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Exploring the transcriptional landscape of phage–host 
interactions using novel high-throughput approaches☆ 

Leena Putzeys1,*, Laura Wicke1,2,*, Ana Brandão3,*,  
Maarten Boon1, Diana P Pires3, Joana Azeredo3, Jörg Vogel2,4,  
Rob Lavigne1 and Milan Gerovac2,4   

In the last decade, powerful high-throughput sequencing 
approaches have emerged to analyse microbial transcriptomes at a 
global scale. However, to date, applications of these approaches to 
microbial viruses such as phages remain scarce. Tailoring these 
techniques to virus-infected bacteria promises to obtain a detailed 
picture of the underexplored RNA biology and molecular processes 
during infection. In addition, transcriptome study of stress and 
perturbations induced by phages in their infected bacterial hosts is 
likely to reveal new fundamental mechanisms of bacterial 
metabolism and gene regulation. Here, we provide references and 
blueprints to implement emerging transcriptomic 
approaches towards addressing transcriptome architecture, 
RNA–RNA and RNA–protein interactions, RNA modifications, 
structures and heterogeneity of transcription profiles in infected 
cells that will provide guides for future directions in phage-centric 
therapeutic applications and microbial synthetic biology. 
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Introduction 
Since the discovery of viruses that infect bacteria (bac-
teriophages, short: phages), the scientific community has a 
significant interest to use them for modern biotechnolo-
gical applications, study their impact on global ecology 
and bacterial pathogenicity as well as look into them as a 
potential source of new antibacterials [1,2]. Advances in 
phage (meta)genomics have allowed for the discovery of 
an unprecedented catalogue of phage genomes that re-
vealed an immense phage diversity and impact on mi-
crobial communities [3]. Concomitantly, phage genomics 
revealed a large knowledge gap of functionally un-
characterised and hypothetical proteins being likely con-
nected to novel regulatory mechanisms involved in 
phage–host interactions. The application of state-of-the- 
art integrative transcriptomics, proteomics and metabo-
lomics captures different complex layers of phage infec-
tion and sheds light on the ‘viral dark matter’ [4]. These 
integrated approaches have already proven their value in 
bacteria [5], yet surprisingly, the immense potential on 
the side of their viral predators remains underexplored. 
Implementation of these -omics approaches in phage re-
search is required to fully grasp phage–host interactions 
and translate this knowledge into biotechnological and 
medical applications. For this, comprehensive high-re-
solution maps of transcriptomes are a fundamental re-
quisite. Still, technical challenges to study the 
transcriptome of phage-infected cells remain. For ex-
ample, the rapid phage replication cycle and needed 
synchronised infection of host cells by high multiplicity of 
infection [6] limit the study of phages that cannot be 
prepared to high titres, or in cases where the propagation 
host has not been identified or is not culturable. More-
over, infected bacterial cells can aggregate (e.g. [7]) or 
partly lyse, which makes it challenging to isolate RNA 
from the cells, including separation into single cells that 
would enable sorting. Such optimisations are essential for 
growth and infection conditions, together with labelling of 
infected cells for sorting. 

In the last decade, phage transcriptomic approaches 
much relied upon total RNA sequencing (RNA-seq) in     
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bulk to obtain gene expression levels that give insights 
into phage activity and host responses (Supporting 
Table 1) [8-11]. Sequencing of phage transcripts shortly 
after infection revealed anti-phage-defence and host-ta-
keover factors [12-15]. However, total RNA-seq gen-
erally does not capture the details, diversity and 
interactions of transcripts such as primary transcriptional 
features, RNA structures and modifications that underlie 
regulatory mechanisms. This is especially true for the 
densely packed genomes of phages, with many tran-
scriptional features in close proximity. As a consequence, 
the RNA biology of phages remains largely uncharted, 
highlighting the need for advanced transcriptional ap-
proaches to resolve the intricate transcriptional blue-
prints of microbial viruses. Here, we hope to inspire 
phage researchers to take a step further and adopt these 
emerging techniques to tackle new research questions in 
phage biology. 

Emerging transcriptomic techniques and their 
untapped potential for phage biology 
The prokaryotic transcriptomic toolbox has expanded 
continuously, giving rise to numerous new methods to 
study microbial RNA biology in unprecedented detail. 
This new generation of RNA-seq-based approaches 
provides the means to reveal a plethora of RNA species 
(Figure 1, Supporting Table 1). Phage gene expression 
is generally organised in the early (anti-defence and 
host-takeover), middle (replication) and late (virion 
morphogenesis and lysis) replication stages. The tem-
poral regulation of phage gene expression is poly-
merase-specific and can be classified based on the 
utilised promoters for transcription initiation [16]. For 
example, phages T4 and λ rely fully on the host tran-
scription machinery and can modulate the host RNA 
polymerase (RNAP) initiation via phage-encoded σ 
factors or covalent modifications of RNAP proteins [17]. 
Other phages such as T7 encode a single-subunit 
RNAP [18] expressed by the host RNAP in early in-
fection, subsequently initiating transcription after the 
recognition of phage-specific promoters without the 
need of a host-encoded σ factor. Moreover, jumbo 
phages harbour multi-subunit RNAPs that have similar 
structures such as the host RNAP [19]. Another strategy 
is the co-injection of virion-associated RNAPs together 
with the phage genome for immediate transcription, 
enabling full independence of the host transcription 
machinery at the onset of infection [20,21]. Currently, 
knowledge on phage-regulatory mechanisms remains 
scarce and potentially many additional mechanisms 
have yet to be discovered. For example, genome com-
partmentalisation influences transcription, e.g. phage 
T5 utilises a two-step genome injection [22] or Chi-
malliviridae like ΦKZ transcribe their genome in a 
phage nucleus [23]. 

Architecture of transcripts 
The delineation of transcriptional profiles of phage 
genes is dependent on genome-wide identification of 
promoters and terminators, which is crucial to fully 
comprehend the dependency towards specific RNAPs. 
Promoters can be mapped by identification of tran-
scription start sites (TSSs) and terminators occurring at 
transcription termination sites. To predict promoters and 
terminators in silico, there is only a limited number of 
pipelines available tailored for phage genomes [24-26]. 
As a consequence, bacterial prediction tools are often 
used for this purpose, but these usually neglect non- 
canonical and viral-derived regulatory sequences, re-
sulting in an incomplete prediction of the phage tran-
scriptional programme (e.g. [27]). In the past, time- 
dependent transcriptional profiles of phage genes were 
clustered to reveal common promoter motifs for which 
the transcript ends were determined individually such 
as for the T7-like cyanophage P-SSP7 [28]. Recently, 
experimental transcriptomic approaches were developed 
and enabled a global mapping of key regulatory ele-
ments, including transcription initiation and termination 
events by enrichment of 5´- and 3´- transcript ends, 
which are generally confounded by their processed 
counterparts [29,30]. For example, enrichment for pri-
mary transcripts followed by sequencing reveals TSSs 
and their associated promoters as done by terminator 
exonuclease treatment that degrades processed tran-
scripts in differential RNA-seq (dRNA-seq, [31]) and 5´- 
end capping of primary transcripts followed by enrich-
ment (Cappable-seq, [32]). High-throughput discovery 
of transcription termination events can be achieved by 
specifically sequencing exposed 3´- transcript termini 
(Term-seq, [33]). Alternatively, both 3´- and 5´-tran-
scriptional boundaries can be identified through se-
quencing of a circularised transcript product (SEnd-seq,  
[34]) or by sequencing the bacterial transcriptome in 
full-length using long-read sequencing technologies in-
cluding Oxford Nanopore Technology (ONT) [35,36] 
and PacBio long-read sequencing [37]. These long-read 
methodologies greatly facilitate gene annotation and 
help gain insights into the complexity of fundamental 
regulatory signals, operon structures and gene regula-
tion. Recently, dRNA-seq and ONT-cappable-seq were 
used to map the transcriptome architecture of jumbo 
phage ΦKZ [38], N4-like phage LUZ7 [39] and T7-like 
phage LUZ100 [40], all infecting Pseudomonas aeruginosa. 
These studies resulted in the first global maps of tran-
scriptional regulatory elements in a dual fashion on the 
viral and the host transcriptome in a single experiment. 
Collectively, the data uncovered distinct promoter mo-
tifs, phage transcription unit architectures and putative 
phage-encoded small regulatory RNAs [38,39]. A wider 
adoption of these novel transcriptomic approaches in 
phage research is paramount to obtaining high-resolution 
phage transcriptomes to develop custom models [41] and 
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significantly improve the prediction of phage-specific 
regulatory elements in a high-throughput manner. 

Transcripts are regulatory players in phage biology 
Non-coding RNAs (ncRNA) engage in regulatory pathways 
through interaction with other transcripts and are often 
found to be associated with RNA-binding proteins (RBPs) 
in large regulatory networks [30,42,43]. Recently, ncRNAs 
appeared to add an additional layer in the transcriptional 
regulation of lysogens [29,44,45]. The functional role of 
these transcripts in lytic phages remains yet to be eluci-
dated. Only a few examples are characterised to date, for 
example, prophage-encoded ncRNA anti-CRISPRs (clus-
tered regularly interspaced short palindromic repeats) called 
Racrs [46] or CBASS (cyclic oligonucleotide-based anti- 
phage signaling system)-activating bacteriophage RNA [47] 
that inhibit or activate phage defence systems, respectively. 
NcRNAs can be primary transcripts, derived from coding 
sequences [48,49], or be processed from untranslated re-
gions. In all three cases, a correct mapping of the primary 
transcriptome is required. In addition, high-resolution tran-
scriptomics enable correct annotation of transcript bound-
aries independently of open reading frames and hence, can 
validate the existence of understudied viral non-coding 
transcripts. The intricate transcript interactome in phage- 

infected cells can be revealed, for example, by ligation of 
interacting RNAs followed by sequencing and identification 
of RNA–RNA chimeras (high-throughput global sRNA 
target identification by ligation and sequencing, Hi-GRIL- 
seq, [50] or RNA interaction by ligation and sequencing, 
RIL-seq, [51]) or MS2-tagging of RNAs for pull-down [52] 
coupled to sequencing of interaction partners (MS2 affinity 
purification sequencing, MAPS, [53]). For example, 
RNA–RNA-interaction studies in Vibrio cholerae revealed 
that the ncRNA SviR, encoded in a phage-inducible ele-
ment, targets invading ICP1 phage transcripts to regulate 
their expression [44]. Notably, the detection of chimeric 
reads is challenging, but the high yield of phage transcripts 
in infected cells allows for deep detection of interactions. 

Cellular complexes between ncRNAs and RBPs can be 
discovered by correlated sedimentation or elution pro-
files in gradient fractionation or size-exclusion chroma-
tography (SEC), respectively, that analyse complexes by 
size (e.g. Grad-seq, [54]; SEC-seq, [55]). The cellular 
RNA complexome after jumbo phage ΦKZ infection 
was probed by gradient fractionation and uncovered 
phage-derived ncRNA species and shifts in sedimenta-
tion profiles of regulatory host ncRNAs [56]. The RNA 
targetome and interaction sites of RBP candidates can be 

Figure 1  
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Overview of advanced transcriptomic approaches to illuminate phage RNA biology in a global manner. Techniques previously applied on phage- 
infected bacterial cells are indicated in bold, highlighting the plethora of untapped technologies in this field.   
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subsequently elucidated by RNA immunoprecipitation 
sequencing (RIP-seq), [57]. Optionally, UV cross-linking 
can be utilised to narrow down interaction sites after 
trimming and identification of UV-induced mutations at 
stringent denaturing conditions (cross-linking and im-
munoprecipitation sequencing, CLIP-seq), [45,58]. Ap-
plication of these techniques to RBPs in a broader 
spectrum of infected cells and microbial viruses (Sup-
porting Table 1), will unveil fundamental insights into 
intrinsic post-transcriptional regulatory networks during 
infection [29]. Since phage–host systems are tightly in-
tertwined, these insights will help to answer evolu-
tionary questions on base-pairing mechanisms between 
RNAs and their targets and the dependency and re-
cognition of ncRNAs by RBPs. 

RNA modifications add yet another layer to transcriptional 
regulation, affecting RNA function, fate and structure in 
various ways [59]. However, given that phage DNA gen-
omes are collectively endowed with the largest reservoir of 
modified nucleobases [60], their transcripts are likely deco-
rated with diverse modifications as well. In the continuous 
tugs-of-wars between phages and their hosts, phages often 
modify their DNA to protect themselves against bacterial 
defence systems, such as restriction–modification enzymes 
and CRISPR associated proteins (Cas) [61]. In light of the 
more recently discovered RNA-targeting CRISPR-Cas 
type-III and -VI systems, it is plausible that phages also 
modify their RNA to escape host immunity [62]. Internal 
transcript modifications and 5´-terminal structures can be 
captured by coupling specific chemical treatments or im-
munoprecipitation approaches with high-throughput RNA- 
sequencing (e.g. bisulfite-, m6A-seq and nicotinamide ade-
nine dinucleotide (NAD) captureSeq). In addition, T4 
phage factor ModB RNAylates ribosomal proteins via ade-
nosine diphosphate-ribosylation using specific 5´-NAD- 
capped RNAs as substrate that is important for efficient T4 
phage replication [63]. Moreover, Nanopore sequencing 
technology allows for a global detection of RNA base 
modifications by direct sequencing of native RNA at the 
single-molecule level without the need for cDNA conver-
sion and PCR amplification [64]. In contrast to the advances 
in bacterial epitranscriptomics [59], phage RNA modifica-
tions remain understudied to date. 

Knowledge of secondary structures is integral to fully un-
derstand the pivotal and diverse functions of transcripts in 
RNA-based regulation of microbial gene expression [65,66]. 
In bacteria, the transcriptome-wide study of dynamic RNA 
structures is mainly performed by footprinting-based 
methods (e.g. dimethly sulfate sequencing (DMS-seq) and 
selective 2´-hydroxyl acylation analyzed by primer extension 
sequencing (SHAPE-seq)) that reveal the base-pairing ten-
dency of nucleotides and proximity ligation-based methods 
that cover RNA–RNA interactions (e.g. sequencing of 
psoralen crosslinked, ligated, and selected hybrids 
(SPLASH), psoralen analysis of RNA interactions and 

structures sequencing (PARIS) and ligation of interacting 
RNA sequencing (LIGR-seq)) [66]. Moreover, RBPs can 
also alter the fold of the targeted RNAs [30,42]. We hy-
pothesise that the application of these powerful RNA 
structurome techniques to microbial virus-infected cells 
would reveal novel RNA structures that impact gene ex-
pression, which, to our knowledge, has not been explored 
thus far. Furthermore, as bacterial riboswitches and RNA 
thermometers are structurally affected by environmental 
changes [67], one may speculate that viral RNA molecules 
can also alter their secondary structure throughout infection 
depending on dynamic host conditions to adapt their gene 
expression accordingly. 

Recently, bacterial transcriptomics moved beyond bulk 
RNA-seq to single-cell RNA sequencing (scRNA-seq) that 
can reveal diverse transcriptional states within cell popula-
tions in microbial communities [68-75]. Strikingly, probing 
different growth states of B. subtilis or the application of 
DNA-damaging antibiotics revealed rare subpopulations in 
which PBSX or SPβ prophage genes were induced [72,75]. 
In addition, E. coli cells showed in scRNA-seq only a limited 
host response to λ phage infection [75]. In scRNA-seq, the 
detection limit of individual transcripts is pivotal to obtain a 
detailed picture. Of note, in phage-infected cells, the 
abundance per transcript is strongly elevated for phage 
transcripts that would allow for a detailed heterogeneity 
analysis on the side of the phage in scRNA-seq. The various 
scRNA-seq approaches differ strongly in the number of 
detected single cells from a couple of hundred to ten 
thousand cells per condition in droplet-based indexing. The 
challenges in scRNA-seq of phage-infected cells are to reach 
sufficiently high ratios of infected cells for a diverse canvas 
of states, and to separate infected cells into single cells. This 
separation is especially difficult at later time points after 
phage infection when the stressed cells tend to aggregate. In 
summary, scRNA-seq offers the possibility to study phage 
transcriptomes in unparalleled detail and highlight tran-
scriptional heterogeneity between individual host cell re-
sponses, or even point out phage-specific transcription 
responses in different metabolic host states. In the long run, 
transcriptional profiles of phage-infected single cells from 
habitats could help to uncover specific mechanisms that 
phages utilise in their native niche, uncovering long-term 
and phage–host connections. A sneak peek is given here by 
metatranscriptomics in the natural context such as soil 
samples that can discriminate between actively transcribed 
phage genomes against all detected phage genomes in 
metagenomics [76-78]. 

Building on these technological advances in microbial 
transcriptomics and the gradual improvements in se-
quencing capacity, cross-kingdom interaction studies [79] 
are within reach. For example, phage-infected P. aerugi-
nosa cells have a specific transcriptional response in the 
presence of lung epithelial cells [80]. In another example, 
prophage Φ10403S enters an active lysogeny state during 
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macrophage infection by Listeria monocytogenes, as revealed 
by transcriptomics [81]. Capturing the complex infection 
dynamics between mammalian cells, bacterial patho-
gens and their microbial viruses through RNA-seq, will 
allow deriving new RNA-based mechanisms that are im-
portant for close-to-native settings, which is imperative to 
ameliorate phage biology in microbiota and future phage 
therapy applications. 

Future impact of RNA sequencing in phage 
biology 
In the future, state-of-the-art transcriptomics beyond classical 
RNA-seq will lead to a comprehensive view of the diverse 
transcriptional landscape in phages, that will expand beyond 
model phages, shedding light on mechanisms that have 
been overlooked in the past, in turn giving rise to new re-
search questions in phage and microbiology. 

In an age where antibiotic resistance is a global health threat, 
the in-depth study of phage infection courses in different 
and more complex infection settings, such as biofilms and 
cross-kingdom communities, can support the development 
of successful phage therapy applications. Detailed tran-
scriptional maps of microbial viruses are essential for en-
gineering and de novo design of synthetic phages with 
improved antimicrobial and therapeutic potential through, 
for example, extended host range after initial infection, anti- 
phage-defence mechanisms and enforced lysis cycles to 
avoid (pseudo-)lysogenic pathways [82]. In addition, high- 
resolution transcriptome data during early infection can fa-
cilitate the discovery and functional elucidation of novel 
phage genes involved in bacterial reprogramming, which can 
serve as an inspiration for innovative phage-based anti-
microbials. 

Besides their biomedical potential, microbial viruses are 
endowed with a largely untapped reservoir of host-spe-
cific building blocks and genetic circuitry that could ra-
dically expand the potential of microbial synthetic 
biology. Indeed, detailed expression maps of lysogens or 
lytic phages throughout infection can be mined to source 
phage-derived regulatory elements such as promoters, 
transcription terminators and other RNA-based reg-
ulators that can be exploited to tune expression levels in 
synthetic biology circuits [2,83,84]. 
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