
Citation: Roriz, R.; Silva, H.; Dias, F.;

Gomes, T. A Survey on Data

Compression Techniques for

Automotive LiDAR Point Clouds.

Sensors 2024, 24, 3185. https://

doi.org/10.3390/s24103185

Academic Editors: Thierry Badard

and Stephane Guinard

Received: 25 March 2024

Revised: 10 May 2024

Accepted: 15 May 2024

Published: 17 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

A Survey on Data Compression Techniques for Automotive
LiDAR Point Clouds
Ricardo Roriz , Heitor Silva , Francisco Dias and Tiago Gomes *

Centro ALGORITMI/LASI, Escola de Engenharia, Universidade do Minho, 4800-058 Guimarães, Portugal
* Correspondence: mr.gomes@dei.uminho.pt

Abstract: In the evolving landscape of autonomous driving technology, Light Detection and Ranging
(LiDAR) sensors have emerged as a pivotal instrument for enhancing environmental perception.
They can offer precise, high-resolution, real-time 3D representations around a vehicle, and the
ability for long-range measurements under low-light conditions. However, these advantages come
at the cost of the large volume of data generated by the sensor, leading to several challenges in
transmission, processing, and storage operations, which can be currently mitigated by employing
data compression techniques to the point cloud. This article presents a survey of existing methods
used to compress point cloud data for automotive LiDAR sensors. It presents a comprehensive
taxonomy that categorizes these approaches into four main groups, comparing and discussing them
across several important metrics.

Keywords: survey; data compression; LiDAR; perception system; autonomous driving

1. Introduction

Distance measurement systems using the time-of-flight and intensity of light beams
have been in existence for almost a century, tracing their roots back to the early 1930s [1].
Initially applied in atmospheric studies [2], the concept of Light Detection and Ranging
(LiDAR) was formally introduced by Middleton and Spilhaus in 1953 [3], a little over two
decades after its inception. The invention of the laser in 1960 [4] significantly accelerated
the development of LiDAR technology. This remote sensing technology employs lasers
to calculate distances to objects or surfaces. In the years that followed, LiDAR found
widespread applications in various fields, including aerial surveying and mapping, robots,
and autonomous vehicles. With the rapid evolution of the automotive industry and
the growing desire for self-driving cars, LiDAR technology started to emerge as a key
technology for autonomous driving across multiple applications and environments.

Back in 2002, the Defense Advanced Research Projects Agency (DARPA) proposed
the Grand Challenge (held in 2004), which consisted of a vehicle competition that aimed
to accelerate the development of self-driving technologies and fostering advancements
in robotics. Although no robotic vehicle was capable of finishing the course, in its sec-
ond edition in 2005, five vehicles were able to cross the finish line. The winning vehicle,
Stanley [5], took advantage of the LiDAR technology to autonomously navigate the en-
vironment. Nowadays, to help define a vehicle’s autonomous capabilities, the Society
of Automotive Engineers (SAE) specifies six levels of driving automation. While level
zero refers to no driving automation, the following levels progressively increase the car’s
autonomous capabilities up to level five, where cars must provide full driving automation
with no driver intervention required.

In order to reach higher SAE levels and accomplish the goal of fully autonomous
navigation, a comprehensive perception of the environment is mandatory, which is only
possible through the use of multi-sensor configurations [6]. Figure 1 depicts a modern vehi-
cle’s perception system, which includes cameras, Radio Detection and Ranging (RADAR)
devices, and LiDAR sensors, among other possible sensor technologies and configurations.

Sensors 2024, 24, 3185. https://doi.org/10.3390/s24103185 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24103185
https://doi.org/10.3390/s24103185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8543-550X
https://orcid.org/0009-0002-0308-7925
https://orcid.org/0009-0007-9700-0507
https://orcid.org/0000-0002-4071-9015
https://doi.org/10.3390/s24103185
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103185?type=check_update&version=1

Sensors 2024, 24, 3185 2 of 31

Camera

Camera

C
am

er
a

C
am

er
a

R
A
D
A
R

RADAR

RA
DA

R

LiDAR

RADAR

RA
DA

R

R
A
D
A
R

Figure 1. General perception system of an autonomous vehicle.

The utilization of these three main technologies presents a diverse set of advantages
and drawbacks. For instance, cameras perform very well in object recognition and can
provide the best visual information of the surroundings [7]. However, their performance
can be reduced in low-light environments and adverse weather conditions, such as fog, rain,
and snow. On the other hand, a RADAR demonstrates good reliability in obstacle detection,
providing crucial information on their range, angle, and velocity, regardless of some
weather conditions [8–11]. Meanwhile, LiDAR sensors can deliver accurate, high-resolution,
real-time 3D representations of the environment around a vehicle [12], allowing for long-
range measurements in mostly all-light conditions, making them appealing for autonomous
applications. Nonetheless, LiDAR technology still faces some challenges related to specific
adverse weather conditions and mutual interference, while struggling to meet the size,
weight, power, and cost (SWaP-C) requirements. Regarding its data output, including
LiDAR sensors in the perception system may also result in huge volumes of information
to be handled during the transmission, processing, and storage operations, which can
complicate their interface with resource-limited devices and computer architectures.

One approach to mitigate these challenges is the utilization of data compression
techniques to the point cloud. However, the broad landscape of existing solutions includes
a wide number of methods and algorithms, which makes difficult the task of choosing
one that best suits the final application. To help in understand the existing compression
methods available in the literature, this article contributes with:

1. A literature review on state-of-the-art compression methods applied to LiDAR point
cloud data and suited for automotive applications;

2. A comprehensive taxonomy with four main categories and several sub-groups, fol-
lowed by a discussion of the technical aspects of each group and respective methods;

3. A qualitative comparison between the different methods regarding their main features
and other important metrics including real-time and compression performance.

The remainder of this article is organized as follows: Section 2 presents the concepts,
applications, and challenges behind automotive LiDAR sensors; Sections 3 introduces
the challenges associated with compressing LiDAR data, the metrics used to evaluate
the methods, and the proposed taxonomy; Section 4–7 discusses each proposed category
and their respective compression methods; Section 8 discusses and provides a qualitative
comparison between all contributions, and includes a future perspective on which methods
will better adapt to keep up with the ongoing evolution of LiDAR technology; and finally,
Section 9 concludes this article.

Sensors 2024, 24, 3185 3 of 31

2. Automotive LiDAR

The integration of more sensors in the perception system of the car has become pivotal
in the automotive industry as more applications require precise information about the
surroundings of the vehicle. LiDAR sensors, although relatively new, bring a plethora of
advantages when compared with more mature technologies. It is composed of a trans-
mitting unit that uses laser diodes to send light pulses across the Field of View (FoV),
measuring the round-trip-time of the light pulse traveling to the target and back within
the LiDAR’s range. By its turn, the receiver unit is responsible for collecting the reflected
light and processing the received data, which may include the distance traveled by the
light pulse and the light intensity. Finally, the sensor utilizes the collected information to
create a 3D map of the environment, designated as point cloud, with all the detected points
surrounding the sensor. Figure 2 illustrates a LiDAR point cloud captured by a sensor on
the top of a car in a highway environment, where distinct objects and shapes, such as cars,
trees, road boundaries, and traffic signs, can be perceived by the onboard applications.

Traffic Signs
Car

Trees

Truck

Trees

Car

Car

Figure 2. LiDAR point cloud data [13].

2.1. LiDAR Applications

By creating the high-resolution 3D visualizations of the surrounding environment in
real-time and with great precision, LiDAR sensors become a key instrument in several appli-
cations, including critical and safety-related tasks such as collision avoidance, drivable area
detection, pedestrian detection and recognition, traffic signs monitoring, and Simultaneous
Localization and Mapping (SLAM).

Collision detection and avoidance: It represents a critical requirement for autonomous
systems, as it involves the identification and detection of both static and moving objects
surrounding the vehicle. By accurately detecting the speed, direction, and position of these
objects, the safety of the vehicle and its passengers can be effectively preserved [14–16].

Drivable area detection: LiDAR sensors can assist in detecting the road and the drivable
area, where high-level algorithms are able to accurately identify road boundaries, markings,
lanes, and curbs, aiding in a correct evaluation of the road and ensuring efficient navigation
of the vehicle [17–19]. To better perform these tasks, a ground segmentation step can
be applied to the point cloud data [20], which enhances the subsequent identification of
environmental features.

Road users detection and tracking: Prioritizing the safety of both the passengers inside
the vehicle and individuals outside is paramount, and LiDAR sensors can assist high-level
applications in the detection and tracking of road users, such as pedestrians, and bicycle
and motorbike riders [21–23]. Such features enable autonomous vehicles to make informed
decisions and take appropriate actions to avoid collisions.

Sensors 2024, 24, 3185 4 of 31

Road signs monitoring: The use of LiDAR sensors in monitoring road signs related to
traffic regulations brings significant advantages [24–26], mainly due to the ability to detect
their highly reflective surfaces. This feature can significantly enhance road safety and
facilitate efficient traffic management, underscoring the essential role that LiDAR sensors
play in ensuring the reliability and intelligence of autonomous systems.

SLAM: This technique is an extensively researched field in robotics that consists of con-
structing real-time localization maps using perception data. Its application has extended to
autonomous vehicles, leveraging the vast amount of 3D information generated by LiDAR
sensors [27]. Typically, traditional odometry techniques combine data from several sensors
to estimate the vehicle’s position relative to an initial reference point. To accommodate the
high data rates of LiDAR sensors, approaches like LOAM [28] prioritize frequent odometry
processing while reducing mapping frequency to ensure real-time performance.

2.2. Challenges

Despite the significant advantages of incorporating LiDAR sensors into modern per-
ception systems, several technological challenges still remain, motivating researchers and
manufacturers to continue studying and investing on improving this technology. Con-
tributing to this field of study is not straightforward, as it can be hard to recreate real-world
situations to deploy and test LiDAR sensors. Nonetheless, some research centers already de-
veloped expensive facilities supporting complex road and environmental setups to validate
and benchmark different driving environments. For instance, LIBRE, considered the first
benchmarking and reference LiDAR dataset, tested ten sensors in three different environ-
ments and configurations such as static targets, adverse weather, and dynamic traffic [29,30].
Gomes et al. also proposed a testing platform to rapidly test and validate LiDAR sensors
by analyzing only their point cloud output [31]. The testing system is able to benchmark
a LiDAR sensor in a controlled environment to recreate the expected driving conditions
to which such devices are normally subjected. Taking advantage of these solutions, some
research areas focus on making LiDAR more accessible and efficient by exploring the
development of cost-effective, reliable [32], and reduced size sensors for better vehicle
integration [33], while others address issues related to optimizing LiDAR performance
across different environments and applications. These improvements include enabling
LiDAR operation under adverse weather conditions, such as rain, snow, and fog [34–36],
as well as enhancing data transmission, processing, and storage capabilities [37].

3. Automotive LiDAR Data Compression

For a better understanding of the environment, it is required that sensors provide
high-resolution point clouds, in real-time. However, this increases the hardware require-
ments for the sensor itself, as well as its demands for high-speed interfaces and processing
architectures for transmitting, handling, and storing LiDAR point cloud data, which can be
particularly challenging in embedded perception systems with limited memory and band-
width resources. Some approaches to mitigate these challenges include the optimization
of the interface used by sensors (minimizing the latency and increasing the throughput),
and the deployment of data compression algorithms. Cunha et al. [38] propose an Ethernet
interface solution for data packet decoding and reconstruction compatible with different
LiDAR sensors. By decoding the data packets and using hardware-assisted algorithms to
translate points between different coordinate systems, data transmission can be improved
without losing point cloud information. Nonetheless, some top-class sensors, such as the
Velodyne VLS-128, can produce up to 9.6 million points per second, which further demands
for compression algorithms to optimize the streaming and storage applications.

Storing the data generated by LiDAR sensors within an automotive environment pro-
vides many advantages, such as environmental classification, SLAM applications, and the
creation of datasets, extremely useful for machine learning algorithms and for point cloud
data processing without requiring the sensor being installed in the real-world environment.
Depending on the sensor and the setup used, storing LiDAR raw data is not always feasible.

Sensors 2024, 24, 3185 5 of 31

Therefore, the utilization of data compression can be useful to identify and eliminate data
redundancies of spatial and temporal nature [37], resulting in less data to be transmitted,
processed, and stored.

3.1. Proposed Taxonomy

Point cloud data compression has become a prominent topic in several research topics,
ranging from Virtual Reality (VR) applications featuring dense point clouds, to automotive
scenarios where the point clouds (generated by a LiDAR sensor) are usually sparse and
cover a wider 3D area. Within the scope of this article, this survey only addresses contribu-
tions that specially target automotive LiDAR sensors, whether through real implementation,
dataset analysis, or sensor/environment simulation. Figure 3 summarizes the proposed
taxonomy for classifying state-of-the-art compression techniques, organizing them into
four main groups: (1) Coding-based compression , which includes fundamental low-level
compression algorithms applied to raw data; (2) Format-based compression , which uses
well-known and standard LiDAR compression formats; (3) 2D compression , which include
methods that employ a 2D projection of the point cloud to apply image/video codecs; and
(4) 3D compression , which summarizes the approaches using 3D space partitioning to
decompose the LiDAR data before being compressed.

Tree-based

Intra-frame Inter-frame

PCD-based

Bitmasking

Delta
Encoding

Dictionary
based

Entropy
Encoding

Compression
techniques

Coding-based 2D-based

Format-based 3D-based

LAS-based Sparse-TensorPoint-based

Figure 3. Proposed taxonomy for LiDAR data compression methods.

3.2. Performance Metrics

Among the various metrics used to assess a compression technique’s performance,
the most common are the Compression Ratio (CR) and the processing time required to
complete the compression process. The CR compares the size of the point cloud data before
and after the compression being applied and it can be obtained with Equation (1), where the
Uncompressed_Size corresponds to the original point cloud size, and the Compressed_Size

Sensors 2024, 24, 3185 6 of 31

is the size of the point cloud data after being compressed. Therefore, a higher CR value
indicates a bigger size reduction.

CR =
Uncompressed_Size

Compressed_Size
(1)

Similarly to the compression ratio, the bits per point (bpp) can also be used to eval-
uate the compression performance by quantifying the amount of data after the compres-
sion. The bpp, as shown in Equation (2), is the total number of bits after compression
(Total_Compressed_Bits) divided by the number of input points (Total_Input_Points). Con-
trary to the compression ratio, a lower value of bpp indicates better compression performance.

bpp =
Total_Compressed_Bits

Total_Input_Points
(2)

Point-to-plane Peak Signal to Noise Ratio (PSNR) can be also used to measure the
quality of decompressed point clouds, especially when compression methods discard
information to achieve higher compression ratios. The PSNR is usually expressed as a
logarithmic value using the decibel scale. As Nardo et al. [39] describe, let P be the original
point cloud, |P| be the total number of points contained in the original point cloud, p ∈ P
be one point in the original point cloud P, P̂ be the reconstructed point cloud, q ∈ P̂
be p’s nearest neighbor in the reconstructed point cloud, P̂, nq be the surface tangent in
q ∈ P̂,

〈
p − q, nq

〉
be the projection of p − q vector on q ∈ P̂, and θ∗P be the peak value in

the original point cloud, the PSNR can be calculated with Equation (3), being the Mean
Squared Error (MSE) obtained with Equation (4). It can be equally important to evaluate a
technique’s time performance or latency since compressing LiDAR data in real-time may
be a critical requirement in autonomous driving applications that require decision-making
purposes. For example, a technique used to compress data and store data from a LiDAR
sensor operating at 10 Hz must be capable of completing the full operation within 100 ms
to meet real-time processing requirements and to avoid discarding any frames.

PSNRP→P̂ = 10 log10

(
(θ∗P)

2

MSEP→P̂

)
(3)

MSEP→P̂ =
1
|P| ∑

∀p∈P
(
〈

p − q, nq
〉
)2 (4)

Aside from these metrics, compression techniques can be classified based on the type of
compression applied and their application goal. Firstly, the compression type can be divided
into lossless and lossy techniques. A lossless approach involves identifying and eliminating
statistical redundancy while completely preserving the original information. Contrarily,
a lossy method reduces the data size by removing information through a quantization
process [40], making impossible the task of reconstructing the original data [41]. The
application goal usually determines whether the compression technique is adequate for
data streaming, storage, or both. Streaming compression techniques are mainly used by
real-time applications where minimizing data transmission between devices is crucial.
In contrast, storage-based approaches are often required to compress LiDAR data for future
processing and offline visualization. Since most storage applications usually require large
amounts of data to be recorded, they use algorithms with better compression ratios in order
to save memory resources. However, such algorithms can be more computationally hungry
than others used by streaming compression applications.

4. Coding-Based Compression Algorithms

There are several coding-based algorithms that can be used to compress LiDAR point
clouds, either targeting raw data sent by the sensor or further used by higher-level compres-
sion methods. Generically, they handle data as a stream of bits, grouping and reorganizing

Sensors 2024, 24, 3185 7 of 31

them into smaller chunks of compressed information. The most common methods are
based on entropy coding, dictionary-based coding, delta encoding, and bitmasking, as sum-
marized in Table 1.

Table 1. Summary of coding-based compression methods applied to LiDAR data.

Category Method Type Main Features Setup Dataset Performance Source Code

Entropy
Encoding

Golomb–Rice
coding

(1971) [42]
Lossless

Applies the
Golomb–Rice

algorithm to a stream
of LiDAR data

Matlab
simulation

LiDAR
laboratory

setup
CR: 1.01 [43] Open source

Dictionary-
based

LZMA
(1998) [44] Lossless

Applies LZMA
algorithm to a stream

of LiDAR data

Suggested in [45] to be used with
LiDAR data, but not yet tested Open source

Delta Encoding

SSDE
(2016) [46] Lossless

Adds symmetric and
segment properties to

delta encoding method

Matlab
simulation

LiDAR
laboratory

setup

CR:
1.19–1.39 [43] Not disclosed

EDC
(2019) [43] Lossless

Adds overshooting
detection to delta
encoding method

Matlab
simulation

LiDAR
laboratory

setup
CR: 1.61–1.89 Not disclosed

Bitmasking V2I/V2V EC
(2019) [47]

Lossless /
Lossy

Exploits unnecessary
precision by zeroing
least significant bits

Intel Xeon
E5-2620,

Odroid XU and
Raspberry Pi 3

Velodyne
VLP-16
sensor

CR: 1.37–2.10 Not disclosed

4.1. Entropy Encoding

Entropy encoding consists of a lossless data compression approach that exploit sta-
tistical redundancies to reduce the data size [48]. Among the most popular, Huffman
coding [49], arithmetic coding [50], and Golomb coding [51] have been widely used on
image and video applications. The Huffman coding scheme involves assigning each data
symbol a variable-length code based on its probability of occurrence, with more frequent
symbols receiving shorter codes and less frequent symbols receiving more extended codes.
This approach results in a more efficient data representation, reducing the overall file
size. On the other hand, arithmetic coding encodes the entire input stream into a single
value by iteratively refining intervals assigned to each symbol according to their probabili-
ties. Despite its greater complexity and execution time, arithmetic coding represents an
improvement over Huffman coding.

Golomb coding is a lossless data compression method designed for encoding distri-
butions in which small values are more frequent in the input stream. It is described in
Equation (5), where Gm(input) is the Golomb code for the input data using the parameter
m, q is the quotient of the input divided by m, r is the remainder of the input divided
by m, binarylength represents the number of bits required to represent m, and binary(r)
represents the binary representation of the remainder r. The parameter m is used to control
the trade-off between the length of the codewords and the frequency of occurrence of
different values. A larger m value results in longer codewords for smaller values of the
input, and shorter codewords for larger values of the input.

Gm(input) = q × binary_length(m) + binary(r) (5)

The Golomb–Rice coding [42], which is derived from the original Golomb coding
scheme, restricts the configurable parameter m to the power of two values, making it
more efficient in reducing the computational requirements. To the best of our knowledge,
Golomb–Rice coding is the only entropy encoding method that has been directly eval-
uated on LiDAR raw data, while Huffman and arithmetic coding are typically used in
intermediate stages of high-level algorithms.

Sensors 2024, 24, 3185 8 of 31

4.2. Dictionary-Based and Delta Encoding

Dictionary-based methods identify and store recurring structures within the input
data, making them especially efficient when data includes substantial pattern repetition.
When an input data sequence aligns with a pattern already stored in the dictionary, only
the offset, the length, and a pointer to the matched pattern are coded in the final bitstream,
reducing the final data size. Thus, the number of matches and the match length directly
influence the overall compression ratio. Nonetheless, each dataset has a unique dictionary,
which must be stored alongside the compressed data to allow the decoding step. The
work by Maksymova et al. [45] suggests the utilization of the Lempel–Ziv–Markov chain
algorithm (LZMA) with LiDAR data. The LZMA is a lossless dictionary-based compression
approach that uses the LZ77 algorithm [52] and can be used in different applications that
require both the streaming and storage of LiDAR data. This algorithm comprises three
stages: (1) delta encoding; (2) sliding dictionary encoding; and (3) range encoding. In
the delta encoding stage, a symbol is replaced by the difference between its value and a
reference value. As depicted in Figure 4, this state tends to increase the efficiency of the
resulting sliding dictionary since it reduces the number of distinct symbols in a sequence.
Next, the sliding dictionary applies the LZ77 algorithm, utilizing a search buffer with a
defined range to identify patterns in preceding data. It outputs the offset to the matched
data, the length of the match, and the next input symbol. The final stage involves the range
encoder [53], an entropy encoding method based on the arithmetic encoder [50].

2 3 4 6 7 9 8 7 5 3 4Input sequence

Output sequence 2 1 1 2 1 2 -1 -1 -2 -2 1

Number of
symbols

8

4

Figure 4. Delta encoding.

In a standard delta encoding phase, the delta values can range from a negative number
up to its positive value minus one. However, if the calculated difference is bigger than the
maximum positive value, it generates an overshoot, and the current value is stored with a
new codeword. Makysmova et al. [43] propose an extended delta encoding method. They
expand the standard delta encoding algorithm to handle the overshoot detection, making it
reach compression ratios at least twice as high as the standard approach. The evaluation of
this method also included a different version of a delta encoding proposed by Liang et al.,
where the standard method was improved with symmetric and segmented properties to
improve energy efficiency in wireless sensors [46].

4.3. Bitmasking

Caillet and Dupuis propose a different compression approach for efficient Vehicle-to-
Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) applications that explore a quantization
process [47]. Their proposed method involves applying a bitmask to the raw binary data
from a LiDAR sensor, which reduces the number of bits by zeroing the least significant bits.
This process enhances the efficacy of the next compression techniques, such as LZMA, GZIP,
or BZIP2, which take advantage of the zero patterns generated by the bitmask. Moreover,
the quantity of nullified bits can be adjusted to achieve higher compression ratios as long
as the point cloud retains an acceptable accuracy.

5. Format-Based Compression Algorithms

With the LiDAR’s mass adoption in fields such as airborne surveying and mapping
for topography, entities like American Society for Photogrammetry and Remote Sensing
(ASPRS) started to develop standards to facilitate the interchange of LiDAR data. One of

Sensors 2024, 24, 3185 9 of 31

the first standards widely used and targeting airborne LiDAR is LAS [54], which, due to the
large datasets generated by this kind of application, started to include lossless compression
algorithms to reduce the data size, resulting in the LASzip [55] and LAScompression [56].
They both use prediction coding to compress blocks of LiDAR points, predicting the
attributes of a new point from a past or groups of past points. The predicted deltas
are then compressed using entropy encoding. Despite their popularity, these algorithms
were especially designed to handle airborne LiDAR data, which is collected by sensors
with different characteristics than automotive LiDAR sensors. Thus, their application in
automotive applications becomes limited.

Another popular representation for point clouds is the PCD format, the data represen-
tation used by the Point Cloud Library (PCL) [57]. The PCL is an open source library that
provides algorithms and data structures for handling the 3D point cloud data collected by
a LiDAR sensor. It supports a wide range of point cloud functionalities, including filtering,
segmentation, object recognition, 3D-to-2D projection, and others. More importantly, it
provides some techniques that can be used for compressing point clouds, like octree-based
compression, range-image conversion and compression, and the PCD file format native to
PCL. The PCD can store point cloud data in three different types: ASCII, binary, and bi-
nary compressed. Beek et al. [58] evaluated the LASzip and the PCD file with a Velodyne
HDL-32, a sensor widely used in automotive applications. Their evaluation, with results
presented in Table 2, shows that these formats could not achieve good bpp ratios.

Table 2. Summary of format-based compression methods.

Category Method Type Main Features Setup Dataset Performance Source Code

LAS LASzip (2013) [55] Lossless Compress the LAS
format standard Not disclosed

Velodyne
HDL-32E and
Ibeo sensors

bpp:
21.6–36 [58] Open source

PCD PCD compression
(LZF) (2011) [57] Lossless

Compress the PCD
format standard
binary with LZF

Not disclosed
Velodyne

HDL-32E and
Ibeo sensors

bpp:
81.6–96.8 [58] Open source

6. Two-Dimensional-Based Compression Algorithms

Compression algorithms based on 2D representations focus on compressing images
that represent point clouds. First, the 3D point cloud is converted into a 2D structure,
which stores either points represented by the Cartesian coordinates system (x, y, z) or the
spherical coordinates system (ρ, θ, φ), as illustrated in Figure 5.

For compression using Cartesian projections, the 3D coordinates (x, y, z) are assigned
either to three single-channel grayscale images (each image representing one Cartesian axis)
or combined into a single three-channel RGB image, where each color channel represents
one coordinate. In the case of spherical coordinates’ representation, the 2D projection
can follow two different approaches. The first option involves projecting the spherical
coordinates in the same way as the Cartesian system but with (ρ, θ, φ) values (representing
a lossless way to store and recover 3D data). In contrast, the second method involves a
lossy projection, where the spherical 3D coordinates are used to calculate the point’s x and
y values within a 2D image. With this method, each point’s range (ρ) is then stored as the
image pixel value, creating a representation known as Range Image (RI), as depicted in
Figure 6. Once the point cloud data are transformed into a 2D image, efficient encoding
techniques, either using standard image compression algorithms or image codecs, are used
to compress data. These techniques are generally classified into two different categories:
intra-frame (summarized in Table 3) and inter-frame compression (summarized in Table 4).
The former, also referred to as spatial compression, aims to minimize the redundancy
present in a single image frame, while the latter, also known as temporal compression, is
designed to encode the variations across successive frames.

Sensors 2024, 24, 3185 10 of 31

Y

P(x,y,z)

X

z

x
y

Z

(a) Cartesian coordinates.

Y

S(p,θ,φ)

X

Z

θ

φ

(b) Spherical coordinates.

Figure 5. Three-dimensional coordinate representations.

Range Image

Point cloud

Figure 6. Point cloud to range image conversion.

Sensors 2024, 24, 3185 11 of 31

6.1. Intra-Frame Compression

Among the several industry standards available for image compression, two of the
most widely used methods for compressing image data are the Joint Photographic Experts
Group (JPEG) and the Portable Network Graphics (PNG) formats [59]. The JPEG format is
a widespread method of lossy compression for digital images, mainly used to store photos.
The compression process involves converting the image from RGB to the YCbCr color space,
segmenting it into blocks, and then applying a discrete cosine transform (DCT) to transition
from spatial to frequency domain data. This transformation highlights significant features
while allowing for the reduction in less critical information. Next, the quantization reduces
the precision of the DCT coefficients, which is the primary source of compression. The final
step encompasses a lossless data encoding algorithm such as the Huffman coding [49].
Since the original JPEG algorithm is inherently lossy, some lossless/near-lossless variants
were also developed, such as the JPEG 2000 [60] and the JPEG-LS [61].

The JPEG 2000 [60] improves the original standard using a discrete wavelet trans-
form (DWT) step instead of a DCT, which increases the overall compression ratios. It also
provides lossy and lossless compression flexibility according to the application’s needs.
Regarding the JPEG-LS [61], which is derived from the Low Complexity Lossless Compres-
sion for Images (LOCO-I) algorithm [62], it provides a simple, yet efficient, implementation.
JPEG-LS consists of two basic steps: the first step involves a context-modeler and a pre-
dictor that estimates the pixel values based on their surroundings. The following step
applies a Golomb–Rice encoder to compress these predictions efficiently. Figure 7 depicts
the encoding steps of image-based algorithms to compress point cloud data.

JPEG-LS algorithm

CoderModeler

Conversion to X,Y,Z point data

LiDAR data

Conversion to image arrays

Compress as an image (PNG,
JPEG-LS)

Compressed data

Predictor

Context-
modeler

Golomb
Coder

C
om

pr
es

se
d

bi
ts

tr
ea

m

im
ag

e
ar

ra
ys

Figure 7. Image-based 3D point cloud compression.

The PNG is a widely used image encoding algorithm that is able to provide lossless
compression, preserving the original image information that can be fully recovered in the
decompression step. The PNG algorithm begins with a prediction stage that estimates pixel
values based on neighboring pixels. This is followed by the DEFLATE algorithm [63], a com-
bination of the LZ77 and the Huffman encoding schemes. Several research studies [58,64,65]
have explored the utilization of PNG, JPEG, and their variations for compressing LiDAR
data, comparing their results with other image-based and non-image-based compression al-
gorithms to showcase the applicability of these approaches with LiDAR sensors. Aiming at
enhancing the compression ratios, Youguang et al. [66] studied the Cartesian-to-cylindrical
projection as an alternative to the Cartesian and spherical coordinate systems to represent
the LiDAR point cloud. Their proposal includes a regularized representation considering
the LiDAR’s mechanical structure and acquisition pattern, specially tailored to LiDAR
data compression.

Other methods use segmentation algorithms to create regions of interest within the
point cloud before performing data compression. This way, different approaches can

Sensors 2024, 24, 3185 12 of 31

be used in specific parts of the point cloud, applying near-lossless compression in the
most important information while using high compression and lossy algorithms to the
remaining data. X. Sun et al. [67] proposed an approach based on configurable clustering
for lossy/lossless compression depending on the selected algorithm. Since a LiDAR sensor
can generate many outlier points during the scanning of the environment, this approach
applies an outlier removal filter before creating a range image from the LiDAR data. Then, it
uses the 3D-HEVC [68] range image-based clustering segmentation method to separate the
data into ground and objects. The object areas are later classified based on their geometry
using a prediction method. Finally, the compression step is applied either using a lossless
technique, such as BZip2 and LZ4, or a lossy technique, like JPEG and JPEG 2000. The work
proposed by Chen et al. [69] creates two RIs by segmenting the point cloud into ground
points and non-ground points, applying different degrees of sparse sampling to remove
redundancies. Finally, the two RI are then compressed using JPEG-LS.

Alongside traditional image compression methods, machine learning techniques also
started to emerge in the literature due to their ability to extract features and patterns
from data. Tu et al. [70] proposed an image-like Recurrent Neural Network (RNN)-based
approach to compress RIs created from LiDAR sensors, also including a residual block
structure in the decoder to improve decompression performance. Similarly, Wang et al. [71]
applied an entropy model directly to RIs. Other approaches use learning-based semantic
segmentation steps in their algorithms. For instance, Ref. [72] uses the RangeNet++ algo-
rithm to retrieve important segments in the RI before compressing them with traditional
compression algorithms [73,74] or with learning-based ones [75]. With the goal of improv-
ing LiDAR 2D representations, Luo et al. [76] propose a learning-based model-agnostic
framework to convert raw data into spherical coordinates. This framework can be used as
a pre-processing step for other methods, enhancing their performance.

Table 3. Summary of 2D-based intra-frame compression methods.

Category Method Type Main Features Setup Dataset Performance Source Code

Traditional

PNG
(1997) [59] Lossless

Applies PNG to
range images from

LiDAR point clouds
Not disclosed Velodyne and

Ibeo sensors

bpp:
7.5–15.2 [58]

PSNR: 111 [39]
Open source

JPEG-LS
(2000) [61] Lossless

Applies JPEG-LS to
range images from

LiDAR point clouds
Not disclosed Velodyne and

Ibeo sensors

bpp:
6.4–22.4 [58]

PSNR: 110 [39]
Open source

CLUSTER
(2019) [67]

Lossless /
Lossy

Uses the shape of
RI’s segmented

regions to feed the
prediction module

Intel Core
i5-6300HQ

with 4GB RAM
KITTI CR: 4.83–30.21 Not

disclosed

SC-CSS
(2021) [69] Lossy

Compresses
segments of

non-/ground points
using a combination

of RI and 3D
representations

Not disclosed
Velodyne
HDL-32E

sensor
bpp: 6 Not

disclosed

RAI IC
(2022) [65] Lossless

Uses standard image
compression

methods on images
created from range,

azimuth,
and intensity

Not disclosed
Velodyne
VLP-32C

sensor
bpp: 10–17 Open source

Cylindrical
Pred.

(2023) [66]

Lossless /
Lossy

Deploys a prediction
scheme on a
Cartesian-to-

cylindrical projection
for spinning LiDARs

Not disclosed KITTI - Not
disclosed

Sensors 2024, 24, 3185 13 of 31

Table 3. Cont.

Category Method Type Main Features Setup Dataset Performance Source Code

Learning

2D RNN
with RB

(2019) [70]
Lossy

Uses a RNN with
Residual Blocks on
range image-based

matrices

Intel Core
i7-7820X w/

Nvidia
GeForce GTX

1080

Velodyne
HDL-32 sensor bpp: 2.04–4.046 Not

disclosed

HSC
(2021) [73] Lossy

Applies Draco [77]
on semantic

segments provided
by RangeNet++[72]

Intel Core
i7-7700K w/

Nvidia TITAN
RTX and 32GB

RAM

SemanticKITTI bpp: 0.2–14
PSNR: 30–70

Not
disclosed

RIC-Net
(2022) [71]

Lossless /
Lossy

Applies a three
stages end-to-end

range image-based
entropy network

Intel Core i7
w/ Nvidia

GeForce GTX
1080Ti

KITTI, Oxford
and Campus16 bpp: 4.1 Not

disclosed

R-PCC
(2022) [75]

Lossless /
Lossy

Applies real-time
sampling

segmentation and
point-plane mixing

modeling to RI

Not disclosed
KITTI, Oxford
and HKUST-

Campus
bpp: 1.15–5.67 Open source

SPR
(2022) [74] Lossy

Encodes labels,
predictions,

and residuals from
RangeNet++ [72] RI

segments

Intel Core
i7-7700K w/
Nvidia GTX

1080Ti

SemanticKITTI bpp: 6.3–7 Not
disclosed

SCP
(2023) [76]

Lossless /
Lossy

Offers a framework
to convert raw data

to spherical
coordinates

2 AMD EPYC
7742 and 8

Nvidia A100

Ford and
SemanticKITTI - Not

disclosed

6.2. Inter-Frame Compression

Similarly to a video sequence, LiDAR point cloud data consistently exhibit a strong
correlation between frames (considering a full environment scan), especially when vehicles
are moving at low speeds. Therefore, some approaches explore video-based codecs applied
to the RI resulting from the point cloud. For instance, Nenci et al. [78] suggest a compression
method to allow range-data streams provided by a Velodyne 3D LiDAR sensor to be
sent over a low bandwidth network. The method uses the H.264 video codec, a video
standard that uses a motion-compensated inter-frame prediction, intra-frame prediction,
transformation and quantization, and entropy coding. Similarly, Heo et al. [79] further
explore this concept by applying the H.264 video codec to lossy RIs with the primary goal
of achieving low latency results. Using a different approach, Nardo et al. [39] applied the
LZW [80] algorithm and MJ2 [60] to a stream of RIs. While the LZW is a simple dictionary-
based algorithm focused on compression speed, the MJ2 consists of a video codec that
encapsulates motion sequences using JPEG 2000 images. Similarly, Tu et al. [81] developed
a compression method that combines a RI and video codecs. However, instead of applying
the compression method directly to the RI generated from each point cloud frame, different
types of RIs are used. The first type, Log range images , involves converting the distance
information into a logarithmic value, similarly to popular strategies used in audio encoding.
The second type, layered range images , consists of combining sequences of standard RIs into
a range image matrix and then re-cutting the matrix by its rows to generate layers.

Taking advantage of the 3D characteristics present in the LiDAR point cloud data,
Tu et al. [82] proposed a lossy video compression algorithm that uses location and orienta-
tion information in the compression step. Each point in the LiDAR packet is represented
by an ID, rotation position, and distance. All three components are compressed separately
using several MPEG and DPCM strategies. In a more recent work proposed by Tu et al. [83],
the method includes an improved searching strategy, motion analysis, and better encoding
schemes. Sun et al. [84] also improved their work [67] with an inter-frame strategy based on

Sensors 2024, 24, 3185 14 of 31

registration and lossless compression on residuals. Feng et al. [85] suggest a lossy technique
for compressing point clouds involving the encoding of planes formed by the points in the
point cloud. Taking advantage of the significant overlap between consecutive point cloud
frames in physical space, it allows for spatially encoded planes to be re-used for encoding
the temporal stream.

Deep-learning-based approaches have also begun to disclose some breakthroughs in
efficient 2D-based inter-frame point cloud compression. For example, Tu et al. [86] explored
a U-net-based deep learning network for the real-time compression of point clouds stream.
Using raw data from LiDAR sensors, the point cloud information is stored in a 2D matrix,
being next converted to a video-like format. In this format, each row contains a laser
ID, and each column represents laser beam emissions with the same vertical resolution,
being the distance information defined by the values in each cell. Some frames are then
designated as references and go through an interpolation process with the remaining using
the U-net [87] architecture, a well-established image segmentation convolutional network.
The final steps consist in calculating the residuals between the predicted and the actual
frames, and applying an encoder network to further compress these values. In order to
retain as much information as possible, the referenced frames are compressed using JPEG-
LS. Similarly, Liu et al. [88] incorporated U-net for the inter-frame interpolation process in
their approach. However, instead of using traditional codecs like JPEG-LS in the subsequent
steps, the approach proposed by Wang et al. [75] is used to handle intra-frame compression.
The method originally proposed by Sun et al. [67] was further improved with an inter-frame
step [89]. Using a prediction network model based on convolutional Long Short-Term
Memory (LSTM) cells, the algorithm can predict future frames, compressing the delta
between them. LSTM are a type of RNN architecture designed to address the common
vanishing gradient problem by allowing the network to selectively update and retain
information over long sequences. Since LSTM effectively captures long-term dependencies,
it is well suited for compressing sequential LiDAR data.

Some methods categorize their approach based on their frame structure, describing
which frames they use to achieve data reduction. Commonly, there are three types of
frames: intra-frames (I-frames), predictive frames (P-frames), and bidirectional frames
(B-frames). The I-frames can hold a complete frame independent from the other frames.
Often used as a reference, the I-frames are encoded independently. The P-frames rely on
information from previous frames (typically I-frames or other P-frames) to predict and
encode the changes that occurred since the last reference frame. Only the changes are
stored, which helps reducing the data size. Finally, the B-frames can use information
from both previous and future frames to predict and encode the changes. Focused on this
last frame type, Zhao et al. [90] proposed a bi-directional frame prediction network for
inter-frame prediction followed by a 32-bit high-precision floating-point lossy encoder to
compress the I-frames and B-frames. Some mapping applications also propose algorithms
to compress spatially and temporally point clouds. Wang et al. [91] developed a method
relying on the plane fitting of RI’s segments retrieved from the RangeNet++ architecture [72].
To remove temporal redundancy, an interpolation-based network is used. Inspired by the
PNG algorithm, the work proposed by Zhou et al. [92] uses an RI-based method with a
deep model to predict the pixel values. Then, the predicted values and the original values
to achieve lossless compression are compressed using a delta encoding approach. This
method, rather than simply computing a difference between close-by pixels, calculates
pixel values based on context pixels, achieved by LiDAR’s contextual laser shots on the
raster-scanning order from both the current and past scans.

Sensors 2024, 24, 3185 15 of 31

Table 4. Summary of 2D-based inter-frame compression methods.

Category Method Type Main Features Setup Dataset Performance Source Code

Traditional

RI-LZW
(1984) [80] Lossy

Applies the LZW codec on
a sequence of range images

created from LiDAR

Intel Core
i5-4210U

Velodyne
HDL-64
sensor

PSNR:
63 [39] Open source

RI-MJ2
(2003) [60] Lossy

Applies the MJ2 codec on a
sequence of range images

created from LiDAR

Intel Core
i5-4210U

Velodyne
HDL-64
sensor

PSNR:
63 [39] Open source

RI-H.264
(2014) [78] Lossless

Applies the H.264 codec on
a sequence of range images

created from LiDAR

Intel Core
i7-4770

Velodyne
HDL-64
sensor

bpp: 2.41 Open source

RI-LayerJPEG
(2016) [81] Lossy

Applies the JPEG codec to
layered range images
created from LiDAR

Not
disclosed

Velodyne
HDL-64
sensor

PSNR: 49–80 Not
disclosed

RT-ST
(2020) [85] Lossless

Uses iterative plane fitting
to exploits both spatial and

temporal redundancies

Intel Core
i5-7500 and

Nvidia
mobile TX2

SemanticKITTI CR: 40–90 Not
disclosed

PC-SLAM
(2021) [82,83] Lossy

Uses location and
orientation information for
LiDAR data compression

Intel Core
i7-7820X

Velodyne
HDL-64
sensor

bpp:
3.61–6.68

Not
disclosed

CLUSTER-ICP
(2021) [84]

Lossless /
Lossy

Uses CLUSTER [67],
registration-based

inter-prediction and
lossless compression on

residuals

i5-6300HQ
2.3 GHz w/
4GB RAM

KITTI CR:
9.47–41.49

Not
disclosed

FLiCR
(2022) [79] Lossy

Uses H.264 video codec on
lossy RI for edge-assisted

online perception

Nvidia
Jetson AGX

Xavier
KITTI CR:

21.26–215.85
Not

disclosed

Learning

RT-S-PCC-U-
NET

(2019) [86]
Lossless

Uses U-Net [87] to reduce
temporal redundancies in a

sequence of frames

Intel Core
i7-7820X w/

Nvidia
GeForce GTX

1080

Velodyne
HDL-64
sensor

bpp: 2–4.5 Not
disclosed

Inter-Inserting
(2022) [91] Lossless

Uses plane fitting on
RangeNet++ [72] RI’s

segments and an
interpolation-based

network for temporal
redundancy removal

Desktop w/
Nvidia

TITAN RTX
KITTI CR:

14.56–32.36
Not

disclosed

CLUSTER-
LSTM

(2022) [89]

Lossless /
Lossy

Uses CLUSTER [67] for
intra-prediction and

convolutional LSTM cells
for inter-frame compression

Intel 2.2GHz
i7 w/ Nvidia

GPU and
16GB RAM

KITTI CR:
24.39–63.29

Not
disclosed

RIDDLE
(2022) [92] Lossy

Uses a deep model to
predict the next pixel

values based on current
and past LiDAR scans and
delta encoding to compress

the data

Nvidia Tesla
V100

Waymo
Open and

KITTI
bpp: 3.65–4.3 Not

disclosed

BPNet RAFC
(2022) [90] Lossy

Uses a frame prediction
network to inter-frame

prediction and
floating-point lossy encoder
for I- and B-frame residuals

Intel Core
i7-7700K w/
Nvidia GTX
1080Ti and
16GB RAM

KITTI bpp: 5.7–7.3 Not
disclosed

BIRD-PCC
(2023) [88] Lossless

Uses R-PCC [75] as
intra-frame compression

and U-Net [87] w/ a binary
mask for inter-frame

compression

Not
disclosed

SemanticKITTI
and

KITTI-360
bpp: 1.7–4.2 Not

disclosed

Sensors 2024, 24, 3185 16 of 31

7. Three-Dimensional-Based Compression Algorithms

The 3D-based group includes techniques that break down the data provided by LiDAR
sensors into smaller 3D data structures, improving the efficiency of compression techniques
that take advantage of the partitioned 3D representations. The existing methods can be
grouped into (1) tree-based, (2) sparse-tensor-based, and (3) point-based data structures.

7.1. Tree-Based

One of the most popular approaches for decomposing and compressing 3D point
cloud data is employing space partitioning trees. An octree, which is the most well-
known approach in this category [93], is a hierarchical data structure that organizes data in
branches, each containing up to eight nodes, where each node can be itself a new branch or
a leaf node. While branch nodes have children, leaf nodes represent an end-point in the
octree. When applying an octree to 3D data, a node represents a cube or cuboid known as a
bounding box, which can be subdivided into smaller cubes at each iteration to organize
data. Firstly, the octree’s root defines a bounding box around the complete 3D dataset,
representing the entire point cloud. Then, this bounding box is recursively subdivided
into eight smaller boxes called octants, each corresponding to different regions of the 3D
space, as shown in Figure 8. Finally, points from the point cloud are added to the octree by
traversing the tree from the root to a leaf node, testing each node along the way to verify the
point’s corresponding octant. The final data structure is then encoded using a compression
technique that exploits the binary data resulting from the octree occupation. A summary of
existing tree-based techniques applied to automotive LiDAR is presented in Table 5.

Vo
xe

l d
iv

is
io

n

3D Space Octree

Figure 8. Octree and octants representation.

Octrees were firstly introduced to compress LiDAR data by Schnabel in 2006 [94].
The proposed method includes a lossless octree-based geometry compression technique
for dense point clouds that decomposes the point cloud into smaller regions. In order to
achieve this, the points are quantized to create octree cells with multiple sub-levels. Next,
the method applies prediction techniques based on local surface approximations to find the
non-empty child count of a cell, and based on this prediction, the child cell configuration.
Finally, the predicted values are encoded using an arithmetic encoder. Kammerl et al. [95]
proposed a real-time octree-based compression method that can be used for data streaming
and storage. The approach consists of creating a differential octree from consecutive data
frames of octree structures by applying an XOR operation. The resulting difference is then
encoded using an integer arithmetic range encoder. Nardo et al. [39] and Anand et al. [96]
also included octrees in their works to compress LiDAR data by exploring implementations
provided by the PCL. However, the results are quite limited.

Sensors 2024, 24, 3185 17 of 31

Table 5. Summary of 3D tree-based compression methods.

Category Method Type Main Features Setup Dataset Performance Source Code

Traditional

PCL Octree
compression
(2011) [57]

Lossy
Offers 3 precision
levels for PCL’s

octree representation

Intel Core
i5-4210U

Veloview
Sample Dataset

CR:
1.85–2.81 [39] Open source

RT Octree XOR
(2012) [95] Lossy

Calculates the
difference between
consecutive frames

by applying an XOR
on octrees

Standard
consumer PC - bpp: 0.38–0.88 Part of PCL

RT Octree PCL
Compression

(2019) [96]
Lossless

Uses the PCL’s
progressive 3D mesh
coding to compress

the octree

Nvidia Jetson
TX2

KITTI and
Ouster sensor CR: 2.8–5.45 Open source

G-PCC TMC13
(2020) [97]

Lossless /
Lossy

Point cloud
compression

standard that uses
octree voxelization

and arithmetic
coding

Not disclosed SemanticKITTI

bpp:
1.4–4.9 [98]

PSNR:
71–83 [98]

Open source

Cylindrical
RAHT

(2021) [99]
Lossy

Uses cylindrical
coordinates before

the RAHT to predict
the attributes of

octree nodes

Not disclosed KITTI and
PandaSet bpp: 20–23.7 Not

disclosed

VPO Inter-EM
(2022) [100]

Lossless /
Lossy

Improves Inter-EM’s
global motion with a

histogram-based
point cloud

classification based
on vertically

positioned objects

Not disclosed Ford dataset - Not
disclosed

HM Inter-EM
(2022) [101]

Lossless /
Lossy

Uses Hamming
distance between the

octree’s nodes,
instead of G-PCC

geometric distance

Not disclosed Ford dataset bpp: 0.200–5.79 Not
disclosed

Learning

OctSqueeze
(2020) [102] Lossy

Uses a
tree-structured

conditional entropy
model to predict the

probability of a
symbol’s occurrence

Trained on 16
GPU

SemanticKITTI
and

NorthAmerica
bpp: 3.17–14.33 Open source

MuSCLE
(2020) [103] Lossless

Uses a model to
capture the spatial

and temporal
relationships

between data points

Trained on 16
GPU

UrbanCity and
SemanticKITTI bpp: 4.68–18.47 Not

disclosed

VoxelContext-
Net

(2021) [104]
Lossless

Uses a combination
of octree

decomposition,
entropy coding,

and spatial context
information

Nvidia 2080TI SemanticKITTI bpp: 0.207–5.93 Not
disclosed

OctAttention
(2022) [105] Lossless

Gathers
sibling/ancestor

node information to
encode octree symbol

sequences

Xeon E5-2637
w/ Nvidia

TITAN Xp and
12G RAM

SemanticKITTI bpp: 0.13–3.740 Open source

Sensors 2024, 24, 3185 18 of 31

Table 5. Cont.

Category Method Type Main Features Setup Dataset Performance Source Code

Learning

PCC-SC-SP
(2022) [106]

Lossless /
Lossy

Exploits quadratic
surfaces and octree’s

hierarchical
dependency on

siblings’ children,
ancestors,

and neighbors

2 Nvidia 3090 KITTI and
nuScenes bpp: 0.15–3.8 Not

disclosed

EHEM
(2023) [107] Lossless

Uses a similar
attention encoding
model as [105] but

with a structure more
friendly for parallel

processing

2 AMD EPYC
7742 w/ 8

Nvidia A100

Ford and
SemanticKITTI bpp: 0.10–2.990 Not

disclosed

ECM-OPCC
(2023) [108]

Lossless /
Lossy

Uses segmentation
and a dual

transformer setup to
find connections

between nodes and
their ancestors and

siblings

Nvidia
A100-PCIE
40GB and

Nvidia
GeForce RTX

3090

SemanticKITTI bpp: 0.12–2.740 Not
disclosed

SCN
(2023) [109] Lossless

Leverage sparse 3D
convolutions to

extract features at
various octree scales

Not disclosed Ford and
SemanticKITTI bpp: 17.5–20.5 Not

disclosed

ML-GEM
(2023) [110] Lossless

Constructs the octree
entropy model in
layers, utilizing a

variable to
encapsulate the
sibling/ancestor

dependence

Nvidia
GeForce RTX

3090 and 24GB
RAM

Ford and
SemanticKITTI bpp: 0.2–3.8 Not

disclosed

With the growing interest in compressing 3D point cloud data, the Moving Picture
Experts Group (MPEG), a renowned alliance known for developing video standards, estab-
lished the 3D Graphics Coding Group (3DG) group to study and propose new standards
specifically tailored for 3D point clouds. Initially, these standards primarily addressed
computer-animated content and were not suitable for real-time or real-world scenarios, typ-
ically involving well-structured and denser point clouds. Later, in 2017, a call for proposals
(CfP) was launched, leading to the development of three new algorithms [111]: (1) S-PCC
for static point cloud data; (2) L-PCC for dynamically acquired data; and (3) V-PCC for
dynamic content. The two standards released in 2020 by the MPEG alliance were the video-
based V-PCC, suitable for point clouds with a more uniform point distribution, and the
G-PCC, a combination of the other two proposed standards (S-PCC and L-PCC) targeting
sparser point clouds. G-PCC has been proven to be the most suitable for automotive
LiDAR data compression [112]. The G-PCC standard defines a lossy scheme with lossless
support, employing a geometry-based approach that can handle a wide range of cases,
including both sparse and dense point clouds, as well as dynamic and static objects [97,113].
The points’ geometry and attributes are compressed separately and sequentially, as at-
tribute compression directly depends on geometry. Initially, G-PCC transforms the points
within the point cloud from floating-point to integer format. This transformation reduces
the precision of the point cloud data but enables voxel representation using fewer bits
and, consequently, achieves higher compression ratios. Subsequently, the geometry values
are encoded using an octree-like voxelization followed by arithmetic coding. In the final
step, G-PCC employs a configurable prediction method followed by arithmetic coding to
compress the attributes. Figure 9 illustrates the overall compression flow of G-PCC.

Sensors 2024, 24, 3185 19 of 31

Compressed
Point Cloud

Uncompressed
Point Cloud

Positions

Attributes

Coordinates
Transformation

Quatitization and
Voxelization

Geometry and
Arithmetic Encoder

Geometry
bitstream

Color
Transformation

Transfer of the
Attributes

Attribute and
Arithmetic Encoder

Attribute
bitstream

Figure 9. G-PCC method stages.

Given the significance of G-PCC in point cloud compression, several studies have
been conducted to evaluate its performance under various conditions and proposed new
approaches and enhancements to the method. For instance, Garrote et al. [98] evaluated the
G-PCC standard with the SemanticKITTI dataset [114], while Sridhara et al. [99] evaluated
G-PCC’s Region Adaptive Hierarchical Transform (RAHT) step against their proposed
cylindrical RAHT approach. The traditional RAHT method operates within Cartesian
coordinates, initiating by segmenting the point cloud into regions. Each region undergoes
independent transformation using a hierarchical approach, starting from the root (the entire
point cloud) and cascading down to individual points. In contrast, the cylindrical RAHT
approach employs cylindrical coordinates to represent points, capitalizing on the unique
characteristics of LiDAR point clouds resulting from circular scanning trajectories. This
adaptation allows for attribute encoding based on a volumetric partition in cylindrical
coordinates, extending the capabilities of the RAHT step.

Furthermore, the MPEG group enhanced the G-PCC standard with the inter-EM
extension to address temporal relationships between points in consecutive frames, thereby
improving efficiency with better inter-prediction for geometry and attributes. Typically,
points within LiDAR point clouds exhibit two distinct types of movement: global motion,
influenced by the vehicle where the sensor is mounted, and local motion, generated by
surrounding dynamic objects such as other cars. Inter-EM leverages these motions to
achieve higher compression ratios. To further enhance the global motion estimation of
Inter-EM, Kim et al. [100] introduced a histogram-based point cloud classification that
considers both vertically and horizontally positioned objects, in contrast to Inter-EM’s
single horizontal classification. The traditional Inter-EM approach evaluates the point
distance d within octree nodes to detect changes (as depicted in Figure 10a). However, if the
distance d between two points remains the same, the distortion is not detected. Targeting a
different part of the inter-EM inter-frame step, An et al. [101] introduced a new approach
to improve distortion prediction. This method subdivides the node into smaller sub-nodes
to evaluate the point’s occupancy (as shown in Figure 10b), addressing additional frame
changes, even when point distances remain constant between frames.

d

Current node

d

Reference node

(a)

Current node

(1,1,0,0)

Reference node

(1,0,0,0)

(b)
Figure 10. Inter-EM distortion prediction and the method proposed by An et al. [101]. (a) Distortion
prediction based on the distance d between two adjacent points. (b) Distortion prediction based on
points occupancy within the node.

Sensors 2024, 24, 3185 20 of 31

Three-dimensional learning-based techniques also start to emerge for automotive
LiDAR data compression. Huang et al. [102] introduced one of the first deep learning-
based lossy methods aimed at reducing the memory footprint caused by LiDAR sensors.
The primary focus of this method is to leverage redundancies between points to minimize
the bit rate. Initially, the raw point cloud is pre-encoded using octrees. Subsequently,
using a conditional entropy model, the algorithm learns the tree structure and predicts
the symbols of each intermediate node based on its 8-bit occupancy values (children cell
occupancy code). The predicted probabilities are then fed into an entropy encoder, which
converts the serialized symbols into a final bitstream. Biswas et al. [103] proposed a deep
entropy model that also operates on octree structures. However, it differs from the previous
work as it also addresses temporal redundancies between successive frames. Addressing
the redundancy created by hierarchical dependencies often associated with octree-based
techniques, Que et al. proposed an alternative method in their study [104], as illustrated in
Figure 11. This approach involves creating a context voxel representation of each point’s
neighborhood. By conducting a neighborhood search in the point cloud, it covers the
possibility of having near points that are represented outside of their parent node.

(a) Octree representation.

(b) Context voxel representation.

Figure 11. Hybrid structure based on octree and context voxel. Colorful cuboids represent nodes
with points: Green—point under evaluation; Red—neighbors; and Blue—other nodes.

Fu et al. [105] further improved the previous work by proposing a model with a greater
context size, including in the voxel the sibling nodes and their ancestor’s information. To
mitigate the overhead created by increasing the voxel size, Song et al. [107] adopted a
similar hierarchical attention model but with a grouped context structure designed to
enable parallel decoding. Also aimed at facilitating parallel processing, Jin et al. [108]
proposed a segment-constrained multi-group coding strategy. Additionally, the method
uses a dual transformer architecture based on the dependency of the current node on its
ancestors and siblings, and a random-masking pre-train method to enhance the model.
Chen et al. [106] addressed the inter-voxel redundancy present in context voxel-based
methods by enriching the entropy model with information from decoded siblings’ children,
ancestors, neighbors, siblings, and siblings’ children. The work by Luo et al. [76] also adopts
octrees for point cloud representation. However, the spherical coordinates system is used

Sensors 2024, 24, 3185 21 of 31

for the octree creation instead of the Cartesian coordinates. This leverages the prevalence
of vast circular-shaped point chains within point clouds, a crucial feature of spinning
LiDAR sensors. To compress redundant information in the point cloud, points from the
same chain are grouped into the same voxel, increasing the efficiency of the method.
This logic suggests that the spherical coordinate system could potentially outperform
both Cartesian and cylindrical coordinates by considering the azimuthal angle invariance
of points. To demonstrate the effectiveness of their approach, Luo et al. applied their
pre-processing step to the works of Song et al. [107] and Fu et al. [105]. On the other
hand, instead of utilizing a regular 3D convolution architecture like OctSqueeze [102]
and VoxelContext-Net [104], Lodhi et al. [109], and Fan et al. [110] proposed sparse 3D
convolution architectures in octree representations. While the former extracts features
in multiple octree scales to capture feature propagation from ancestor to sibling nodes,
the latter constructs the octree entropy model hierarchically in layers and incorporates a
variable as side information to account for sibling and ancestor dependencies. This enables
high parallelization, as each layer can be decoded independently.

7.2. Sparse-Tensor-Based and Point-Based

Recognizing the complex nature and computational demands of tree-based methods,
some works have shifted their focus towards alternative approaches for representing LiDAR
data. Considering the sparsity of a point cloud and that its representation predominantly
contains empty (zero) values, sparse-tensors can be used as an efficient data structure to
store them. In contrast to octrees, which are designed to represent 3D data hierarchically,
tensors can represent multi-dimensional data in a compressed format where only the
non-zero entities are stored with their corresponding index values, as depicted in Figure 12.

Voxelization
Sparse-tensor

Indices

Values

Octree
Figure 12. Octree and sparse-tensor visual representation.

One of the first works suggesting a multi-scale sparse tensor representation for sparse
convolutions was presented by Wang et al. [115]. This method divides the point cloud
into voxels, using a binary occupancy status to describe which voxels are occupied or
empty. The voxels containing points, called Positively-Occupied Voxels (POVs), are then
progressively downscaled, being the occupancy probability encoded into the binary stream
at each iteration. For the decoding process, a SparseCNN-based Occupancy Probability
Approximation (SOPA) model is used to retrieve the Most-Probable-POVs (MP-POVs)
from each POV’s occupancy probability. In each scale, MP-POVs are then classified into
POVs or empty voxels, recursively upscaling the point cloud. The complexity is sig-
nificantly reduced since the SOPA is only used in POVs, and those are represented as
sparse-tensors. Xue et al. [116] proposed a different method also targeting sparse-tensors.
Instead of staking 3D sparse convolutions for neighborhood spatial correlations as in the

Sensors 2024, 24, 3185 22 of 31

SOPA model, it is used a Neighborhood Point Attention (NPA) to construct an adaptive
local neighborhood and leverage it to dynamically aggregate neighborhood information.
Therefore, the proposed Multistage Occupancy Probability Approximation (MOPA) model
acts similarly to the SOPA, but it combines NPA and sparse convolutions layers to achieve
better performance.

Another approach to handle point clouds is to use features directly retrieved from
points, avoiding discretization effects caused by any representation. Wiesmann et al. [117]
use kernel point convolutions (KPConvs) to extract local feature descriptors. KPConvs,
firstly by introduced Thomas et al. [118], define a continuous convolution for unordered
point clouds, learning a weight for each position in a set of kernel points. Designed for
segmentation and classification, this method handled downsampled lost points with skip
connections, a type of architecture where the output of one layer is fed to layers further
down the network. However, this approach is unsuitable for point cloud compression as
skip connections would require storing intermediate results for the decoder component,
making the whole process inefficient. Therefore, Wiesmann et al. proposed a decoder
that uses continuous 3D deconvolutions to recover the points based on learned features.
Mari et al. presented a framework [119] that exploits semantic information within point
clouds to optimize data transmission. Similarly to other semantic-based methods, they first
segment data into separate streams. Then, each cluster is independently coded, allowing
the tuning of its compression parameters according to the significance of its coded class
and the desired compression level. Furthermore, for applications that require semantic
segmentation after the compression/decompression process, segment information can
also be coded in the compressed stream, alleviating not only the receiver system but also
reducing the distortion introduced by semantic segmenting a point cloud reconstructed
from a lossy stream. The framework uses the RandLA-Net [120], a lightweight point-based
architecture designed for sparse point clouds, in the first step. Then, the segments are
encoded using one of the already established codecs for point cloud compression, such
as MPEG’s GPCC TMC13 implementation and Google’s open source library Draco [77].
Table 6 summarizes the current sparse-tensor-based and point-based methods.

Table 6. Summary of existing sparse-tensor-based and point-based methods.

Sub-Group Method Type Main Features Setup Dataset Performance Source Code

Sparse
Tensor-based

SparsePCGC
(2022) [115]

Lossless /
Lossy

Uses multiscale
sparse tensors as the

representation for
their convolutions

Intel Xeon
Silver 4210 w/

Nvidia
GeForce RTX

2080

Ford and
SemanticKITTI bpp: 6.13–21.16 Open source

GC-NPA
(2022) [116]

Lossless/
Lossy

Uses NPA to
aggregate

information about
the geometric

correlations between
points

Intel Xeon
6226R w/

Nvidia
GeForce RTX

3090

Semantic
KITTI and

Ford
bpp: 4.78–12.80 Not

disclosed

Point-based

DC-DPCM
(2021) [117] Lossy

Uses a convolutional
autoencoder based
on the KPConv to

retrieve local feature
descriptors

3.5 GHz Intel
w/ Nvidia

GeForce RTX
2080 SUPER

SemanticKITTI
and nuScenes bpp: 0.16–0.44 Open source

CACTUS
(2023) [119] Lossy

Uses TMC13/Draco
compression codecs

on RandLA-Net [120]
semantic segments

Not disclosed SemanticKITTI ∆PSNR:
0.98–3.52 Open source

Sensors 2024, 24, 3185 23 of 31

8. Discussion

With the vast number of methods present in the literature, choosing the best approach
to compress LiDAR data in automotive environments requires a crucial understanding of
the application requirements and the trade-offs that each approach offers.

8.1. Performance Metrics

Table 7 summarizes a qualitative comparison between each group of methods avail-
able in the proposed taxonomy considering the following metrics: real-time processing,
computational requirements, compression level, distortion, adaptability, scalability, and the
final application goal. This comparison is made solely based on the information available
in the literature, whose experimental setups were not validated by this work.

Real time : In the context of autonomous driving applications, it is crucial for the perception
system to swiftly understand the surrounding environment in real time. Therefore, the steps
involved in LiDAR’s processing stack must be executed within a specific time frame to
ensure that driving decisions can be made safely. Considering that high-resolution LiDAR
sensors are capable of generating millions of points per second, the compression methods
that have the goal of reducing data for applications such as object detection, segmentation
or tracking, must guarantee that the approach can help improve the overall processing
time. Since most automotive LiDAR sensors operate at 10 Hz, the considered deadline for
real-time processing is 100 ms, which is hard to achieve with complex algorithms. With the
emergence of new sensor technologies that can provide point cloud frames at higher rates,
e.g., 20 Hz, the real-time metric will be harder to achieve. From the taxonomy presented in
Figure 3, most coding-based methods can achieve this metric due to their low complexity.
With the usage of standard image codecs in range-image representations, some traditional
2D intra-frame-based approaches can also achieve real-time processing when using lower
compression levels and lossy compression. However, for the remaining groups, real-time
processing can only be achieved when only specific segments of the data are compressed.

Computational requirements: Aiming to achieve optimized SWaP-C requirements, per-
ception systems are often composed of processing units with limited resources. Thus, it is
desirable that a compression method suits resource-constrained platforms. Regarding the
coding-based compression methods, they have the lower computational requirements from
all groups. These approaches can be deployed either within the sensor, thereby minimizing
on-chip memory usage, or in close proximity to the sensor during an early processing step.
The format-based methods can be considered simple after the point cloud is converted
to the required format. Nonetheless, this conversion can require considerable resources
if placed close to the sensor. Due to the well-established codecs and application-specific
accelerators deployed in hardware, image-based compression presents medium to high
computational requirements. This is because the group is the one that offers the widest
variety of methods, ranging from simple approaches focused on achieving low latency to
others more tailored to achieve better compression ratios. While video-based compres-
sion is a well-established research domain, it demands an inter-frame step in addition to
intra-frame compression, which can lead to increased processing power requirements. On
the high end of the spectrum, 3D-based methods are the ones that require more powerful
computational resources. Octree, sparse, and point representations usually require a big
memory footprint when compared to 2D representations, especially when learning-based
methods are deployed to model point clouds. In addition to the training process, which
usually requires high-end computers to speed up the process, learning methods usually
demand powerful graphics processing units (GPUs) to reach their full potential.

Compression level and data Distortion: The compression level refers to the algorithm’s
ability to reduce the size of LiDAR data, while distortion indicates how close to the orig-
inal are the resulting data are after being decompressed, which can be caused by lost
data or estimations during the compression process. Metrics like CR and bpp can help
characterize the methods’ behavior under a well-defined setup. However, they can vary

Sensors 2024, 24, 3185 24 of 31

according to the environment where data were collected. This is particularly evident for
learning-based methods as these require training data, significantly affecting their over-
all performance. The methods that provide the highest compression rates are 3D-based
and 2D inter-frame-based, as they excel in understanding the relationship between points
and existing redundancies in the point cloud information. Their distortion level can vary
from none (lossless configurations) to very high (very lossy approaches). Nonetheless,
tree-based methods, mainly due to their hierarchical representation, currently achieve the
best trade-off between compression level and distortion. On the other hand, the 2D-based
compression methods offer medium to very high compression levels when inter-frame
compression is also used. Despite some methods providing lossless compression, which
does not cause distortion, the most prominent use lossy range-image representations before
applying lossless methods. Therefore, range images can be compressed/decompressed
without losing information, but point cloud data cannot be accurately restored to its original
version. Finally, coding-based and format-based approaches offer very low compression
levels due to their simplicity, as their primary goal is not to create distortion.

Adaptability and scalability: With the constant technological evolution around LiDAR
sensors, current algorithms will face different challenges to adapt to newer point cloud
representations or data structures. Coding-based algorithms rank highest in adaptability
since these process data as bytes, regardless of the sensor type or data representation.
Following closely are 3D point-based algorithms, which handle sensor data as points in the
3D space, remaining effective as long as the sensor provides data in a point-based format.
The remaining 3D-based and 2D-based categories typically require a pre-processing step
to achieve the necessary data representation for compression. While still adaptable, these
methods require some tuning in their pre-processing steps to align with sensor outputs and
method requirements. Lastly, format-based algorithms rank lowest in adaptability, as these
require more steps to achieve the data structure required by the compression algorithm.
Among these, the LAS-based algorithm is considered the least adaptable, since the LAS
format was specifically designed for airborne sensors and applications.

Modern sensors tend to provide point clouds with higher resolutions at higher frame
rates. Regarding the scalability features of the proposed methods, and not considering the
processing latency related to the increasing number of points, 3D-based methods would
still perform well with denser point clouds. Methodologies that extract shapes to perform
compression can swiftly discard redundant points as the point cloud density increases. For
example, methods utilizing octree structures can efficiently discard redundant points once
the leaves are already occupied. Next in line are the 2D-based methods, as they operate on
similar principles but in a 2D context. Some of these methods can also identify redundant
points across multiple frames, which is particularly advantageous with higher frame-rate
sensors. The performance of the remaining methods is proportional to the size of the
data they compress. Consequently, they do not benefit from an increase in data volume.
It is worth noting that dictionary-based methods could potentially exhibit a superior
performance compared with the remaining others because point clouds with more points
often result in patterns already stored in the dictionary. As a result, the dictionary size does
not increase linearly with the number of points, leading to higher compression rates.

Compression goal: According to the real-time capabilities and the compression ratios a
method can achieve, it would better suit applications that require data streaming, storage,
or both. Methods targeting stream compression must be capable of providing real-time
performance, even if the compression ratio or regions in the point cloud are sacrificed.
Conversely, storage methods aim to achieve higher compression ratios sometimes requir-
ing more complex computational requirements and considerable processing time. The
groups capable of providing data compression for stream applications are the coding-based
and 2D Intra-frame. Tree-based methods can also be included in this category, as some
of the methods within this group are attempting to reduce latency to achieve real-time
performance. The remaining groups either have high processing latencies, or are primarily

Sensors 2024, 24, 3185 25 of 31

focused on achieving high compression ratios, which may indicate that they are more
suitable for data storage applications. With the rapid increase in learning-based methods,
which heavily rely on offline data for training, these approaches are also mainly focused on
storage compression.

Table 7. Qualitative comparison between taxonomy groups.

Group Sub-Group Real-Time Comp.
Reqs.

Comp.
Level Distortion Adaptability Scalability Goal

Coding-based

Entropy encoding ✓ Very low Low None Very high Medium Stream

Dictionary-based ✓ Very low Low None Very high High Stream

Delta encoding ✓ Very low Low None Very high Medium Stream

Bitmasking ✓ Very low Low Low Very high Medium Stream

Format-based

LAS - Low to
medium Low None Medium Medium Storage

PCD - Low to
medium Very Low None Medium Medium Storage

2D-based

Intra-frame ✓
Medium to

high
Medium to

high
None to
medium High High Stream /

Storage

Inter-frame ✗
High to

very high
High to

very high
None to
medium Medium High Storage

3D-based

Tree ✗
High to

very high
High to

very high
None to
medium High Very high Stream /

Storage

Sparse-Tensor ✗
High to

very high High None to
medium High Very High Storage

Point - High to
very high Very high Medium to

high High Very high Storage

8.2. Future of Automotive LiDAR Data Compression

LiDAR sensors are rapidly solidifying their presence in systems with automation
features classified as level 2 and level 3 [121]. However, achieving fully autonomous
driving features remains a distant goal, as these depend on real-time multi-sensor setups
that rely on huge volumes of data to work properly. While some perceive LiDAR sensors as
expensive components that are complex to manage, others see them as crucial for advancing
the autonomous driving technology, putting several research efforts into handling the data
output from several LiDAR sensors present in the perception system. Data compression
becomes a crucial step in handling the LiDAR sensor’s output; however, due to the ongoing
evolution of this technology, both in terms of data representation and data size, not all
presented methods will be able to adapt. From the methods present in the proposed
taxonomy, 3D-based approaches, such as octree-based algorithms and standard methods,
such as G-PCC, are more likely to be able to follow the evolution of LiDAR technology.
While octrees scale better, standard representations often face worldwide adoption due to
the interoperability and adaptability features they offer.

Exploring potential breakthroughs in LiDAR compression could require a multi-
faceted approach encompassing advancements in hardware and software designs. Dedi-
cated hardware tailored for assisting or fully supporting the compression tasks, such as
Application-specific Integrated Circuit (ASIC) and field-programmable gate array (FPGA)-
based solutions, can help in reducing compression latencies and enhancing overall system
performance, which could be a promising solution for hosting and improving 3D learning-
based algorithms. Furthermore, AI-based approaches empowered with tensor processing

Sensors 2024, 24, 3185 26 of 31

units (TPUs) and neural processing units (NPUs) are already driving innovation across
various applications. Leveraging such hardware capabilities alongside more suitable data
representations, such as sparse tensors, point-based, or tree-based structures, can represent
an alternative solution for handling the ever-growing LiDAR data output.

Given its applicability, LiDAR compression cannot exist standalone as it must interact
seamlessly with other critical automotive functionalities. For instance, efficient compression
can help ensuring that object detection algorithms receive precise and timely data, under-
scoring the importance of balancing compression ratios with detection performance. Sensor
fusion, which involves integrating LiDAR data with radar, cameras, and GPS, requires
holistic system optimization for future advancements, where LiDAR compression will
play an important role in the integration of all these data sources. Moreover, real-time
processing and energy efficiency are paramount for autonomous vehicles, demanding swift
compression algorithms that minimize latency and power consumption, thereby extending
the vehicle’s absolute range, increasing system efficiency and improving its overall safety.

9. Conclusions

Integrating LiDAR sensors into perception systems presents a crucial advancement in
autonomous driving technology. While LiDAR sensors offer unparalleled capabilities in
generating high-quality point clouds for enhanced environmental perception, the challenge
still lies in managing the substantial data output. The desire to improve sensor charac-
teristics, especially point cloud resolution, results in increased volumes of data, posing
significant challenges in handling, transmitting, and storing this information within com-
plex yet resource-limited platforms such as those used in modern vehicles. Addressing
these challenges calls for innovative compression solutions specifically designed for LiDAR
data. Such solutions must consider a delicate balance between maintaining data integrity
and meeting the tight requirements of autonomous driving applications.

This survey summarizes the existing methods, proposing a taxonomy to help un-
derstand the current trends in the automotive LiDAR compression research field. The
algorithms are divided into four main categories: (1) coding-based; (2) format-based; (3) 2D-
based; and (4) 3D-based methods—highlighting their main characteristics and approaches
used to reduce data size according to the final application. Furthermore, it presents a quali-
tative comparison between all groups, highlighting their main features and considering the
most important metrics, such as real-time, computational requirements, compression level,
distortion, and compression goal. It finishes with some future insights on how the rapid
evolution of LiDAR technology may affect existing methods and which groups are more
likely to leave their mark as a reference for LiDAR data compression.

Author Contributions: Conceptualization, T.G. and R.R.; methodology, T.G. and R.R.; validation,
T.G., R.R., H.S. and F.D.; investigation, T.G., R.R., F.D. and H.S.; resources, T.G.; writing—original
draft preparation, T.G., R.R., H.S. and F.D.; writing—review and editing, R.R. and T.G.; supervision,
T.G.; project administration, T.G.; funding acquisition, T.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This work has been supported by FCT— Fundação para a Ciência e Tecnologia within the R&D
Units Project Scope UIDB/00319/2020 and Grant 2021.06782.BD.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Synge, E.H. XCI. A method of investigating the higher atmosphere. Philos. Mag. Ser 1930, 9, 1014–1020. [CrossRef]
2. Tuve, M.A.; Johnson, E.; Wulf, O. A new experimental method for study of the upper atmosphere. Terr. Magn. Atmos. Electr. 1935,

40, 452–454. [CrossRef]
3. Middleton, W.E.K.; Spilhaus, A.F. Meteorological Instruments, 3rd ed.; University of Toronto Press: Toronto, ON, Canada, 1941.
4. Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [CrossRef]
5. Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.; Hoffmann, G. Stanley:

The robot that won the DARPA Grand Challenge. J. Field Robot. 2006, 23, 661–692. [CrossRef]

http://doi.org/10.1080/14786443008565070
http://dx.doi.org/10.1029/TE040i004p00452
http://dx.doi.org/10.1038/187493a0
http://dx.doi.org/10.1002/rob.20147

Sensors 2024, 24, 3185 27 of 31

6. Ignatious, H.A.; Sayed, H.-E.; Khan, M. An overview of sensors in Autonomous Vehicles. Procedia Comput. Sci. 2022, 198, 736–741.
[CrossRef]

7. Wang, P. Research on Comparison of LiDAR and Camera in Autonomous Driving. J. Phys. Conf. Ser. 2021, 2093, 012032.
[CrossRef]

8. Sun, S.; Petropulu, A.P.; Poor, H.V. MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages
and Challenges. IEEE Signal Process. Mag. 2020, 37, 98–117. [CrossRef]

9. Zhou, Y.; Liu, L.; Zhao, H.; López-Benítez, M.; Yu, L.; Yue, Y. Towards deep radar perception for autonomous driving: Datasets,
methods, and challenges. Sensors 2022, 22, 4208. [CrossRef] [PubMed]

10. Zhou, T.; Yang, M.; Jiang, K.; Wong, H.; Yang, D. MMW radar-based technologies in autonomous driving: A review. Sensors 2020,
20, 7283. [CrossRef]

11. Gamba, J. Radar Signal Processing for Autonomous Driving; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1456. [CrossRef]
12. Roriz, R.; Cabral, J.; Gomes, T. Automotive LiDAR Technology: A Survey. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6282–6297.

[CrossRef]
13. Alibeigi, M.; Ljungbergh, W.; Tonderski, A.; Hess, G.; Lilja, A.; Lindstrom, C.; Motorniuk, D.; Fu, J.; Widahl, J.; Petersson, C. ZOD

Drives. In Proceedings of the International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023.
14. Zhao, X.; Sun, P.; Xu, Z.; Min, H.; Yu, H. Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle

Applications. IEEE Sensors J. 2020, 20, 4901–4913. [CrossRef]
15. Baras, N.; Nantzios, G.; Ziouzios, D.; Dasygenis, M. Autonomous Obstacle Avoidance Vehicle Using LIDAR and an Embedded

System. In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST),
Thessaloniki, Greece, 13–15 May 2019; pp. 1–4. [CrossRef]

16. Sakic, N.; Krunic, M.; Stevic, S.; Dragojevic, M. Camera-LIDAR Object Detection and Distance Estimation with Application
in Collision Avoidance System. In Proceedings of the 2020 IEEE 10th International Conference on Consumer Electronics
(ICCE-Berlin), Berlin, Germany, 9–11 November 2020; pp. 1–6. [CrossRef]

17. Rawashdeh, N.A.; Bos, J.P.; Abu-Alrub, N.J. Camera–Lidar sensor fusion for drivable area detection in winter weather using
convolutional neural networks. Opt. Eng. 2022, 62, 031202. [CrossRef]

18. Gao, B.; Xu, A.; Pan, Y.; Zhao, X.; Yao, W.; Zhao, H. Off-road drivable area extraction using 3D LiDAR data. In Proceedings of the
2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019 ; pp. 1505–1511. [CrossRef]

19. Xue, H.; Fu, H.; Ren, R.; Zhang, J.; Liu, B.; Fan, Y.; Dai, B. LiDAR-based drivable region detection for autonomous driving. In
Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
27 September–1 October 2021; pp. 1110–1116. [CrossRef]

20. Gomes, T.; Matias, D.; Campos, A.; Cunha, L.; Roriz, R. A Survey on Ground Segmentation Methods for Automotive LiDAR
Sensors. Sensors 2023, 23, 601. [CrossRef] [PubMed]

21. Liu, K.; Wang, W.; Wang, J. Pedestrian Detection with Lidar Point Clouds Based on Single Template Matching. Electronics 2019,
8, 780. [CrossRef]

22. Alfred Daniel, J.; Chandru Vignesh, C.; Muthu, B.A.; Senthil Kumar, R.; Sivaparthipan, C.; Marin, C.E.M. Fully convolutional
neural networks for LIDAR–camera fusion for pedestrian detection in autonomous vehicle. Multimed. Tools Appl. 2023, 82,
25107–25130. [CrossRef]

23. Wu, T.; Hu, J.; Ye, L.; Ding, K. A pedestrian detection algorithm based on score fusion for multi-LiDAR systems. Sensors 2021,
21, 1159. [CrossRef] [PubMed]

24. Guan, H.; Yan, W.; Yu, Y.; Zhong, L.; Li, D. Robust traffic-sign detection and classification using mobile LiDAR data with digital
images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1715–1724. [CrossRef]

25. Guan, H.; Yu, Y.; Peng, D.; Zang, Y.; Lu, J.; Li, A.; Li, J. A Convolutional Capsule Network for Traffic-Sign Recognition Using
Mobile LiDAR Data With Digital Images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1067–1071. [CrossRef]

26. Ghallabi, F.; El-Haj-Shhade, G.; Mittet, M.A.; Nashashibi, F. LIDAR-Based road signs detection For Vehicle Localization in an
HD Map. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1484–1490.
[CrossRef]

27. Nam, D.V.; Gon-Woo, K. Solid-State LiDAR based-SLAM: A Concise Review and Application. In Proceedings of the 2021 IEEE
International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Republic of Korea, 17–20 January 2021;
pp. 302–305. [CrossRef]

28. Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. In Proceedings of the Robotics: Science and Systems
Conference (RSS), Berkeley, CA, USA, 12–16 July 2014; pp. 109–111. [CrossRef]

29. Carballo, A.; Lambert, J.; Monrroy, A.; Wong, D.; Narksri, P.; Kitsukawa, Y.; Takeuchi, E.; Kato, S.; Takeda, K. LIBRE: The Multiple
3D LiDAR Dataset. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13
November 2020 ; pp. 1094–1101. [CrossRef]

30. Lambert, J.; Carballo, A.; Cano, A.M.; Narksri, P.; Wong, D.; Takeuchi, E.; Takeda, K. Performance Analysis of 10 Models of 3D
LiDARs for Automated Driving. IEEE Access 2020, 8, 131699–131722. [CrossRef]

31. Gomes, T.; Roriz, R.; Cunha, L.; Ganal, A.; Soares, N.; Araújo, T.; Monteiro, J. Evaluation and Testing System for Automotive
LiDAR Sensors. Appl. Sci. 2022, 12, 13003. [CrossRef]

http://dx.doi.org/10.1016/j.procs.2021.12.315
http://dx.doi.org/10.1088/1742-6596/2093/1/012032
http://dx.doi.org/10.1109/MSP.2020.2978507
http://dx.doi.org/10.3390/s22114208
http://www.ncbi.nlm.nih.gov/pubmed/35684831
http://dx.doi.org/10.3390/s20247283
http://dx.doi.org/10.1007/978-981-13-9193-4
http://dx.doi.org/10.1109/tits.2021.3086804
http://dx.doi.org/10.1109/JSEN.2020.2966034
http://dx.doi.org/10.1109/MOCAST.2019.8742065
http://dx.doi.org/10.1109/ICCE-Berlin50680.2020.9352201
http://dx.doi.org/10.1117/1.oe.62.3.031202
http://dx.doi.org/10.1109/ivs.2019.8814143
http://dx.doi.org/10.1109/iros51168.2021.9636289
http://dx.doi.org/10.3390/s23020601
http://www.ncbi.nlm.nih.gov/pubmed/36679414
http://dx.doi.org/10.3390/electronics8070780
http://dx.doi.org/10.1007/s11042-023-14417-x
http://dx.doi.org/10.3390/s21041159
http://www.ncbi.nlm.nih.gov/pubmed/33562199
http://dx.doi.org/10.1109/jstars.2018.2810143
http://dx.doi.org/10.1109/LGRS.2019.2939354
http://dx.doi.org/10.1109/IVS.2019.8814029
http://dx.doi.org/10.1109/BigComp51126.2021.00064
http://dx.doi.org/10.15607/rss.2014.x.007
http://dx.doi.org/10.1109/IV47402.2020.9304681
http://dx.doi.org/10.1109/ACCESS.2020.3009680
http://dx.doi.org/10.3390/app122413003

Sensors 2024, 24, 3185 28 of 31

32. Kim, G.; Eom, J.; Park, Y. An experiment of mutual interference between automotive LIDAR scanners. In Proceedings of the 2015
12th International Conference on Information Technology-New Generations, Las Vegas, NV, USA, 13–15 April 2015 ; pp. 680–685.
[CrossRef]

33. Li, Y.; Ibanez-Guzman, J. Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and
perception systems. IEEE Signal Process. Mag. 2020, 37, 50–61. [CrossRef]

34. Zhang, Y.; Carballo, A.; Yang, H.; Takeda, K. Perception and sensing for autonomous vehicles under adverse weather conditions:
A survey. ISPRS J. Photogramm. Remote Sens. 2023, 196, 146–177. [CrossRef]

35. Mohammed, A.S.; Amamou, A.; Ayevide, F.K.; Kelouwani, S.; Agbossou, K.; Zioui, N. The Perception System of Intelligent
Ground Vehicles in All Weather Conditions: A Systematic Literature Review. Sensors 2020, 20, 6532. [CrossRef] [PubMed]

36. Roriz, R.; Campos, A.; Pinto, S.; Gomes, T. DIOR: A Hardware-Assisted Weather Denoising Solution for LiDAR Point Clouds.
IEEE Sensors J. 2022, 22, 1621–1628. [CrossRef]

37. Abdelwahab, M.M.; El-Deeb, W.S.; Youssif, A.A. LIDAR Data Compression Challenges and Difficulties. In Proceedings of the
2019 5th International Conference on Frontiers of Signal Processing (ICFSP), Marseille, France, 18–20 September 2019; pp. 111–116.
[CrossRef]

38. Cunha, L.; Roriz, R.; Pinto, S.; Gomes, T. Hardware-Accelerated Data Decoding and Reconstruction for Automotive LiDAR
Sensors. IEEE Trans. Veh. Technol. 2022, 72, 4267–4276. [CrossRef]

39. Nardo, F.; Peressoni, D.; Testolina, P.; Giordani, M.; Zanella, A. Point Cloud Compression for Efficient Data Broadcasting: A
Performance Comparison. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC),
Austin, TX, USA, 10–13 April 2022 ; pp. 2732–2737. [CrossRef]

40. Cao, C.; Preda, M.; Zaharia, T. 3D Point Cloud Compression: A Survey. In Proceedings of the Proceedings of the 24th International
Conference on 3D Web Technology, ACM, Los Angeles, CA, USA, 26–28 July 2019; Web3D ’19; p. 1–9. [CrossRef]

41. Kotb, A.; Hassan, S.; Hassan, H. A Comparative Study Among Various Algorithms for Lossless Airborne LiDAR Data
Compression. In Proceedings of the 2018 14th International Computer Engineering Conference (ICENCO), Cairo, Egypt, 29–30
December 2018; pp. 17–21. [CrossRef]

42. Rice, R.; Plaunt, J. Adaptive variable-length coding for efficient compression of spacecraft television data. IEEE Trans. Commun.
Technol. 1971, 19, 889–897. [CrossRef]

43. Maksymova, I.; Steger, C.; Druml, N. Extended Delta Compression Algorithm for Scanning LiDAR Raw Data Handling. In
Proceedings of the 2nd Workshop on Proximity Perception, Macau, China, 4–8 November 2019.

44. Pavlov, I. 7-Zip and LZMA SDK. Available online: https://www.7-zip.org/ (accessed on 12 February 2024).
45. Maksymova, I.; Steger, C.; Druml, N. Review of LiDAR Sensor Data Acquisition and Compression for Automotive Applications.

Proceedings 2018, 2, 852. [CrossRef]
46. Liang, S.P.; Liu, Y.Y. Symmetric Segmented Delta Encoding for Wireless Sensor Data Compression. In Proceedings of the SASIMI

Proceedings, Kyoto, Japan, 24–25 October 2016 .
47. Caillet, P.; Dupuis, Y. Efficient LiDAR Data Compression for Embedded V2I or V2V Data Handling. arXiv 2019,

arXiv:cs.RO/1904.05649. Available online: https://arxiv.org/abs/1904.05649 (accessed on 2 February 2024).
48. Ezhilarasan, M.; Thambidurai, P.; Praveena, K.; Srinivasan, S.; Sumathi, N. A new entropy encoding technique for multimedia

data compression. In Proceedings of the International Conference on Computational Intelligence and Multimedia Applications
(ICCIMA 2007), Sivakasi, Tamil Nadu, India, 13–15 December 2007; Volume 4, pp. 157–161. [CrossRef]

49. Moffat, A. Huffman Coding. ACM Comput. Surv. 2019, 52, 1–35. [CrossRef]
50. Rissanen, J.; Langdon, G.G. Arithmetic coding. IBM J. Res. Dev. 1979, 23, 149–162. [CrossRef]
51. Golomb, S.W. Run-length encodings. IEEE Trans. Inf. Theory 1966, 12, 399–401. [CrossRef]
52. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [CrossRef]
53. Martin, G.N.N. Range encoding: An algorithm for removing redundancy from a digitised message. In Proceedings of the Proc.

Institution of Electronic and Radio Engineers International Conference on Video and Data Recording, Birmingham, UK, 17–19
July 1979; p. 48.

54. ASPRS. LAS SPECIFICATION VERSION 1.4 – R13 15 July 2013. Available online: https://www.asprs.org/wp-content/uploads/
2010/12/LAS_1_4_r13.pdf (accessed on 20 December 2023).

55. Isenburg, M.; Isenburg, M. LASzip: Lossless Compression of Lidar Data. Photogramm. Eng. Remote. Sens. 2013, 2, 209–217.
[CrossRef]

56. Mongus, D.; Žalik, B. Efficient method for lossless LIDAR data compression. Int. J. Remote Sens. 2011, 32, 2507–2518. [CrossRef]
57. Rusu, R.B.; Cousins, S. 3D is here: Point cloud library (pcl). In Proceedings of the 2011 IEEE International Conference on Robotics

and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [CrossRef]
58. van Beek, P. Image-based compression of LiDAR sensor data. Electron. Imaging 2019, 31, art00013. [CrossRef]
59. Boutell, T. RFC2083: PNG (Portable Network Graphics) Specification Version 1.0; IETF Standards: Wilmington, DE, USA, 1997.
60. Joint Photographic Experts Group (JPEG). T.802 : Information Technology-JPEG 2000 Image Coding System: Motion JPEG 2000;

International Telecommunication Union (ITU): Geneva, Switzerland, 2005.
61. Hoffman, M.W. JPEG-LS Lossless and Near Lossless Image Compression. In Lossless Compression Handbook; Academic Press:

Cambridge, MA, USA, 2003; pp. 301–310. [CrossRef]

http://dx.doi.org/10.1109/itng.2015.113
http://dx.doi.org/10.1109/msp.2020.2973615
http://dx.doi.org/10.1016/j.isprsjprs.2022.12.021
http://dx.doi.org/10.3390/s20226532
http://www.ncbi.nlm.nih.gov/pubmed/33203155
http://dx.doi.org/10.1109/JSEN.2021.3133873
http://dx.doi.org/10.1109/icfsp48124.2019.8938066
http://dx.doi.org/10.1109/tvt.2022.3223231
http://dx.doi.org/10.1109/WCNC51071.2022.9771764
http://dx.doi.org/10.1145/3329714.3338130
http://dx.doi.org/10.1109/ICENCO.2018.8636136
http://dx.doi.org/10.1109/tcom.1971.1090789
https://www.7-zip.org/
http://dx.doi.org/10.3390/proceedings2130852
https://arxiv.org/abs/1904.05649
http://dx.doi.org/10.1109/ICCIMA.2007.123
http://dx.doi.org/10.1145/3342555
http://dx.doi.org/10.1147/rd.232.0149
http://dx.doi.org/10.1109/TIT.1966.1053907
http://dx.doi.org/10.1109/tit.1977.1055714
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
http://dx.doi.org/10.14358/PERS.79.2.209
http://dx.doi.org/10.1080/01431161003698385
http://dx.doi.org/10.1109/icra.2011.5980567
http://dx.doi.org/10.2352/ISSN.2470-1173.2019.15.AVM-043
http://dx.doi.org/10.1016/b978-012620861-0/50016-4

Sensors 2024, 24, 3185 29 of 31

62. Weinberger, M.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into
JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [CrossRef] [PubMed]

63. Deutsch, L.P. DEFLATE Compressed Data Format Specification Version 1.3; RFC Series; RFC 1951: Fremont, CA, USA, 1996.
[CrossRef]

64. Houshiar, H.; Nüchter, A. 3D point cloud compression using conventional image compression for efficient data transmission. In
Proceedings of the 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT),
Sarajevo, Bosnia, 29–31 October 2015; pp. 1–8. [CrossRef]

65. Beemelmanns, T.; Tao, Y.; Lampe, B.; Reiher, L.; Kempen, R.v.; Woopen, T.; Eckstein, L. 3D Point Cloud Compression with
Recurrent Neural Network and Image Compression Methods. In Proceedings of the 2022 IEEE Intelligent Vehicles Symposium
(IV), Aachen, Germany, 5–9 June 2022; pp. 345–351. [CrossRef]

66. Yu, Y.; Zhang, W.; Li, G.; Yang, F. A Regularized Projection-Based Geometry Compression Scheme for LiDAR Point Cloud. IEEE
Trans. Circuits Syst. Video Technol. 2023, 33, 1427–1437. [CrossRef]

67. Sun, X.; Ma, H.; Sun, Y.; Liu, M. A Novel Point Cloud Compression Algorithm Based on Clustering. IEEE Robot. Autom. Lett.
2019, 4, 2132–2139. [CrossRef]

68. Muller, K.; Schwarz, H.; Marpe, D.; Bartnik, C.; Bosse, S.; Brust, H.; Hinz, T.; Lakshman, H.; Merkle, P.; Rhee, F.H.; et al. 3D
high-efficiency video coding for Multi-view video and depth data. IEEE Trans. Image Process. 2013, 22, 3366–3378. [CrossRef]

69. Chen, J.; Lin, Y.; Chen, Y.; Zheng, M.; Zhu, Y. Simplification and Compression Method Based on Classified Sparse Sampling for
LiDAR Point Cloud. In Proceedings of the 2021 IEEE 23rd Int Conf HPCC; 7th Int Conf on DSS, 19th Int Conf on Smart City, 7th
Int Conf on DependSys, Haikou, China, 20–22 December 2021; pp. 1389–1396. . [CrossRef]

70. Tu, C.; Takeuchi, E.; Carballo, A.; Takeda, K. Point Cloud Compression for 3D LiDAR Sensor using Recurrent Neural Network
with Residual Blocks. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, 20–24 May 2019; pp. 3274–3280. [CrossRef]

71. Wang, S.; Liu, M. Point Cloud Compression with Range Image-Based Entropy Model for Autonomous Driving. In Proceedings of
the Computer Vision—ECCV 2022, Tel Aviv, Israel, 23–27 October 2022; Springer Nature: Cham, Switzerland, 2022; pp. 323–340.
[CrossRef]

72. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet ++: Fast and Accurate LiDAR Semantic Segmentation. In Proceedings
of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019;
pp. 4213–4220. [CrossRef]

73. Varischio, A.; Mandruzzato, F.; Bullo, M.; Giordani, M.; Testolina, P.; Zorzi, M. Hybrid Point Cloud Semantic Compression
for Automotive Sensors: A Performance Evaluation. In Proceedings of the ICC 2021—IEEE International Conference on
Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [CrossRef]

74. Zhao, L.; Ma, K.K.; Liu, Z.; Yin, Q.; Chen, J. Real-Time Scene-Aware LiDAR Point Cloud Compression Using Semantic Prior
Representation. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5623–5637. [CrossRef]

75. Wang, S.; Jiao, J.; Cai, P.; Wang, L. R-PCC: A Baseline for Range Image-based Point Cloud Compression. In Proceedings of the
2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 10055–10061.
[CrossRef]

76. Luo, A.; Song, L.; Nonaka, K.; Unno, K.; Sun, H.; Goto, M.; Katto, J. SCP: Spherical-Coordinate-based Learned
Point Cloud Compression. arXiv 2023, arXiv:cs.CV/2308.12535. Available online: http://xxx.lanl.gov/abs/2308.12535
(accessed on 2 February 2024).

77. Google. Draco 3D Graphics Compression. Available online: https://github.com/google/draco (accessed on 10 January 2024).
78. Nenci, F.; Spinello, L.; Stachniss, C. Effective compression of range data streams for remote robot operations using H.264. In

Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September
2014; pp. 3794–3799. [CrossRef]

79. Heo, J.; Phillips, C.; Gavrilovska, A. FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI. In
Proceedings of the 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC), Seattle, WA, USA, 5–8 December 2022; pp. 54–67.
[CrossRef]

80. Welch. A Technique for High-Performance Data Compression. Computer 1984, 17, 8–19. [CrossRef]
81. Tu, C.; Takeuchi, E.; Miyajima, C.; Takeda, K. Compressing continuous point cloud data using image compression methods. In

Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil,
1–4 November 2016; pp. 1712–1719. [CrossRef]

82. Tu, C.; Takeuchi, E.; Miyajima, C.; Takeda, K. Continuous point cloud data compression using SLAM based prediction. In
Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1744–1751.
[CrossRef]

83. Tu, C.; Takeuchi, E.; Carballo, A.; Miyajima, C.; Takeda, K. Motion Analysis and Performance Improved Method for 3D LiDAR
Sensor Data Compression. IEEE Trans. Intell. Transp. Syst. 2021, 22, 243–256. [CrossRef]

84. Sun, X.; Sun, Y.; Zuo, W.; Cheng, S.S.; Liu, M. A Novel Coding Scheme for Large-Scale Point Cloud Sequences Based on Clustering
and Registration. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2384–2396. [CrossRef]

http://dx.doi.org/10.1109/83.855427
http://www.ncbi.nlm.nih.gov/pubmed/18262969
http://dx.doi.org/10.17487/RFC1951
http://dx.doi.org/10.1109/ICAT.2015.7340499
http://dx.doi.org/10.1109/IV51971.2022.9827270
http://dx.doi.org/10.1109/TCSVT.2022.3211084
http://dx.doi.org/10.1109/LRA.2019.2900747
http://dx.doi.org/10.1109/tip.2013.2264820
http://dx.doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00209
http://dx.doi.org/10.1109/ICRA.2019.8794264
http://dx.doi.org/10.1007/978-3-031-20047-2_19
http://dx.doi.org/10.1109/IROS40897.2019.8967762
http://dx.doi.org/10.1109/ICC42927.2021.9500523
http://dx.doi.org/10.1109/TCSVT.2022.3145513
http://dx.doi.org/10.1109/ICRA46639.2022.9811880
http://xxx.lanl.gov/abs/2308.12535
https://github.com/google/draco
http://dx.doi.org/10.1109/IROS.2014.6943095
http://dx.doi.org/10.1109/SEC54971.2022.00012
http://dx.doi.org/10.1109/MC.1984.1659158
http://dx.doi.org/10.1109/ITSC.2016.7795789
http://dx.doi.org/10.1109/IVS.2017.7995959
http://dx.doi.org/10.1109/TITS.2019.2956066
http://dx.doi.org/10.1109/TASE.2021.3082196

Sensors 2024, 24, 3185 30 of 31

85. Feng, Y.; Liu, S.; Zhu, Y. Real-Time Spatio-Temporal LiDAR Point Cloud Compression. In Proceedings of the 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 10766–10773.
[CrossRef]

86. Tu, C.; Takeuchi, E.; Carballo, A.; Takeda, K. Real-Time Streaming Point Cloud Compression for 3D LiDAR Sensor Using U-Net.
IEEE Access 2019, 7, 113616–113625. [CrossRef]

87. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings
of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015;
pp. 234–241. [CrossRef]

88. Liu, C.S.; Yeh, J.F.; Hsu, H.; Su, H.T.; Lee, M.S.; Hsu, W.H. BIRD-PCC: Bi-Directional Range Image-Based Deep Lidar Point
Cloud Compression. In Proceedings of the ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Rhodes Island, Greece, 4–9 June 2023; pp. 1–5. [CrossRef]

89. Sun, X.; Wang, S.; Liu, M. A Novel Coding Architecture for Multi-Line LiDAR Point Clouds Based on Clustering and Convolu-
tional LSTM Network. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2190–2201. [CrossRef]

90. Zhao, L.; Ma, K.K.; Lin, X.; Wang, W.; Chen, J. Real-Time LiDAR Point Cloud Compression Using Bi-Directional Prediction and
Range-Adaptive Floating-Point Coding. IEEE Trans. Broadcast. 2022, 68, 620–635. [CrossRef]

91. Wang, Q.; Jiang, L.; Sun, X.; Zhao, J.; Deng, Z.; Yang, S. An Efficient LiDAR Point Cloud Map Coding Scheme Based on
Segmentation and Frame-Inserting Network. Sensors 2022, 22, 5108. [CrossRef] [PubMed]

92. Zhou, X.; Qi, C.R.; Zhou, Y.; Anguelov, D. RIDDLE: Lidar Data Compression with Range Image Deep Delta Encoding. In
Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022; pp. 17191–17200. [CrossRef]

93. Meagher, D. Geometric modeling using octree encoding. Comput. Graph. Image Process. 1982, 19, 129–147. [CrossRef]
94. Schnabel, R.; Klein, R. Octree-based Point-Cloud Compression. In Eurographics/Symposium on Point-Based Graphics; Botsch, M.,

Chen, B., Pauly, M., Zwicker, M., Eds.; The Eurographics Association: Zurich, Switzerland, 2006. [CrossRef]
95. Kammerl, J.; Blodow, N.; Rusu, R.B.; Gedikli, S.; Beetz, M.; Steinbach, E. Real-time compression of point cloud streams. In

Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA, 14–18 May 2012;
pp. 778–785. [CrossRef]

96. Anand, B.; Barsaiyan, V.; Senapati, M.; Rajalakshmi, P. Real Time LiDAR Point Cloud Compression and Transmission for
Intelligent Transportation System. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring),
Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–5. [CrossRef]

97. Graziosi, D.; Nakagami, O.; Kuma, S.; Zaghetto, A.; Suzuki, T.; Tabatabai, A. An overview of ongoing point cloud compression
standardization activities: Video-based (V-PCC) and geometry-based (G-PCC). APSIPA Trans. Signal Inf. Process. 2020, 9, e13.
[CrossRef]

98. Garrote, L.; Perdiz, J.; da Silva Cruz, L.A.; Nunes, U.J. Point Cloud Compression: Impact on Object Detection in Outdoor Contexts.
Sensors 2022, 22, 5767. [CrossRef] [PubMed]

99. Sridhara, S.N.; Pavez, E.; Ortega, A. Cylindrical Coordinates for Lidar Point Cloud Compression. In Proceedings of the 2021 IEEE
International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3083–3087. [CrossRef]

100. Kim, J.; Rhee, S.; Kwon, H.; Kim, K. LiDAR Point Cloud Compression by Vertically Placed Objects Based on Global Motion
Prediction. IEEE Access 2022, 10, 15298–15310. [CrossRef]

101. An, Y.; Shao, Y.; Li, G.; Gao, W.; Liu, S. A Fast Motion Estimation Method With Hamming Distance for LiDAR Point Cloud
Compression. In Proceedings of the 2022 IEEE International Conference on Visual Communications and Image Processing (VCIP),
Suzhou, China, 13–16 December 2022; pp. 1–5. [CrossRef]

102. Huang, L.; Wang, S.; Wong, K.; Liu, J.; Urtasun, R. OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression. In
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 1310–1320. [CrossRef]

103. Biswas, S.; Liu, J.; Wong, K.; Wang, S.; Urtasun, R. MuSCLE: Multi Sweep Compression of LiDAR using Deep Entropy Models.
arXiv 2021, arXiv:eess.IV/2011.07590. Available online: http://xxx.lanl.gov/abs/2011.07590 (accessed on 19 January 2024).

104. Que, Z.; Lu, G.; Xu, D. VoxelContext-Net: An Octree based Framework for Point Cloud Compression. In Proceedings of the 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 19–25 June 2021; pp. 6038–6047. [CrossRef]

105. Fu, C.; Li, G.; Song, R.; Gao, W.; Liu, S. OctAttention: Octree-Based Large-Scale Contexts Model for Point Cloud Compression.
Proc. AAAI Conf. Artif. Intell. 2022, 36, 625–633. [CrossRef]

106. Chen, Z.; Qian, Z.; Wang, S.; Chen, Q. Point Cloud Compression with Sibling Context and Surface Priors. In Proceedings of the
Computer Vision—ECCV 2022, Tel Aviv, Israel, 23–27 October 2022; pp. 744–759. [CrossRef]

107. Song, R.; Fu, C.; Liu, S.; Li, G. Efficient Hierarchical Entropy Model for Learned Point Cloud Compression. In Proceedings of the
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023;
pp. 14368–14377. [CrossRef]

108. Jin, Y.; Zhu, Z.; Xu, T.; Lin, Y.; Wang, Y. ECM-OPCC: Efficient Context Model for Octree-based Point Cloud Compression. arXiv
2023, arXiv:cs.CV/2211.10916. Available online: http://xxx.lanl.gov/abs/2211.10916 (accessed on 19 January 2024).

http://dx.doi.org/10.1109/IROS45743.2020.9341071
http://dx.doi.org/10.1109/ACCESS.2019.2935253
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/ICASSP49357.2023.10095458
http://dx.doi.org/10.1109/TITS.2020.3034879
http://dx.doi.org/10.1109/TBC.2022.3162406
http://dx.doi.org/10.3390/s22145108
http://www.ncbi.nlm.nih.gov/pubmed/35890793
http://dx.doi.org/10.1109/CVPR52688.2022.01670
http://dx.doi.org/10.1016/0146-664x(82)90104-6
http://dx.doi.org/10.2312/SPBG/SPBG06/111-120
http://dx.doi.org/10.1109/ICRA.2012.6224647
http://dx.doi.org/10.1109/VTCSpring.2019.8746417
http://dx.doi.org/10.1017/ATSIP.2020.12
http://dx.doi.org/10.3390/s22155767
http://www.ncbi.nlm.nih.gov/pubmed/35957323
http://dx.doi.org/10.1109/ICIP42928.2021.9506448
http://dx.doi.org/10.1109/ACCESS.2022.3148252
http://dx.doi.org/10.1109/VCIP56404.2022.10008842
http://dx.doi.org/10.1109/CVPR42600.2020.00139
http://xxx.lanl.gov/abs/2011.07590
http://dx.doi.org/10.1109/CVPR46437.2021.00598
http://dx.doi.org/10.1609/aaai.v36i1.19942
http://dx.doi.org/10.1007/978-3-031-19839-7_43
http://dx.doi.org/10.1109/CVPR52729.2023.01381
http://xxx.lanl.gov/abs/2211.10916

Sensors 2024, 24, 3185 31 of 31

109. Lodhi, M.A.; Pang, J.; Tian, D. Sparse Convolution Based Octree Feature Propagation for Lidar Point Cloud Compression. In
Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [CrossRef]

110. Fan, T.; Gao, L.; Xu, Y.; Wang, D.; Li, Z. Multiscale Latent-Guided Entropy Model for LiDAR Point Cloud Compression. IEEE
Trans. Circuits Syst. Video Technol. 2023, 33, 7857–7869. [CrossRef]

111. Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P.A.; Cohen, R.A.; Krivokuća, M.; Lasserre, S.; Li, Z.; et al.
Emerging MPEG standards for point cloud compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 9, 133–148. [CrossRef]

112. ISO/IEC JTC 1/SC 29/WG 7 N0151; MPEG. G-PCC codec description v12. International Organization for Standardization: Geneva,
Switzerland, 2021.

113. Cao, C.; Preda, M.; Zakharchenko, V.; Jang, E.S.; Zaharia, T. Compression of sparse and dense dynamic point clouds—Methods
and standards. Proc. IEEE 2021, 109, 1537–1558. [CrossRef]

114. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9296–9306. [CrossRef]

115. Wang, J.; Ding, D.; Li, Z.; Feng, X.; Cao, C.; Ma, Z. Sparse Tensor-Based Multiscale Representation for Point Cloud Geometry
Compression. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9055–9071. [CrossRef]

116. Xue, R.; Wang, J.; Ma, Z. Efficient LiDAR Point Cloud Geometry Compression Through Neighborhood Point Attention. arXiv
2022, arXiv:cs.CV/2208.12573. Available online: http://xxx.lanl.gov/abs/2208.12573. (accessed on 21 December 2023)

117. Wiesmann, L.; Milioto, A.; Chen, X.; Stachniss, C.; Behley, J. Deep Compression for Dense Point Cloud Maps. IEEE Robot. Autom.
Lett. 2021, 6, 2060–2067. [CrossRef]

118. Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L. KPConv: Flexible and Deformable Convolution for
Point Clouds. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of
Korea, 27 October–2 November 2019; pp. 6410–6419. [CrossRef]

119. Mari, D.; Camuffo, E.; Milani, S. CACTUS: Content-Aware Compression and Transmission Using Semantics for Automotive
LiDAR Data. Sensors 2023, 23, 5611. [CrossRef]

120. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of
Large-Scale Point Clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 14–19 June 2020. [CrossRef]

121. Mercedes-Benz Group. First Internationally Valid System Approval for Conditionally Automated Driving. Available
online: https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/system-approval-for-
conditionally-automated-driving.html?r=dai (accessed on 6 May 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICASSP49357.2023.10096990
http://dx.doi.org/10.1109/TCSVT.2023.3276788
http://dx.doi.org/10.1109/jetcas.2018.2885981
http://dx.doi.org/10.1109/jproc.2021.3085957
http://dx.doi.org/10.1109/ICCV.2019.00939
http://dx.doi.org/10.1109/TPAMI.2022.3225816
http://xxx.lanl.gov/abs/2208.12573.
http://dx.doi.org/10.1109/LRA.2021.3059633
http://dx.doi.org/10.1109/ICCV.2019.00651
http://dx.doi.org/10.3390/s23125611
http://dx.doi.org/10.1109/cvpr42600.2020.01112
https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/system-approval-for-conditionally-automated-driving.html?r=dai
https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/system-approval-for-conditionally-automated-driving.html?r=dai

	Introduction
	Automotive LiDAR
	LiDAR Applications
	Challenges

	Automotive LiDAR Data Compression
	Proposed Taxonomy
	Performance Metrics

	Coding-Based Compression Algorithms
	Entropy Encoding
	Dictionary-Based and Delta Encoding
	Bitmasking

	Format-Based Compression Algorithms
	Two-Dimensional-Based Compression Algorithms
	Intra-Frame Compression
	Inter-Frame Compression

	Three-Dimensional-Based Compression Algorithms
	Tree-Based
	Sparse-Tensor-Based and Point-Based

	Discussion
	Performance Metrics
	Future of Automotive LiDAR Data Compression

	Conclusions
	References

