, for 

each one of them depending on level of required safety it is important to step back and design 

them with different features in mind. From ASIL-D hardware to safe software practices each step 

is important to guarantee the availability and reliability of the protocol used.  

The importance of MISRA guidelines creating a subset of C programming language with 

great emphasis in static checking tools to enforce such subset, and with that approach improves 

the robustness of the software developed, from the design, through the implementation up to the 

tests and validation.  

Other guidelines focused more on the syntax of the written code, such as naming 

conventions, style guides and use of defensive implementation techniques are crucial to write a 

safer and clear code. With this, the code can be developed by different programmers, while 

keeping it readable and easier for future testing and validation. Finally, the use of the V model 

from the ISO 26262 for the software. This includes product development at the software level, 

the specification of the software requirements and its architectural design, the software 

implementation process, and the software verification, integration, and testing of the embedded 

software. 
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 The driver developed in this dissertation was able to fulfil all the requirements with little to 

none deviation. From transmitting capabilities to receiving capabilities with different and flexible 

configurations. Different CAN transceivers are supported in implementations (even no 

transceivers at all), within the full high-speed range and low-speed range for the CAN classic and 

CAN-FD. 

6.2 Future Work 

The more flexible the driver the best features can be added and tested. It is crucial when 

designing any snippet of software to make clear cuts where a function starts and ends, 

fragmenting and isolate parts of the code, creates an easier platform to work on and to test on. 

This said, it is possible to improve and to add features into different sectors. 

 Improve on the network manager: The network manager is responsible for the transition 

from normal operation to bus-sleep operation, which is a supported feature, however this could 

also include a service to detect all the present nodes or even a service to detect which nodes are 

ready to sleep. Both these services could be implemented in a future version of the driver. 

 Remove the wrappers: On the application layer wrappers were created for easier 

interaction with the functionalities of the CAN driver, mostly transmission and reception 

operations. These operations were inspired in the printf() and scanf() functions. On future 

versions and with AUTOSAR style integrations there would be no need for the use of such 

wrappers and therefore they could be deleted. 

 Encryption: With the CAN-FD supported capabilities the data size just became exponentially 

bigger. This allows for the data to be potentially encrypted and therefore better protected against 

hackers.  

 As seen in the results, the GUI is a great tool to test and operate the sensors in an easy and 

user-friendly way. Nonetheless, it has several points where it could be improved upon. 

 Support multiple CAN channels at the same time: As of now, most of the Panels only 

support one CAN channel at a time, only the Configuration panel was constructed with multiple 

channel support in mind. This means that having multiple channels, allow for different signals to 

be read and processed at the same time.  

 Support output of custom messages: On the configuration panel there is the possibility 

to define a message that could be received and decoded into different data to be analyzed. Using 



80 
 

 

Chapter 6. Conclusion and Future Work 

this interface, it could also be possible to do the opposite. Instead of defining a message to be 

received, there could be defined one to be sent. To support this, it would also be necessary to 

implement methods to define data, which could be static values or simple linear functions. Other 

than this, support for extra CAPL files could make running automated tests and extra features 

possible. 
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