
 October 2022

da

U
m

in
ho

 2
02

2

Jo
sé

 R
ui

 A
m

or
im

 G
om

es

José Rui Amorim Gomes

Safety Critical Middleware in Communication
Protocols

S
a

fe
ty

 C
ri

ti
ca

l M
id

d
le

w
a

re
 in

C
o

m
m

u
n

ic
a

ti
o

n
 P

ro
to

co
ls

October 2022

José Rui Amorim Gomes

Safety Critical Middleware in Communication
Protocols

Dissertação de Mestrado
Engenharia Eletrónica Industrial e Computadores

Trabalho efetuado sob a orientação do
Professor Doutor Jorge Cabral

ii

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

 Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

 Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

 Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do Repositório UM da

Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

iii

Acknowledgements

Thanks, where thanks are due. Firstly, I would like to thank Professor Jorge Cabral for all the

guidance and insights throughout the development of this work. I would also like to give my

thanks to João Matos and Luís Vale for informing me about this opportunity in Bosch and

encouraging me to pursue it.

A huge thanks to Jana Seidel for giving me an opportunity to prove myself that I could provide

to a professional team relevant and quality work. For the guidance and advice, a huge thanks

goes to Marco Esteves that accompanied me along the journey and helped me keep focused and

creating good work.

 To my colleague Emanuel Silva who joined Bosch with me and shared the same hardships

and many hours of technical and casual conversations. Thank you for listening to me and the

great friendship that we were able to create in that long year. To my Bosch colleagues João

Santos, João Cardoso, Flávio Vasconcelos, Filipa Araújo and Margarida Almeida a huge thanks

for the support and company along the year. Better that being in a great company is to be able

to work in a great environment for which you all provided ample support and made me feel always

welcomed and appreciative of the work I was doing. To Bosch as a company a thank you for

showing me a corporate environment which is very professional and at the same time where one

could find opportunities to express themselves.

To my family, for always being there for me every step of the way. To my mother, for always

looking after me. To my dad, for keeping interested in everything I do and try to achieve. To

grandparents, that sought to understand and showed genuine interest in the complicated terms

I would always talk about whenever they asked about my progress. To my brothers, for being the

greatest pain, but also the greatest companionship.

 A special thanks to my good friend Sérgio Ferreira for being a very important influence all

these years.

Thanks to all of those whom I was fortunate to cross paths with and made me the person I

am today!

iv

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used plagiarism or any

form of undue use of information or falsification of results along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

v

Resumo

A área automóvel desde a sua criação está repleta de novas invenções e inovações tendo

evoluído de sistemas puramente mecânicos para cada vez mais elétricos/eletrónicos (E/E). De

entre as várias novas inovações surgiu o X-by-Wire cujo objetivo é melhorar o desempenho e

segurança do veículo, num contexto onde as partes hidráulicas e mecânicas do sistema são

parcialmente substituídas por sistemas elétricos e/ou eletrónicos [1].

Um sistema Steer-by-Wire substitui um sistema de direção convencional trocando a direção

mecânica por uma completamente elétrica. É esperado por um destes sistemas dois serviços

principais: o controlo da direção das rodas de acordo com o pedido do condutor e que

proporcione uma força que emite o feedback que convencionalmente obtido quando se usa um

volante tradicional [2].

Quando se opera neste tipo de sistemas “autónomos” é obrigatório que eles sejam fiáveis

(fail-safe/fail-operational) sendo por norma classificados como sistemas de segurança critica de

controlo, onde um estado de falha num componente não pode levar a falha do sistema completo

[2]. Um destes sistemas é o Steering Angle Sensor (SAS) que calcula a posição e velocidade do

volante durante a sua operação e utilizando o protocolo CAN transmite esses dados para uma

unidade central para posterior processamento e tomada de decisões.

Com esta dissertação implementou-se um driver de comunicação CAN (Controller Area

Network) que suporta os protocolos CAN clássico e CAN-FD com flexibilidade quer nas suas

configurações como nas mensagens que envia e recebe. Importante também que cumpra com

as restrições elevadas de ambientes safe e tolerantes a falhas aproveitando as vantagens da

escolha deste protocolo. Para isto, aplicou-se normas internacionais tais como a ISO 26262

(Functional Safety Standard) com os seus dois pontos chave: Segurança (Safety) e Qualidade

Intrínseca [3] e outros guias como o MISRA. Complementando isto criou-se um GUI capaz de

decifrar, analisar e simular mensagens CAN neste contexto.

Palavras-chave: Protocolo CAN; Drivers de dispositivos; Sistemas embebidos; ISO26262;

Segurança Crítica;

vi

Abstract

The automotive field was always filled with new inventions and innovations. It started by being

completely mechanical and in recent years with successful iterations using many more electric

and electronic subsystems. Among all the innovations, the X-by-Wire has the objective of

improving the performance and safety of the vehicle, by replacing several mechanical and

hydraulic parts of the system with their electronic or/and electric counterparts [1].

A Steer-by-Wire system replaces the conventional direction car system by eliminating the

physical connection between the steering wheel and the wheels of a car by using electrically

controlled motors to change the direction of the wheels [4]. It is expected for the system to

guarantee two main services: the control of the wheels in accordance with the driver and that the

steering wheel produces a feedback force that is usual from a traditional steering wheel [2].

In this type of “autonomous” systems is mandatory for them to be fail-safe, whereby normally

are classified as critical safety control systems, defined by having a safe state where even if a

component fails the whole system does not crumble to dust [2]. One of these systems is the

Steering Angle Sensor, which calculates the position and velocity of the steering wheel during its

operation and by using the CAN protocol transmits the calculated data to a central unit for further

processing and decision making.

This dissertation has for its primary goal the implementation of a safe and flexible CAN

communication driver with the objective of fulfilling the high restrictions of safe and fault-tolerant

environments. Doing so by taking advantage of design standards and the CAN protocol.

Standards such as the ISO 26262 (Road Vehicles – Functional Safety) focused on Safety and

Intrinsic Quality and guidelines such as MISRA [3]. The driver must support both classical and

CAN-FD configurations as well any type of messages. Adding to the driver, a GUI is also to be

developed with display, analysis, and simulation capabilities for CAN messages.

Keywords: CAN Protocol; Device drivers; Embedded Systems; ISO26262; Safety-Critical;

vii

Table of Contents

Resumo v

Abstract vi

Table of Contents vii

List of Figures x

List of Tables xiii

Acronyms List xiv

Introduction 1

1.1 Contextualization .. 2

1.2 Motivation ... 2

1.3 Objectives ... 3

1.4 Dissertation Structure ... 3

State of the Art 5

2.1 Embedded Systems .. 5

2.2 Critical Safety in Embedded Systems... 6

2.2.1 Basic Concepts and Considerations .. 7

2.2.2 Design and Implementation .. 8

2.2.3 Test and Validation ... 8

2.2.4 ISO 26262 – Road Vehicle – Functional Safety ... 9

2.2.5 C programming language standards and guidelines 12

2.3 Communication protocols in Automotive .. 13

2.3.1 Communication principles in automotive ... 14

2.3.2 LIN Protocol ... 16

viii

2.3.3 FlexRay Protocol ... 18

2.3.4 CAN Protocol .. 20

2.4 Conclusions .. 27

System Specification 28

3.1 Project Requirements .. 28

3.2 System Architecture .. 32

3.3 Hardware Specification ... 35

3.3.1 Microcontroller ... 35

3.3.2 CAN Module ... 40

3.3.3 CAN Transceiver... 41

3.3.4 CAN Transceiverless ... 42

3.4 Conclusion ... 43

Implementation 44

4.1 Software Implementation .. 44

4.1.1 Development Environment .. 45

4.1.2 Software Guidelines .. 46

4.1.3 Software Layers .. 47

4.2 Software Workflow .. 49

4.2.1 State Machine .. 50

4.2.2 Initialization .. 51

4.2.3 CAN wake-up ... 52

4.2.4 Bus-off Event .. 55

4.2.5 Read and Write operations .. 56

4.3 CANoe Software .. 57

4.3.1 CANoe Environment ... 58

4.3.2 CANoe panels use cases .. 58

ix

4.4 Conclusion ... 62

Tests and Results 63

5.1 Message system validation .. 63

5.2 Bus-off event validation ... 68

5.3 Non-transceiver validation ... 68

5.4 Standby operations validation .. 69

5.5 Panels validation ... 71

5.5.1 Demonstration panel .. 71

5.5.2 Configuration panel .. 72

5.5.3 Calibration panel .. 74

5.5.4 Simulation panel .. 75

Conclusion and Future Work 78

6.1 Conclusion ... 78

6.2 Future Work .. 79

Appendix A – Panels GUI 81

References 84

x

List of Figures

Figure 2-1: Overview of the ISO 26262 series standards [26] .. 11

Figure 2-2: Classic V Model [32] ... 12

Figure 2-3: LIN message frame ... 17

Figure 2-4: FlexRay data frame [41] .. 19

Figure 2-5: Conventional Networking vs CAN Bus Networking [50] ... 21

Figure 2-6: Data rate relation with the bus line length .. 22

Figure 2-7: CAN Classic data frame .. 23

Figure 2-8: CAN remote frame .. 24

Figure 2-9: CAN Error frame ... 24

Figure 2-10: CAN-FD data frame ... 25

Figure 2-11: Steering wheels different implementations. With early implementations of a purely

manual steering wheel (5a) and future implementations using hydraulic parts (5b) and electronic

motors(5c) ... 26

Figure 2-12: Steer-by-Wire Steering ... 27

Figure 3-1: Representation of the relations between the system, software and hardware 32

Figure 3-2: AUTOSAR Partial System Stack ... 33

Figure 3-3: System Stack .. 34

Figure 3-4: S32K116 development board .. 37

Figure 3-5: S32K2TV development board .. 40

Figure 3-6: CAN transceiver .. 41

Figure 3-7: Transceiver with Wake-Up ... 42

Figure 3-8: Transceiver with Galvanic Isolation .. 42

Figure 3-9: Connection of CAN nodes without CAN transceiver [58] 43

Figure 4-1: S32 Design Studio (left) and MISRA (right) logos .. 45

Figure 4-2: CANoe logo ... 46

Figure 4-3: Project system stack folders .. 47

xi

Figure 4-4: CAN Driver State Machine ... 50

Figure 4-5: Initialization Flowchart ... 52

Figure 4-6: The wake-up process begins with configuration. There are two defined processes for

wake-up via pattern (6a) which requires no extra configuration and wake-up via frame (6b) 53

Figure 4-7: The standby process differs within the family S32Kxxx because of the number of cores

present in which one and the level of security enable in each one. Still the common ground starts

by disable all the peripherals and start application shutdown. .. 54

Figure 4-8: Flowcharts describing the wake-up processes in order to leave standby, via wake-up

frame and preconfigured messages (8a) and via wake-up pattern depicted in the ISO 11898:2-

2016 (8b) .. 55

Figure 4-9: Recover from Bus-Off flowchart ... 56

Figure 4-10: CAN main operations are the writing operation where there is the transmission of

data to the CAN bus (Figure 4-10a) and the complementing operation of reading throw the

reception of frames (Figure 4-10b) .. 57

Figure 4-11: CANoe Environment .. 58

Figure 4-12: Use case demonstration panel .. 59

Figure 4-13: Use case simulation panel .. 60

Figure 4-14: Use case calibration panel .. 61

Figure 4-15: Use case configuration panel .. 62

Figure 5-1: Test scenario for the S32K116 .. 64

Figure 5-2: Communication between the CANoe and the microcontroller 64

Figure 5-3 - Messages being transmitted at 2Mbps in the data phase and 500 kbps in the

arbitration phase .. 66

Figure 5-4 - Graphical representation of the average bit rate with different baud rates 67

Figure 5-5 - Transmission time for 8 Mbps baud rate and 500 kbps on a 8 byte payload and 16

byte payload respectively .. 67

Figure 5-6 - Bus-off event and subsequently recover from the bus-off 68

Figure 5-7 - No transceiver measure and differential CAN bus measure 69

Figure 5-8 - Message mirroring the message sent on the no transceiver communication 69

Figure 5-9 - Demonstration Panel and the analysed message .. 71

Figure 5-10 - Demonstration panel status and error indication ... 72

Figure 5-11 - Reconfiguration of the CAN bus line ... 73

xii

Figure 5-12 - Custom message to receive data from a new message 74

Figure 5-13 - Command requesting the software version ... 74

Figure 5-14 - Calibration and Decalibration of the sensor and its standard message 75

Figure 5-15 - Different stages of simulation ... 77

xiii

List of Tables

Table 2-1 - Automotive subsystems and influence of principal requirements 16

Table 2-2: Types of messages on LIN protocol .. 18

Table 3-1: Stakeholder Requirements ... 29

Table 3-2: System Requirements .. 31

Table 3-3: Differences between CAN modules ... 41

Table 5-1 - Latency of messages at different baud rates .. 65

Table 5-2 - Average data rates for different CAN velocities ... 67

Table 5-3 - Test scenario testing the standby operation ... 70

xiv

Acronyms List

ABS Anti-lock Braking System.

ACK Acknowledged.

ADC Analog to Digital Converter.

ADAS Advanced Drivers Assistant Systems.

ADR Adaptive Data Rate.

ASIL Automotive Safety Integrity Level

API Application Programming Interface.

AUTOSAR AUTomotive Open System ARchitecture.

CAN Controlled Area Network.

CAN-FD Controlled Area Network with Flexible Data.

CAPL Communication Access Programming Language

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

DLC Data Length Code.

DSP Digital Signal Processor.

DYN Dynamic Segment

ECU Electronic Control Unit.

ESP Electronic Stability Program

FTA Fault Tolerant Analysis.

GND Ground.

xv

GPIO General Purpose Input Output.

GUI Graphical User Interface.

HAL Hardware Abstraction Layer.

I2C Inter-Integrated Circuit.

IDE Integrated Development Environment.

ISO International Standards Organization.

ISR Interrupt Service Routine.

IP Intellectual Property.

LIN Local Interconnect Network.

MCU Microcontroller Unit.

MISO Master In Slave Out.

MISRA Motor Industry Software Reliability Association.

MOSI Master Out Slave In.

MOST Media Oriented Systems Transport.

NACK Not Acknowledged.

NIT Network Idle Time.

OEM Original Equipment Manufacturer

PIT Programmable Interrupt Timer.

RS-232 Recommended Standard 232.

RTOS Real Time Operating System.

SAS Steering Angle Sensor

SBF Synch Break Field.

SbW Steer-by-Wire

SCK Serial Clock.

SD Secure Digital.

xvi

SoC System on Chip.

SPI Serial Peripheral Interface.

SS Slave Select.

ST Static Segment.

SW Symbolic Window.

SWC Software Component.

SWD Serial Wire Debug.

UART Universal Asynchronous Receiver Transmitter.

USART Universal Synchronous Asynchronous Receiver Transmitter.

USB Universal Serial Bus.

TTL Transistor-Transistor Logic

1

Chapter 1

Introduction

The automotive industry has been subjected to an exponential evolution in technology nowadays.

Most of the advances seen in vehicles are the result of better electronics (hardware and software),

which consequently increase the complexity of those systems [5]. Where recent cars may contain

up to 80 ECUs (Electronic Control Units) and hundreds of Megabytes in Software [6]. All this

complexity is not free of faults, which can arise from many reasons, from natural causes to

mistakes made in the assembly process, for example. Eliminating all the events that could lead

a system to a failure state is at very least challenging if not impossible. However, with the usage

of fault-tolerant approaches, the system can be compliant with safety requirements. But how can

safety be measured? A safe system is one that must not harm people, not even put them in

dangerous situations. This hypothetic situation, often called residual risk, can be measured in

three factors [7]: Severity – The potential injury; Exposure – The probability of occurrence;

Controllability – The ability of the system to avoid the specified harm. These are the pillars in

which an ASIL (Automotive Safety Integrity Level) system must comply with to achieve the

standards regulated [7]. An ASIL system has a classification from A to D, where D is the stringent

one at the rigorous level.

This dissertation addresses the issue of fault-tolerant chip architectures for automotive

applications in a multiprocessor environment with lockstep. In lockstep architecture, two

processors execute the same code in a synchronized way, normally with one system clock cycle

apart. The outputs produced by both cores feed a checker unit, allowing it to identify possible

inconsistencies between them. If any of that is detected, then the system must recover itself to

a safe state and report the error, complying with the requirements of reliability and safety. The

mechanism studied since the end of the twentieth century for its safety achievements is

conducting the interest of the industry, especially the automotive one, because of its growth and

more restrict demands on safety.

2

Chapter 1. Introduction

1.1 Contextualization

Since its creation, the automotive field has been barraged with new inventions and innovations.

This led to improvements in the overall comfort and efficiency of vehicles all around. However

these commodities come at a price of complexity, having increased the number of ECUs

exponentially as well as the amount of data traded between them.

 The amount of data drove improvements on different communication protocols to

accommodate the larger loads. However not all data needs to be treated the same way as

protocols such as MOST address the transfer of video and sound data across the different

dedicated actuators, for example display screens and sound speakers. The requirements for

automotive communications depend on the subsystems. However they can be summarized by

fault tolerance, determinism, bandwidth, flexibility and security [8].

 To improve on those requirements protocols such as CAN were forced to improve, resulting

in a new improved version the CAN-FD. This new version increases the payload supported, the

maximum data rates, enhanced reliability with improvements on the cyclic redundancy check

and backward compatibility with CAN classic nodes in case it is required to mix both protocols.

 With such improvements, a system with CAN-FD can handle more data at a faster rate

increasing the number of applicable use cases, such as electric vehicles, ECU flashing, robotics,

trucks, buses, secure CAN implementations and ADAS with safe driving. A good example of

enhancing vehicle safety and performance is the implementation of X-by-wire systems. These

systems require hazard studies and fail-operational system architecture following safety and

reliability standards such as ISO26262.

1.2 Motivation

Safety is evermore present in everyday objects, it has become a necessity and mandatory for

commercial systems. This pushes the markets to develop and implement systems and

architectures fail-operational capable. Redundancy solutions and the rapid growth of the market,

create an immeasurable amount of systems that require to trade information. Part of it is crucial

information that requires safe and reliable communication protocols.

 In the automotive field there are several used communication protocols, each with strong

points and focused applications. Since the criticality of information for the radio is not the same

as the speed and direction of the wheels to the central unit for example. Also the increased

3

Chapter 1. Introduction

number of ECU in a car has increased drastically, could even top 80 per car. All this information

needs to be transferred and interpreted with different grades of safety.

 This is why it is important when devising an automotive project to clearly set the

communication protocol to be used and which design guidelines and standards to use. In order

to create clearness and objectiveness in the software developed.

1.3 Objectives

After taking into consideration the motivation, the final product of the dissertation is the creation

of critical safe middleware for a CAN driver to interface the user and the microcontroller, using

safety guidelines for the code, supporting the driver there will be the development of a GUI to

provide better testing capabilities and visualization of the capabilities of the working driver.

Therefore, the main goals of this dissertation are as follows:

• Analysis of CAN protocol, as a safe protocol;

• Development of CAN driver functional in the S32Kxxx NXP’s microcontroller family;

• Development of graphical interface capable of simulation, analysis, test and validation of

CAN;

• Develop a user-friendly graphical user interface;

• Software implementation following guidelines from MISRA and ISO 26262 standards to

achieve a safe system;

• Analyse and validation of data on the CAN interface;

• Tests and validation of the CAN driver.

1.4 Dissertation Structure

The following document is split into six chapters, it has a top-down approach where its structure

follows a logical order according to the development process that occurred during this Master’s

Thesis.

4

Chapter 1. Introduction

 The first chapter introduces the current technological concepts, referring to the context and

the motivation for the development of this project, as well as its objectives.

 The second chapter focus on all basic concepts integrated into this project or that influenced

it in different ways. Describing a more in-depth approach of developing critical safe software as

well as associated standards. It also grasps concepts on different communication protocols with

their diverse pros and negatives. Diving deeper into the used protocol of CAN and its close variant,

CAN-FD.

 The third chapter gives an overview of the system, and a further selection of which

components were chosen and the reasoning for those choices.

 The fourth chapter is divided into two sections corresponding to the hardware and software

implementations. It focuses on how this project was developed, and explains the path taken.

 Chapter five shows the tests that were made, along with some considerations about the

obtained results.

 Chapter six presents the main conclusions relative to this project, as well as future

improvements that can be made.

5

Chapter 2

State of the Art

This master’s dissertation is framed into the scope of safety in communication in Embedded

Systems, and as of such in this chapter there will be explanations about the essential concepts

about this theme.

The first section deals with concepts regarding embedded systems description. In the section

2.2, Critical Safety in Embedded Systems is addressed and explained in the context of the

master’s thesis, where important notions such as the ISOs (Standards) are explained. In the final

section concepts and explanations about communication protocols will be addressed, as well as

its implications, and which situations are applicable.

 In this chapter, there is a collection of technological views and discussions on the topics

previously mentioned varying in relevance for this dissertation.

2.1 Embedded Systems

Embedded systems cover a wide range of systems in our current world, as they crept into pretty

much every type of device designed by mankind. Even so it is acknowledged that an embedded

system is, in contrary to a general-purpose system, a system dedicated to performing a small

number of tasks, varying in complexity [9]. It can also be defined citing Michael Barr, as “A

combination of computer hardware and software, and perhaps additional mechanical or other

parts, designed to perform a dedicated function. In some cases, embedded systems are part of

a larger system or product” [10]. This means that the personnel computers are excluded from

being considered an embedded system, but even with the number of new CPUs growing per

year, around ninety-eight percent of all microprocessors manufactured are used in embedded

systems [11]. Its fast growth can be explained by several main reasons: they function as a

replacement for discrete logic-based circuits, provide functional upgrades, provide easy

maintenance upgrades, improves mechanical performance and others [12].

The case is that the need for embedded systems is growing every year as they have already

been applied in numerous fields, such as industrial control systems, information appliances,

6

Chapter 2. State of Art

communication equipment, medical instruments, intelligent instruments, and many others. As

processors become more powerful, electronic products become more complex, including

graphical user interfaces, communication networks, and databases [13]. Practical examples of

such are microwave ovens, cell phones, calculators, digital watches, etc. [10].

At the architectural level, an embedded system represents the interaction between hardware

and software elements, whose details maintained hidden in a way to have only information about

the behavioural and relational levels. These elements can be internally implemented in the

embedded system device or externally implemented interacting with the internal elements as well

as with the external environment [14].

2.2 Critical Safety in Embedded Systems

As electronic control systems increase in both complexity and control authority there must be a

commensurate increase in our ability to design and implement these systems safely. But a

completely “safe” software cannot be guaranteed, within a reasonable engineering effort [15].

The explosive growth in microprocessor technology as well as ever-increasing application

demands, has stimulated customers to demand increasingly higher levels of functionality and

performance in the systems they procure. The large or more complex design solutions, which

are delivered as a result pose complex safety and operational problems, and which are not

addressable by conventional "hardwired logic" approaches, as in the past. Where safety provision

is addressed purely in hardware, ALL potential hazards need to be identified in advance of the

actual event, and suitably allowed for in the system design (not the easiest of tasks in large or

complex systems). Also, the "law of diminishing returns" will apply in such hardware respects, in

that the more safety provision that is made in hardware, the greater the potential for the protective

mechanisms themselves to fail with time (and in turn the more backup circuits that will need to

be provisioned, etc.) [15].

Microprocessor-based control systems are now commonplace in vehicles. These systems

usually have a well-defined safe state. Many manufacturers and component suppliers are now

experimenting with systems whose failure can have much more serious consequences such as:

control by wire and supervisory systems, which can override the driver’s inputs: and complex

inter-connected systems where one failure can affect several others.

7

Chapter 2. State of the Art

The safety record of automotive electronic systems has been very good, but to maintain this

situation, the safety and reliability attained by these systems must increase at a rate equal to

their complexity [16].

As electronic control systems increase in both complexity and control authority there must be

a commensurate increase in our ability to design and implement these systems safely. The use

of common specifications, hardware and software are all seen as potentially hazardous for very

high integrity systems. Diversity is regarded as the best approach for providing the safety levels

required and the preferred approach is to provide this by utilizing checking and back-up systems

that are designed against a different requirement and have less functionality than the main

control system. In this way the integrity of these systems can be kept high at a reasonable cost

[17].

2.2.1 Basic Concepts and Considerations

As stated before is not possible to create a totally safe software no matter what the type or nature

of its development, as safety is as likely to be as much dependent upon the underlying hardware

or interaction with humans as upon any particular provision in software [15]. First, it is important

to define some concepts such as Safety Critical System [18] being a system in which any failure

or design error has the potential to lead to injury or loss of life, loss or severe damage to

equipment and/or property, extreme financial losses or serious environmental damage [19] [20].

Fault – An abnormal condition that occurs inside a system. These failures can be classified

depending on their persistence, where they can be transient, if they occur in a brief space of

time, or permanent, in the opposite situation. But software faults are always permanent, what

can vary it is their reproducibility, being divided into solid (hard or bohrbugs [21]) or elusive (soft

or heisenbugs [21]).

Error – It is defined by being a discrepancy between the value obtained by the system and

the theoretical value previously calculated. An error is also a part of the system state that may

cause a subsequent failure [22].

Failure – Results from the system having faults and errors, culminating in its inability to

provide a certain pre-determined function [22]. There are at least 3 sources of failure [16]:

• Random Failures: of electrical components, connection, wiring and mechanical

devices are amenable to statistical prediction and used to estimate hazard potential,

even though that task is not simple and failure probabilities can be produced;

8

Chapter 2. State of Art

• Systematic Errors: can occur in the system requirements, the hardware design or

the software design. They are not random, with the same initial conditions will result

in the same incorrect behavior. It results from human errors in the designing process

or the tools used in the process. The adoption of internationally agreed standards on

classification systems (e.g. ISO 26262) in order to minimize these types of errors and

liability claims;

• Intermittent Failures: failures that are hard to predict and depend on factors

outside the suppliers’ control, such as EMC (Electromagnetic Compatibility) or the

environment that the vehicle operates in. In a similar strategy as before the use of

internationally agreed test standard is advised.

In summary there is a tight relation between fault, error, and failure, where a fault is a defect,

an error is a corrupted state, and a failure is an event to be avoided [22].

2.2.2 Design and Implementation

Developing software for monitoring, control, or display of safety-critical functions is both

challenging and expensive. Software for when safety is taken into account is perfect for powerful

diagnostics and error handling techniques to be applied during run time. However, this requires

the software to be developed in a more disciplined and scientific manner. Using well specified

design and development policy is a necessity when intending to create safety systems, from the

language, operating systems, tools, platforms, targets and others.

Good development methods and practices at each and every stage of developing is required

to guarantee the quality and reliability of the system. The key concerns in software design are

uncontrolled complexity and undetected change from the expected result. Therefore, the

development methods and processes should aim at these issues.

Both can be addressed by different analytical techniques and rigorous configuration

management (underlays all that takes place through the development life cycle and extends to

subsequent operational and maintenance phases) and control procedures [15].

2.2.3 Test and Validation

Validation is the process of ensuring that the requirements are correct and complete. (Are we

building “the right house”?). Verification, on the other hand, is the process of ensuring that the

implementation satisfies the requirements. (Are we building “the house right”?) Validation of

9

Chapter 2. State of the Art

requirements can be accomplished by four processes: traceability, reviews and analysis,

simulation, and experience. Validation of requirements is expensive, but it is also money well

spent. Identifying and eliminating errors early in the life cycle is cheaper and reduces “risks” later

in the life cycle. Verification consumes almost 20-50 percent of the resources during the

development of safety-critical software. Suitable for system analysis are also proposed for

software analysis e.g. software FTA (fault tree analysis) [23].

Formal methods are extremely valuable by allowing precise mathematical analysis of

specifications and designs, enabling more rigorous examination and therefore certification.

Besides, they are ready for automation of test sequences and data. However, these methods can

be difficult to apply depending on the environment and difficult to understand. The extent of the

testing and validation process may depend on the safety certification expected to be achieved,

therefore developers to achieve successful results need to ensure a comprehensive metrics

policy, appropriate for their environment [15].

2.2.4 ISO 26262 – Road Vehicle – Functional Safety

ISO 26262 is an international standard focused on the safety of automotive electrical/electronic

systems (E/E systems). It is with that premise that the ISO guides the developed embedded

systems for road vehicles (e.g., cars, motorbikes, trucks, and other vehicles under the weight of

3000Kg) to be designed with an appropriate level of rigor for their intended application.

To understand what an appropriate level of rigor entails, it is necessary to first analyze the

two aspects of the system development that the ISO 26262 covers: Safety and Intrinsic Quality,

to a lesser extent. Where Safety focuses on ensuring that failures in the system software do not

lead to (external) conditions that could cause harm to people, Intrinsic Quality emphasizes 'good'

design, its simplicity, robustness, maintainability, testability, and others. In a design with high

Intrinsic Quality is expected for it to perform more safely, and therefore easier to be readily

demonstrable to be safe. [3]

However, no system is completely safe, but this standard has guidelines with the purpose of

avoiding and control failures, therefore reducing the risk of people getting injured and possibly

dying. To do this it has three pillars upon which is evaluated the risk and dangerous events [12]:

• Severity (S) – it is defined by the seriousness of the damage to one’s life. In which

S1 would be the lowest classification, with only light injuries, and S3 with be the

highest and worst category.

10

Chapter 2. State of Art

• Exposure (E) – it determines the probability of exposure to a dangerous situation.

And similarly, to the classification in severity, E1 would be the least probable exposure

and the E4 would be the highest.

• Controllability (C) – it is defined by the degree of control the driver has over its

automotive when there is a failure in the system, where having a C1 classification

means losing only a small part of the control and C3 a big loss in the vehicle control.

Weighing the classifications above it is possible to classify the risk of the system into a level

of ASIL. The Automotive Safety Integrity Level (ASIL) is a classification system defined by the ISO

26262 and evaluates the risk and dangerous events to a client [24]. It can be divided into four

classifications from ASIL A, where safety requirements for the system are the most basic to ASIL

D, where safety requirements are the most complex and severe. There is still a classification for

hazards that are identified as QM which do not dictate any safety requirements [25].

The standard is an extensive document that is divided into 12 parts, where in Figure 2-1

shows an overview of the standard ISO 26262:

➢ Part 1: Vocabulary;

➢ Part 2: Management of functional safety;

➢ Part 3: Concept Phase;

➢ Part 4: Product development at the system level;

➢ Part 5: Product development at the hardware level;

➢ Part 6: Product development at the software level;

➢ Part 7: Production, operation, service and decommissioning;

➢ Part 8: Supporting Processes;

➢ Part 9: Automotive safety integrity level (ASIL) – oriented and safety-oriented analysis;

➢ Part 10: Guidelines on ISO 26262;

➢ Part 11: Guidelines on application of ISO 26262 on semiconductors;

➢ Part 12: Adaptation of ISO 26262 for motorcycles.

11

Chapter 2. State of the Art

Figure 2-1: Overview of the ISO 26262 series standards [26]

From all these parts only some of them are relevant to the work in hands, where some take

the job of being more informative and others are intended to serve as guidelines when developing

the system and code. Part 1 defines the language of ISO 26262 its terms, abbreviations,

acronyms, and others [27]. Part 2 is a guide focusing on the management of safety requirements,

both from a project and organizational point of view [28].

Parts 4 and 6 are more directed for instructions during developing phases of the project,

where part 4 is concerned with systems-level development, which entails detailed requirements

analysis, system synthesis, functional and logical allocation, and system evaluation, validation

and verification [7] and part 6 it reflects on general topics for product development at the software

level and specification of the software safety requirements as well software architectural design ,

unit design and implementation, unit verification, integration and testing of the embedded

software [29].

And finally, part 9 gives requirements and guidance concerning safety analyses and in

particular, all aspects related to ASIL-oriented requirements [30]. And part 10 provides an

overview of the ISO 26262 series of standards, as well as giving additional explanations, and is

intended to enhance the understanding of the other parts of the ISO 26262 series of standards,

12

Chapter 2. State of Art

being of informative character only where its explanation expands from general concepts to

specific concepts [31].

Since the ISO 26262 is not a process, it only applies additional constraints to the process

already being implemented, focused on the system safety aspects using a classical V-model

(standard way of describing the relationship between development artefacts) framework to

organize its requirements, as shown in Figure 2-2.

Figure 2-2: Classic V Model [32]

2.2.5 C programming language standards and guidelines

There are one million different ways to program the same snippet of code. However when

working within a team all contributing to the whole project, there is a need to create certain rules

and guidelines, so each piece of code can be read and understood by all the members. That is

the reason to create documents such as the MISRA and coding rules by the AUTOSAR

organization.

The MISRA guidelines for C were first created in the year of 1998. Providing coding standards

for developing safety-critical systems. There are checking software capable of understanding if a

code was written used such guidelines, this ensures that the code produced is safe, secure,

reliable and portable for different compilers.

Nevertheless achieving MISRA compliance takes knowledge, skill, and the right tools [33]:

• Know the rules: You need to know the MISRA coding rules pertinent to which

version of C or C++ you’re using;

• Check your code constantly: Continuously inspecting your code for violations is

the best way to improve quality.

13

Chapter 2. State of the Art

• Set baselines: Embedded systems come with legacy codebases. By setting

baselines, you can focus on making sure your new code is compliant.

• Prioritize violations based on risk: You could have hundreds or even thousands

of violations in your code. That’s why it’s important to prioritize rule violations based

on risk severity. Some static code analysis tools can do this for you.

• Document your deviations: Sometimes there are exceptions to the rule. But when

it comes to compliance, every rule deviation needs to be well-documented.

• Monitor your MISRA compliance: Keep an eye on how MISRA compliant your

code is. Using a static code analyser makes this easier by automatically generating a

compliance report.

• Choose the right static code analyser: Choosing the right static code analyser

makes everything else easy. It takes care of scanning your code — new and legacy —

for violations. It prioritizes vulnerabilities based on risk.

The compliance with the MISRA goes deep into the development process and the development

team skills. From the framework, training, style guide, metrics, tool management, compiler and

its configuration, static analysis tools and their configuration and validation, and ending at the

run-time behaviour. All these steps are required to be at some degree evaluated for a software to

be compliant [34].

The MISRA C coding standard was originally written for the automotive industry. But today,

MISRA standards for C and C++ are widely used by embedded industries — including aerospace,

military defence, telecommunications, medical devices, and many others. Most of these

industries have a compliance requirement to use a coding standard [33]. There are many other

standards for programming in C, however, in the automotive field, there is a need to mention

about the specification of C Implementation Rules, from the AUTOSAR organization, which aims

to enhance software quality by avoiding the use of risky language constructs and ease portability

to other compilers or microcontroller platforms [35].

2.3 Communication protocols in Automotive

A communication protocol is defined by being a system of rules that allow two or more entities

to exchange information via any kind of variation of a physical quantity. The protocol defines the

rules, syntax, semantics and synchronization of communication and possible error recovery

14

Chapter 2. State of Art

methods [36]. However, only some protocols are automotive ready where safety is of the highest

importance, and that why protocols such as CAN, FlexRay, MOST, ethernet and LIN where born.

As mentioned above there are several automotive protocols and variations from the most

established ones, which makes it impossible to cover every single one of them. Because of that

only the most important ones and most similar in scope to the CAN protocol (which is the main

protocol that will be implemented in this thesis) will be briefly introduced.

2.3.1 Communication principles in automotive

Integral functionalities such as driver assistance and autonomous driving and others created

variable applications that demand information exchange between the ECUs, sensors and

actuators. These applications require diverse qualities of service, being data transmission rates

one of the most important [37]. Variable requirements in combination with large number of

communication nodes and limited bus capacities led to a functional separation of bus segments

into subsystems. Communication requirements addressed by different fieldbus technologies

include [8]:

• Fault-tolerance: fault tolerant (normally safety-critical) communications are built to

tolerate defective circuits, line failures and other types of failure. They do this by using

redundant hardware and software architectures. Moreover, this type of communication

should provide error containment.

• Determinism: deterministic communications guarantee timeliness, allowing to know

exactly the transmission time for a message. This is required for safety critical automotive

systems with strong real-time requirements. Examples of determinism are messages

being sent within precise time intervals or at predefined time instants.

• Bandwidth: normally there is a trade-off between required bandwidth, the cost of

providing such bandwidth and the level of subsystem integration possible with a single

shared communication bus. However, recent automotive communication protocols

provide high bandwidth allowing for the latest automotive subsystems working together

with high degree system integration.

• Flexibility: the ability of a communication protocol has to handle, for example, event-

triggered and time-triggered messages, the capacity to cope with varying loads and/or

number of messages and accesses into the network, scalability and extensibility of a

network.

15

Chapter 2. State of the Art

• Security: guarantee the security of the system (i.e. no authorized accesses to the

system are possible) in case of the communication is reachable from the outside of the

automotive, especially in diagnostics tools, wireless connections and telematics.

In an automotive system there are several subsystems that rely on networking with different

and defined jobs. Of all automotive subsystems there are eight typical types that can be

distinguished [8]:

• Chassis systems: part of the vehicle active safety systems which require feedback

control. Systems such as ESP, designed to assist the driver in over-steering, under-

steering and roll-over situations, and ABS, designed to help the driver maintain

steering capabilities and avoid skidding during breaking.

• Air-bag systems: part of vehicle passive safety systems responsible for the

operation of the airbags in a vehicle. From the sensors that detect abnormal situations

to the appropriate response depending on the type of situation.

• Powertrain: is the set of parts responsible for taking power from the engine of the

vehicle to the driving axis, passing through the gear box. This engine control oversees

coordination of fuel injection, engine speed, valve control, cam timing and others.

• Body and comfort electronics: these types of systems normally rely on driver

interaction, are not safety-critical and require discrete control.

• X-by-Wire: subsystems that replace hydraulic and mechanical parts with electronics

and computer (feedback) control systems. For example, steer-by-wire, shift-by-wire,

throttle-by-wire, and break-by-wire.

• Multimedia and infotainment: systems include for example, car stereos,

speakers, GPS, monitors, video games, voice processing, HMI, Internet connectivity

etc.

• Wireless and telematics: intercommunication of wireless devices and telematics

functions such as traffic information, fleet management systems, maintenance

systems and anti-theft systems.

• Diagnostics: diagnosing of components and properties, service and maintenance

with the possibility of downloading and updating software.

With an overview about the subsystems and the main requirements it is possible to map the

level for each requirement to a subsystem, in the

16

Chapter 2. State of Art

 Communication requirements

Subsystem Fault-tolerance Determinism Bandwidth Flexibility Security

Chassis Yes Yes Some No No

Airbag Yes Yes Some No No

Powertrain Some Yes Yes Some No

Body and Comfort No Some Some Yes No

X-by-Wire Yes Yes Some No No

Multimedia /

Infotainment

No Some Yes Yes No

Wireless / Telematics No Some Some Yes Yes

Diagnostics No Some No Yes Yes

Table 2-1 - Automotive subsystems and influence of principal requirements

A segmented topology (divided by subsystems or partial subsystems) brings great advantages

in the dependability of the communication for critical applications:

• Only a small number of components is accounted and interconnected by a single

segment.

• Every single bus segment can be configured in a way that is exactly matching the

specific application requirements.

On the other hand, the application functions of the vehicles become more complex and require

information exchange across several bus segments. This leads to an additional load for the ECU’s

acting as gateways between bus segments [37].

2.3.2 LIN Protocol

The LIN protocol was created in 1990, by the LIN Consortium and counted with the participation

of automotive manufacturers such as BMW, VW, Audi, Volvo Mercedes-Benz, Volcano Automotive

and Motorola. Its last iteration and standardization occurred in 2016 with the release of ISO

17987:2016 [38].

 LIN bus works as a supplement to CAN bus. It offers drastically lower costs at the expense of

lower performance and reliability, where fault tolerance is not critical. It uses a master-slave

implementation up to 16 slaves with a single 12V wire (plus ground) based on ISO 9141 (K-line)

physical layer. Achieving maximum speeds of 20kbps and bus length distances up to 40 meters.

17

Chapter 2. State of the Art

 LIN protocol supports wake up, sleep, and time-triggered scheduling with guaranteed latency

time operations with variable data length (1 to 8 bytes). For safety it includes error detection and

checksums.

 The LIN protocol has seen an increase in the number of nodes in the automotive field being

sued in door systems, windshield wiper motors, rain sensors, headlight levelling motors, signal

indicators and many others. It also started gaining traction in non-automotive applications, such

as remote switch panels, washing machines, dryers, printers and many other applications and

devices [39].

 A LIN frame consists of a header and a response part. Only the master can to initiate

communication by sending the header part of the frame. If the master wants to send data to the

slave it also sends the response, otherwise the master is requesting data and the slave send the

response part [40].

Figure 2-3: LIN message frame

 On the Figure 2-3 it is possible to see the mentioned LIN message frame structure.

• Synch Break Field (SBF) - acts as a “start of frame" notice to all LIN nodes on the

bus, is composed of synch break and the synch break delimiter.

• Synch Field - The 8 bit Sync field has a predefined value of 0x55 (in binary,

01010101). This structure allows the LIN nodes to determine the time between

rising/falling edges and thus the baud rate used by the master node.

• Identifier - The Identifier is 6 bits, followed by 2 parity bits. The ID acts as an

identifier for each LIN message sent and which nodes react to the header. Depending

on the ID the slaves can react differently:

o Ignore the subsequent data transmission.

o Listen to the data transmitted from another node.

o Publish data in response to the header.

• Data – when a slave is polled data is sent to the master and since LIN 2.0 the data

length depends on the ID range (ID 0-31: 2 bytes, 32-47: 4 bytes, 48-63: 8 bytes).

18

Chapter 2. State of Art

• Checksum - checksum field ensures the validity of the LIN frame.

To conclude the LIN topic, it is required to talk a little about the six different types of frames

that exist, as shown in the Table 2-2 below.

Unconditional Frames

The default form of communication where the
master sends a header, requesting information
from a specific slave. The relevant slave reacts
accordingly

Event Trigger Frames

The master polls multiple slaves. A slave responds
if its data has been updated, with its protected ID
in the 1st data byte. If multiple respond, a collision
occurs and the master defaults to unconditional
frames

Sporadic Frames

Only sent by the master if it knows a specific slave
has updated data. The master "acts as a slave"
and provides the response to its own header -
letting it provide slave nodes with "dynamic" info

Diagnostic Frames

Since LIN 2.0, IDs 60 and 61 are used for reading
diagnostics from master or slaves. Frames always
contain 8 data bytes. ID 60 is used for the master
request, 61 for the slave response

User Defined Frames ID 62 is a user-defined frame which may contain

any type of information

Reserved Frames Reserved frames have ID 63 and must not be

used in LIN 2.0 conforming LIN networks
Table 2-2: Types of messages on LIN protocol

2.3.3 FlexRay Protocol

FlexRay is an automotive network communications protocol that was developed by the FlexRay

Consortium (by BMW, Bosch, Daimler-Chrysler and Philips in 2000) [41] to govern on-board

automotive computing [42]. It is designed to be faster and more reliable than CAN and TTP, but it is

also more expensive. The FlexRay consortium disbanded in 2009, but the FlexRay standard is now a

set of ISO standards, ISO 17458-1 to 17458-5. It supports communications up to 10Mbits/s [43], it

uses a time-triggered communication method with characteristics as deterministic and fault-tolerant

with its two independent data channels. Except for x-by-wire systems, it is also interesting for the

safety-critical and real-time system-related field in advanced automotive control applications.

19

Chapter 2. State of the Art

Figure 2-4: FlexRay data frame [41]

FlexRay ensures the transport of extraordinarily large quantities of data within the active

chassis system in an extremely short period and reliably between the central control module and

the ECUs [44]. And for that it uses depicted cycles. Where one communication cycle consists of

four segments: static segment (ST), dynamic segment (DYN), symbol window (SW) and network

idle time (NIT) as shown in Figure 2-4 [41].

A FlexRay frame consists of three segments: header segment, payload segment and trailer

segment as represented in Figure 2-4. The first five bits are defined as the basic features of the

frame. Frame ID (11 bits) is defined as the slot position in the static segment. For the dynamic

segment, frame ID is used to define the priority of the frame: a lower identifier indicates higher

priority. Payload length (7 bits) is defined as the data length (two times the payload length minus

the number of data bytes). Header CRC (11 bits) is a cyclic redundancy check, which is computed

over the Sync frame indicator (1 bit) is the serial number of the frame defined locally in the node.

Payload segment (0 to 256 bytes) contains main data. Trailer segment (24 bits) is for cyclic

redundancy check, which is computed over the header segment and the payload segment [41].

20

Chapter 2. State of Art

2.3.4 CAN Protocol

To overcome the limitations and the weakness of centralized control system fieldbus

communication systems were developed answering difficulties such as modification/extension,

extensive wiring and high installation costs. The limitation of fieldbus systems lies mainly in

transmission expansion, a limited variety of topologies and transmission media. These limitations

can be overcome by a network-based control system that distributed real-time control is possible

[45].

The CAN protocol was originally developed to satisfy distributed real-time control needs in

automotive applications. The use of CAN technology has been extended to other custom

applications, including industrial control applications. Various application layers have been

developed with Specifications Specifically oriented to industrial and process control applications,

control networks for heavy-duty trucks and buses, distributed control Systems, and control

networks for cars [46].

The CAN technology is described by six ISO documents:

• Part 1: Data link layer and physical signaling;

• Part 2: High-speed medium access unit;

• Part 3: Low-speed, fault-tolerant, medium-dependent interface;

• Part 4: Time-triggered communication;

• Part 5: High-speed medium access unit with low power mode;

• Part 6: High-speed medium access unit with selective wake-up functionality.

However, for the beginning there is only the need to focus on the first three parts. Where the

Part 1 describes the CAN protocol, it specifies the Classical CAN frame format and the newly

introduced CAN Flexible Data Rate Frame format. The Classical CAN frame format allows bit

rates up to 1 Mbit/s and payloads up to 8 byte per frame. The Flexible Data Rate frame format

allows bit rates higher than 1 Mbit/s and payloads longer than 8 byte per frame [47]. It also

covers the logical link control (LLC) sub-layer, medium access control (MAC) sub-layer and

physical coding (PLS) sub-layer. Describing up to three implementation methods fusing the use

or not of the standard CAN with CAN flexible.

Part 2 specifies the high-speed physical media attachment (HS-PMA) of the controller area

network (CAN), a serial communication protocol that supports distributed real-time control and

multiplexing for use within road vehicles. This includes HS-PMAs without and with low-power

21

Chapter 2. State of the Art

mode capability as well as with selective wake-up functionality [48]. Finally, Part 3 [49] specifies

characteristics of setting up an interchange of digital information above 40 kBit/s up to 125

kBit/s. This part of ISO 11898 describes the fault tolerant behavior of low-speed CAN

applications, and parts of the physical layer according to the ISO/OSI layer model.

A CAN network consists of several CAN nodes which are linked via a physical transmission

medium (CAN bus). In practice, the CAN network is usually based on a line topology with a linear

bus to which several electronic control units are connected via a CAN interface. The passive star

topology may be used as an alternative [50].

Figure 2-5: Conventional Networking vs CAN Bus Networking [50]

A CAN bus communication has solid foundations that lay on some very important principals

[50]:

• Decentralization - Safety-critical applications, such as those in the powertrain area,

place severe demands on a communication system’s availability. So, it would be

disadvantageous to assign responsibility for bus distribution to just a single bus node.

Failure of this vulnerable bus node would cause all communication to fail. A much more

elegant solution is to decentralize bus access, so that each bus node has the right to

access the bus.

• Event-Driven - That is why a CAN network is based on a combination of multi-master

architecture and line topology: essentially each CAN node is authorized to place CAN

messages on the bus in a CAN network. The transmission of CAN messages does not

follow any predetermined time sequence, rather it is event-driven. The communication

channel is only busy if new information needs to be transmitted, and this allows for very

quick bus accesses.

22

Chapter 2. State of Art

• Receiver-selective addressing - A method of receiver-selective addressing is used in

a CAN network to prevent dependencies between bus nodes and thereby increase

configuration flexibility: Every CAN message is available for every CAN node to receive

(broadcasting). A prerequisite is that it must be possible to recognize each CAN message

by a message identifier (ID) and node-specific filtering. Although this increases overhead,

it allows integration of additional CAN nodes without requiring modification of the CAN

network.

To ensure a high level of availability and reliability of the information being transferred in the

CAN bus there are also several techniques applied to its protocol. And so, to detect corrupted

messages, the CAN protocol defines five mechanisms: Bit Monitoring (every bit sent is

automatically read from the bus line to ensure compatibility), Form Check (monitoring of the

message format), Stuff Check (monitoring of the bit coding), ACK Check (evaluation of the

acknowledgement) and Cyclic Redundancy Check (verifying the checksum). The bit

monitoring and ACK check error detection mechanisms are performed by the sender.

Independent of acceptance filtering, the receivers perform the form check, stuff check and cyclic

redundancy check.

The use of a single line for every node means that every node needs to be able to respond

within a specific time frame defined in CAN 2.0. Thus, there is a maximum bus line length that

each baud rate can have, this relation is represented in the Figure 2-6.

Figure 2-6: Data rate relation with the bus line length

23

Chapter 2. State of the Art

 CAN Classic

CAN classic is the first iteration of the CAN protocol before the development of CAN-FD. With its

ISO’s described in the previous section it can support baud rates up to 1Mbps and really slow

communications in order to increase range of the network. It also supports different types of

message frames depending on the objective of the message.

 The CAN data frame is the most important frame since it is the one responsible the

transmission of data between different nodes. It is in this frame that different aspects of the frame

are defined, such as the message length and the type of ID. Each segment has its proper name

and different functions, as shown in Figure 2-7:

• Start of frame (SOF);

• Identifier (ID) can either have 11 or 29 bits long depending on being a standard or

extended ID message where lower values have higher priority;

• Remote Transmission Request (RTR) indicates whether a node sends data or

requests dedicated data from another node;

• Control Field (CTRL) contains the Identifier Extension Bit (IDE) and the Data Length

Code (DLC) that specifies the length of the data bytes to be transmitted (0 to 8 bytes)

and the reserved bit for future improvements to the protocol;

• CRC Field containing a fifteen bit cyclic redundancy check code used to ensure data

integrity;

• Acknowledge Field (ACK) indicates that at least one node in the network which has

acknowledged and received the data correctly;

• End of Frame (EOF);

• Inter Transmission Message (ITM);

Figure 2-7: CAN Classic data frame

A CAN remote frame are used in polled networks with the objective of requesting a particular

message to be put on the message. However there it requires that a specific node on that network

to be ready to receive this type of message [51]. The message layout is the one in Figure 2-8.

24

Chapter 2. State of Art

Figure 2-8: CAN remote frame

The CAN error frame is a special frame that is sent to the bus when a frame has been detected

to have an error (one or multiple of the described above in section 2.3.420). This type of frame

will cause an error to every node to guarantee that the previous transmitted frame encountered

an error and the network is notified.

 CAN-FD

CAN with flexible data rates was the response from the CAN protocol to answer automotive

harsher bandwidth requirements and explosion in data in vehicles. Keeping the strengths of CAN

but improving the throughput up to six times and diminishing the protocol overhead. To achieve

this there were made some small changes to the layout of the data frame (shown in Figure 2-10),

while keeping the error frame the same and removing the support for the remote frame, the

notable changes to its layout are the addition of different bits and the function change of others:

• Remote Request Substitution (RRS) since remote frames are not supported at all

this bit is always dominant (“0”).

• Flexible Data Frame (FDF) is the bit indicating the use of CAN FD data frame.

• Bit Rate Switch (BRS) can be dominant (“0”), meaning that the CAN FD message

data is sent at the arbitration rate or that is sent at a higher bit rate.

• Error Status Indicator (ESI) bit is by default dominant (“0”) or error active. If the

transmitter becomes error passive is indicated by being recessive (“1”).

Figure 2-9: CAN Error frame

25

Chapter 2. State of the Art

Figure 2-10: CAN-FD data frame

 Other improvements can be described in terms of [52]:

• Increased Length – support up to 64 bytes per data frame reducing the protocol

overhead and improving the data efficiency from around 50% to up to 90%.

• Increased Speed – support for dual bit rates one for the arbitration (nominal) up to

1Mbps and the data bit rate that supported up to 5Mbps by the ISO, however can achieve

higher speeds depending on the network topology and transceivers.

• Better reliability – improvements of the cyclic redundancy check which lower the risk

of undetected errors.

• Smooth transition – CAN and CAN FD ECUs under some specific conditions which

allows for a certain integration of CAN FD nodes making it less expensive to transition

for OEMs.

 CAN Applications

Recently, in many systems of various application areas, such as airplanes, cars, building

automation, and industrial automation systems, the network-based control system using fieldbus

has been introduced. The network-based control system is usually composed of controllers,

sensors, and actuators. The network-based control system can execute efficiently mutual

functions between network components, such as multiple real- time controls and the exchange

of information. Also, sensor signals and control signals generated by the network components

are required to be transmitted in real-time to the corresponding network nodes [15] [23].

And it was among this necessity that the development of systems X-by-Wire started more than

two decades ago, first within the military then it was adapted to commercial airplanes and only

more recently into terrestrial vehicles [51]. The throttle-by-Wire system is a system that has been

widely accepted by the automotive industry in contrast to the Brake-by-Wire and Steer-by-Wire

systems that only brands like Mercedes and Toyota have decided to integrate these technologies

into a small group of models of their cars. All these systems use backup strategies so that in the

event of a main system failure, a secondary system can be entered to ensure the task is

performed.

26

Chapter 2. State of Art

To fully grasp what is a Steer-by-Wire system, one must go back to more conventional systems.

The manual steering system, shown in Figure 2-11, is the oldest form of steering where the

steering wheel controls are mechanically used to drive the front wheels [52]. However, it is

particularly hard to maneuver. Improvements come in the form of what is now called the power

steering, shown in Figure 2-11. While still giving enough feeling of the road it made maneuvering

much easier. These make use of a hydraulic unit to assist the driver in turning moments of the

steering wheel. When the difference between the measured steering wheel torque (driver

direction) and wheel torque is greater than a certain value, hydraulic fluid is released into the

system, making steering more comfortable. Currently, hydraulic systems are mostly used by

trucks or heavy vehicles [53], but most land vehicles use electric steering [52]. This is very similar

to the hydraulic system but uses an electric motor to adjust the torque.

Figure 2-5a: Manual steering [54] Figure 2-5b: Hydraulic power

steering [55]

Figure 2-5c: Electric power

steering [55]

Figure 2-11: Steering wheels different implementations. With early implementations of a purely manual
steering wheel (5a) and future implementations using hydraulic parts (5b) and electronic motors(5c)

The attempt to replace the traditional steering system with the SbW system occurs in the 1990s

[52]. A traditional SbW system can be subdivided into three subsystems, shown in Figure 2-12: hand

wheel, front tires and electronic control unit [51]. Where in the hand wheel there is the responsibility

of measuring the steer angle and providing feedback to the driver of the feeling of the road. The

second subsystem consists of an angular sensor and a motor responsible for changing the direction

of the front wheels. The last subsystem concerns the ECU, which has hardware and software

components capable of analysing incoming data and making decisions regarding vehicle steering.

This is just a possible application where the transmission and assurance of the data transfer is crucial

for the correct operation of the whole system.

27

Chapter 2. State of the Art

Figure 2-12: Steer-by-Wire Steering

 Other important applications brought by the CAN FD are in Electric Vehicles since their

powertrains require far higher bit rates with added complexity with new control units related to

the DC/DC inverter, battery, charger, range extender and others. Ability to ECU flashing with

higher bit rates that allow for software updates and upgrades via CAN. Applications in real time

robotics such as multiple axis arm movements transitioning from CANOpen to CAN FD with its

increased efficiency. Increasingly, Advanced Driver Assistance Systems (ADAS) are being

introduced in passenger cars and commercial vehicles. This pressures the bus load of Classical

CAN, yet ADAS is key to improving safety. Here, CAN FD will be key to enhancing safe driving in

the near future. And the ability to prevent hacks on the CAN buses by securing CAN Bus by

implementing CAN FD authentication via the Secure Onboard Communication (SecOC) module

may be a key roll-out driver.

2.4 Conclusions

This chapter gave an overview of topics related to development practises in embedded systems

for safety and reliability. It also dove deep into different protocols of communication with an

emphasis on automotive and fault-tolerant protocols with different safe guards. It ended with an

understanding of CAN protocol and its successor the CAN-FD protocol which are the main focus

of this dissertation.

 To summarize, this chapter builds the basic blocks to understand the future decisions made

during the creation of the dissertation, as well as, the guidelines and standards used in it, to

ensure a reliable and safe communication driver.

28

Chapter 3

System Specification

Chapter 2 describes technology available in safe embedded communication and its principles. It

also describes methods and requirements for its development and testing stages.

 To add context, the main goal of this dissertation is to develop a safe driver of CAN

communication following standard guidelines, which can be used in any type of application with

the mentality of plug-and-play.

 This chapter will describe all the design, architecture, and specification of the system. Starting

by describing all requirements and constraints required by the stakeholder and further down the

implications they have on the requirements of the system. Followed by the detailed AUTOSAR

based system architecture and its brief description and explanation. Finally, the last part of this

chapter describes all the hardware used and its possible variations supported.

 Summarizing, taking in consideration the principles studied in Chapter 0 it is given a general

overview of the whole system architecture.

3.1 Project Requirements

To properly design and conceive the system, it is crucial to define all requirements and

constraints in advance, as it is essential to fulfil them for the correct operation of the system. The

project requirements are divided into two groups: the stakeholder group that defines the basis of

the project and facts as the basis for the second group of system requirements, with more specific

and clear requirements.

29

Chapter 3. System Specification

Stakeholder Requirements

ID Description Priority Owner

SKH-1. CAN driver shall be created to fit in an

AUTOSAR based system architecture with

Steering Angle Sensor (SAS)

High Bosch

SKH-2. The CAN driver shall be implemented within

the family of the NXP devices S32Kxxx

High Bosch

SKH-3. The GUI shall be created using CANoe Vector

tool and called LWS-Demo Panel

Moderate Bosch

SKH-4. The GUI shall be composed of several

panels, being able to do demonstrations,

configurations, simulations and calibrations

for the Steering Angle Sensor (SAS)

Moderate Bosch

SKH-5. The GUI shall be able to receive, send and

analyse CAN frames

Moderate Bosch

Table 3-1: Stakeholder Requirements

System Requirements

ID Description Type
Derived

From

SYS-1. The system shall follow the AUTOSAR Stack name

designation

Architecture SKH-1

SYS-2. The system shall be composed of a microcontroller

(CAN capable), a sensor to provide data and a

physical bus line

Architecture SKH-1

30

Chapter 3. System Specification

SYS-3. The transceiver shall differ depending on the

microcontroller used

Architecture SKH-2

SYS-4. The system shall support the use of CAN

transceivers or no CAN transceiver operations

Hardware SKH-2

SYS-5. The system shall be most independently possible

from the transceiver used

Hardware SKH-1

SYS-6. The software layers above MCAL shall be work

independently of it and therefore be universal for

every devices

Software SKH-1

SYS-7. The software shall support sleep and stop operations Software SKH-1

SYS-8. The software shall support wake-up from frame,

pattern and interrupt

Software SKH-1

SYS-9. The software shall support polling and interrupt

operations

Software SKH-1

SYS-10. The software layer of the transceiver shall isolate the

operations for the transceiver configuration and

operation.

Software SKH-1

SYS-11. The software shall be able to handle bus off event

with a measured time frame

Software SKH-1

SYS-12. The software shall support Classic CAN and CAN FD Software SKH-1

SYS-13. The software shall support messages from 0 to 64

bytes

Software SKH-1

SYS-14. The software shall support any message matrix and

format within the size range

Software SKH-1

31

Chapter 3. System Specification

The stakeholders are responsible to form the basis of the system requirements, as well as the

system validation. The whole GUI, named LWS-Demo Panel, has the intent of demonstration,

simulation and tests, with the help of Vector tool CANoe as stated in the requirements SKH-3,

SKH-4 and SKH-5 . It is possible to demonstrate the current steer angle or the different gear

positions and their respective angles. Other important tasks are pre-configured messages to

change the operation mode, sensor calibration commands, real-time CAN configurations,

message filters and others.

The choice of the microcontrollers done previously comes as a requirement of the project,

which means that all the features to be implement are directly or indirectly affected by this former

decision (SKH-2). But since it is the same family means that the CAN controller in each device

will be similar, resulting in only some adjustments for the MCAL which is the most dependent

layer of the physical hardware implemented (SKH-2).

The decisions done by the stakeholders affect to some degree all the system requirements.

The stack of the AUTOSAR architecture inspired the System Architecture stack with a normal

CAN bus line (SKH-1). This physical layer will be dependent on if there are transceivers being

used or if an approach without transceivers was chosen, both versions supported.

SYS-15. The GUI shall have the demonstration panel as the

main panel

GUI SKH-3

SYS-16. The GUI shall support Classic CAN and CAN FD

frames

GUI SKH-5

SYS-17. The GUI shall be able to simulate a working

communication

GUI SKH-4

SYS-18. The GUI shall be able to reconfigure the CAN bus

while running

GUI SKH-4

SYS-19. The GUI shall have messages for calibration,

message type, manage CAN Power Boxes and

software version.

GUI SKH-4

Table 3-2: System Requirements

32

Chapter 3. System Specification

Onto the software, there are behaviours that are isolated for each layer, for example, the

transceiver software component is responsible for the configuration and preservation of operation

of the transceiver used (SYS-5). Since there are CAN bus transceivers with very different

behaviours and supported features, ranging from simple conversions to CAN high and low lines

to error detection, selective wake up, “ground shift detection” and many other features. It also

must support different type of message with different payloads in Classic CAN and CAN FD (SYS-

12). The handling of certain errors is a crucial and mandatory feature in which the bus off stands

out. This operation is of crucial control, from its detection to the recovery of the CAN controller

where the time it takes to go from the loss of operation to reinstating communication must be a

very well-timed event, depending on the different application (SYS-11).

Following the stack, the bottom layer is where data and errors are stored and caught.

Afterwards, they are propagated to the upper layers, where the decision for what to do with the

errors and data is done and afterwards broadcasted downwards until the bottom layer. It falls

on the software to fill any shortcomings of the hardware, but also to keep it in control

be either functionalities or energy power efficiency. For this the driver supports sleep and stop

operations as well different wake-up methods (either be pattern, frame or interrupt) even if the

CAN controller does not support wake-up there are solution of transceivers that fit that roll (SYS-

7 and SYS-8).

Figure 3-1: Representation of the relations between the system, software and hardware

3.2 System Architecture

As mentioned in the preceding sections, the goal is to develop the code (firmware) for a CAN

communication protocol capable of handling end-to-end communication, from receiving, sending

and other different features, such as wake up on CAN. Taking into consideration the previous

study and all the requirements, it is possible to define and visualize the system components.

Firstly, the system as most embedded systems are divided into two major layers: the hardware

33

Chapter 3. System Specification

layer and the software layer. The full system stack, containing all the different layer divisions and

elements, is depicted in the Figure 3-2. The different elements that compose the hardware layer

of the system are the microcontroller and the transceiver or capable layer for communication

that will be addressed after this.

Above this, there is the software layer. It is the microcontroller that will interface the hardware

and the software layers, and thus will contain all the software elements. The software layer will

follow closely the stack from AUTOSAR, the reasoning for this is because is a software stack that

was already built for having different layers for communications and obviously many other drivers.

Above the “AUTOSAR layer” there will be the application layer. This layer normally holds the

“users” configurations as well as other user applications.

Figure 3-2: AUTOSAR Partial System Stack

▮SL (Service Layer)

▮CDD (Complex

Device Drivers)
▮ECUAL (ECU

Abstraction Layer)
▮MCAL

(Microcontroller
Abstraction Layer)

34

Chapter 3. System Specification

The actual stack used for the software application was divided into the hardware layer and

the software layer. Starting from the top the software layer was divided into two sub-layers, the

upper one, is where lies the configuration done by the user and other software components that

interact with sublayers, such as function wrappers. Function wrappers are APIs that serve to use

basic and important functionalities of the CAN driver with ease, a good example would be the

printf() function that is an abstraction layer to serial communication, where with only a function

it is possible to send a message via COM without the hassle of configuring everything till then.

The bottom software layer starts with the service layer responsible for the management of the

state of the CAN controller and software, as for the Network Management it is more responsible

for the node management and how is the connection to it currently. Under this layer lies the

ECUAL responsible to interface the upper layers with the MCAL and with detailed configurations

about the transceiver. Finally, the MCAL where the messages are transmitted, received, and

errors are handled.

The hardware layer is composed of the microcontroller where the software runs and

more specifically the CAN Module (with the CAN controller) and the CAN transceiver or physical

layer responsible for the proper propagation of the CAN frames.

Figure 3-3: System Stack

35

Chapter 3. System Specification

3.3 Hardware Specification

 After describing the project requirements and the system architecture and stack, the

Hardware Specification envisions to provide more detailed information about the hardware

components of the system. As seen in Figure 3-3, the hardware layer is composed of MCU, and

below it lays the two main components for CAN communication. The CAN module responsible

for sending the message in the correct format as well as validating messages and their form,

close to it there is the CAN physical layer. The physical layer can be defined into two types by the

use of transceivers to create a differential two-wire communication bus line or by the non-use of

transceiver, creating a simpler one-wire communication. This section will have a top-down

approach from the MCU to the hardware responsible for the communication itself.

3.3.1 Microcontroller

The microcontrollers used were from the family of NXP microcontroller S32Kxxx, more

specifically the S32K116 and S32K2TV (Test Vehicle for the next generation).

The S32K116 (shown in Figure 3-4) is a 32-bit general-purpose automotive microcontroller

based on the Arm Cortex-M0+ core, with several key features.

• Operating characteristics:

o Voltage range: 2.7 V to 5.5 V

o Ambient temperature range: -40 °C to 105 °C for High Speed RUN mode, -40

°C to 150 °C for RUN mode

• Arm™ M0+ core, 32-bit CPU

o Supports up to 112 MHz frequency (HSRUN mode)with 1.25 Dhrystone MIPS

per MHz

o Arm Core based on the Armv7 Architecture and Thumb®-2 ISA

o Integrated Digital Signal Processor (DSP)

o Configurable Nested Vectored Interrupt Controller(NVIC)

o Single Precision Floating Point Unit (FPU)

• Clock interfaces

o 4 - 40 MHz fast external oscillator (SOSC) with up to 50 MHz DC external square

input clock in external clock mode

o 48 MHz Fast Internal RC oscillator (FIRC)

36

Chapter 3. System Specification

o 8 MHz Slow Internal RC oscillator (SIRC)

o 128 kHz Low Power Oscillator (LPO)

o 32 kHz Real Time Counter external clock (RTC_CLKIN)

• Power management

o Low-power Arm Cortex-M0+ core with excellent energy efficiency

o Power Management Controller (PMC) with multiple power modes: HSRUN, RUN,

STOP, VLPR, and VLPS

o Clock gating and low power operation supported on specific peripherals

• Memory and memory interfaces

o Up to 2 MB program flash memory with ECC

o 64 KB FlexNVM for data flash memory with ECC and EEPROM emulation

o Up to 256 KB SRAM with ECC

o Up to 4 KB of FlexRAM for use as SRAM or EEPROM emulation

o Up to 4 KB Code cache to minimize performance impact of memory access

latencies

o QuadSPI with HyperBus™ support

• Debug Functionality

o Serial Wire JTAG Debug Port (SWJ-DP) combines

o Debug Watchpoint and Trace (DWT)

o Instrumentation Trace Macrocell (ITM)

o Test Port Interface Unit (TPIU)

o Flash Patch and Breakpoint (FPB) Unit

• Communications interfaces

o Up to three Low Power Universal Asynchronous Receiver/Transmitter

(LPUART/LIN) modules with DMA support and low power availability

o Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA

support and low power availability

o Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support

and low power availability

o Up to three FlexCAN modules (with optional CAN-FD support)

o FlexIO module for emulation of communication protocols and peripherals (UART,

I2C, SPI, I2S, LIN, PWM, etc).

37

Chapter 3. System Specification

o Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous

Audio Interface (SAI) modules.

• Timing and control

o Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64

standard channels (IC/OC/PWM)

o One 16-bit Low Power Timer (LPTMR) with flexible wake up control

o Two Programmable Delay Blocks (PDB) with flexible trigger system

o One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels

o 32-bit Real Time Counter (RTC)

• ASIL B capable.

Figure 3-4: S32K116 development board

The S32K2TV (shown in Figure 3-5) is a much more powerful microcontroller with three 32-

bit microprocessors one dual Arm core M33 and a M7 Arm cortex core.

• Operating characteristics

o Voltage range: 2.97 V to 5.5 V

o Ambient temperature range: -40 °C to 125 °C for all power modes

• Arm™ Cortex-M33/M7 core, 32-bit CPU

o M7 supports up to 320 MHz frequency with 2.14DMIPS / MHz

o M33 supports up to 160 MHz frequency with 1.5DMIPS / MHz

o Arm Core based on the Armv7 and Armv8 Architecture and ThumbR-2 ISA

o Integrated Digital Signal Processor (DSP)

o Configurable Nested Vectored Interrupt Controller (NVIC)

o Single Precision Floating Point Unit (FPU)

38

Chapter 3. System Specification

• Clock interfaces

o 8 - 40 MHz Fast External Oscillator (FXOSC)

o 48 MHz Fast Internal RC oscillator (FIRC)

o 32 kHz Low Power Oscillator (SIRC)

o 32 kHz Slow External Oscillator (SXOSC)

o Up to 320 MHz System Phased Lock Loop (SPLL)

• Power management

o Low-power Arm Cortex-M33/M7 core with excellent energy efficiency, balanced

with performance

o Power Management Controller (PMC) with simplified mode management (RUN

and STANDBY)

o Supports peripheral specific clock gating. Only specific peripherals remain

working in low power modes.

• Memory and memory interfaces

o Up to 4 MB program flash memory with ECC

o Up to 256 K of flexible program or data flash memory

o Up to 768 KB SRAM with ECC

o Data and instruction cache for each core to minimize performance impact of

memory access latencies

o QuadSPI support

• Debug functionality

o Serial Wire JTAG debug Port (SWJ-DP), with 2 pin Serial Wire Debug (SWD) for

external debugger

o Debug Watchpoint and Trace (DWT), with four configurable comparators as

hardware watchpoints

o Serial Wire Output (SWO)-synchronous trace data support

o Instrumentation Trace Macrocell (ITM) with software and hardware trace, plus

time stamping

o CoreSight AHB Trace Macrocell (HTM)

o Flash Patch and Breakpoints (FPB) with ability to patch code and data from code

space to system space

39

Chapter 3. System Specification

o Serial Wire Viewer (SWV): A trace capability providing displays of reads, writes,

exceptions, PC Samples, and print

o Full data trace for up to 16 output wide

o Embedded Cross Trigger (ECT) is used for multicore run-control and trace cross

triggering, using CoreSight Cross Trigger Interface (CTI)

• Communications interfaces

o Up to 20 serial communication interface (LINFlexD) modules, with UART and

DMA support

o Up to ten Low Power Serial Peripheral Interface (LPSPI) modules with DMA

support and low power availability

o Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support

and low power availability

o Up to eight FlexCAN modules (with optional CAN-FD support)

o FlexIO module for flexible and high-performance serial interfaces

o One Ethernet module

o 2-ch FlexRay module

o Up to three Serial Audio Interface (SAI) modules

o One Secured Digital Host Controller (SDHC)

• Timing and control

o Up to three enhanced modular I/O system (eMIOS), offering up to 96 timer

channels (IC/OC/PWM)

o Up to three System Timer Module (STM)

o Up to two Logic control units (LCU)

o Full cross triggering support for ADC / timer (BCTU)

o One Trigger MUX Control (TRGMUX) module

o Up to four Periodic Interrupt Timer (PIT) modules

o 32-bit Real Time Counter (RTC) with autonomous periodic interrupt (API)

function

• ASIL B or ASIL D

40

Chapter 3. System Specification

Figure 3-5: S32K2TV development board

3.3.2 CAN Module

A CAN Module (or CAN controller) is a hardware peripheral capable of sending and receiving CAN

frames, while also handling all the error and form checking. On the NXP family, the module used

is the FlexCAN module, which is a CAN protocol engine with a very flexible mailbox system for

transmitting and receiving CAN frames. The mailbox system is composed of a set of message

buffers (MB) that store configuration and control data, time stamp, message ID, and data. The

memory corresponding to the first 38 MBs can be configured to support a Legacy FIFO reception

scheme with a powerful ID filtering mechanism. This mechanism can check incoming frames

against a table of IDs (up to 128 extended IDs or 256 standard IDs or 512 8-bit ID slices), with

individual mask register for up to 32 ID filter table elements.

For Classical CAN frames, simultaneous reception through Legacy FIFO and mailbox is

supported. For CAN FD frames, reception is supported through mailboxes and Enhanced Rx FIFO.

For mailbox reception, a matching algorithm makes it possible to store received frames only into

MBs that have the same ID programmed in the ID field. A masking scheme makes it possible to

match the ID programmed on the MB with a range of IDs on received CAN frames. For

transmission, an arbitration algorithm decides the prioritization of MBs to be transmitted based

on the message ID (optionally augmented by 3 local priority bits) or the MB ordering.

The FlexCAN module is also able to receive and transmit messages in CAN FD format. The

message buffers are sized to adequately store the quantity of data bytes selected by the FD

control fields. The quantity of FD MBs available for a given quantity of data bytes is described in

the FD control register. [56]

41

Chapter 3. System Specification

And for the most part the CAN modules between the families are basically equal. Discounting

the CAN FIFO that are not going to be used the differences are listed in the Table 3-3.

Characteristic S32K116 S32K2TV

Number CAN Channels 1 8

Number of message buffers 32 32

Maximum baudrate 8 Mbps 8 Mbps

CAN-FD Yes Yes

Partial Network Support No support

External Time Tick Yes Yes

Table 3-3: Differences between CAN modules

3.3.3 CAN Transceiver

The most basic capability of a transceiver is translating the Tx and Rx lines of CAN into two

differential lines called CAN High and CAN Low, thus implementing a CAN bus line. They can

achieve different maximum transfer speeds while also adding a certain delay that is transceiver

dependent.

Figure 3-6: CAN transceiver

 Selective Wake-Up CAN transceiver

This selective wake-up can be performed in two ways, by forming a wake-up pattern or a wake-

up frame, being that the latter only works in classic CAN. This wake-up can also be triggered by

a system interrupt via wire, and then scaled to the transceiver and/or CAN module.

42

Chapter 3. System Specification

Figure 3-7: Transceiver with Wake-Up

 Isolated CAN transceiver

An isolated CAN transceiver is expected to have an isolation barrier between the CAN Tx and Rx

lines and the CAN High and CAN Low lines. This extra isolation layer is used for safety and

preventing unwanted currents to flow in case of some type of flaw.

Figure 3-8: Transceiver with Galvanic Isolation

3.3.4 CAN Transceiverless

A no transceiver approach is based on connecting directly both Rx and Tx lines into a bus line

without creating the differential lines of CAN High and CAN Low.

This type of architecture can work for distances below one meter. However, by decreasing the

distance between CAN controllers it lowers the possible noise disturbance in the lines and

increases the possible bit rates. To reduce the noise and disturbance it is possible to add an

isolation barrier.

43

Chapter 3. System Specification

The diodes, represented in Figure 3-9, assure the correct direction of the current in the lines

as well as the correct state of them, since the Tx lines must perform as open drains. Adding to

this hardware, a voltage regulator may be required to use the pull-up resistor, with voltage

typically being either 3V or 5V, depending on the TTL of the microcontroller and implemented

baud rates [57].

Figure 3-9: Connection of CAN nodes without CAN transceiver [58]

3.4 Conclusion

A good analyse aims to break down bigger goals to examine and better understand smaller parts

and tasks. That is why it is of great importance to start by defining the requirements of the project.

Starting by the stakeholders and going down to smaller parts of the system. On contrary of many

systems, normally there is first the general list of the essential requirements and then there is

the choice of hardware and software implementation. On this case, the stakeholders chose

previously the microcontroller family and for that reason, some solutions were impacted. For

example, the transceivers selection and the drivers wake-up functionalities. However, having the

requirements listed makes the task of choosing which hardware and software to use simpler and

swifter.

After selecting devices and hardware components the development phase can be initiated.

Being possible to start designing and creating the software for the CAN driver as well, the GUI

where its functionality will be tested and demonstrated.

Chapter 4

Implementation

After defining all the system specifications and components required, it was possible to proceed

to the implementation of a communication driver, specific to CAN and capable of answering all

the requirements as well as a complementary graphical interface for posterior demonstration and

validation.

Therefore, this chapter provides an overview of how the system came to be. Since the

hardware was previously provided or required only small adjustments it will not be mentioned in

this chapter heavily. The two main focus points will be the two bigger pieces of software. The

CAN driver, which composes the bigger part of this work, and the graphical panels, which become

a great asset for posterior test and validation.

The hardware mostly consisted of changing the connections between boards, or them, and

the computer. There was a small modification in the physical bus line, mentioned in Chapter 3.

The software was developed around the AUTOSAR stack concept and structured as such.

Creating a distinct and thoroughly designed stack is an important step in order for the code to be

clearer and understandable while minimizing errors. On another hand, the demonstration panels

were developed with the support of a specialized tool, the CANoe from Vector.

4.1 Software Implementation

This chapter section is composed of all the steps taken when developing the software. It includes

the development environment, the software layers and all the GUI development. It will explain

briefly about different guidelines used when writing code and little cares about cleanness and

clarity of the written code. It will also explain the different roles of each software layer for a better

understanding of the development as a hole.

45

Chapter 4. Implementation

4.1.1 Development Environment

The CAN driver software for the S32K116 was developed in a complimentary Integrated

Development Environment (IDE) for automotive and ultra-reliable Power Architecture, the S32

Design Studio for Arm, using C programming language. This IDE allows developing, managing,

building and debugging embedded software. The S32DS IDE is a straightforward development

tool based on open-source software, including Eclipse IDE, GNU Compiler Collection (GCC), and

GNU Debugger (GDB), with no code-size limitations that enable editing, compiling, and debugging

of designs [59].

However, the driver was created to be completely independent of the IDE and ready for porting

into a different IDEs and compilers. However, for the S32K2TV, it was developed in the S32

Design Studio for S32 platforms, from the same company, NXP semiconductors.

All the code developed for the driver was following guidelines from the MISRA-C. MISRA C is

a set of software development guidelines for the C programming language developed by the

Motor Industry Software Reliability Association (MISRA). The guidelines aim to facilitate code

safety, security, portability, and reliability in embedded systems. MISRA has evolved into a widely

accepted model for best practices by leading developers in sectors such as automotive [60].

Complementing the MISRA-C Guidelines is the document Specification of C Implementation Rules

[35], created by AUTOSAR.

The development boards contain an on-board programmer and debugger, the OpenSDA for

S32K116. As well as, JTAG for flashing and debugging purposes. For the S32K2TV, a probe from

NXP was used for flashing and debug using the Cortex Debug Connector with 10 pins and support

for interfaces such as Serial Wire and JTAG.

The rules for development for the panels were a little less restricted. Nonetheless, rules such

as correct commentary and clear and objective of the code were maintained. The tool for

development of the demonstration panels was the CANoe from Vector.

Figure 4-1: S32 Design Studio (left) and MISRA (right) logos

46

Chapter 4. Implementation

CANoe is the comprehensive software tool for the development, test and analysis of individual

ECUs and entire ECU networks. It supports network designers, development and test engineers

throughout the entire development process – from planning to system-level test.

Versatile variants and functions provide the appropriate project support. Therefore, its versatile

functions and configuration options are used successfully by OEMs and suppliers worldwide [61].

Figure 4-2: CANoe logo

As stated, CANoe is an extensive tool where its support of CAN protocol and graphical

interfaces makes it a great platform for the development of demonstration panels.

The two keys tools that will be used are Vector CAPL Browser and Panel Designer. Vector

CAPL Browser is a text editor based on C with some restrictions, that makes the bridge between

the graphical panels and the messages received in the CAN bus lines as well the users of the

GUI. The GUI developed in Panel Designer is aimed to be the most user friendly as possible while

packing different tools into it.

4.1.2 Software Guidelines

There are several guidelines that can be chosen for the same purpose, the most important

aspect is to remain consistent, to choose a specific way to develop and stick to it throw the whole

development cycle, this improves readability and testability of the code created. One way to do it

is to create a document with all the guidelines to be followed during the development, this

document can include rules such as:

• Naming conventions – these can include different ways to name variable and

functions, by using camel notation or underscore notation.

• Coding Guidelines - these guidelines must be followed during implementation and

are intended to make readable and testable code. They can include the use of

language subsets, use of defensive implementation techniques (for example for each

47

Chapter 4. Implementation

“if” statement there must be an “else” statement), enforcement of strong typing and

others.

• Design Principles – these principles include a wide variety of design rules to be

followed during development, such as the level of restriction when using pointers, the

return of functions, the use of recursions, type conversions and many others.

• Project structure – which should reflect the layered software architecture of the

project.

• Software Modules - collection of software files (code and description) that define

certain software functionality present on an ECU.

• Software Interfaces - interface which describes an interface (header) file

containing functions and datatype definitions.

4.1.3 Software Layers

As seen in the previous chapter the Figure 3-3 depicts the software layer, which could be divided

into an upper and the bottom layer, where the upper layer focuses on user interface configuration

and add-ons and the bottom layer into core features and functions. The upper layer is composed

of the application layer, which per turn has the CAN configurations and other software

components. The bottom layer is divided into three smaller layers each one with a purpose that

will be explained in the next sections. These smaller layers are the Service Layer, the ECU

Abstraction Layer and Microcontroller Abstraction Layer. On the IDE it looks something like in the

Figure 4-3.

Figure 4-3: Project system stack folders

 Application Layer

The application layer is the highest layer of abstraction in the software stack. It is home for any

specific application components that will run on the top of the stack as well as ensuring proper

communication between devices. On this case it is achieved by a series of wrappers that act as

interfaces between the hardware and the communication protocol to send and receive CAN

messages.

48

Chapter 4. Implementation

 Service layer

The service layer for the CAN driver has two important modules the State Manager and the

Network Management.

The first one implements the control flow for the CAN bus. It interacts with the Microcontroller

Abstraction Layer and the Application Layer. On this layer, each network is defined with a unique

network handle. Additionally, the CAN State Manager is responsible for the control flow

abstraction of CAN networks.

The Network Manager has for its main purpose the coordination of the transition between

normal operation and bus-sleep mode on a network. Beside, optional features such as detection

of all present nodes or detection of nodes that are sleeping can be implemented.

 ECU abstraction layer

The ECUAL similar to the service layer is composed of two components the CAN Interface and

the CAN Transceiver.

The CAN Interface represents the interface to the services of the CAN Driver for the upper

communication layers to manage different CAN hardware device types like CAN Controllers and

CAN Transceivers used by the defined ECU hardware layout. It covers services as transmission

requests, transmission confirmation, reception indication, controller mode, PDU control mode

and others. Additional applications are the operation mode, via an interrupt, polling or even a mix

of the two.

The CAN Transceivers is the module dedicated to the transceiver for which the controller

is connected. There are several types of transceivers and each one can operate in a different

manner, which increases the complexity of this module. To keep things simpler there were

modules configured such as SPI ready for the eventual need for external configuration of the

transceiver. There was also supported Standby mode in the transceivers, as well as watchdog

features and partial network.

 Microcontroller abstraction layer

The closest layer to the hardware is the MCAL and this layer is responsible for all the hardware

access while making available for upper layers an extensive API capable of initiating transmission

and calls the callback function of the CAN Interface module for notifying events, independently

from the hardware. Furthermore, it provides services to control the behaviour and state of the CAN

controller. It monitors Bus-off and Wake-up events and notifies them via callbacks. In summary, the

49

Chapter 4. Implementation

CAN driver is a software module responsible to access all the hardware resources directly connected

to the CAN controller.

4.2 Software Workflow

The software workflow characterizes the different processes of operation of the CAN Firmware.

From basic operations such as transmitting a message or receiving one, and the configuration of

the working module to bus-off recovery and wake-up operations. This is a standalone module.

This means that it will work without any other module attached. The process starts on the

configuration file for the CAN, where is possible to configure each channel. Starting from the type

of CAN that will operate (classic CAN or CAN-FD) to the velocity (data rates and respective sample

point), the capture mode (polling or interrupt), transmission order, use of local priority and many

more. The extensive configuration enables a more complex but flexible driver, where most

configurations are compatible and if not an error is produced and the CAN channel not initialized.

50

Chapter 4. Implementation

4.2.1 State Machine

Start

STOP

RUN

WAKE-UPSLEEP Wake-Up Interrupt

Stop Request

Run Request

Sleep Mode Entry

BUS-OFF

Bus-Off Event

Bus-Off Recovery

Not Stop Request or
Not Bus-Off Event

Not Bus-Off Recovery or
Not Stop Request

Not Wake-Up Interrupt

Not Run Request or
Not Sleep Mode Entry

Stop Request

Figure 4-4: CAN Driver State Machine

A state machine allows linking the “state” of the system at a particular point in time and

characterize the behaviour of the system based on that state, where a sequence of transitions

driven by events and inputs describe the behaviour of the system [62]. In this case, the system

is the CAN driver and its different operations, and the finite state machine in Figure 4-4 describes

the behaviour of the system, allowing throw the state to know what operations the system is able

to perform.

The operation of the CAN driver revolves around five states, and of those, it will stay for

the most of its time in the RUN operation. When the module is configured and started the

operation begins at the RUN mode, it is in this mode that the CAN driver is capable of sending

and receiving messages. From there it can go to STOP state or Bus-Off state for the latter it would

require a bus-off event to jump to it. This means that the communication has been cut and the

module requires recovery to be able to send messages again, and is with exactly a bus-off

recovery event that the state goes back to RUN.

 When a stop request happens, the module stops sending messages and is a controlled event.

It is from here that the module can transition to SLEEP state powering down the entire module

51

Chapter 4. Implementation

and normally most of the microcontroller. From the sleep more only a preconfigured interrupt

can wake-up it and make a brief transition to WAKE-UP state before going back to STOP mode

where can be started again.

4.2.2 Initialization

The initialization is a straightforward process. It starts with the load of the configurations for the

correct channel, afterwards it checks for the type of CAN, between the slower classic CAN and

the faster CAN-FD. There is also a pre-processing of the sample point before the advancing of

the initialization. Having met all the conditions, the clock for the CAN is enabled and with it the

enable for a stable configuration.

The next step would be to configure the data rate for that channel, which cannot change

after configuration. Afterward, there is a memory cleaning and further configuration of the

reception masks as well, general operation definition. The last two configuration before starting

the module would be the configuration of the reception boxes and the partial network if the driver

supports it and requires it.

Upon starting, there is a final check to see if the actual module started, and if not produce

an error and finish the process.

52

Chapter 4. Implementation

Start

Load CAN
Channel

Configuration

Bit Rate

CAN Classic?

No

No

Default Operation
Mode

Yes
Set Configuration

Values for
Standard Bit Rate

Yes
Set Configuration

Values for
Flexiable Bit Rate

Enable CAN
Module Clock

Select the Clock
Source

Enable the CAN
Module to
configure

Configure the
Auxiliary Control

Registers

Clear Message
Buffers

Configure
reception masks

and Module
Control Registers

Start the Module
Module
Ready?

No

Produce Error

No

End

Configure
Reception

Message Boxes

Yes

Pretended
Network

Configuration
CAN FD?

Figure 4-5: Initialization Flowchart

4.2.3 CAN wake-up

Summarizing wake-up is a feature where the CAN module has the ability to go from sleep (or

standby) mode to normal operation throw the capture of a frame or a pattern. It is depicted into

three parts: Configuration, Sleep mode, and trigger Wake-Up throw frame or pattern. The wake-

up from the frame is a method only supported by CAN classic and it is also known as pretended

networking (or partial network), since the module in this mode only has the ability to receive

messages. The configuration of the pretended network as shown in Figure 4-6, is a process where

several filters are set up for the ID, DLC, payloads as well the number of matches to trigger the

wake-up with a safety time-out to make it leave sleep mode if no messages are being captured.

53

Chapter 4. Implementation

Start

Wake-up frame?

No

Wake-up pattern?

Wake-up frame
configuration

Yes

Yes

No

No Configuration

End

Enable wake-up pattern

 Figure 4-6a: Wake-up configuration flowchart

Start

End

Configure the type of filters

Configure the number of
matches to wake-up

Configure the timeout for
wake up

Set ID, Payload and DLC
filters

Enable Pretended Network

Figure 4-6b: Wake-up frame configuration
flowchart

Figure 4-6: The wake-up process begins with configuration. There are two defined processes for wake-up
via pattern (6a) which requires no extra configuration and wake-up via frame (6b)

To replicate this on CAN modules without neither of the wake-ups, this means that when sleep

mode is enabled the entirety of the CAN module is turned off. There is a need to configure external

transceivers with these capabilities. By norm, these configurations are done via SPI and much

like on the controller there are a series of registers that allow a very similar configuration to the

microcontroller. The transceiver detects the wake-up event, who then propagates it throw an

interrupt pin to the microcontroller, waking it.

The second phase, after the configuration, is placing the microcontroller to sleep mode, this

process is completely dependent on the microcontroller, but also on the microprocessor and how

many of them. The common factor is disabling of the peripherals, in this case the CAN module

is disabled beforehand and acts as the first step to sleep mode.

54

Chapter 4. Implementation

Start

End

Disable CAN Module

Allow Very-Low-Power

Mode

Set Stop Option in Stop
Control Register

Low-Power Mode
Acknowledge set?

Yes

No

Set Normal Stop in Power
Mode Control Register

Figure 4-7a: Standby configuration for
S32K116 flowchart

Figure 4-7b: Standby configuration for S32K2TV flowchart

Figure 4-7: The standby process differs within the family S32Kxxx because of the number of cores present
in which one and the level of security enable in each one. Still the common ground starts by disable all the

peripherals and start application shutdown.

In the S32K2TV, the process is more complex due to the presence of three microprocessors

instead of one. This requires a higher level of coordination between cores and the present

modules.

When the board is in sleep mode, the only thing that is left is to wait for a wake-up event. As

stated before this can be in form of a frame or a pattern. Both are compliant with the ISO-11898-

2:2016 [63] and therefore standard. The wake-up via frame requires the capture of valid frames

that are posteriorly compared with the filters configured beforehand. If there is a match the count

for wake-up is incremented once that count reaches the specified number a wake-up event is

triggered and the microcontroller transitions to the previous running state.

The wake-up via pattern is broader in the fact that it allows for both classic CAN and CAN-FD

frames to be the trigger for the wake-up event. The pattern has timed filters that go from dominant

(logic “0”) to recessive (logic “1”) to dominant once again. The time it has to validate a dominant

is filter dependent having two values for assessment, long filters from 0.5 to 5 microseconds and

short filters with timings between 0.15 to 1.8 microseconds.

55

Chapter 4. Implementation

4.2.4 Bus-off Event

A bus-off event occurs when a transmission error overflows the 255 count. The recovery process

has two possibilities automatically recover or with processor intervention. In the automatic

process the node that is allowed to become error active, and therefore participate again in the

bus arbitration process, after 128 occurrences of 11 consecutive recessive bits on the bus.

With manual recovery where the processor intervenes, the process is more controlled.

However, it still must respect the timings of the recessive bits. There are several ways to handle

this, logging the state, recover normally, clear messages boxes before recover and many other

possible approaches. The chosen for this implementation passes throw reconfiguration of the

CAN module. This means a clean slate to further communications. In this process it is guaranteed

that all the messages boxes are cleared, eliminating in the process the faulty message and

possible any error module associated. This configuration is described in the topic above in Figure

4-5. Only afterward, when the configuration is finished the actual bus-off recovery and

reconnection to the line are done. By clearing the field called BOFFREC the recovery process is

switched to automatic and with this, the count of recessive bits starts. Once it is completed, there

Detect frame

Count frame End

Start

Leave StandbyFrame filtered?

Yes

No Match count
reached?

Yes

No

Figure 4-8a: Wake-up frame flowchart

Dominant bus (at least
tWK_FILTER)

End

Start

Recessive bus (at least
tWK_FILTER)

Dominant bus (at least
tWK_FILTER)

Leave Standby

Figure 4-8b: Wake-up pattern flowchart

Figure 4-8: Flowcharts describing the wake-up processes in order to leave standby, via wake-up frame and
preconfigured messages (8a) and via wake-up pattern depicted in the ISO 11898:2-2016 (8b)

56

Chapter 4. Implementation

is a check for re-synchronization. Which marks the point, where it is again possible to participate

in the bus arbitration process and send messages. After recovery, the BOFFREC is once again

set (disabling automatic recovery) and the state of CAN is updated. To finalize the recovery, the

flags signalling the bus-off occurrence and its recovery are cleared.

Start

End

Configuration

Wait for re-
synchronization

Set BOFFREC

BusOff Complete

No

Yes

Set Controller to no
BusOff

Clear BOFFINT

Clear BOFFDONEINT

Clear BOFFREC

Figure 4-9: Recover from Bus-Off flowchart

4.2.5 Read and Write operations

As in most protocols, CAN protocol with its multi-master approach that allows for the transmission

and reception of messages, each process has its own unique features, however, both occur in

the same area of memory, a space dedicated to the division of message boxes capable of sending

and receiving messages depending on how they are configured.

The writing operation described on the left flowchart of Figure 4-10, starts with the data

to be transmitted and saving it. After it chooses a message box and verifies if it is already being

used, if so abort the transmission and clear the message box. After having a clear message box,

the data is registered and the header of the message of configured (DLC, ID, bit rate switch, and

others). For the message to enter the arbitration process and compete for a spot on the bus it is

required a specific code on the message box.

57

Chapter 4. Implementation

The opposite operation, and opposite for full communication capabilities, starts by

running throw all the receive flags to find if any message box flagged for the reception. When the

flags are set, the process starts by checking the message and storing all the data, as well as the

code, DLC, ID, timestamp and any other relevant information, as described in the Figure 4-10.

All the data is saved into a PDU and the timer of the module is read in order for the message box

to be available to receive a new message as soon as possible. After that, the flag is cleared and

reception confirmation is sent across the layers.

Start

Reorder the Data
and Save it on

TxBuffer

Clear Message Buffer
Flag

Write the data in
RAMn

Configure the Header
for the message (ID,

DLC, CODE, ...)

TxConfirmed

No

Yes

End

Data to Write

Choose Message Box

Clear Message Buffer
Flag

Buffer
Transmitting

No

Abort Message

Yes

Figure 4-10a: CAN Transmission flowchart

Start

Check reception
buffers for the new

message

Clear Message Buffer
Flag

Collect data from
message buffer:
CODE, DLC, ID,

TIMESTAMP

Save data to software
buffer

End

Reception Flag

Yes

No

Read Timer

Clear software buffer
for the same message

Reception
Confirmation

Figure 4-10b: CAN Reception flowchart

Figure 4-10: CAN main operations are the writing operation where there is the transmission of data to the
CAN bus (Figure 4-10a) and the complementing operation of reading throw the reception of frames (Figure

4-10b)

4.3 CANoe Software

All the software in CANoe is implemented using CAPL (Communication Access Programming

Language) programming language. The GUI would use the help of a panel designer as the main

block with support of API on CAPL for further operations.

58

Chapter 4. Implementation

4.3.1 CANoe Environment

Before starting coding and designing the CANoe Panels, it is important to understand the tools

that will be used and the ones that will support the whole program. The base program allows for

the creation of global variables to link events between the CAPL and the GUI, it also allows for

graphical analysis in real-time, with extensive tooling for automation. Figure 4-11 shows the base

environment required to start developing. Each ECU will have CAPL code and will have panels

associated to them, combined with what CANoe calls environment variables that will bridge the

Panels and CAPL.

Figure 4-11: CANoe Environment

 Other supported tools that are relevant for the Panels are the use of databases with messages

pre-configured, this enables for faster analysis of the recognized frames. Other powerful tool is

the ability to plot graphs while data is being received, this is great to understand how signals are

progressing in time.

4.3.2 CANoe panels use cases

This section will describe the different and varied use cases that each panel has. Each of the four

panels has different objectives and core functions, however they all provide enhancements or

complements to the main panel and function of displaying the current angle of the steering angle

and the current position with a visual representation of an actual steering wheel. Each of these

panels graphical interface can be seen in Appendix A – Panels GUI.

 Demonstration Panel

The demonstration panel is the main panel for the LWS Fail-Op demo, it is in this panel that is

possible to access the other 3 panels. It works as a standalone panel, what it is meant is that

59

Chapter 4. Implementation

without any other type of configuration, the main purpose of this GUI is achieved: the visual

representation of the current angle for the steering wheel. Its feature list includes start/stop the

program, display the current angle and speed value, error values, visual representation of the

current steering angle position, open and closing other panels, naming them from the top left to

the top right are the simulation panel, the calibration panel, and the configuration panel.

User

ECU

Send data

Analyse data

Display Angle

Display Speed

Signal Error

Signal Fail Degraded

Display steering wheel
position

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

GUI control

Open Configuration panel Initialize Configuration Panel

Initialize Simulation Panel

Initialize Calibration Panel

Open Simulation panel

Open Calibration panel

Stop

Start

<<include>>

<<include>>

Figure 4-12: Use case demonstration panel

 Simulation Panel

The simulation panel, serve the purpose as the name implies of simulating a working bus line

transmitting messages to the demonstration panel. In this panel is possible to simulate most of

the features.

60

Chapter 4. Implementation

User

Reset all value panels to
zero Signal Error

Signal Fail Degraded

Display the function of the panel
and key short cuts

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Reset Button

Change number of turns
Change maximum angle the

steering wheel will turn
<<include>>

Increase the increment of degrees per
second

<<include>>

Start simulation<<include>>

Change Velocity

Start / Stop Button

Demonstration
Panel

Open Help

Stop simulation

<<extend>>

Change displayed
values

Figure 4-13: Use case simulation panel

The maximum turns represent the number of turns the steering wheel can turn either rotate

to the right or left and the velocity is the number of degrees per second the steering wheel will

turn. This simulation can be stopped and started at any point, as well as being reset.

 Calibration Panel

The role of the calibration panel is more on the support side. It has the ability to send different

types of messages that can change the way the sensor is currently working. The command of

calibration allows for zero point calibration of the sensor and the command decalibration to stop

the sensor sending more messages with the angle calculated. The command for MM3 and MM6

change the type of message that the sensor will be sending. One is the pure raw data and the

other normalized data from the sensor. The button SW version, just waits for a returning version

of the software implemented in the microcontroller. And finally, the power on and off buttons

send commands to change the state of the power supply if that is supported in the system where

the sensor is installed.

61

Chapter 4. Implementation

User

CAN Box Power On
Command

MM6 request

CAN Box Power Off
Command

SW version request

MM6 Button

Send Calibration
 command

<<include>>

<<include>>

MM3 request<<include>>

ECU

Power Box

Calibration Button

Decalibration Button

SW Version Button

Power Off Button

MM3 Button

<<include>>

<<include>>

<<include>>

<<include>>

Command Message

Send Decalibration
command

Updated Data Message

Analyze Message

Update information LEDs

<<extend>><<include>>

Version Message

Update version value

<<include>>

Power On Button

Update graph plots

<<include>>

Figure 4-14: Use case calibration panel

 Configuration Panel

The final panel is the configuration panel. This panel has two distinct features, the first is the

ability to configure the CAN channels in while the program is running, either to be classic CAN

as well CAN-FD. The other more extensive feature is the possibility to define a new type of

message, this entails the ID and the type of it (by default standard 11-bit identifier), signals to be

included in the frame up to 12. The size of these signals must respect the maximum size available

for the current type of CAN (8 bytes for classic and 64 bytes for FD). The name allows for

connecting the message signal with the demonstration panel, for example if it is named Angle it

will, in fact, turn the steering angle when receiving that message even if it is not in the databases.

The other configurations for the signals are the byte order to read them and the factor to multiply

the received value. The final message is being shown responsively in the message layout with

the colour codes attached on top.

 The final three features are the ability to reset all fields, save the current message, and load

a previous done message.

62

Chapter 4. Implementation

User

Configure new message
Name, ID, Signals

Signal Name, Signal Size,
Signal Factor, Signal Byte

order

<<include>>

<<include>>

Change CAN channel

Reconfigure CAN bus Change CAN baud rate

Change CAN sample point

CAN Bus
<<extend>>

CAN bus
reconfiguration

Update Message Layout <<extend>>

Update message filters

<<extend>>

<<include>>

<<include>>

<<include>>

Validation Message

<<include>>

<<include>>

<<include>>

Figure 4-15: Use case configuration panel

4.4 Conclusion

This chapter described the steps taken during the development phase in order to achieve a fully

functional CAN driver capable of sending and receiving messages, handle error events, and work

agnostically with different CAN transceivers. All the developed code followed rules from MISRA

and ISO26262, to reduce safety hazards that could be introduced by the developer. Also, the

future use of an ASIL-D compiler can provide the full coverage for an ASIL-D approved code.

63

Chapter 5

Tests and Results

This chapter covers the validations and verification of the requirements for the implemented

system. It was intended to understand if the CAN driver was correctly implemented, and all the

features are working on accord with it. It was necessary to check if it works properly in both

classic CAN and flexible data rates CAN, with different message sizes.

 The CAN driver will be tested in both microcontrollers, the S32K116 and the S32K2TV, where

the scenarios will change a bit, however, there will always be present, the microcontroller, the

connection to the computer (VN1610), and the CANoe for analysis. The transceivers used are

different on both boards, and some have limitations, that will be explained in further detail

afterwards.

 The tests sets will include testing the message system, the transceiver and non-transceiver

application, the bus-off error and recovery, standby operations (standby/sleep mode and leave

such state) and finalize with tests on the panels created.

5.1 Message system validation

64

Chapter 5. Tests and Results

Figure 5-1: Test scenario for the S32K116

The message system is composed by the ability to transmit and receive messages from a

microcontroller in a valid bus line, in this case the CAN bus created will be between the

microcontroller and a VN1610 that will convert the data to USB so it can be read or written in

the CANoe software.

The first test is the simple validation of the transmission and reception of messages. To

do this, there will be a message sent from the CANoe to the microcontroller, which will respond

by echoing the same data into a new ID, for easier identification. The test result is shown the

Figure 5-2, the configuration is the filter on time, which shows the difference in time between the

same messages and the interactive generator that enables the easy creation of a message to be

sent. The baud rate and type of CAN do not affect this test, however, for record purposes it was

CAN-FD at 2Mbps. Three messages were sent the first one is from the microcontroller to test the

transmission of the CAN, the second one is from the CANoe and the last one is the echo from

the message transmitted from the CANoe, it has a different ID just for easier identification,

however the data is kept the same. Also to note, the order shown is the order that each message

was received, the zero on the time indicates that only one of each was transmitted.

Figure 5-2: Communication between the CANoe and the microcontroller

 The CAN driver can operate in a wide range of data rates. However, since the applications

normally are intended from some considerable data transfers only velocities above 250 kbps up

to 8 Mbps are tested. Nevertheless, slower speeds are possible. For this test the message has 8

bytes for payload and the busload is the measure to understand the velocity at which the

messages are being sent. Busload is the percentage at which relevant bits are travelling on the

bus, all the idle time reduces the busload, on a specific period.

Baud rate Expected Result (us) Result (us)

Classic: 250 kbps 452 454

65

Chapter 5. Tests and Results

Classic: 500 kbps 226 227

Classic: 1000 kbps 113 113

FD: 500kbps and 2Mbps 104 107,7

FD: 1000kbps and 2Mbps 77 79,1

FD: 500kbps and 4Mbps 79 82,7

FD: 1000kbps and 4Mbps 52 54,5

FD: 500kbps and 5Mbps 74 77,8

FD: 1000kbps and 5Mbps 47 49,2

FD: 500 kbps and 8Mbps 66.25 70,3

FD: 1000 kbps and 8Mbps 39.25 41,9

Table 5-1 - Latency of messages at different baud rates

In Table 5-1, it is possible to see the impact that the transmission rate of the arbitration

phase has on the overall transmission latency, and it is worsen by the small payload, in the tests

below it will be possible to see how the payload affects the efficiency. It is also possible to see

that the messages are being sent with the correct baud rates to the bus, as the theoretical value

corresponds to the real result.

 All these values were recorded, and all the tests will be annex, the Figure 5-3 there is a

difference in the average velocity because of the busload. In the first figure, it is possible to see

that the busload is only around 60%, this is justified for the fact of how the driver works combined

with the CAN controller. In the image on the right, it is possible to see already that the busload

is near 100%. Done the math, the average message time is around the same, even if the results

are not, and is more efficient to send different messages, in terms of busload.

66

Chapter 5. Tests and Results

Figure 5-3 - Messages being transmitted at 2Mbps in the data phase and 500 kbps in the arbitration phase

Testing the message payloads and the overall efficiency CAN-FD was possible to get

some data, where the messages ranged from 0 bytes payload up to the maximum of 64 bytes,

with data carefully chosen to reduce the number of stuff bits to 0. This was achieved by just

sending several 0xA, since the binary is 1010b which makes it impossible to activate the bit

stuffing mechanism. All this data was organized and displayed in Table 5-2. From this table it is

also possible to draw graphical representation, making it clear the increase in efficiency by

sending bigger CAN-FD messages, in Figure 5-4.

Message

Size

(bytes)

Transmission

Time

CAN-FD 2Mbps

(us)

Average data

rate (Mbps)

Transmission

Time

CAN-FD 8Mbps

(us)

Average data

rate (Mbps)

0 47,5 1,284 34,5 1,768

4 63,5 1,465 38,6 2,416

8 79,5 1,572 42,6 2,934

12 95,5 1,644 46,6 3,369

16 115,25 1,683 49,6 3,810

32 178 1,781 67,2 4,717

67

Chapter 5. Tests and Results

64 306,5 1,869 99,5 5,759

Table 5-2 - Average data rates for different CAN velocities

The ramp-up in the, more noticeable in the 8 Mbps transmission is due to the increase in

the CRC size on messages above 16 bytes, since the CRC is still on the higher transmission rate

it makes the average raise. Any message bigger than 64 bytes will have to be split into different

messages, since the driver does not support chained messages as of the moment.

Figure 5-4 - Graphical representation of the average bit rate with different baud rates

 Additionally, all the extra tests can be found in the annex part of the document, all of which

will be similar to the images in Figure 5-4. The key data to take from these images is the data

size (since the data in itself is on the same spectre) and the time that took to send a message.

Figure 5-5 - Transmission time for 8 Mbps baud rate and 500 kbps on a 8 byte payload and 16 byte payload
respectively

0

1

2

3

4

5

6

7

0 4 8 12 16 32 64

D
at

a
R

at
es

 (
M

b
p

s)

Payload (bytes)

Average Bit Rate

CAN-FD 8 Mbps

CAN-FD 2 Mbps

CAN Classic 1 Mbps

68

Chapter 5. Tests and Results

5.2 Bus-off event validation

The bus-off state in a microcontroller is described by its inability to communicate, but this only

happens to one CAN channel/bus at a time and is data rate independent. This means that even

if, one channel needs recovery the other channels may still be communicating. To enter this state

there must happen an accumulation of errors, which can be easily triggered by shunting both the

CAN High and Low.

That is the scenario that will be followed, first, there will be a trigger for the bus-off and the

CANoe should stop receiving messages, and the program will start trying to recover the bus line

failing every time until both lines are separated. As shown in Figure 5-6, until the second 27th the

CANoe is receiving several messages per second, then there is a bus-off occurrence and it stops

receiving messages, after a few seconds, on the 57th second to be more precise the bus-off trigger

is stopped and successful recovery is completed, making it possible to receive new messages on

the CANoe.

Figure 5-6 - Bus-off event and subsequently recover from the bus-off

5.3 Non-transceiver validation

Validating a non-transceiver application passes throw proving that the messages are being sent

and acknowledged. It is also important to understand that how the physical layer is set up can

very well influence the maximum transmission rates and the recovery time of the lines. To

consider is also the delay added by isolation layers. Where the first affects the sample point and

the second affects an added delay on feedback.

69

Chapter 5. Tests and Results

 Figure 5-7, shows a Picoscope view configured into two windows. The top windows are

measuring the non-transceiver communication and the bottom is monitoring both high and low

CAN bus lines from the differential transceiver. The same message is sent into both

communications, however since the communication without transceivers cannot be easily

decoded by the CANoe, the mirror message serves as an easier visual representation as well

validation of the information on the message.

 The main points to decode in the message are the ID and the data, it is also interesting to see

the point at which the data goes throw acceleration (immediately after the BRS – bit rate switch

- bit) and goes back to the arbitration velocity on the validation of the Acknowledge. Starting by

the ID, it is possible to see that the bits are 10101010101b, translated to hexadecimal 0x555

which is the same that is translated in the CANoe in Figure 5-8. As for the data is 01010011b in

binary as for hexadecimal is 0x53, that exactly matches the received CAN message.

Figure 5-7 - No transceiver measure and differential CAN bus measure

Figure 5-8 - Message mirroring the message sent on the no transceiver communication

5.4 Standby operations validation

The standby entry is characterized by the fall of consumption from a development board and

when it wakes the consumption rises once again until it picks once every configured peripheral

is again running and the amount of load in the processor.

70

Chapter 5. Tests and Results

The test scenario will be as follows have two buttons for inputs, the first will trigger the

configuration and the latter will trigger the sleep or standby mode. From the initial state, the

board will initialize will the default clocks and security configurations, followed by the start of the

core application, that will turn on the green light and only check for button inputs. The first button

trigger runs the configuration of the CAN and the ADC, and turns the blue light on. At this point

it is possible to see the maximum consumption that will be registered in this configuration and

both lights on. On the second trigger, both lights are turned off and the system is shutdown,

entering standby mode. Once the wake-up trigger happens the core application is resumed

turning on again the green led and waits for a new configuration.

 Event Consumption (mA) Visual Queue

 Initial State

60

 Start running

61

 Configuration trigger

114

 Standby trigger

52

 Interrupt and Standby leave

61

 Configuration trigger

114

Table 5-3 - Test scenario testing the standby operation

71

Chapter 5. Tests and Results

5.5 Panels validation

The LWS-Fail-OP Demo is as stated before, a group of graphical panels intended to help users

visualize the working within a steering angle sensor. It supports extra configuration functions,

simulation and calibration.

5.5.1 Demonstration panel

The demonstration panel is the main panel that holds the core function of the LWS Fail-Op demo,

which is to visualize all the data from the steering wheel message. In Figure 5-9 is possible to

see the message and the reaction of the panel. The message brings a collection of information

where the value of the Steer Wheel Angle determines the current position of the steering wheel

on the panel that mirrors the position of the real steering wheel.

Figure 5-9 - Demonstration Panel and the analysed message

Depicting the rest of the message, there are 2 extra signals with angular values, the Psi

and the Theta, that represent the angle of each of the gears. Besides that, there are 14 bits

reserved for extra information in the future. And bit to indicate the status of the sensor and

another to show if the sensor is calibrated or not. In case of error, the panel signals by turning

on the error LED and if it enters in fail-degraded, meaning only one of the microcontrollers is

transmitting, the other LED turns on, as shown in Figure 5-10. That message induces the panel

to turn on both LEDs. The fail-degraded is indicated by the FAIL_OP_Status bit of the message

72

Chapter 5. Tests and Results

that is one, and the error is indicated by the fact that the angle value is 0x7FFF even though that

the sensor is calibrated, which indicates an error.

Figure 5-10 - Demonstration panel status and error indication

5.5.2 Configuration panel

The configuration panel has 2 main features: the ability to reconfigure the CAN bus on run time

and configure a new message on run time capable of identifying a part of its elements to display

them on the main panel.

 To test the first mentioned feature, the CANoe bus line was configured to CAN-FD with

500kbps at the arbitration phase and 1 Mbps at the data phase. However, the messages being

sent by the microcontroller were at 2 Mbps instead of the 1Mbps, these means that all the

received messages will produce an error since the sample point will miss every time once the bit

rate switch starts. This event is shown in Figure 5-11, where the first messages are received with

an error and are signaled with red. After a reconfiguration signaled with a success message, the

CAN is restarted with the new values and is now possible to receive the messages that are now

marked with black and it is possible to decode the frame.

73

Chapter 5. Tests and Results

Figure 5-11 - Reconfiguration of the CAN bus line

The other function on the configuration panel is the ability to redefine a message so it

can be translated. In this case the configured message has 6 different signals. Being the first one

the Angle, this is important, because is the name of the signal tells where to acquire data in this

case, the first 16 bits. And as expected from the first 16 bits in intel endianness, 0x73B9 and

the factor of 0x033 it comes around 977º as represented in the picture. Also the ID must match

with one of the received messages, in this case 0x567 in hexadecimal (1383 in decimal). The

big advantage of this is being able to work in both CAN classic and CAN-FD.

74

Chapter 5. Tests and Results

Figure 5-12 - Custom message to receive data from a new message

5.5.3 Calibration panel

The calibration panel is responsible for a series of commands that aid or support the

functionalities of the main demonstration panel. Since they are only commands, they only send

a message when a button is pressed and the state is changed depending on the standard

message received.

 The three main functions of the calibration panel are the ability to zero-point calibration or

reset calibration of the sensor via a command, change the incoming messages from standard to

prior calculating points, with MM6 and MM3 with raw data or the calculated gear angles

respectively. And finally, the power box, this power box is a supporting tool for testing and

development that allows to power cycle the board with a CAN command. The last least important

feature is just the request of the current version, as shown in the Figure 5-13.

All these commands use the same configuration message ID with different data. Except

for the power box which has its own ID and configuration. In Figure 5-14, is possible to see the

messages for calibration and decalibration and how they affect the standard message as

expected. The LED turns green when the state changes in this case from calibrated state to

decalibrated state as can be also seen in the standard message Calibration bit. For the other

commands it works the same way, indicating the state of the messages at any time.

Figure 5-13 - Command requesting the software version

75

Chapter 5. Tests and Results

Figure 5-14 - Calibration and Decalibration of the sensor and its standard message

5.5.4 Simulation panel

There were extensive tests on all the capabilities and limits for the simulation panel, however the

only relevant test on the scope of this document is to understand if the steering wheel does really

turn according to the simulation. This can be hard to prove via images, nevertheless, Figure 5-15

compiles a collection of images from different stages of the simulation. From rotating it to the

maximum in the defined turns, then rotating it in the opposite direction. And finally rotating it at

a maximum velocity of 1080º per second. Even though in the last one, the GUI cannot keep up

with the fast update rate.

76

Chapter 5. Tests and Results

77

Chapter 5. Tests and Results

Figure 5-15 - Different stages of simulation

78

Chapter 6

Conclusion and Future Work

This chapter aims to summarize and provide an overview of the implemented steps and obtained

results from either the development of the CAN driver as well as the GUI, and respective tests

and results performed on each part. As a final note, this chapter also intends to suggest future

improvements or additional features that could benefit both implementations.

6.1 Conclusion

More than ever, nowadays everything is connected, either being cars or personal objects. This

communication link can be implemented by using dozens of different protocols. However, for

each one of them depending on level of required safety it is important to step back and design

them with different features in mind. From ASIL-D hardware to safe software practices each step

is important to guarantee the availability and reliability of the protocol used.

The importance of MISRA guidelines creating a subset of C programming language with

great emphasis in static checking tools to enforce such subset, and with that approach improves

the robustness of the software developed, from the design, through the implementation up to the

tests and validation.

Other guidelines focused more on the syntax of the written code, such as naming

conventions, style guides and use of defensive implementation techniques are crucial to write a

safer and clear code. With this, the code can be developed by different programmers, while

keeping it readable and easier for future testing and validation. Finally, the use of the V model

from the ISO 26262 for the software. This includes product development at the software level,

the specification of the software requirements and its architectural design, the software

implementation process, and the software verification, integration, and testing of the embedded

software.

79

Chapter 6. Conclusion and Future Work

 The driver developed in this dissertation was able to fulfil all the requirements with little to

none deviation. From transmitting capabilities to receiving capabilities with different and flexible

configurations. Different CAN transceivers are supported in implementations (even no

transceivers at all), within the full high-speed range and low-speed range for the CAN classic and

CAN-FD.

6.2 Future Work

The more flexible the driver the best features can be added and tested. It is crucial when

designing any snippet of software to make clear cuts where a function starts and ends,

fragmenting and isolate parts of the code, creates an easier platform to work on and to test on.

This said, it is possible to improve and to add features into different sectors.

 Improve on the network manager: The network manager is responsible for the transition

from normal operation to bus-sleep operation, which is a supported feature, however this could

also include a service to detect all the present nodes or even a service to detect which nodes are

ready to sleep. Both these services could be implemented in a future version of the driver.

 Remove the wrappers: On the application layer wrappers were created for easier

interaction with the functionalities of the CAN driver, mostly transmission and reception

operations. These operations were inspired in the printf() and scanf() functions. On future

versions and with AUTOSAR style integrations there would be no need for the use of such

wrappers and therefore they could be deleted.

 Encryption: With the CAN-FD supported capabilities the data size just became exponentially

bigger. This allows for the data to be potentially encrypted and therefore better protected against

hackers.

 As seen in the results, the GUI is a great tool to test and operate the sensors in an easy and

user-friendly way. Nonetheless, it has several points where it could be improved upon.

 Support multiple CAN channels at the same time: As of now, most of the Panels only

support one CAN channel at a time, only the Configuration panel was constructed with multiple

channel support in mind. This means that having multiple channels, allow for different signals to

be read and processed at the same time.

 Support output of custom messages: On the configuration panel there is the possibility

to define a message that could be received and decoded into different data to be analyzed. Using

80

Chapter 6. Conclusion and Future Work

this interface, it could also be possible to do the opposite. Instead of defining a message to be

received, there could be defined one to be sent. To support this, it would also be necessary to

implement methods to define data, which could be static values or simple linear functions. Other

than this, support for extra CAPL files could make running automated tests and extra features

possible.

81

Appendix A – Panels GUI

82

Chapter 6. Conclusion and Future Work

83

Appendix A – Panels GUI

84

References

[1] S. Purnendu, “Architectural design and reliability analysis of a fail-operational brake-by-wire

system from ISO 26262 perspectives,” Reliability Engineering & System Safety, vol. 96, pp.

1349-1359, October 2011.

[2] S. B. Balajee, P. Balaji, J. Shreyas and K. Satheesh, "An Overview of X-By Wire Systems,"

First National Conference on Emerging Trends in Automotive Technology (ETAT-2015), 2011.

[3] “ISO 26262-3 Road vehicles — Functional safety — Part 3: Concept phase,” 2018.

[4] A. Kader, "Steer-by-Wire Control System," Swarthmore College Department of Engineering,

May 2006.

[5] B. Chen, “practices and Challenges for Achieving Functional Safety of Modern Automotive

SoCs,” 2019.

[6] S. R. e. al, “Extensibility in automotive security: Current practice and challenges: Invited,” em

Proc. 54th Ann. Design Autom. Conf., New York, 2017.

[7] “ISO 26262-4 Road vehicles — Functional safety — Part 4: Product development at the system

level,” Standard International, 2018.

[8] T. Nolte, H. Hansson e L. L. Bello, “Automotive Communications-Past, Current and Future,”

em IEEE Conference on Emerging Technologies and Factory Automation, Catania, 2005.

[9] A. Gargantini, E. Riccobene e P. Scandurra, “Model-driven design and asm-based validation

of embedded systems,” Behavioral Modeling for Embedded Systems and Technologies:

Applications for Design and Implementation, pp. 24-54, 2009.

[10] M. Barr, “Terms Starting with E,” Barr Group, [Online]. Available:

https://barrgroup.com/embedded-systems/glossary-e. [Acedido em 2 January 2020].

[11] M. Barr, “Real men program in C,” 1 August 2009. [Online]. Available:

https://www.embedded.com/real-men-program-in-c/. [Acedido em 2 January 2020].

[12] S. Heath, Embedded Systems Design, Oxford : EDN series for design engineers, 2003.

85

REFERENCES

[13] W. Honhxing e W. Tianmiao, “Curriculum of Embedded System for Software Colleges,” em

2nd IEEE/ASME International Conference on Mechatronics and Embedded Systems and

Applications, Beijing, 2006.

[14] T. Noergaard, Embedded Systems Architecture - A Comprehensive Guide for Engineers and

Programmers, 2005.

[15] W. Reed, “Safety critical software in traffic control systems,” em IEE Colloquium on Safety

Critical Software in Vehicle and Traffic Control, London, 2002.

[16] J. Millward, “System architectures for safety critical automotive applications,” em IEE

Colloquium on Safety Critical Software in Vehicle and Traffic Control, London, 1990.

[17] D. Reinhardt, D. Adam, E. Lubbers, R. Amarnath, R. Schneider, S. Gansel, S. Schnitzer, C.

Herber, T. Sandmann, H. U. Michel, D. Kaule, D. Olkun, M. Rehm, J. Harnisch, A. Richter, S.

Baehr, O. Sander, J. Becker, U. Baumgarten e Theiling, “Embedded Virtualization Approaches

for Ensuring Safety and Security within E/E Automotive Systems,” em Embedded World

Conference, Nürnberg, 2015.

[18] Farlex, “safety-critical system,” The Free Dictionary, [Online]. Available:

https://encyclopedia2.thefreedictionary.com/safety-critical+system. [Acedido em 2 January

2020].

[19] I. Sommerville, “Systems, Software and Technology,” [Online]. Available:

https://iansommerville.com/systems-software-and-technology/static/courses/critical-

systems-engineering/. [Acedido em 2 January 2020].

[20] J. C. Knight, “Safety critical systems: challenges and directions,” em Proceedings of the 24th

International Conference on Software Engineering, Orlando, 2005.

[21] J. Gray, “Why Do Computers Stop and What Can Be Done About It?,” Tandem Computers,

Cupertino, 1985.

[22] F. Afonso, “Operating system fault tolerance support for real-time embedded applications,”

2009.

[23] P. Bhansali, “Perspectives on safety-critical software,” em Proceedings of Australian Software

Engineering Conference ASWEC 97, Sydney, 1997.

86 REFERENCES

[24] P. Kafka, “The Automotive Standard ISO 26262, the innovative driver for enhanced safety

assessment & technology for motor cars,” em 2012 International Symposium on Safety

Science and Technology, Feffernitz, 2012.

[25] NI, “What does the functional safety standard, ISO 26262 contain?,” 2020 NATIONAL

INSTRUMENTS CORP., 2019 March 5. [Online]. Available: https://www.ni.com/de-

de/innovations/white-papers/11/what-is-the-iso-26262-functional-safety-standard-

.html#toc2. [Acedido em 5 January 2020].

[26] ISO, ISO 26262: Road vehicles - Functional Safety, 2018.

[27] “ISO 26262-1 Road vehicles — Functional safety — Part 1: Vocabulary,” Standard

International, 2018.

[28] “ISO 26262-2 Road vehicles — Functional safety — Part 2: Management of Functional Safety,”

Standard International, 2018.

[29] “ISO 26262-6 Road vehicles — Functional safety — Part 6: Product development at the

software level,” Standard International, 2018.

[30] “ISO 26262-9 Road vehicles — Functional safety — Part 9: Automotive safety integrity level

(ASIL)-oriented and safety-oriented analyses,” Standard International, 2018.

[31] “ISO 26262-10 Road vehicles — Functional safety — Part 10: Guidelines on ISO 26262,”

Standard International, 2018.

[32] J. R. Barker, “Army test experts identify five missteps in requirements development,” U.S.

Army Test and Evaluation Command and Don Sando, 9 January 2020. [Online]. Available:

https://www.army.mil/article/231523/army_test_experts_identify_five_missteps_in_requi

rements_development. [Acedido em 24 September 2020].

[33] Perforce Software, “A guide to codding standards MISRA C and MISRA C++,” [Online].

Available: https://www.perforce.com/resources/qac/misra-c-cpp. [Acedido em 25

September 2020].

[34] HORIBA MIRA Limited, MISRA Compliance:2020 Achieving compliance with MISRA Coding

Guidelines, Warwickshire: British Library Cataloguing, 2020.

[35] AUTOSAR GbR, Specification of C Implementation Rules, 2008.

[36] L. J. Rodríguez-Aragón, Tema 4: Internet y Teleinformática, Universidad Rey Juan Carlos.

87

REFERENCES

[37] A. Neumann, M. J. Mytych, D. Wesemann, L. Wisniewski e J. Jarperneite, “Approaches for

in-vehicle communication - an analysis and outlook,” em International Conference on

Computer Networks, Lemgo, 2017.

[38] C. Eletronics, “LIN Bus Explained - A Simple Intro,” 2020. [Online]. Available:

https://www.csselectronics.com/screen/page/lin-bus-protocol-intro-basics/language/en.

[Acedido em 30 September 2020].

[39] “Interfacing LIN with SLIC,” NXP semiconductors.

[40] “LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS,” Microcontroller Division

Applications, 2002.

[41] Y. Xu, C. Zhao, X. Chen, W. Deng e J.-G. Chung, “Integrated Protocol-Operation-Controller

Design based on FlexRay Communication Protocol,” Chonbuk National University, 2012.

[42] S. Lorenz, “The FlexRay Electrical Physical Layer Evolution,” AUTOMOTIVE 2010, 2010.

[43] NXP, “How FlexRay™ Works,” [Online]. Available: https://www.nxp.com/files-

static/abstract/overview_applications/FRWORKS.html. [Acedido em 7 January 2020].

[44] F. Luo, Z. Chen, J. Chen e Z. Sun, “Research on FlexRay communication system,” em 2008

IEEE Vehicle Power and Propulsion Conference, Harbin, 2008.

[45] G. Schickhuber e O. McCarthy, “Distributed fieldbus and control network systems,”

Computing & Control Engineering, vol. 8, nº 1, pp. 21-32, 1997.

[46] B. P. U. Middletown, D. C. B. Vernon, A. G. D. Glastonbury e S. A. H. Farmington, “Message

Routing in Control Area Network (CAN) Protocol”. United States of America Patente

5,854,454, 29 December 1998.

[47] “Road vehicles - Controller area network (CAN) - Part 1: Data link layer and physical

signalling,” Standard International, Geneva, 2015.

[48] “Road vehicles - Controller area network (CAN) - Part 2: High-speed medium access unit,”

International Standard, Geneva, 2016.

[49] “Road vehicles - Controller area network (CAN) - Part 3: Low-speed, fault-tolerant, medium-

dependent interface,” International Standard, Geneva, 2006.

[50] “Introduction to CAN | Learning Module CAN,” Vector Informatik GmbH, [Online]. Available:

https://elearning.vector.com/mod/page/view.php?id=333. [Acedido em 8 January 2020].

88 REFERENCES

[51] C. Huang, Fault Tolerant Steer-by-Wire Systems: Impact on Vehicle Safety, University of

Wollongong Thesis Collection, 2018.

[52] A. Balachandran, Applications of Force Feedback Steering for Steer-By-Wire Vehicles with

Active Steering, Stanford: Department of mechanical engineering of Stanford University,

2015.

[53] M. Bertoluzzo, G. Buja e R. Menis, “Control schemes for steer-by-wire systems,” IEEE

Industrial Electronics Magazine, 2007.

[54] A. Muir, “How a car works,” [Online]. Available:

https://www.howacarworks.com/illustration/118/the-rack-and-pinion-system.png. [Acedido

em 2 January 2020].

[55] Lilydale Motors, “Understanding The Difference Between Hydarulic & Electric Power

Steering,” 30 November 2017. [Online]. Available:

https://medium.com/@lilydalemotorsau/understanding-the-difference-between-hydarulic-

electric-power-steering-4e3d29d01b30. [Acedido em 2 January 2020].

[56] NXP Semiconductors, "S32K1xx Series Reference Manual," pp. 1712-1719, 1749-1756,

2018.

[57] Keil, “CAN Primer: Creating Your Own Network,” Arm Ltd., 2012.

[58] D. J. Barrenscheen, “On-Board Communication via CAN without Transceiver,” SIEMENS,

1996.

[59] NXP Semiconductores, “S32 Design Studio IDE,” 2018. [Online]. Available:

https://www.nxp.com/design/software/development-software/s32-design-studio-ide:S32-

DESIGN-STUDIO-IDE. [Acedido em 27 August 2020].

[60] LDRA, “Protecting Embedded Systems with New MISRA C Guidelines,” 2 May 2017. [Online].

Available: https://ldra.com/protecting-embedded-systems-new-misra-c-guidelines/. [Acedido

em 27 August 2020].

[61] Vector Informatik GmbH , “Testing ECUs and Networks with CANoe,” 16 July 2020. [Online].

Available: https://www.vector.com/int/en/products/products-a-

z/software/canoe/?gclid=EAIaIQobChMI5YCQ_5a76wIVENd3Ch3Uog3oEAAYASAAEgI4bvD

_BwE. [Acedido em 27 August 2020].

[62] D. R. Wright, “Finite State Machines,” CSC216, p. 28, 2005.

89

REFERENCES

[63] International Standard, “Road vehicles — Controller area (CAN) — Part 2: High-speed medium

access unit,” ISO, Geneva, 2016.

[64] M. B. a. P. O. R. Reilly, Programming Embedded Systems in C and C++, 1999.

[65] d. Annie goleman, R. boyatzis e Mckee, “Operating Systems,” em Operating Systems, 2019.

[66] A. M. Lister, Fundamentals of operating systems, 2013.

[67] F. R. A. B. D. O. F. L. L. O. R. R. Gennaro S. Rodrigues, “Analyzing the Impact of Fault-

Tolerance Methods in ARM Processors under Soft Errors Running Linux and Parallelization

APIs,” em IEEE Transactions on Nuclear Science, 2017.

[68] P. A. L. a. J. F. DeFranco, “Software engineering of safety-critical systems: Themes from

practitioners,” em IEEE Transactions on Reliability, 2017.

[69] J. Hatcliff, “Certifiably safe software-dependent systems: challenges and directions,” em

Proceedings of the on Future of Software Engineering, 2014.

[70] M. Vuori, “Agile development of safety-critical software,” em Tampere University of

Technology, 2011..

[71] B. M., “Fault-Tolerant Platforms for Automotive Safety-Critical Applications,” 2003.

[72] NXP, S32K2TV Datasheet, Abstatt: NXP Semiconductors, 2019.

[73] A. Schnellbach, Fail-operational automotive systems, Graz, 2016.

[74] C. Z. L. H. X. W. Y. D. Chengwei Tian, “Fault tolerant control method for steer-by-wire system,”

em International Conference on Mechatronics and Automation, Changchun, 2009 .

[75] C. Z. L. H. X. W. Y. D. Chengwei Tiang, Fault tolerant control method for steer-by-wire system,

Changchun: International Conference on Mechatronics and Automation, 2009.

[76] N. N. Y.-Q. S. F. S.-L. Cédric Wilwert, Design of automotive X-by-Wire systems, 2007.

[77] M. Grusin, “Serial Peripheral Interface (SPI),” SparkFun Electronics, [Online]. Available:

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all. [Acedido em 8

January 2020].

[78] SFUPTOWNMAKER, “I2C,” SparkFun Electronics, [Online]. Available:

https://learn.sparkfun.com/tutorials/i2c/all. [Acedido em 8 January 2020].

[79] S. Campbell, “Basic of UART communication,” Circuit Basics, [Online]. Available:

https://www.circuitbasics.com/basics-uart-communication/. [Acedido em 8 January 2020].

