
Universidade do Minho
Escola de Engenharia

Gonçalo Gonçalves Freitas

Exploring the Arm MPAM Extension for
Static Partitioning Virtualization

Março de 2023





Universidade do Minho
Escola de Engenharia

Gonçalo Gonçalves Freitas

Exploring the Arm MPAM Extension for
Static Partitioning Virtualization

Dissertação de Mestrado
Mestrado em Engenharia Eletrónica Industrial e
Computadores

Trabalho efetuado sob a orientação de:
Professor Doutor Sandro Pinto

Março de 2023



 

 

 

 

 

 

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS 

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras 

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos 

conexos.  

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada. 

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não 

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da 

Universidade do Minho. 



Agradecimentos

Esta dissertação é a representação do fim de toda uma jornada académica e do início de um novo

capítulo. Como tal, gostaria de agradecer às pessoas que sempre me apoiaram e prestaram um algum

do seu tempo e experiência, tornando isto possível.

Ao meu orientador, Professor Doutor Sandro Pinto, um sincero obrigado por todo o conhecimento

transmitido, mas acima de tudo pela confiança depositada para a realização deste trabalho. Agradeço

também aos meus amigos de curso, que foram um grande apoio em todo o meu percurso académico.

Um agradecimento especial para as pessoas com quem tive o prazer de conviver e partilhar experiências

diariamente - Diogo Matias, Francisco Dias, Vitor Ribeiro e Samuel Pereira. Também, aos colegas e amigos

- Mestre Diogo Costa e Mestre João Sousa - por toda a ajuda dada nos momentos mais dificeis e a todos

que fizeram parte deste meu percurso de desenvolvimento, um sincero obrigado.

Por fim, quero agradecer profundamente aos meus pais, que fizeram com que nesta jornada nunca

me faltasse apoio, motivação e amor que deram ao longo destes anos.

i



STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading

to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

ii



Resumo

Exploração da Extensão Arm MPAM para a Virtualização em Partições Estáticas

Os sistemas embebidos desempenham um papel crucial na garantia da segurança dos sistemas de

transporte e controlo industrial. Estes sistemas, conhecidos como sistemas críticos de segurança, podem

ter consequências catastróficas em caso de falha. Nos últimos anos, e principalmente pressionados por

restrições SWaP-C, os sistemas embebidos consolidaram funções com diferentes níveis de criticidade,

criando uma nova classe de sistemas chamados sistemas de criticidade-mista.

A virtualização ganhou popularidade nos sistemas de criticidade-mista, pois permite a consolidação

e isolamento de múltiplos domínios numa mesma plataforma. Os hipervisores proporcionam isolamento

temporal e espacial, e as garantias freedom-from-interference satisfazem as normas de segurança. No

entanto, as plataformas modernas multicore também trazem dificuldades devido à interferência causada

por recursos de hardware partilhados (por exemplo, LLC, bus, e memória principal). Sem uma gestão

adequada, estas interferências podem prejudicar a previsibilidade temporal. Para responder a estes prob-

lemas, foram propostos mecanismos tais como a partição de cache e a reserva de largura de banda

de memória. Além disso, o recente lançamento da especificação da Arm, MPAM, que fornece novas

oportunidades para a regulação do acesso à memória.

Esta dissertação apresenta o design e implementação de um mecanismo de reserva de largura de

banda de memória (designado safe_mem), desenvolvido no hipervisor Bao. O safe_mem fornece reserva

de largura de banda limitando o acesso à memória por CPU a cada período, assegurando o isolamento

temporal no sistema. Esta dissertação também descreve o design e implementação de uma API para a

extensão MPAM, que inclui mecanismos de controlo de partição de cache. Por último, apresenta uma

análise relacionada com a contenção da memória e verifica a eficácia dos mecanismos implementados

para os processadores Arm Cortex-A.

Keywords: Memory hierarchy, Safety, Shared cache, Multicore, Real-time systems, Bandwidth reser-

vation, Cache partitioning, Memory-access predictability, Isolation, Arm Cortex-A.

iii



Abstract

Exploring the Arm MPAM Extension for Static Partitioning Virtualization

Embedded systems play a crucial role in ensuring the safety of transportation and industrial control

systems. These systems, known as safety-critical systems, can have catastrophic consequences in case

of failure. In recent years, and mainly pushed by Size, Weight, Power and Cost (SWaP-C) constraints,

embedded systems have consolidated functions with different criticality levels to create a new class of

systems called Mixed Criticality System (MCS).

Virtualization has gained popularity in MCS as it enables the consolidation and isolation of multiple

environments onto the same platform. Hypervisors provide temporal and spatial isolation, i.e., the freedom-

from-interference guarantees required from safety standards. However, modern multicore platforms bring

difficulties due to the interference caused by shared hardware resources (e.g., Last-Level Cache (LLC),

system bus, and main memory). Without proper management, these interferences can harm timing

predictability. To address these issues, mechanisms such as cache partitioning and memory bandwidth

reservation have been proposed. Also, Arm’s recent release of the Memory System Resource Partitioning

and Monitoring (MPAM) specification provides new opportunities for memory access regulation.

This dissertation presents the design and implementation of a memory bandwidth reservation mech-

anism (named safe_mem) developed on top of the Bao hypervisor. The safe_mem provides bandwidth

reservation by limiting the memory access for each Central Process Unit (CPU) every period, ensuring

temporal isolation in the system. The dissertation also describes the design and implementation of an

Application Programming Interface (API) for the MPAM extension, which includes cache partitioning control

mechanisms. Lastly, presents an analysis related to memory contention and verifies the effectiveness of

the implemented mechanisms for Arm Cortex-A processors.

Keywords: Memory hierarchy, Safety, Shared cache, Multicore, Real-time systems, Bandwidth reser-

vation, Cache partitioning, Memory-access predictability, Isolation, Arm Cortex-A.

iv



Contents

List of Figures vii

List of Tables viii

Glossary ix

1 Introduction 1

1.1 Aim and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and State of the Art 5

2.1 Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Soft Real-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Hard Real-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Mixed Criticality Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Virtualization and Hypervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Types of Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Hypervisor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Static Partitioning Hypervisor . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Interference in Multicore Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Sources of Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Interference Mitigation Techniques . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Hypervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Mitigation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Platform and tools 17

3.1 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Armv8-A Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Platform Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



Contents vi

3.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Arm Fast Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Arm Development Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Test Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Design and Implementation 21

4.1 Memory Throtlling - ’safe_mem’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Aarch64 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.2 Performance Monitoring Unit . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.3 Integration of safe_mem in Bao Hypervisor . . . . . . . . . . . . . . . . . . 24

4.2 MPAM - Arm Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Memory-System Resource Partitioning . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Resource Partitioning Control Model . . . . . . . . . . . . . . . . . . . . . 31

4.2.3 Integration of MPAM Extension on Bao hypervisor . . . . . . . . . . . . . . . 32

5 Evaluation and Results 37

5.1 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Safe Mem Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 MPAM Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion 44

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



List of Figures

2.1 Hypervisor Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Hypervisor Designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Bao Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Mapping of Cache Coloring Technique. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Cache Locking by way and by line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Memory Reservation Scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 PMU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 safe_mem Initialization Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 System Assignment to MPAM Partitions. . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 MPAM Resource Partitioning Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 MPAM Initialization Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Design of the System for Testing safe_mem Mechanism. . . . . . . . . . . . . . . . . 37

5.2 Relative Performance Overhead: Solo vs. Solo + safe_mem Algorithm. . . . . . . . . . 38

5.3 Relative Performance Overhead: Interf vs. safe_mem Algorithm. . . . . . . . . . . . . 39

5.4 FVP Conceptual Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Model’s L3 Cache Partitioning Based on Different Configurations. . . . . . . . . . . . 41

5.6 Design of the System for Testing MPAM. . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7 MPAM Evaluation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



List of Tables

2.1 Types of Virtualization: Advantages/Disadvantages. . . . . . . . . . . . . . . . . . . 8

3.1 Platform Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 PMU Event Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 MPAM system registers managed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 MPAM Memory-Mapped Register (MMR)s managed. . . . . . . . . . . . . . . . . . . 33

5.1 Cache Partitioning Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



Glossary

AEM Architecture Envelope Models

API Application Programming Interface

APU Accelerated Processing Unit

BSP Board Support Package

COTS Commercial-Off-The-Shelf

CPU Central Process Unit

DoS Denial of Service

DRAM Dynamic Random-Access Memory

DTS Device-Tree Source

ECU Eletronic Control Unit

FR-FCFS First-Ready First-Come First-Serve

FVP Fixed Virtual Platform

GIC Generic Interrupt Controller

GPOS General Purpose Operating System

HAL Hardware Abstraction Layer

IPC Inter-Processors Communications

ISA Instruction Set Architecture

IT Information Technology

LLC Last-Level Cache

ix



Glossary x

MCS Mixed Criticality System

MCU Micro-Controller Unit

MMR Memory-Mapped Register

MMU Memory Management Unit

MPAM Memory System Resource Partitioning and Monitoring

MSC Memory System Component

OS Operating System

PE Processing Element

PMU Performance Monitor Unit

QoS Quality of Service

RTOS Real Time Operating System

SCU System Control Unit

SMMU System Memory Management Unit

SoC System on Chip

SWaP-C Size, Weight, Power and Cost

TCB Trusted Computing Base

VM Virtual Machine

VMM Virtual Machine Monitor

WCET Worst-Case Execution Time



1. Introduction

The trend of increasing computational power in domains like automotive and industrial control [1],

made possible by modern computer architectures, has conducted to the integration of a large number

of complex and resource-intensive applications onto a single hardware platform. This demand for high-

performance embedded systems has been rapidly growing in recent years and is expected to continue

increasing in the near future [2].

Despite the SWaP-C limitations, it is no longer possible to implement each function in a dedicated

platform. Market pressure has resulted in the integration of multiple subsystems with different levels of

criticality onto a single platform, known as MCS. These systems must maintain real-time requirements

while balancing the conflicting needs of isolation for security and safety, and efficient resource sharing [3].

This market pressure has led to a shift from the use of small, single-core Micro-Controller Units (MCUs)

running bare-metal applications or Real Time Operating Systems (RTOSs) to powerful multicore platforms

with complex memory hierarchies that can host General Purpose Operating Systems (GPOSs) [4]. In this

regard, it is fundamental to provide isolation between applications with different criticality levels in order

to avoid contention for shared computational resources [5], such as main memory and shared caches,

which can result in significant performance degradation and lack of determinism [6].

Virtualization, a well-established technology in the cloud space, has emerged as a natural solution

for consolidating distinct subsystems with different criticality levels onto the same hardware platform [7,

8]. It requires minimal engineering efforts to support legacy software while ensuring separation and

fault containment between different Virtual Machines (VMs). Virtualization technology leverages a Virtual

Machine Monitor (VMM), also known as a hypervisor, to provide isolation between multiple subsystems.

One key aspect of this isolation is temporal isolation, which controls the allocation of resources, such

as CPU time, among the various subsystems. This is achieved through the implementation of scheduling

algorithms that distribute time slots for resource access among the subsystems. Another important aspect

of isolation provided by virtualization is spatial isolation. This refers to the practice of dividing resources

into distinct and separate partitions, which are then allocated to specific subsystems. This approach

ensures that each subsystem can only access the resources allocated to its partition, preventing any

conflicts or interference with other subsystems. The implementation of spatial isolation serves to enhance

the security, stability, and performance of the system, enabling multiple VMs to operate as if they were

running on separate physical hardware [8].

1



Chapter 1. Introduction 2

While virtualization technology offers guarantees of spatial isolation, there are still challenges in achiev-

ing temporal isolation when consolidating MCSs. Many existing VMMs have been found to have insufficient

capabilities in addressing architectural constraints and real-time requirements. This is despite the fact that

they typically virtualize primary hardware resources such as CPUs, memory, and I/O devices. However,

certain hardware resources (e.g., LLC, the system bus, and the main memory) are shared among the

different systems. The mitigation of interference on multicore platforms is typically done by leveraging two

techniques: (i) cache partitioning and (ii) memory bandwidth reservation.

Cache partitioning. Cache partitioning is a technique used to reduce cache misses in computer

systems. A cache miss occurs when two or more different memory addresses map to the same cache line,

causing one of the addresses to be evicted from the cache, even though it is still needed. Typically, cache

partitioning is implemented either via cache coloring or cache locking. Cache coloring is a technique that

assigns different colors to different memory blocks, and assigns cache lines to specific colors. This way,

the same color can not be assigned to different memory blocks, reducing the number of cache misses.

Cache locking, on the other hand, is a technique that prevents specific cache lines from being evicted from

the cache, allowing the data to remain in the cache for an extended period of time.

Memory bandwidth reservation. Memory bandwidth reservation is a technique that allows a

system to reserve a certain amount of memory bandwidth for a specific task or application. When applica-

tions execute concurrently on a multicore platform and compete for access to the same limited-bandwidth

shared resource, it can significantly hamper the system performance [9]. Therefore, managing memory

bandwidth is essential to prevent interference between different domains that are competing for access to

the memory bus, which greatly degrades both system and individual application performance [10, 11].

Besides the traditional approach to implementing cache and memory bandwidth partitioning, Arm re-

cently released MPAM processor extension specification for Armv8-A. The MPAM specification outlines that

various memory subsystem components, such as caches, interconnects, and Dynamic Random-Access

Memory (DRAM) memory controllers may support this processor extension. However, the specification

is quite detailed, so this dissertation will explore the features and capabilities of the MPAM extension to

propose a potential implementation for managing memory resources, specifically for cache and memory

bandwidth partitioning.

1.1 Aim and Scope

The primary goals of this dissertation are the design and development of a software mechanism

that mitigates interference between shared resources on the same platform by controlling the memory

bandwidth used by each VM. Additionally, this dissertation involves the configuration of the hardware

processor extension, MPAM, through an API. This extension prevents a single process running on a CPU

from monopolizing a cache and other shared resources, providing temporal and spatial isolation between

the domains of the system [6].



Chapter 1. Introduction 3

The main goal of these hardware-supported virtualization technologies is to mitigate interference be-

tween VMs in shared resources such as the LLC, system bus, and DRAM controller on the same platform.

Additionally, the proposed software mechanism, safe_mem, is designed to control access to main mem-

ory from CPUs by configuring and monitoring the maximum number of accesses for each CPU in each

period through the Performance Monitor Unit (PMU). If the selected PMU event exceeds the predefined

value, access to memory is limited to mitigate interference in the LLC shared by all system domains.

Also, MPAM API will also be able to control cache usage and bandwidth allocation for each VM, providing

inter-VM temporal and spatial isolation. This evaluation will focus on finding a configuration that optimizes

the performance of Arm Cortex-A architecture. However, the Bao hypervisor’s software mechanisms must

have a modular architecture to ensure compatibility with other computing architectures and scalability with

the increasing number of connected devices.

These mechanisms follow the above cited set of goals, and the main objectives for this work are

outlined below:

• Design and development of a software mechanism to control and monitor bandwidth usage by each

CPU through statically defined configuration parameters;

• Design and development of an API for the Arm processor extension, MPAM, to control and monitor

directly the hardware limiting its usage by each VM.

1.2 Dissertation Structure

This summary covers the main chapters of this document. Chapter 1 introduces the research question

and objectives of this dissertation. Chapter 2 is divided into four sections. The first section provides an

overview of embedded systems, including soft and hard real-time systems and the spatial and temporal

isolation challenges in MCSs. The second section covers the key concepts of virtualization and hypervisors,

including architecture types, design, and types of virtualization. The third section discusses interference in

multicore platforms, its sources, and techniques for mitigation through the cache and DRAM partitioning.

Finally, the final section presents relevant academic research related work.

Chapter 3 describes the platforms and tools, and is divided into two sections because two different

platforms, a hardware, and a software model, were used to run each mechanism due to the unavailability

of the MPAM extension at the time of writing. The first section discusses the specifications of some Armv8-

A boards. The second presents the Arm Fast Models specifications, including the Fixed Virtual Platform

(FVP) model used to implement and configure the MPAM extension. It also lists the benchmarks used to

test and verify the implementation of both mechanisms.

Chapter 4 covers the design and development of both implementations of the proposed mechanism,

safe_mem, and the MPAM API implemented in the Bao hypervisor to mitigate interference between do-

mains with different criticality levels.



Chapter 1. Introduction 4

Chapter 5 evaluates the results of the mechanisms implemented on the hypervisor and identifies

the best-case scenario for improving system performance. Finally, Chapter 6 discusses the results of

each implemented method for mitigating interference, highlighting the limitations of each approach and

suggesting potential future developments to address these limitations in the ”Future Work”, section 6.2.



2. Background and State of the Art

Embedded systems, which were once simple and single-purpose due to real-time demands and hard-

ware resource limitations, are becoming more complex and multifunctional, resulting in a higher number

of bugs and vulnerabilities [12, 13]. To ensure safety and security in the face of massive failures or ma-

licious attacks [14, 15], virtualization has emerged as a natural solution through the isolation and fault

containment provided by encapsulating each embedded subsystem in its own VM. This technology also

allows the consolidation of different applications onto a single hardware platform, reducing size, weight,

power, and cost (SWaP-C) [16]. Modern Commercial-Off-The-Shelf (COTS) heterogeneous architectures

with multi-core accelerators can provide energy-efficient performance through the integration of multiple

computing elements running at lower frequencies, while architectural heterogeneity enhances platform

flexibility [1].

This section provides an overview of the state-of-the-art, fundamental concepts, and relevant work

related to this dissertation. It covers background knowledge on embedded systems, section 2.1, virtual-

ization and hypervisor concepts, section 2.2, interference in multicore platforms, section 2.3, and recent

work on memory management to mitigate interference, section 2.4.

2.1 Embedded Systems

2.1.1 Soft Real-Time Systems

Real-time systems with soft timing constraints are becoming more common as embedded systems

become widespread. In these systems, tasks can still function effectively even if deadlines are not guar-

anteed to be met. As a result, temporary deadline misses may degrade the Quality of Service (QoS), but

they will not cause inappropriate system behavior. Furthermore, the systems referred to as soft real-time

include a combination of varying properties, all of which share the common property that resource allo-

cation and dispatching requirements are looser relative to hard real-time [17]. Recently, various research

efforts have focused on the design and optimization of real-time systems [18]. These systems require

unique design considerations due to timing constraints placed on the tasks. Even though these real-time

tasks are time-bound, their timing constraints are not based on absolute values. In summary, these types

of systems are used in non-critical safety applications such as multimedia transmission and reception, as

5



Chapter 2. Background and State of the Art 6

their tasks do not strictly require to complete executed within a specific deadline. This can result in system

performance degradation, but the application will continue to run. Overall, this type of real-time system

has more flexibility because it can tolerate some level of deadline misses.

2.1.2 Hard Real-Time Systems

Hard real-time systems are a class of real-time systems where the consequences of missing a deadline

are severe, such as injury or death. These systems are characterized by strict timing constraints and high-

reliability requirements. In hard real-time systems, the timing constraints are defined in terms of the

Worst-Case Execution Time (WCET) of the system’s tasks, which is the maximum time that a task can take

to execute under any possible input and any possible initial state of the system. The WCET is a crucial

parameter for hard real-time systems, as it determines the maximum amount of time that the system can

tolerate for a task to complete [19].

In order to meet the timing constraints, hard real-time systems typically use a combination of tech-

niques, such as time-triggered scheduling, static priority scheduling, and rate-monotonic scheduling. These

scheduling algorithms ensure that the system’s tasks are executed in a predictable and deterministic man-

ner, even in the presence of system perturbations, such as interrupts or external events. In addition to

scheduling, hard real-time systems also use other techniques to improve the system’s timing predictability

(e.g., implement cache and memory bandwidth partitioning, use RTOS or even use specialized hardware).

Due to the high reliability and strict timing requirements, hard real-time systems are typically more difficult

to design and implement than soft real-time systems. However, they play a crucial role in ensuring the

safety and reliability of critical systems such as the aerospace, automotive, and industrial control industries.

2.1.3 Mixed Criticality Systems

In recent years, the number of functional requirements in automotive and industrial control domains

has increased significantly [20]. As a result, there is a growing demand for high-performance embedded

systems to handle the increasing complexity of these systems and power-hungry applications [4]. These

systems can run a range of applications with varying criticality, such as safety-critical and non-safety-critical.

When consolidating these systems, it is necessary to balance the conflicting requirements of isolation for

security, safety, and efficient resource sharing between domains, due to interference caused by contention

for shared computational resources (e.g., processor, memory, bus, I/O devices). These types of systems

are typically embedded in machines whose safety is critical, such as network-connected infotainment in

automotive safety-critical control systems [21].

In conclusion, this type of system runs a variety of applications with different levels of safety critical-

ity, which can generate interference when consolidated on shared resources. However, this interference

can be mitigated, by improving system performance, through the usage of cache and DRAM partitioning



Chapter 2. Background and State of the Art 7

techniques. These techniques, as well as the sources of interference, are explained in more detail in sec-

tion 2.3, which outlines the methods used to control this isolation and manage system resources while

maintaining performance.

2.2 Virtualization and Hypervisors

Virtualization has emerged in embedded systems as complexity and real-time demands have in-

creased, moving from single-functionality and single-purpose systems to more sophisticated and complex

systems [22, 23]. It allows for the execution of multiple Operating Systems (OSs) on the same platform

through techniques such as hardware and software partitioning or aggregation, partial or full machine

simulation, emulation, time-sharing, and others. In short, because embedded systems have resource

limits, real-time demands, and high-performance, the virtualization technique match virtual resources with

physical resources, allowing hardware components to be abstracted and utilized as virtual resources by

the software [24, 25], and uses native hardware for operations in the VMs [26].

To integrate and consolidate MCSs on a single hardware platform, virtualization technology is a viable

solution, utilizing hypervisors such as Xen [27], KVM [28], and Bao [4]. Hypervisors, also known as VMM,

act as an additional layer of software that manages the hardware resources used by VMs and creates

an execution environment that is as similar as possible to the environment available when running on

independent hardware, without coexisting systems [15, 29]. The software executed on a VM is separated

from the hardware resources by the hypervisor or VMM, which is responsible for creating and managing

the VMs running in the system, ensuring isolation between the multiple domains [30].

2.2.1 Types of Virtualization

Conceptually, a VM is an operating environment for a set of user-level applications, including libraries,

the system call interface/service, system configurations, and in case it is not a baremetal also sets daemon

processes, and file system state. The choice of the abstraction level at which virtualization is implemented

involves trade-offs in terms of implementation complexity, run-time performance overhead, flexibility, and

degree of isolation. In real-time systems, there are two major types of virtualization (Table 2.1): (i) para-

virtualization and (ii) full-virtualization.

Para-virtualization Requires modifications to the kernel of the guest operating system, which com-

municates with the VMM through hypercalls rather than relying on the complete emulation of the system’s

hardware. While this approach poses some security risks, it offers better performance than full virtualiza-

tion. The necessary adaptations to the OS are limited to the Hardware Abstraction Layer (HAL) or Board

Support Package (BSP), which are required to port the OS to a different hardware platform [24, 25].

Full virtualization. Enables the hosting of an unmodified OS by relying on the hypervisor to emulate

the low-level features of the underlying hardware as expected by the kernel of the guest OS, providing



Chapter 2. Background and State of the Art 8

a complete VM abstraction [25]. The hypervisor identifies privileged, control, and behavior-sensitive in-

structions that are trapped and emulated using the binary translation method, allowing direct execution of

non-sensitive instructions. This decouples the guest OS from the underlying hardware but can be less opti-

mal in terms of performance due to the time-consuming nature of the binary translation process. Multiple

hypervisors such as KVM [28], Xen [27], and HYPER-V [31] explore this virtualization technique.

Advantages Disadvantages

Para-virtualization
No need total hardware emulation.
Virtualized OS can directly communicate
with hardware resources.

Guest OS need modifications
Isolation is lower

Full-virtualization
Controls VMs access to system resources.
No need of guest OS modifications.

Decrease in performance
(everything emulated)

Table 2.1: Types of Virtualization: Advantages/Disadvantages.

In conclusion, while para-virtualization has the advantage of improved performance, reduced com-

plexity in the hypervisor, and virtualization requirements on the architecture, it also has the limitation

of incurring a high engineering cost associated with adapting each supported operating system to the

hypervisor’s unique platform interface. On the other hand, full virtualization requires the emulation of ev-

erything and synchronization between hardware and software resources, which is controlled by the need

to virtualize, degrading system performance.

2.2.2 Hypervisor Architecture

Virtualization separates applications from the specific hardware characteristics they use to perform

their tasks, creating a virtual environment to improve resource utilization [32]. The virtual environment is

created by the hypervisor layer, which sits between the OS and the underlying hardware, divided into two

categories: (i) type 1, or baremetal hypervisors, and (ii) type 2, or hosted hypervisors.

Type 1 hypervisor is a layer of software that is implemented directly on top of the underlying hard-

ware, as shown in Figure 2.1. It provides device drivers that the guest OSs use to access the hardware.

Because there is no software or other OS between the hypervisor and the hardware, this type of hyper-

visor provides excellent performance and stability. Its responsibility is to schedule and allocate system

resources to VMs. Examples of native hypervisors include Xen [32], and Bao [4].

Type 2 hypervisor runs as an application within a normal OS, known as the host OS. The host OS

treats the hypervisor as a system process. However, the added layer of the host OS can cause delays

when a guest needs to use its resources, reducing system performance and increasing the risk of system

failure due to host OS faults or malfunctions. Despite these performance and security concerns, hosted

hypervisors are more affordable and suitable for software testing, and can be found in environments such

as Oracle VM VirtualBox [25].



Chapter 2. Background and State of the Art 9

Figure 2.1: Hypervisor Architectures.

Hypervisor Design

Hypervisors are classified based on three factors: (i) the type of virtualization (as described in Section

2.2.1), (ii) the position of the hypervisor in the system stack, and (iii) the internal design of the hypervisor.

There are two categories of hypervisor design, based on how they are implemented: (i) monolithic and (ii)

microkernelized. This classification is important in terms of the performance measures achieved by the

guests and the effectiveness of virtualization management.

Figure 2.2: Hypervisor Designs.

Monolithic hypervisors control the hardware components for their partitions (e.g., inter-process

communication, memory management, and I/O device drivers) by accessing the host hardware, virtual-

izing the CPU, and emulating guest I/O. Monolithic hypervisors have a large attack surface due to their

support for many drivers. This means that a fault or error in the hypervisor code or third-party drivers (that

it loads) could compromise the entire system. However, monolithic systems perform better in terms of

inter-VM communication because all components are stored in the same address space, resulting in fewer

context switches [33].



Chapter 2. Background and State of the Art 10

Microkernelized hypervisors are usually small microkernels that manage the minimum necessary

components, such as inter-process communication and scheduling, and provide CPU virtualization and

basic host hardware access. The OS functions such as the virtual memory manager, file system, and CPU

scheduler, are built on top of the hypervisor. Each service and application has its own address space,

providing protection between applications, OS services, and the kernel. As a result, when a component

fails, only the host-guest is compromised while the other guests continue unaffected. However, due to

the several introduced context switches in inter-VM communication, this design performs worse when

compared with the monolithic approach [33].

The various types of hypervisors, designs, and virtualization techniques each have their own benefits

and drawbacks, depending on the desired control over the VMs and the final system requirements. For

instance, a hypervisor with a focus on safety and security should run on top of hardware to have full

control over resources and use a microkernel design to minimize the attack surface and reduce the risk

of malfunction. In terms of virtualization technique, VMs should be used in a balanced way that allows

each guest to run independently and isolated from others, while not requiring a significantly higher Trusted

Computing Base (TCB).

2.2.3 Static Partitioning Hypervisor

This architecture leverages hardware-assisted virtualization to implement a minimal software layer that

statically partitions all platform resources and assigns each one exclusively to a single VM. It assumes no

hardware resources need to be shared among guests. Since each virtual core is statically pinned to a

single physical CPU, there is no need for a scheduler, and the hardware virtualization extensions allow for

a minimal software layer, minimal TCB and virtualization overhead (VM interrupt latency, VM boot time),

thus reducing size and complexity. While static partitioning may not be as efficient in micro-architectural

resources usage, it provides stronger guarantees of isolation and real-time performance.

Despite the CPU and memory isolation provided by the static partitioning approach, it is not sufficient

as many micro-architectural resources such as LLC, interconnects, and memory controllers remain shared

among different domains, leading to a lack of temporal isolation, resulting in poor performance and de-

terminism [34]. Also, this can be exploited by a malicious VMs to launch Denial of Service (DoS) attacks

by increasing their consumption of a shared resource [20]. To address this issue, techniques such as

cache partitioning (via locking or coloring) or memory bandwidth reservations, 2.3, have been proposed

and implemented at Bao hypervisor [2].



Chapter 2. Background and State of the Art 11

Figure 2.3: Bao Architecture.

2.3 Interference in Multicore Platforms

System performance can be affected by unpredictable memory requests processing time due to con-

tention/interference in the shared memory hierarchy [30]. This section covers the basic concepts of

interference on multicore systems, including its sources and techniques that mitigate them.

2.3.1 Sources of Interference

Many workloads in multicore systems have strict real-time requirements, and interference caused by

contention for resources such as the LLC and memory controller, shared among partitions, generates

non-determinism and unpredictability in the execution time of tasks, making it difficult to meet real-time

requirements.

The CPU cache memory hierarchy is one of the main factors causing unpredictability. The magnitude

of temporal unpredictability that arises from spatial contention in the cache hierarchy is typically larger

than can be observed due to temporal contention. This way, the execution time of each task in a multicore

system depends on the behavior of the cache hierarchy because of the existing conflicts in the allocation

of cache lines (spatial contention) leading to different types of interference, including intra-task, intracore,

and intercore interference. Intra-task interference occurs when two tasks have working sets larger than

a specific cache level. Intracore interference occurs when a task evicts data from another task already

stored in cache memory, increasing its access time. Intercore interference occurs in the LLC, which is

shared among all system partitions, when it is accessed at the same time by multiple CPUs, leading to

unpredictability due to repeated eviction of each other’s data from the cache [35].

Similarly, issues can occur while accessing the DRAM memory because the memory controller, which

manages the flow of data going to and from the system’s main memory, is also a single and shared

component.



Chapter 2. Background and State of the Art 12

2.3.2 Interference Mitigation Techniques

Interference mitigation techniques are a crucial aspect of real-time systems that use multicore plat-

forms. These techniques are implemented to alleviate the negative effects of interference on system

performance, in order to meet the strict real-time requirements of the workloads running on these sys-

tems. To address this, interference mitigation techniques aim to minimize contention, improve resource

allocation efficiency and enhance the predictability of the system. One of the most widely used interfer-

ence mitigation techniques is cache partitioning, which divides the LLC into smaller partitions, reducing

contention among domains. Another technique is memory bandwidth reservation, which aims to reserve a

specific amount of memory bandwidth for a domain or group of domains, thus improving memory access

patterns and reducing contention for memory resources.

Cache Partitioning

Cache partitioning is typically implemented either via cache coloring or locking, which are well-established

techniques to minimize interference generated by shared caches, LLC.

Cache coloring is a technique that assigns specific system partitions to cores by dividing the cache

into partitions. This method aims to reduce inter-core interference, increase predictability, and ease WCET

estimation [35].

Figure 2.4: Mapping of Cache Coloring Technique.

The technique works by coloring physical frames such that two different colors will not map to the same

cache set, reducing interference in physically indexed caches. Additionally, the use of virtual memory

blocks that are not continuous on physical memory blocks, Figure 2.4, allows programs to store data

anywhere within system boundaries, which is particularly important in multicore systems that can execute

programs with different criticality levels that operate on varying amounts of data. The hypervisor can also

assign a different color to each guest by choosing the color index. The number and size of colors are

hardware-dependent [25].



Chapter 2. Background and State of the Art 13

Cache locking is another technique that can be used to minimize interference in shared caches. It

involves locking specific cache lines or sets, preventing them from being evicted and ensuring that they

are available for a specific core or task. This technique can be used with cache coloring to further reduce

interference and improve predictability. There are three ways to lock cached content: (i) through an

instruction that fetches and locks a given cache line, (ii) defining the lock status of every cache way for

each CPU in the system, figure 2.5a (called lockdown by the master [36]), and (iii) setting all cache lines

fetched as locked until an unlock operation is performed, figure 2.5b.

(a) Cache way locking. (b) Cache line locking.

Figure 2.5: Cache Locking by way and by line.

Cache locking is a useful mechanism for improving the performance of real-time applications and

easing WCET estimation. Consider a dual-core platform with a 2-way set-associative cache and a cache

controller that implements a lockdown by master mechanism. It is possible to set the hardware to unlock

a specific cache-way for each CPU, allowing a task running on CPU1 to deterministically allocate blocks

on way 1 that can never be evicted by a CPU2 task accessing way 2 [35]. This provides more predictable

and controllable access to shared caches.

Memory Bandwidth Partitioning

Memory bandwidth reservation is implemented to mitigate interference in multicore systems by allo-

cating a specific amount of memory bandwidth to a domain or group of domains. The main objective

of this technique is to improve memory access patterns and reduce contention for memory resources.

It ensures that each domain has a guaranteed amount of memory bandwidth (needed to execute their

workloads, even when other domains are also accessing memory).

Figure 2.6: Memory Reservation Scheduling. Adapted from [25].



Chapter 2. Background and State of the Art 14

Different approaches have been proposed to implement memory bandwidth reservation, such as time-

division multiplexing, space-division multiplexing, priority-based multiplexing, or hybrid techniques. These

approaches can be implemented either statically, based on a priori knowledge of the workloads and system

characteristics, or dynamically, based on the current state of the system. This technique has been found

to be useful in real-time systems, where domains have strict real-time requirements, as it helps to ensure

that these domains have the memory bandwidth necessary to meet their deadlines.

For instance, memory bandwidth reservation can be implemented at the hypervisor level and provides

each domain with a budget of memory access that is replenished periodically (as shown in Figure 2.6).

The budget and period values are statically configured for each domain by the system. This software-

based memory throttling mechanism and the analytic solutions for computing throttling parameters help

to ensure the schedulability of critical tasks and minimize the performance impact on cores through the

configuration of budget (number of memory accesses allowed for each domain in each period) and period

values [37]. Also, this technique allows the mitigation of the interference incurred by the different domains

due to the memory contention, which becomes limited by the memory budget per CPU or VM, regardless

of other domains behavior [2].

2.4 Related Work

The goal of the dissertation is to implement interference mitigation techniques on the Bao hypervisor

[4]. The dissertation will likely include a background analysis of existing hypervisors, such as Xen [38],

that have similar features. Xen is a type-1 hypervisor that uses a privileged VM called Dom0 to manage

non-privileged VMs (DomUs) and interact with peripherals. The dissertation focus on understanding how

these existing techniques are implemented, and potentially adapting or improving upon them for use in

the Bao hypervisor.

2.4.1 Hypervisors

The Jailhouse hypervisor [39] is a static partitioning hypervisor that utilizes a minimal software

layer and hardware-assisted virtualization techniques to statically isolate all platform resources and assign

them to a single VM instance. Its unique approach is to assign each virtual core directly to a physical CPU

in a 1:1 ratio, which reduces the size and complexity of the system by eliminating the need for a scheduler.

Although static partitioning guarantees isolation and real-time performance, it can be challenged by the

need for efficient resource utilization. Despite its design philosophy, Jailhouse still has some limitations

similar to other hypervisors, such as its reliance on a privileged Linux VM to initialize the system and

manage other VMs.

Bao hypervisor, a static partitioning hypervisor that focuses on providing high safety and security

guarantees. Despite having a similar architecture to Jailhouse, Bao does not depend on external sources



Chapter 2. Background and State of the Art 15

(except the firmware to perform low-level platformmanagement). It is composed of a thin layer of privileged

software that separates the hardware using Instruction Set Architecture (ISA) virtualization extensions, and

includes hardware-based solutions like cache coloring that mitigates interference between guests. Further-

more, this can be exploited by a malicious VM to implement DoS attacks, increasing their consumption of

a shared resource [20], or accessing data from other VMs through the implicit timing side-channels.

2.4.2 Mitigation Mechanisms

The literature on techniques to control and analyze contention is too vast to be fully covered within the

scope of this text. Therefore, a selection of the most relevant works is presented below. Yun et al. [30]

proposed one of the first methods to regulate memory bandwidth with their implementation of a per-core

regulator, which uses performance counters to implement a budgeting mechanism on a hypervisor.

MemGuard [30] divides memory bandwidth into two categories: guaranteed and best effort. The

guaranteed bandwidth is the minimum service rate that the DRAM system can provide, while the additional

available bandwidth is classified as best effort and cannot be guaranteed by the system. To ensure tempo-

ral isolation, this mechanism focuses on the guaranteed component and effectively utilizes the guaranteed

memory bandwidth based on each core’s usage estimation. Once the guaranteed bandwidth of each core

is satisfied, the best-effort bandwidth can be utilized to improve system throughput.

A Survey on CacheManagement Mechanisms by Gracioli et al. [35] and the methods proposed

by Yun et al. [40] and Kim et al. [41], suggested several techniques to improve the predictability of

cache memories, which reduce contention through bank-aware memory allocations. The survey of cache

management techniques for real-time embedded systems notes that one of the main factors contributing

to unpredictability in multicore processors is the cache memory hierarchy. CPU caches are hardware

elements that are largely invisible to programmers and rely on the spatial and temporal proximity of memory

accesses to improve application execution time. They use heuristics to replace outdated, non-referenced

entries with data that is more likely to be accessed soon. However, the heuristic behavior of a cache

means that, based on the system’s history, memory accesses made at the same location during a task’s

execution may or may not result in a cache hit [35].

PALLOC suggested by Yun et al. [40] include the use of a DRAM bank-aware memory allocator to re-

duce contention through bank-aware memory allocations. This allocator takes advantage of the page-based

virtual memory system to assign memory pages to specific banks for each application. With PALLOC, we

can effectively improve isolation on COTS multicore platforms without requiring additional hardware sup-

port by dynamically partitioning banks to prevent sharing among cores. A system designer can also use

PALLOC to flexibly divide DRAM banks to enhance performance isolation on the multicore platform. For

example, private DRAM banks can be assigned to each virtual scheduling division and to each core, elim-

inating bank sharing between cores without requiring hardware modifications. Smart bank assignment

schemes can significantly reduce the limited space issue due to PALLOC’s ability to dynamically adjust its

assignments at runtime. DRAM is used as the main memory in modern COTS-based systems to meet high



Chapter 2. Background and State of the Art 16

performance and capacity demands. However, the DRAM system has multiple resources, so the access

time varies significantly based on the requested address. In addition, memory requests are scheduled

by an on-chip, out-of-order memory controller based on the First-Ready First-Come First-Serve (FR-FCFS)

policy, where requests that arrived earlier may be serviced later than ones that arrived later if the mem-

ory system is not ready to service the former. This technique suggests a white-box strategy for limiting

memory interference by explicitly considering the timing characteristics of major DRAM system resources,

including the re-ordering effect of FR-FCFS and its timing constraints, to obtain a tight upper bound on the

worst-case memory interference delay for a task when it executes in parallel with other tasks.

E-warp by Sohal et al. [42] have implemented a framework for analyzing the memory demand and

predicting the timing of real-time workloads on CPUs and hardware accelerators. This framework makes

accurate predictions about the temporal behavior of workloads running on CPUs and accelerators by

examining the memory demand of applications using a profile-driven approach and performing saturation-

aware system consolidation.

Modica et al. [2] have also implemented techniques to address the problem of providing spatial and

temporal isolation between execution domains on a hypervisor running on an Arm multicore platform.

They specify the memory layout for each domain, which is organized into memory regions and supports

coloring through a segmentation scheme that reserves an area of physical memory for each region and

splits it into maps.

COLORIS the memory management framework called COLORIS addresses the problem of interfer-

ence between shared resources by providing support for both static and dynamic cache partitioning, using

page coloring. This framework monitors the cache miss rates of running applications and repartitions the

cache to prevent miss rates from exceeding application-specific ranges. COLORIS consists of two main

components: a Page Color Manager and a Color-aware Page Allocator. The Color-aware Page Allocator al-

locates page frames of specific colors, and the Page Color Manager is responsible for assigning initial page

colors to processes, monitoring process cache usage metrics, and adjusting color assignments based on

system-specific objectives such as fairness, QoS, or performance [43].

Concluding, there have also been several efforts to design custom memory controllers to enhance

predictability and improve system performance [44, 45], but these designs are not present in COTS plat-

forms, limiting their adoption. In contrast, the MPAM specification has the potential to be present in all Arm

platforms and therefore billions of devices. However, only one previous study has examined the effects of

the MPAM bandwidth component [46]. This work outlines possible instantiations of the specification at the

DRAM memory controller level, highlights many points where it is underspecified, and analyzes memory

contention with different design alternatives for MPAM bandwidth partitioning.



3. Platform and tools

Arm processors have significantly improved their architectures for embedded systems, with a focus on

providing processors with competitive processing power, and low cost and power consumption [2]. This

section discusses the hardware platform and tools used in the design, development, and testing of the

proposed work. It first provides an overview of some Bao-supported Armv8-A platforms and then explains

why the Zynq UltraScale+ MPSoC ZCU104 was chosen as the target platform to deploy the first mechanism

(safe_mem). Additionally, the API used to manage the MPAM registers will specify the configurations

necessary to integrate the MPAM processor extension. The scope and explanation of the benchmarks

used to confirm the effectiveness of the applied techniques are also presented in the last section.

3.1 Platforms

The implementation of the safe_mem mechanism requires the utilization of PMU and its registers for

its implementation. This section outlines and compares different platforms endowed with Armv8-A CPUs

(e.g. Cortex-A53), analyzing its advantages and drawbacks.

3.1.1 Armv8-A Platforms

Zynq UltraScale+ MPSoC ZCU104

The ZCU104 board, equipped with a Zynq UltraScale+ MPSoC by Xilinx, includes an Arm Cortex-

A53 (quad-core), which is low-power and implements the Armv8-A architecture, running at 1.2 GHz, a

Generic Interrupt Controller (GIC)-400 (GICv2) featuring four list registers, and an Memory Management

Unit (MMU)-500 (SMMUv2). Cores each with a 32KB L1 instruction and data cache and share an L2 1MB

unified cache [47].

NVIDIA Jetson TX2

This board is composed of two CPU clusters (six cores total) in a coherent multi-processor configuration

– NVIDIA Denver 2 (dual-core) Processor; Arm Cortex-A57 MPCore (Quad-Core) Processor. Denver 2 and

Cortex-A57 CPU clusters support Armv8 architecture, implements GIC-400 (GICv2), and are connected by

17



Chapter 3. Platform and tools 18

a high-performance coherent interconnect fabric designed by NVIDIA, enabling the simultaneous operation

of both CPU clusters. Further, both cores in the Denver 2 processor are identical implementations of the

Armv8 architecture with NVIDIA optimizations, each includes 128KB Instruction (I-cache) and 64KB Data

(D-cache) Level 1 cache. Also, they share a 2MB L2 cache. On the other hand, all four cores in the ARM

Cortex-A57 are identical implementations of the Armv8 architecture. Each one includes 48KB Instruction

(I-cache) and 32KB Data (D-cache) Level 1 cache. Also, a 2MB L2 cache is shared by the cores of this

cluster.

NXP i.MX 8MQuad

The board NXP i.MX 8MQuad features a four-core Cortex-A53 Accelerated Processing Unit (APU) clus-

ter at operating frequencies of 1.5 GHz, implements GIC-500 (GICv3), and a general purpose Cortex-M4

microcontroller for low-power processing, operating at 266 MHz. Each core of the Cortex-A53 has a data

and instructions cache for level 1 of 32 KB in size, and for level 2, a shared cache of 1 MB. Further, the

Cortex-M4 has a total of 32KB L1 cache size, 16KB for instruction, and another 16KB for data.

3.1.2 Platform Selection

This section presents an analysis of the characteristics of each Bao-supported development platform

that is based on the type and number of A cores, the memory cache size (L1 and L2), and frequency of

operation, as shown in table 3.1. The NVIDIA Jetson TX2 is the recommended platform for the implemen-

tation of the mechanisms proposed in this dissertation due to its larger cache sizes and CPU operating

frequencies. However, due to the unavailability of this NVIDIA board (a.k.a. silicon shortage), the Zynq

UltraScale+ MPSoC ZCU104 was used instead.

Development

Board
# of Cores

Core Type

(Arm Cortex-A)
Cache Size

Operation

Frequency

ZCU104 4 Cortex-A53 L1(I/D): 32KB L2: 1MB 1.2 GHz

NVIDIA Jetson TX2 4 Cortex-A57 L1(I/D): 48KB/32KB L2: 2MB 2GHz

NXP i.MX 8MQuad 4 Cortex-A53 L1(I/D): 32KB/32KB L2: 2MB 1.5 GHz

Table 3.1: Platform Comparison.

3.2 Tools

The second goal of this dissertation involves implementing the MPAM extension, emulating the hard-

ware using an FVP model, and debugging the simulation model using Arm DS. This is necessary because,



Chapter 3. Platform and tools 19

at the time of writing, no silicon supports the MPAM extension.

3.2.1 Arm Fast Models

Arm Fast Models are accurate, flexible programmer’s view models of Arm IP, allowing the development

of software such as drivers, firmware, OS, and applications before silicon availability. They enable sim-

ulation control, including profiling, debuging, and tracing. Also, these models are included in the larger

System on Chip (SoC) design process by being exported to SystemC and TLM 2.0. An Instruction Set

Simulator is not a complete virtual prototype of a system. It also includes fast and accurate models of

processors, subsystems, or systems. Further, it provides APIs for debuging (CADI) that allows full control

of system execution, an interface to Arm DS-5 (section 3.2.2) and other debug tools. It also includes visual-

ization, file system access, and peripherals from I/O. The Arm Fast Models simulate the Versatile Express

Architecture Envelope Models (AEM) VA hardware platform that implements all architectural features in

the Armv8-A instruction set. The model included a four Arm A cores with virtualization extension, custom

shared size cache, bandwidth, memories, and configurable MPAM parameters, emulating its behavior.

3.2.2 Arm Development Studio

Fast Models offers fixed versions, known as FVPs, which provide programmers with a fully functional

model of an entire Arm system. These FVPs can be easily downloaded, individually licensed, and imported

into Development Studio for simplicity of use. The model chosen to run in this tool was based on its ability to

emulate the Armv8-A architecture and MPAM extension behavior. Therefore, the Arm base RevC AEMv8A

FVP was selected due to its ability to emulate a generic Armv8-A 64-bit hardware platform with MPAM

support [48].

FVP Model Configuration

Fixed Virtual Platforms are pre-configured, functionally accurate simulations of system configurations.

This configuration takes into account the implementation of the MPAM extension, so some parameters,

among others, must be enabled and assigned, when running the simulation model. The different param-

eters related to the implementation of MPAM extension are:

• cluster0.has_mpam=2 : enable MPAM registers and associated functionality (FEAT_MPAM);

• cluster0.l3cache-has_mpam=1 : enable MPAM for L3 cache;

• cluster0.l3cache-mpamf_base=0x100000000 : base address for memory page of MPAM

memory mapped registers.

Also, it is necessary to configure and assign some parameters about the cache of the system to use

the MPAM mechanism for cache partitioning. The parameters assigned for this purpose are listed below:



Chapter 3. Platform and tools 20

• cache_state_modelled=true : enable d-cache and i-cache state for all components;

• cluster0.l3cache-size=1024 : indicate the size of cache in bytes (1MB);

• cluster0.l3cache-mpamf.cmax_width_ns=16 : indicate the maximum cache capacity usage

for each partition;

• cluster0.l3cache-mpamf.cpbm_width_ns=32 : indicate the number of portions available of

system cache;

3.2.3 Test Benchmarks

Synthetic benchmark

This benchmark is memory intensive and uses two bare-metal applications running in separate VMs,

with the primary objective of stressing the memory, more explicitly LLC. One of these applications runs

on a single CPU and is responsible for verifying and displaying all of the selected PMU event values of

each cache memory access after a pre-configured number of samples. The other application, run by the

other three CPUs, is responsible for inducing interference in the system. Further, for the results given by

the benchmark to be more reliable, a cache warming function is used to fill the memory to increase the

efficiency of cache access and decrease the occurrence of cache misses.

Last but not least, it should be mentioned that a memory-intensive application running in a VM, with

three CPUs, would cause more interference in LLC than on the system bus. Also, the system takes fewer

time cycles in the memory bus since CPUs from the same system domain are accessing the main memory

at a time. Therefore it is essential to select the working set for each baremetal application. The application

responsible for monitoring the performance of the memory-accessing application should be larger than the

cache L2 size because it is the only way to access the LLC. On the other hand, if its working set is too large,

it will lead to migrating the interference to the system bus because the CPUs of the other application are

also accessing the memory to create interference. In addition, the working set chosen for the interference

application must cover the whole LLC.

MiBench

As outlined in section 5.1, to evaluate the performance overhead and interference between virtual

machines, we use the MiBench benchmark suite [49]. MiBench is a collection of 35 benchmarks that are

divided into six categories, each targeting a specific area of the embedded market such as automotive and

industrial control, consumer devices, office automation, networking, security, and telecommunications. We

focus our evaluation on the automotive and industrial control category as it is one of the main application

domains targeted by Bao. This category includes three of the more memory-intensive benchmarks, which

are more susceptible to interference due to cache and memory contention [50] (qsort, susan corners, and

susan edges). Additionally, the tests consist of memory accesses and their impact on the system’s overall

performance according to these memory-intensive benchmarks.



4. Design and Implementation

The previous chapter introduced the main concepts related to this dissertation. This chapter provides

an overview of the mechanisms implemented in the Bao hypervisor and offers background information on

its specifications and characteristics within the system. This chapter also specifies the proposed safe_mem

mechanism (Section 4.1) and the MPAM API (Section 4.2), including the design and all specifications for

both implementations in the hypervisor.

4.1 Memory Throtlling - ’safe_mem’

The term ”throttling” refers to methods for managing and allocating shared resources to different do-

mains of a system. Also, through the hypervisor, the system is partitioned and assigned to different guests,

but there are still shared resources, particularly DRAM, that are used by all guests. As a result, DRAM can

be a source of contention, as tasks running concurrently on different CPUs compete for access, leading

to longer execution times. Throttling techniques use the PMU to monitor microarchitectural events and

manage workload requests so that they do not exceed a well-defined threshold, ensuring the proper oper-

ation of the system. In real-time systems, the effectiveness of throttling depends on time constraints, the

hardware used, and software integration. The memory bandwidth reservation proposed in this dissertation

relies on a budget-base approach that leverages two hardware components: (i) the aarch64 generic timer

and (ii) the PMU. It sets a budget value for each guest and an sample period to monitor DRAM accesses

by each guest per period, limiting them to the defined budget per period.

4.1.1 Aarch64 Timer

This topic describes the Aarch64 generic timer which provides a standardized timer framework for Arm

cores, including the System counter and a set of per-core timers, as shown in table 4.1. System Counter

is an always-on device that provides a fixed frequency incrementing system count, designed by the SoC

implementer, requiring initialization when a system boots up. Additionally, its value is broadcast to every

core in the system at a frequency of between 1MHz and 50MHz, with a width of between 56 bits and 64

bits, giving them all a common perception of timing. The timer can be also configured to generate an

interrupt [51]. The Cortex-A53 processor provides to each core a set of comparator timer registers relative

21



Chapter 4. Design and Implementation 22

to Arm-v8 that compares its value against the commonly broadcast system count supplied to each core

by the system counter.

Timer Register prefix Exception Level - EL<x>

EL1 physical timer CNTP EL0

EL1 virtual timer CNTV EL0

Non-secure EL2 physical timer CNTHP EL2

Non-secure EL2 virtual timer CNTHV EL2

EL3 physical timer CNTPS EL1

Secure EL2 physical timer CNTHPS EL2

Secure EL2 virtual timer CNTHVS EL2

Table 4.1: Timers.

The following registers can program each timer, register prefix, given by table 4.1, to control and

monitor the timer.

• CNTFRQ_EL0: report the frequency of the system count;

• <timer>_CTL_EL<x>: counter timer control register;

• <timer>_CVAL_EL<x>: counter timer comparator value register;

• <timer>_TVAL_EL<x>: counter-timer timer value register.

The timer used for the implementation of this mechanism is the ”Non-secure EL2 physical timer.”

The choice was made because the implementation of this mechanism is established at the EL2 layer, the

hypervisor layer. It is worth noting that specific timer registers for configuring/generating an interrupt for a

fixed time interval, controlled through the CTL register, are used to enable an interrupt for each core in this

implementation. The timer is configured through the TVAL register, which reads the current system count

internally, adds the specified value, and then populates the CVAL register, triggering an interrupt when the

system count reaches that value. In summary, this timer is used to trigger an interrupt at the end of each

period, resetting its predefined value. Its role in controlling the memory usage of each guest per period

with the help of the PMU is discussed in topic 4.1.3.

4.1.2 Performance Monitoring Unit

The Cortex-A53 processor includes performance monitors that implement the Arm PMUv3 architec-

ture. The PMU is a functional unit that records hardware-related performance monitoring events and

provides relevant information about the behavior of the processor and its memory system during runtime.



Chapter 4. Design and Implementation 23

It offers one cycle counter and six event counters (Figure 4.1), each of which allows for the concurrent

monitoring of available events in the processor [47].

Figure 4.1: PMU Block Diagram. Adapted from [47].

Furthermore, regarding the purpose of the PMU, in the following table are some of the controllable

events that can be used, together with the timer (Section 4.1.1), to implement the safe_mem mechanism:

Event Event mnemonic Description

Memory Access MEM_ACCESS counts memory accesses due to load/store instructions

Bus Access BUS_ACCESS counts data transferred between the core and the SCU

L2 Data cache refill L2D_CACHE_REFILL
counts any cacheable transaction from L1 which

causes data to be read from outside the core

L2 Data cache access L2D_CACHE counts any transaction and any write-back from the L1 to the L2

Table 4.2: PMU Event Counters.

The PMU counters and associated control registers can be accessed in the AArch64, the 64-bit ex-

ecution state of the ARMv8 ISA, using the MRS and MSR instructions. The table 4.2 summarizes the

Cortex-A53 PMU registers used to count a desired event in the AArch64 execution state. These registers

can be used to configure and implement the PMU to count a specific event and monitor the memory usage

per period by each core.

• MDCR_EL2: Enable event counters;

• PMCNTENSET_EL0: Enable cycle register;

• PMSELR_EL0: Selects the current event counter;

• PMEVTYPER<n>_EL0: Configures event counter;

• PMINTENSET_EL1: Enable counter overflow interrupt request;

• PMOVSCLR_EL0: Clear counter overflow status.



Chapter 4. Design and Implementation 24

Additionally, the BUS_ACCESS event of the Cortex-A53 processor was chosen for use in this mecha-

nism as it counts any data transfer from or to the System Control Unit (SCU). The reason for this selection

is that the goal of this mechanism is to mitigate DRAM contention, and this event has the greatest impact

on interference control at the DRAM level. It also significantly reduces the impact of interference, improving

system performance. The next section explains the implementation of this event in relation to the purpose

and relevance of each register within this mechanism.

4.1.3 Integration of safe_mem in Bao Hypervisor

The main concepts related to this mechanism have been discussed in previous sections, including

the design of the technique to control the system’s shared resources through the timer registers of each

CPU and the PMU to limit the memory usage. In this section, the implementation and configuration of

the Aarch64 timer and PMU are first outlined. The usage of the timer and PMU, as well as their interrupt

capabilities within the mechanism, are then explained in detail. These components are used to reduce

contention on the DRAM, shared among all cores of the system.

The aarch64 timer is particularly important in this mechanism as it periodically triggers the system

with a predefined time interval. The initialization encompasses receiving the period value, defined by the

user, in microseconds (Listing 4.1). The required number of counts to trigger the timer is calculated based

on this period and the system frequency obtained using the timer_arch_get_system_frequency function.

The timer counter is then set through the configuration of its registers. Finally, the timer is enabled, its

interrupt is enabled, and the function returns the calculated count number.

1 u i n t 6 4 _ t t i m e r _ a r c h _ i n i t ( u i n t 6 4 _ t p e r i o d )

{

3 u i n t 6 4 _ t f r e q u e n c y ;

u i n t 6 4 _ t c o u n t _ v a l u e ;

5

// s e t t i m e r c o u n t e r

7 f r e q u e n c y = t i m e r _ a r c h _ g e t _ s y s t e m _ f r e q u e n c y ( ) ;

c o u n t _ v a l u e = ( p e r i o d * f r e q u e n c y ) /1000000 ;
9

t i m e r _ a r c h _ s e t _ c o u n t e r ( c o u n t _ v a l u e ) ;

11 t i m e r _ a r c h _ e n a b l e ( ) ;

13 r e t u r n c o u n t _ v a l u e ;

}

Listing 4.1: Sampling period timer initialization.

Furthermore, the PMU is responsible for counting the number of occurrences of a selected event from

the options available on this CPU. To monitor a specific event, it is necessary to select and configure a



Chapter 4. Design and Implementation 25

PMU counter and implement the desired events that may be useful for the purpose of the mechanism.

The first step is to enable the PMU at EL2 and check the number of implemented counters, as well as

defining the number of event counters accessible from EL3, EL2, EL1, and EL0 (see Listing 4.2).

1 # d e f i n e PMCR_EL0_N_POS ( 1 1 )

# d e f i n e PMCR_EL0_N_MASK ( 0 x1F << PMCR_EL0_N_POS )

3

# d e f i n e MDCR_EL2_HPME ( 1 << 7 )

5 # d e f i n e MDCR_EL2_HPMN_MASK ( 0 x1F )

7 # d e f i n e PMU_N_CNTR_GIVEN 1

9 s t a t i c s i z e _ t e v e n t s _ a r r a y [ ] = { DATA_MEMORY_ACCESS , L2D_CACHE_ACCESS ,

BUS_ACCESS , L2D_CACHE_REF ILL } ;

11 v o i d pmu_enab l e ( v o i d )

{

13 u i n t 3 2 _ t pmcr = MRS ( PMCR_EL0 ) ;

u i n t 6 4 _ t mdcr = MRS ( MDCR_EL2 ) ;

15

cpu . i m p l e m e n t e d _ e v e n t _ c o u n t e r s = ( ( pmcr & PMCR_EL0_N_MASK ) >>

PMCR_EL0_N_POS ) ;

17

// E n a b l e t h e pmu a t EL2

19 mdcr &= ~MDCR_EL2_HPMN_MASK ;

mdcr |= MDCR_EL2_HPME + ( PMU_N_CNTR_GIVEN ) ;

21

MSR ( MDCR_EL2 , mdcr ) ;

23 }

Listing 4.2: PMU configuration for EL2.

Additionally, one of the available counters of the PMU can be enabled to count the desired PMU event.

The overflow value for the counter is also defined in Listing 4.3. Finally, the chosen event (as shown in

Listing 4.4) can be monitored using both the PMU and timer mechanisms.

1 s t a t i c i n l i n e v o i d pm u _ c n t r _ s e t ( s i z e _ t c o u n t e r , u n s i g n e d l o n g v a l u e )

{

3 u i n t 6 4 _ t pm s e l r = MRS ( PMSELR_EL0 ) ;

pm s e l r = b i t _ i n s e r t ( pms e l r , c o u n t e r , 0 , 5 ) ;

5 MSR ( PMSELR_EL0 , pm s e l r ) ;

7 v a l u e = UINT32_MAX − v a l u e ;

MSR ( PMXEVCNTR_EL0 , v a l u e ) ; // D e f i n e o v e r f l o w v a l u e f o r pmu c o u n t e r

9 }



Chapter 4. Design and Implementation 26

Listing 4.3: PMU event overflow value definition.

1 s t a t i c i n l i n e v o i d pm u _ s e t _ e v t y p e r ( s i z e _ t c o u n t e r , s i z e _ t e v e n t )

{

3 u i n t 6 4 _ t pm s e l r = MRS ( PMSELR_EL0 ) ;

pm s e l r = b i t _ i n s e r t ( pms e l r , c o u n t e r , 0 , 5 ) ;

5 MSR ( PMSELR_EL0 , pm s e l r ) ;

7 u i n t 6 4 _ t pm x e v t y p e r = MRS ( PMXEVTYPER_EL0 ) ;

p m x e v t y p e r = b i t _ c l e a r ( pm x e v t y p e r , PMEVTYPER_P ) ;

9 pm x e v t y p e r = b i t _ c l e a r ( pm x e v t y p e r , PMEVTYPER_U ) ;

pm x e v t y p e r = b i t _ c l e a r ( pm x e v t y p e r , PMEVTYPER_NSK ) ;

11 pm x e v t y p e r = b i t _ c l e a r ( pm x e v t y p e r , PMEVTYPER_NSU ) ;

pm x e v t y p e r = b i t _ c l e a r ( pm x e v t y p e r , PMEVTYPER_NSH ) ;

13 pm x e v t y p e r = b i t _ c l e a r ( pm x e v t y p e r , PMEVTYPER_M ) ;

pm x e v t y p e r = b i t _ c l e a r ( pm x e v t y p e r , PMEVTYPER_MT ) ;

15 pm x e v t y p e r = b i t _ c l e a r ( pm x e v t y p e r , PMEVTYPER_SH ) ;

pm x e v t y p e r = b i t _ i n s e r t ( pm x e v t y p e r , e v e n t s _ a r r a y [ e v e n t ] , 0 , 1 0 ) ; // S e t

e v e n t t o c o u n t f o r pmu e v e n t c o u n t e r */
17

MSR ( PMXEVTYPER_EL0 , pm x e v t y p e r ) ;

19 }

Listing 4.4: PMU event selection.

Also, the PMU event counter allocation function for the mechanism sets a bitmap of implemented

event counters, allocating the desired number of counters to the different events of PMU, as shown in

Listing 4.5, ensuring scalability through Bao hypervisor’s modular architecture.

# d e f i n e PMU_N_CNTR_GIVEN 1

2 cpu . i m p l e m e n t e d _ e v e n t _ c o u n t e r s = 0 ; // i n i t a s 0

4 u i n t 6 4 _ t p m u _ c n t r _ a l l o c ( )

{

6 u i n t 3 2 _ t i n d e x = PMU_N_CNTR_GIVEN ;

8 f o r ( i n t _ _ b i t = b i t m a p _ g e t ( cpu . e v e n t s _ b i t m a p , i n d e x ) ; i n d e x < cpu .

i m p l e m e n t e d _ e v e n t _ c o u n t e r s ;

_ _ b i t = b i t m a p _ g e t ( cpu . e v e n t s _ b i t m a p , ++ i n d e x ) )

10 i f ( ! _ _ b i t )

b r e a k ;

12

i f ( i n d e x == cpu . i m p l e m e n t e d _ e v e n t _ c o u n t e r s )



Chapter 4. Design and Implementation 27

14 r e t u r n ERROR_NO_MORE_EVENT_COUNTERS ;

16 b i t m a p _ s e t ( cpu . e v e n t s _ b i t m a p , i n d e x ) ;

r e t u r n i n d e x ;

18 }

Listing 4.5: PMU event counter allocation.

The function, shown in Listing 4.6, configures the PMU to count the desired event. It sets the limit of

event occurrences before an interrupt is triggered and assigns the function to be called when an interrupt is

triggered. It also clears the counter overflow status and enables the CPU and selected counter interrupts.

Finally, it enables the PMU and a specific counter using the abstraction function events_enable, shown in

Listing 4.2.

v o i d s a f e _ m em _ e v e n t s _ i n i t ( e v e n t s _ e n um e v e n t , u n s i g n e d l o n g b u d g e t ,

i r q _ h a n d l e r _ t h a n d l e r )

2 {

i f ( ( cpu . sa fe_mem . c o u n t e r _ i d = e v e n t s _ c n t r _ a l l o c ( ) ) ==

ERROR_NO_MORE_EVENT_COUNTERS )

4 {

ERROR ( ” No more e v e n t c o u n t e r s ! ” ) ;

6 }

e v e n t s _ s e t _ e v t y p e r ( cpu . sa fe_mem . c o u n t e r _ i d , e v e n t ) ;

8 e v e n t s _ c n t r _ s e t ( cpu . sa fe_mem . c o u n t e r _ i d , b u d g e t ) ;

e v e n t s _ c n t r _ s e t _ i r q _ c a l l b a c k ( h a n d l e r , cpu . sa fe_mem . c o u n t e r _ i d ) ;

10 e v e n t s _ c l e a r _ c n t r _ o v s ( cpu . sa fe_mem . c o u n t e r _ i d ) ;

e v e n t s _ i n t e r r u p t _ e n a b l e ( cpu . i d ) ;

12 e v e n t s _ c n t r _ i r q _ e n a b l e ( cpu . sa fe_mem . c o u n t e r _ i d ) ;

e v e n t s _ e n a b l e ( ) ;

14 e v e n t s _ c n t r _ e n a b l e ( cpu . sa fe_mem . c o u n t e r _ i d ) ;

}

Listing 4.6: PMU event counter init.

After discussing the initialization functions for the two resources used in the mechanism, we describe

the functions executed when an interrupt is triggered by either the timer or the PMU. The PMU event over-

flow function is responsible for putting the CPU that has exceeded the defined limit for memory accesses

per period into idle mode until the end of the period, as described in Listing 4.7.

1 v o i d s a f e _m em_ p r o c e s s _ o v e r f l o w ( v o i d )

{

3 e v e n t s _ c l e a r _ c n t r _ o v s ( cpu . sa fe_mem . c o u n t e r _ i d ) ;

e v e n t s _ c n t r _ d i s a b l e ( cpu . sa fe_mem . c o u n t e r _ i d ) ;

5 e v e n t s _ c n t r _ i r q _ d i s a b l e ( cpu . sa fe_mem . c o u n t e r _ i d ) ;



Chapter 4. Design and Implementation 28

7 cpu . sa fe_mem . t h r o t t l e d = t r u e ;

9 c p u _ i d l e ( ) ; // t h r o t t l e c o r e

}

Listing 4.7: PMU callback function.

The timer callback function (Listing 4.8) is invoked when the timer reaches the end of its period,

rescheduling the interrupt, resetting the limit value for memory accesses and verify the throttle state of

each CPU, removing the throttled CPUs from idle. Finally, it enables the event counter and its interrupt,

starting the timer.

v o i d s a f e _ m em _ p e r i o d _ t i m e r _ c a l l b a c k ( i r q i d _ t i n t _ i d )

2 {

t i m e r _ d i s a b l e ( ) ;

4 e v e n t s _ c n t r _ d i s a b l e ( cpu . sa fe_mem . c o u n t e r _ i d ) ;

6 // t i m e r

t i m e r _ r e s c h e d u l e _ i n t e r r u p t ( cpu . sa fe_mem . p e r i o d _ c o u n t s ) ;

8

// e v e n t s

10 e v e n t s _ c n t r _ s e t ( cpu . sa fe_mem . c o u n t e r _ i d , cpu . sa fe_mem . b u d g e t ) ;

i f ( cpu . sa fe_mem . t h r o t t l e d )

12 {

e v e n t s _ c n t r _ i r q _ e n a b l e ( cpu . sa fe_mem . c o u n t e r _ i d ) ;

14 cpu . sa fe_mem . t h r o t t l e d = f a l s e ;

}

16 e v e n t s _ c n t r _ e n a b l e ( cpu . sa fe_mem . c o u n t e r _ i d ) ;

t i m e r _ e n a b l e ( ) ;

18 }

Listing 4.8: Timer callback function.



Chapter 4. Design and Implementation 29

In conclusion, a flowchart of the mechanism’s initialization is presented after detailing its key aspects.

Figure 4.2: safe_mem Initialization Flowchart.

To summarize, this mechanism sets the system’s period and the budget for each CPU and then sets

the boolean variable ”throttled” to false to indicate that all CPUs are active. It then uses the two initialization

functions described above to control memory accesses per period using the timer and PMU. This helps to

reserve bandwidth for each running CPU, improving system predictability and performance.

4.2 MPAM - Arm Extension

Predictable memory access is a crucial issue for modern heterogeneous platforms. As computing

platforms with many processor cores and hardware accelerators become increasingly common to meet

the demands of demanding workloads such as those in autonomous driving applications, the finite number

of memory system partitions and existing software-based mitigation strategies become limitations. Arm’s

MPAM specification addresses this issue by offering several memory-access restriction schemes [46].

The MPAM extension is an architectural approach to resource contention avoidance that provides work-

load identification of memory traffic throughout the system and standard monitoring and control interfaces

for workload performance and resource allocation such as cache capacity and memory bandwidth [52].

MPAM identifiers can be attached to memory system requests from CPUs or to device traffic going through

the System Memory Management Unit (SMMU) [21]. This extension is designed for shared-memory com-

puter systems that run multiple applications or VMs concurrently. It uses two approaches: resource



Chapter 4. Design and Implementation 30

partitioning and resource monitoring, which work together to allocate the performance-critical resources

of the memory system. This approach divides cache and bandwidth into partitions, allowing for the re-

placement of software mechanisms such as cache coloring and memory throttling. In this work, only the

resource partitioning approach was used due to the unavailability of the platform model used to emulate

the system.

4.2.1 Memory-System Resource Partitioning

Memory-system resource partitioning, introduced in Armv8-A, enables the partitioning of Memory

System Components (MSCs) shared among different applications and VMs. The specification states that

various components such as caches, interconnects, and DRAM memory controllers may support this

extension.

According to the MPAM specification, different sources of memory transactions are identified by parti-

tion identifiers (PARTIDs), which are used to determine the partitioning of memory resources, and controls

its usage in a shared memory system by multiple VMs, OSs, and applications. Resource partitioning is

based on the PARTID, which identifies a VM. Resource management is then achieved by the propagation

of the PARTID throughout the system. In a system that implements MPAM, when a new memory request is

received, the current resource usage is compared to the control requirements set for the PARTID associated

with the request [46].

The MPAM extension specification also introduces several mechanisms to improve memory access

predictability and isolation. It provides two main categories of techniques: those related to caches and

those related to memory bandwidth regulation. The first category includes cache-portion partitioning,

which allows for the allocation of portions of the system cache to partitions, and cache maximum-capacity

partitioning, which sets a limit on the storage used by a PARTID. The second category includes memory-

access regulation techniques: memory-bandwidth minimum-maximum partitioning, priority partitioning,

and memory-bandwidth portion partitioning. These three techniques manage memory bandwidth by con-

figuring the maximum, minimum, and portion of total bandwidth assigned to a PARTID, as shown in Figure

4.3, as well as the priority of the PARTID in case of contention.

Figure 4.3: System Assignment to MPAM Partitions.



Chapter 4. Design and Implementation 31

The MPAM specification does not provide a formal definition of bandwidth, but it is typically interpreted

as the number of memory transactions in a pre-configured time interval. The size of this interval, called

the accounting window, is expressed in microseconds for each PARTID.

Additionally, as mentioned earlier, it assigns VMs and applications through the hypervisor and OSs to

system partitions, respectively. To summarize, the PARTID of a request controls the use of each resource

and is used within the component to select resource control settings for the component’s resource alloca-

tion and utilization behavior. All memory-system requests with a given PARTID share the resource control

settings for that partition.

4.2.2 Resource Partitioning Control Model

Figure 4.4 illustrates the general design of a resource partitioning controller within an MSC. This model

is an example of a resource partitioning model that monitors resource usage by each partition and controls

it by comparing the measured value to the control settings for the respective resource partition.

Figure 4.4: MPAM Resource Partitioning Model. Adapted from [52].

As shown, a request arrives from an upstream requester to a component that implements MPAM

partitioning control. The handling steps for the request are presented below:

1. To index the settings table of partition control settings, the partition ID and the MPAM NS values,

which, respectively, indicate the ID of the partition selected and the physical partition space as

Secure or non-secure values of the incoming request (MPAM NS), are used.

2. A Resource Regulator receives the settings from the table entry for that partition, which controls

how the resource is segmented.

3. The measured value of the usage of the partitioned resource by the partition must correspond to

the resource setting.

4. The measurement feeds back to the Resource Regulator, which is compared with the setting and

used to decide the resource allocation.



Chapter 4. Design and Implementation 32

The items listed above are added to the original memory system when the MPAM extension is enabled.

Despite being simple and inexpensive, cache-way partitioning does not allow for fine-grained control due to

the limited number of cache ways. Additionally, resources can be constrained if one or more cache ways

are allocated to a single partition without sharing.

4.2.3 Integration of MPAM Extension on Bao hypervisor

This section explains how the processor extension is used to control and manage system resources

through an API implemented in the Bao hypervisor, describing in detail the various registers, purpose, and

design, integration, and implementation of the API.

MPAM System registers

First, it is necessary to configure MPAM, at the exception level where the resource is assigned by

the implemented MPAM partition. For example, MPAM can be configured at EL2, the hypervisor level, to

manage the different VMs of the system with MPAM version constraints through its API implemented in

the hypervisor. To summarize, in a Processing Element (PE), MPAM has system registers to control the

generation of partitions by the PE and the assignment of these partitions based on the exception level,

version, and configuration of the implemented MPAM registers (Table 4.3) [52].

System Register Description

MPAM2_EL2 MPAM context for EL2 execution

MPAMIDR_EL1 MPAM identification register (RO)

Table 4.3: MPAM system registers managed.

MPAM External Registers

The behavior of MPAM extension is discovered and configured through MMRs in a MCS. These registers

can be found on the MPAM feature page and contain information about the behavior of this extension. There

are MMRs for identifying MPAM parameters and options, ID registers, and others for configuring resource

controls (Table 4.4) [52]. The correct configuration of cache and bandwidth partitioning can be achieved

by modifying certain configuration registers. The previous discussions covered the main concepts related

to MPAM, including its functions, registers, their purposes, and how it assigns VMs to different system

partitions for cache and bandwidth management. It also provided guidelines for designing and configuring

the mechanism for controlling the system through registers assigned to each VM running on the system.



Chapter 4. Design and Implementation 33

Memory Mapped Register Description

MPAMCFG_PART_SEL Select the partition of the system to configure

MPAMCFG_CMAX
Configures the maximum fraction of cache capacity

permitted to allocate by a partition

MPAMCFG_CPBM Configures the cache portions that a partition is allowed to allocate

MPAMF_CCAP_IDR Indicates the number of fractional bits in MPAMCFG_CMAX (RO)

MPAMF_CPOR_IDR Indicates the number of bits enable in MPAMCFG_CPBM (RO)

MPAMF_MBW_IDR Indicates which MPAM bandwidth partitioning features

MPAMCFG_MBW_MIN
Controls the minimum fraction of memory bandwidth that the partition

can use

MPAMCFG_MBW_MAX
Controls and limit the maximum fraction of memory bandwidth that the

partition can use

MPAMCFG_MBW_PBM Configures the bandwidth portions that a partition is allowed to allocate

Table 4.4: MPAM MMRs managed.

As MPAM is an extension of Arm processors, which implementation is verified during system initializa-

tion, specifically in the VM initialization function: vm_master_init, highlighted in Listing 4.9. The function

first checks if the platform has this extension, and if so, it implements the pre-configured colors to as-

sign the MPAM partitioning registers. If the platform does not implement the MPAM extension, the cache

coloring mechanism with pre-configured colors is used during system configuration.

s t a t i c v o i d v m _m a s t e r _ i n i t ( s t r u c t vm* vm , c o n s t s t r u c t v m _ c o n f i g * c o n f i g ,

vm i d _ t vm_ i d )

2 {

// ( . . . )

4 u i n t 6 4 _ t mpam_s t a t u s ;

6 mpam_s t a t u s = MRS ( ID_AA64PFR0_EL1 ) ;

8 i f ( ( mpam_s t a t u s > >40) &0 xF ) // p l a t f o r m im p l em e n t e s MPAM

{

10 a s _ i n i t ( & vm−> as , AS_VM , vm_id , NULL , 0 ) ;

} e l s e

12 {

a s _ i n i t ( & vm−> as , AS_VM , vm_id , NULL , c o n f i g −> c o l o r s ) ;

14 }

// ( . . . )

16 }

Listing 4.9: MPAM status verification in VM Initialization.



Chapter 4. Design and Implementation 34

In the context of MPAM, the hypervisor assigns the different partitions to each VM and associates

them with all memory system requests originated PE. Thus, this resource partitioning model controls and

limits the usage of a resource by the assigned VM. This is accomplished by comparing the usage that is

measured to the control settings for that specific VM.

v o i d M P A M _ c a c h e _ p a r t i t i o n _ c o n f i g ( vm i d _ t v m _ p a r t i t i o n , c o l o r m a p _ t cpbm )

2 {

mpam_pag . mpam−>CFG_PART_SEL = v m _ p a r t i t i o n ;

4

mpam_pag . mpam−>CFG_CMAX = 0 x F F F F ; // 0 .999984741

6

mpam_pag . mpam−>MPAMCFG_CPBM [ 0 ] = cpbm ; // c a c h e p o r t i o n s b i t m a p

8 }

Listing 4.10: MPAM Cache Partitioning Configuration.

The function responsible for partitioning the cache among different VMs, Listing 4.10, first selects

the VM to configure. It then assigns the maximum cache capacity usage, in a fixed-point fraction format

specified by the user, as a percentage of the total cache capacity for the selected partition. This represents

the portion of the total cache capacity that is permitted to be allocated according to the configuration of the

FVP model, Section 3.2.2. Finally, it assigns the cache bitmap with all the portions available, according to

the configuration of the FVP model, that the selected VM is permitted to allocate. In summary, this function

implements the segmentation of the system cache by assigning the configured colors for each partition

to the MPAM register responsible for the cache partitioning bitmap (MPAMCFG_CPBM). The value of this

register must be in accordance with the platform parameters that set the available portions in the system

cache and the maximum cache capacity for each partition.

Regarding the partitioning of memory bandwidth for the different assigned VMs, the configuration func-

tion assigns one of the running VMs and sets the maximum and minimum bandwidth usage values for that

VM. If the maximum bandwidth value is exceeded during the accounting window, the partition will not use

any more memory until the memory bandwidth measurement for that partition falls below that maximum

bandwidth value and can compete with other applications, as allowed by other regulation mechanisms. If

the maximum bandwidth value is not exceeded, the requests from this partition are preferentially selected

to be served. The function also sets the number of implemented bits in the bandwidth allocation fields

according to the platform configuration, setting the bandwidth portions available for the selected VM (List-

ing 4.11). Both the maximum and minimum bandwidth values are assigned to the system partitions in

accordance with the MPAM manual, expressed in a fixed-point fraction, specified as a percentage of the

total bandwidth of the system.

v o i d M P AM _ b w _ p a r t i t i o n _ c o n f i g ( vm i d _ t v m _ p a r t i t i o n , c o l o r m a p _ t bwpbm )

2 {

u i n t 8 _ t b w_w i d t h ;



Chapter 4. Design and Implementation 35

4

mpam_pag . mpam−>CFG_PART_SEL = v m _ p a r t i t i o n ;

6

bw_w i d t h = mpam_pag . mpam−>MBW_IDR & 0 x3F ; // Number o f i m p l em e n t e d b i t s

i n t h e b a n d w i d t h a l l o c a t i o n f i e l d s : MIN , MAX

8

mpam_pag . mpam−>CFG_MBW_MIN = 0 xFF00 ;

10 mpam_pag . mpam−>CFG_MBW_MAX = 0 x8000FF00 ;

12 mpam_pag . mpam−>MPAMCFG_MBW_PBM [ 0 ] = bwpbm ;

}

Listing 4.11: MPAM Bandwidth Partitioning Configuration.

After discussing the cache and bandwidth partitioning configuration functions, the setup of the MPAM

system registers to enable this mechanism at the correct exception level, through the MPAM2_EL2 regis-

ter, for managing the different VMs and their system resources is explained. To implement this extension,

it is necessary to allocate a virtual memory page, whose base address is specified in the platform’s con-

figuration file 3.2.2, for MPAM MMRs to access and assign them to the control settings for cache and

bandwidth. This page also includes all the MMRs for the MPAM extension. The diagram 4.5 shows the

configuration for this mechanism, including the functions used to assign the registers and to control the

partitioning of cache and bandwidth, selected in the hypervisor configuration of the system domains.

Figure 4.5: MPAM Initialization Flowchart.



Chapter 4. Design and Implementation 36

The functions presented in the diagram are executed during the initialization of each VM so that every

VM running on the system will assign its partitioning control registers for cache and bandwidth according

to the configuration. As mentioned, the system only executes these functions if it has the MPAM extension

implemented, which is verified through the processor register (ID_AA64PFR0_EL1). This determines

whether to use the software mechanisms for cache partitioning and memory bandwidth reservation or

the features of the MPAM extension. These features of this processor extension are configured to achieve

better system predictability and determinism, controlling and monitoring the cache and bandwidth, with

various VMs running concurrently without interfering with each other.

Despite this extension achieving partial isolation on shared resources, it is important to carefully con-

sider every aspect of the design, such as system frequency, memory cache sizes, and a total understanding

of the additional MPAM features when implementing the MPAM API. However, to date, chip manufacturers

deploying MPAM may want to consider increasing execution predictability, as no platforms have imple-

mented the extension specification yet. While the MPAM standard provides a high-level description of the

regulating mechanisms, it allows for a lot of room for interpretation [46]. This can lead to slight differ-

ences in the behaviors of these mechanisms, which can result in significantly different worst-case timing

performances.



5. Evaluation and Results

5.1 Evaluation and Results

The previous sections of this dissertation outlined the design and development of the memory throttling

algorithm (safe_mem) and the MPAM API. This section presents the experimental results of the system val-

idation process, which is divided into two main sections: (i) results of the memory throttling algorithm, and

(ii) results of the MPAM API implementation. The first section presents the results of the safe_mem algo-

rithm, which was evaluated using the MiBench benchmark [49], a small data set representing a lightweight

embedded application that simulates a real-world scenario. Further, the second section presents the re-

sults of the MPAM implementation, which was evaluated using a synthetic benchmark (described in detail

in Section 3.2.3).

5.1.1 Safe Mem Results

The performance of the safe_mem mechanism is evaluated in terms of latency relative to a Linux sys-

tem running without any concurrent interference application (solo). To measure the impact of interference

on DRAM access, we use a baremetal interference application that repeatedly accesses a cache matrix

with three lines for each CPU, up to a maximum of three CPUs, and a total size of 1M (cache size). This

interference is meant to represent the effects of other applications running on the system.

Figure 5.1: Design of the System for Testing safe_mem Mechanism.

Additionally, this evaluation is conducted to determine the PMU event that experiences the smallest

performance drop due to the interference induced by the baremetal application. It’s important to note

37



Chapter 5. Evaluation and Results 38

that the budget value is the maximum number of event occurrences for each period. By analyzing the

system response with different values of budget and period, we can determine the scenario in which the

mechanism is more effective. The design for the tests, depicted in the Figure 5.1, compares the relative

performance overhead of a system with one core allocated for Linux (solo) with safe_mem enabled and

disabled.

Evaluation

The first set of experiments aims at assessing the performance of the system while running the in-

terference application and Linux with the safe_mem algorithm enabled concurrently. These tests show

that for the lowest bandwidth value, corresponding to budgets (memory accesses per CPU) of 500, 5000,

and 50000, the impact of the safe_mem mechanism on the execution time of the benchmark is lower,

particularly in the 10ms period. It’s worth noting that in this algorithm, budget and bandwidth are both

directly proportional to each other and inversely proportional to the period. Therefore, either increasing

the budget or decreasing the time period will result in a lesser negative impact of safe_mem on system

performance. This is supported by the graph in Figure 5.2.

0,985

0,99

0,995

1

1,005

1,01

1,015

1,02

1,025

Per=10ms;
Budget=50000

Per=10ms;
Budget=100000

Per=10ms;
Budget=150000

Per=1ms;
Budget=5000

Per=1ms;
Budget=10000

Per=1ms;
Budget=15000

Per=0,1ms;
Budget=500

Per=0,1ms;
Budget=1000

Per=0,1ms;
Budget=1500

Título do Gráfico

Solo Solo+safe_mem

Figure 5.2: Relative Performance Overhead: Solo vs. Solo + safe_mem Algorithm.

Although the individual performance of Linux does show a slight decrease of approximately 2% in

system performance with safe_memmechanism enabled for the same bandwidth values, the mechanism

effectively mitigates a significant portion of the interference induced in the system for different period

values, as shown in Figure 5.3. Summarising, the safe_mem and cache coloring mechanisms work well

together, significantly reducing interference in the LLC and DRAM controller, which leads to an overall

improvement in system performance by about 20%.

Furthermore, the relative performance for different setups is compared in Figure 5.3. Since the differ-

ence between the tested periods was minimal, a period of 1 ms and a budget of 10000 memory accesses

per CPU were used. Finally, BUS ACCESS, which captures any flow of data to or from the SCU is the PMU

event that generates the most effective results.



Chapter 5. Evaluation and Results 39

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

Per=10ms;
Budget=50000

Per=10ms;
Budget=100000

Per=10ms;
Budget=150000

Per=1ms;
Budget=5000

Per=1ms;
Budget=10000

Per=1ms;
Budget=15000

Per=0,1ms;
Budget=500

Per=0,1ms;
Budget=1000

Per=0,1ms;
Budget=1500

Título do Gráfico

Solo Interf interf-col interf-safe interf-col-safe

Figure 5.3: Relative Performance Overhead: Interf vs. safe_mem Algorithm (budget=100 vs.
budget=10000 vs. budget=50000 vs. budget=20000).

5.1.2 MPAM Evaluation

The evaluation of the MPAM is carried out using an Arm FVP model called RevC-AEMv8a. This model

was chosen because it implements the Armv8-A architecture and supports the MPAM processor extension,

since there are no silicon platforms that implement the MPAM extension. However, the model documen-

tation does not provide clear information about the memory hierarchy, including the specifications for the

hierarchy or the sizes of the various cache levels. The evaluation is based on the conceptual design of the

model shown in Figure 5.4, which includes a 32kB L1 cache for data and instructions that is private to

each CPU, a 512kB L2 cache, and a 1MB L3 cache shared by all the CPUs. In terms of cache inclusion

policy, if all blocks in the higher-level cache are also present in the lower-level cache, then the lower-level

cache is said to be inclusive of the higher-level cache. If the lower-level cache only contains blocks that are

not present in the higher-level cache, then the lower-level cache is said to be exclusive of the higher-level

cache. The model in this evaluation assumes that the lower-level cache is inclusive of the higher-level

cache.

Ideally, the model’s conceptual design should follow the documentation provided in the reference

guide of the Arm FVP manual. However, the documentation for this platform states that ”A key deviation

from hardware are: (...) No implementations for processor caches and the related write buffers,” so an

empirical analysis of the model configuration is necessary. To this end, the MPAMF_IDR register was

analyzed to determine the implemented MPAM features and confirm the assumptions made. It has also

been verified that the model implements MPAM version 1.0 through the registers ID_AA64PFR0_EL1 and

ID_AA64PFR1_EL1. This implies that the aforementioned register is 32-bit, which means that it is not pos-

sible to implement control settings for specific system resources of the same type, processing, or memory

within one component, as it does not define resource monitors. Additionally, the model does not imple-

ment resource monitors, the MPAM error status and control registers (MPAMF_ESR and MPAMF_ECR),

or MPAM error handling.



Chapter 5. Evaluation and Results 40

Figure 5.4: FVP Conceptual Model.

Specifically, when the value of the model parameter that specifies the size of the L3 cache (l3cache-

size) is increased to 1M, it is not possible to assign it to the system VMs. It is important to note that

the implementation of the L3 cache with the defined size is crucial for the MPAM implementation, as it

is the LLC of the system and all MPAM configuration parameters are set at that cache level. In theory,

managing/partitioning the L3 cache could help mitigate interference at the last level cache. However, it is

not possible to perform a conceptual analysis using the current model to verify MPAM performance based

on micro-architectural events, as was done in Section 5.1.1.

MPAM Functional Evidence

This section demonstrates the functionality of MPAM with different system configurations at the cache

partitioning level, Table 5.1, which is controlled by hardware through the management of the MPAM reg-

isters responsible for controlling memory cache access by each domain of the system. The focus of this

validation is to present a possible cache partitioning configuration in the system based on the capabilities

of the model. To do this, cache portions are allocated to each VM, verifying the correct behavior of this

processor extension in the system through its cache-related registers. Conceptually, the total capacity of

the L3 cache is assumed to be 1MB, partitioned into 32 portions of 32KB each. For example, a partition

configured to only allocate a maximum of four particular portions allows up to 128KB, or 1/8th of the

cache’s total capacity. Therefore, the evaluation setup consists of two VMs, assigning the four available

CPUs . Due to model limitations, each partition is established to allocate a maximum of 50% of the overall

cache capacity, which prevents each operating VM from using up half of the cache size and not sharing

partitions with both VMs.

The different configurations used for this evaluation are: (i) each VM can allocate 8 cache portions, not

shared (25% cache capacity); (ii) each VM can allocate 12 cache portions, not shared (33% cache capacity);

(iii) each VM can allocate 16 cache portions (50% cache capacity). All cache partitioning configuration

features are shown in Table 5.1.



Chapter 5. Evaluation and Results 41

Configuration Cache Partition Cache Allocated per VM

MPAM_I
VM0 - 0xF0F0

VM1 - 0x0F0F

VM0 - 256kB

VM1 - 256kB

MPAM_II
VM0 - 0xF0F0F0

VM1 - 0x0F0F0F

VM0 - 384kB

VM1 - 384kB

MPAM_III
VM0 - 0xF0F0F0F0

VM1 - 0x0F0F0F0F

VM0 - 512kB

VM1 - 512kB

Table 5.1: Cache Partitioning Configurations.

Figure 5.5 also provides a visual representation that may help interpret the results. It shows the various

setups and illustrates how the L3 cache is partitioned through the MPAM extension, with the understanding

that it is divided into 32 portions that can be shared or not among the VMs running in the system.

Figure 5.5: Model’s L3 Cache Partitioning Based on Different Configurations.

More specifically, these results related to the assignment of cache portions to each system partition

(VM) show that MPAM successfully assigns the 32-bit register MPAMCFG_CPBM, which provides access

to the cache portion bitmap. This register is responsible for 32 portion allocation control bits that grant

permission to the selected system partition to allocate cache lines within the enabled cache portions.

Overall, the results of these different configurations, whether or not the cache portions are shared by

the domains of the system (in this case, two VMs), demonstrate the effectiveness of the cache portion

assignment, as shown in Table 5.1 and illustrated in Figure 5.5. This effectively grants isolation between

the different VMs running in the system.

Test and results

The system setup used to verify the effectiveness of MPAM consists of an interference application with

three cores allocated, which performs several memory accesses in order to create contention for accessing

the LLC by these CPUs. The execution flow of the system leads to a performance degradation because,

before accessing the main memory, the system must first access each level of the cache in sequential

order, resulting in a miss at each level. Therefore, access to the main memory is slower than access to

the L3 cache, which is slower than access to the L2 cache, and so on. This contention occurs due to the

shared use of system resources by VMs, particularly the L3 cache and the system bus, leading to system’s



Chapter 5. Evaluation and Results 42

unpredictability. The system setup also includes an application responsible for sampling the system PMU

values to analyze and compare with the different tests performed.

Figure 5.6: Design of the System for Testing MPAM.

Furthermore, the evaluation methodology consists of assessing the performance of the system by an-

alyzing three different scenarios: (I) solo execution, where the baremetal runs in an isolated environment,

(II) interf execution, where hosted execution is under contention, and (III) interf-MPAM execution, which

adds cache partitioning capacity through MPAM to the system under contention. These different scenarios

evaluate the extent to which MPAM partitioning theoretically impacts the target partitions and helps to miti-

gate interference. As shown in Figure 5.6, this evaluation executes two baremetal applications in separate

VMs, one for benchmarking and monitoring system performance and another to induce interference by

continuously writing and reading an array with a stride equal to the cache line size (64 bytes). When MPAM

is enabled, the LLC (L3 cache) is partitioned according to the different configurations listed in Table 5.1.

The evaluation VM working set value (baremetal 1) was selected to induce congestion in DRAM accesses,

which is the aim of MPAM, avoiding congestion on the memory bus.

Figure 5.7: MPAM Evaluation Results.

Conceptually, the maximum configurable value for the L3 cache in this model should be 1M, but is

64kB, as increasing the ”l3cache-size” model parameter to 1M is not possible for the system to assign

VMs. Thus, the baremetal 1 working set is 32kB, which is 0.5x the size of the real LLC (64kB), potentially



Chapter 5. Evaluation and Results 43

indicating the effect of interference in the cache rather than the bus, as a large working set can result in

a large number of memory accesses to the system bus.

Figure 5.7 compares the relative performance of different setups. However, the results may not align

with theoretical expectations since themodel does not accurately emulate the cache hierarchy. Additionally,

the access to L1 and main memory have the same latency, and the memory hierarchy configuration

is inconsistent. As a result, it is not possible to verify L3 cache events. Therefore, the values of the

microarchitectural events analyzed are not conclusive. So, the actual values obtained do not match the

expected theoretical values. The results produced by the ”interf” setup and the three distinct configurations

of the ”MPAM_I”, ”MPAM_II”, and ”MPAM_III” setup were only equal due to the working set size selected

for the monitoring VM. Therefore, no conclusions can be drawn from these results. It is worth noting that

the PMU used in this model is based on the Armv8-A architecture and the model has an L1 cache size of

32 kB and an L2 cache size of 512 kB, while the L3 cache size is only 64 kB, which does not follow the

typical cache hierarchy where the lowest level has the smallest size.



6. Conclusion

This section presents the conclusion of this work based on an analysis of the findings presented in the

previous section. Furthermore, it provides recommendations for improving and enhancing themechanisms

developed and is divided into two main sections: (i) discussion and (ii) future work.

6.1 Discussion

This section highlights some important points about the information presented in this dissertation: (1)

memory bandwidth reservation can reduce interference between domains caused by memory contention,

which is implicitly limited by the memory budgeting; (2) cache coloring allows reserving a portion of the

cache memory for each domain, thereby preventing mutual cache evictions; (3) since the Arm MPAM ex-

tension is relatively new and there is no physical support, this dissertation presents a comparison between

this processor extension with the implementation of the above-mentioned software techniques.

Firstly, this dissertation discusses the design and implementation of an isolation mechanism for the

LLC and DRAMmemory controller of an Arm platform, with a particular focus on their integration within the

Bao hypervisor. The ”safe_mem” mechanism was integrated, taking into account that the PMU provides

hardware counts of the memory accesses performed by each core for the integration of memory bandwidth

isolation. A configured handler manages a periodic budget recharging event triggered by a timer and con-

trols CPUs in budget overflow. The results of experiments using the Mibench benchmark suite evaluated

the effectiveness and performance of the implemented ”safe_mem” mechanism. Thus verifying a sig-

nificant improvement in the hypervisor’s isolation capabilities, increasing execution predictability without

requiring any knowledge of the software running on other domains, and improving system performance

by about 20%.

Secondly, this dissertation discusses the implementation of the MPAM API on the Bao hypervisor. The

MPAM API isolates specific portions of the cache for each domain in the system, similar to how cache

coloring techniques assign specific regions of the cache to particular colors. The experimental verification

of the MPAM processor extension demonstrates its correct functioning, although it was not possible to fully

evaluate cache contention due to limitations of the FVP model.

44



Chapter 6. Conclusion 45

Overall, the developed mechanism and the MPAM API offer a solution to the contention in shared

resources through the use of the ”safe_mem” mechanism, which shows significant improvements in

mitigating its contention.

6.2 Future Work

From the analysis of the experimental results and the conclusions in the previous section, it is possible

to identify areas for improvement or extension of the developed mechanism. Although the ”safe_mem”

mechanism has verified, approximately, a 20% increase of system performance, mitigating the interference

at memory cache level, it has some limitations, such as the static assignment of its parameters (period

and budget). Therefore, future development of the ”safe_mem” mechanism should consider dynamically

assigning a CPU budget to each setup.

On the other hand, the MPAM API cannot be fully verified due to constraints of the FVP model and

currently the existing lack of silicon and real platforms. In addition, while the API implements cache par-

titioning, its effectiveness in mitigating memory access contention has not been verified. In the future, it

will be necessary to test its implementation directly on hardware and consider adding bandwidth manage-

ment functionality such as priority partitioning, which dynamically allocates memory bandwidth to specific

system domains.



Bibliography

[1] Paolo Burgio, Marko Bertogna, Nicola Capodieci, Roberto Cavicchioli, Michal Sojka, Pr�emysl Houdek,

Andrea Marongiu, Paolo Gai, Claudio Scordino, and Bruno Morelli. A software stack for next-

generation automotive systems on many-core heterogeneous platforms. Microprocessors and Mi-

crosystems, 52:299–311, 2017.

[2] Paolo Modica, Alessandro Biondi, Giorgio Buttazzo, and Anup Patel. Supporting temporal and spatial

isolation in a hypervisor for arm multicore platforms. pages 1651–1657, 02 2018.

[3] Marisol García-Valls, Tommaso Cucinotta, and Chenyang Lu. Challenges in real-time virtualization

and predictable cloud computing. Journal of Systems Architecture, 60:726–740, 2014.

[4] José Martins, Adriano Tavares, Marco Solieri, Marko Bertogna, and Sandro Pinto. Bao: A lightweight

static partitioning hypervisor for modern multi-core embedded systems. In Workshop on Next Gen-

eration Real-Time Embedded Systems (NG-RES), 2020.

[5] Heechul Yun. Operating system level resource management for real-time systems. University of

Illinois at Urbana-Champaign, 2013.

[6] Lavanya Subramanian. Providing high and controllable performance in multicore systems through

shared resource management. arXiv preprint arXiv:1508.03087, 2015.

[7] Sandro Pinto, Daniel Oliveira, Jorge Pereira, Nuno Cardoso, Mongkol Ekpanyapong, Jorge Cabral, and

Adriano Tavares. Towards a lightweight embedded virtualization architecture exploiting arm trustzone.

In IEEE Emerging Technology and Factory Automation (ETFA), pages 1–4, 2014.

[8] Gernot Heiser. Virtualization for embedded systems. Open Kernel Labs Technology White Paper,

2007.

[9] Steven H VanderLeest and Samuel R Thompson. Measuring the impact of interference channels

on multicore avionics. In AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), pages 1–8,

2020.

[10] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. Atlas: A scalable and high-

performance scheduling algorithm for multiple memory controllers. In HPCA-16 The Sixteenth Inter-

national Symposium on High-Performance Computer Architecture, pages 1–12, 2010.

[11] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. Thread cluster memory

46



BIBLIOGRAPHY 47

scheduling: Exploiting differences in memory access behavior. In 43rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 65–76, 2010.

[12] Gernot Heiser. The role of virtualization in embedded systems. In Proceedings of the 1st workshop

on Isolation and integration in embedded systems, pages 11–16, 2008.

[13] Jorrit N Herder, Herbert Bos, and Andrew S Tanenbaum. A lightweight method for building reliable

operating systems despite unreliable device drivers. Technical Report IR-CS-018, 2006.

[14] Erwin Schoitsch. Design for safety and security of complex embedded systems: A unified approach.

In Cyberspace Security and Defense: Research Issues, pages 161–174. Springer, 2005.

[15] David Cerdeira, José Martins, Nuno Santos, and Sandro Pinto. Rezone: Disarming trustzone with

tee privilege reduction. arXiv preprint arXiv:2203.01025, 2022.

[16] José Martins, João Alves, Jorge Cabral, Adriano Tavares, and Sandro Pinto. µ rtzvisor: a secure and

safe real-time hypervisor. Electronics, 6(4):93, 2017.

[17] Scott A Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. Dynamic integrated schedul-

ing of hard real-time, soft real-time, and non-real-time processes. In 24th IEEE Real-Time Systems

Symposium (RTSS), pages 396–407, 2003.

[18] Phillip A Laplante et al. Real-time systems design and analysis. Wiley New York, 2004.

[19] Sandro Pinto, Pedro Machado, Daniel Oliveira, David Cerdeira, and Tiago Gomes. Self-secured

devices: High performance and secure i/o access in trustzone-based systems. Journal of Systems

Architecture, 119:102238, 2021.

[20] Michael Bechtel and Heechul Yun. Denial-of-service attacks on shared cache in multicore: Analysis

and prevention. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 357–367, 2019.

[21] Falk Rehm, Jörg Seitter, Jan-Peter Larsson, Selma Saidi, Giovanni Stea, Raffaele Zippo, Dirk

Ziegenbein, Matteo Andreozzi, and Arne Hamann. The road towards predictable automotive high-

performance platforms. In Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 1915–1924, 2021.

[22] TR Vinay and Ajeet A Chikkamannur. A methodology for migration of software from single-core to

multi-core machine. In International Conference on Computation System and Information Technology

for Sustainable Solutions (CSITSS), pages 367–369, 2016.

[23] E Qaralleh, Diogo Lima, Tiago Gomes, Adriano Tavares, and Sandro Pinto. Hcm-freertos: hardware-

centric freertos for arm multicore. In IEEE 20th Conference on Emerging Technologies & Factory

Automation (ETFA), pages 1–4, 2015.

[24] Robert Kaiser. Complex embedded systems-a case for virtualization. In Seventh Workshop on Intel-

ligent solutions in Embedded Systems, pages 135–140, 2009.



BIBLIOGRAPHY 48

[25] PAOLO MODICA. Temporal and spatial isolation in hypervisors for multicore real-time systems. 2017.

[26] Susanta Nanda Tzi-cker Chiueh and Stony Brook. A survey on virtualization technologies. Rpe Report,

142, 2005.

[27] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-Min Ryu, Seong-Yeol Park,

and Chul-Ryun Kim. Xen on arm: System virtualization using xen hypervisor for arm-based secure

mobile phones. In 5th IEEE Consumer Communications and Networking Conference, pages 257–

261, 2008.

[28] Christoffer Dall and Jason Nieh. Kvm/arm: the design and implementation of the linux arm hyper-

visor. Acm Sigplan Notices, 49(4):333–348, 2014.

[29] Daniel Oliveira, Tiago Gomes, and Sandro Pinto. utango: an open-source tee for iot devices. IEEE

Access, 10:23913–23930, 2022.

[30] Nicolas Dagieu, Alexander Spyridakis, and Daniel Raho. Memguard: A memory bandwith manage-

ment in mixed criticality virtualized systems memguard kvm scheduling. In 10th Int. Conf. on Mobile

Ubiquitous Comput., Syst., Services and Technologies (UBICOMM), 2016.

[31] Zahir Hussain Shah. Windows Server 2012 Hyper-V: Deploying the Hyper-V Enterprise Server Virtu-

alization Platform. Packt Publishing Ltd, 2013.

[32] Ankita Desai, Rachana Oza, Pratik Sharma, and Bhautik Patel. Hypervisor: A survey on concepts and

taxonomy. International Journal of Innovative Technology and Exploring Engineering, 2(3):222–225,

2013.

[33] Samuel Pereira, Joao Sousa, Sandro Pinto, José Martins, and David Cerdeira. Bao-enclave:

Virtualization-based enclaves for arm. arXiv preprint arXiv:2209.05572, 2022.

[34] Ayoosh Bansal, Rohan Tabish, Giovani Gracioli, Renato Mancuso, Rodolfo Pellizzoni, and Marco

Caccamo. Evaluating the memory subsystem of a configurable heterogeneous mpsoc. In Workshop

on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT), volume 7, page 55,

2018.

[35] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo Pelliz-

zoni. A survey on cachemanagement mechanisms for real-time embedded systems. ACM Computing

Surveys (CSUR), 48(2):1–36, 2015.

[36] Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, and Rodolfo Pelliz-

zoni. Real-time cache management framework for multi-core architectures. In IEEE 19th Real-Time

and Embedded Technology and Applications Symposium (RTAS), pages 45–54, 2013.

[37] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memory access control

in multiprocessor for real-time systems with mixed criticality. In 24th Euromicro Conference on Real-

Time Systems, pages 299–308, 2012.



BIBLIOGRAPHY 49

[38] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian

Pratt, and Andrew Warfield. Xen and the art of virtualization. ACM SIGOPS operating systems review,

37(5):164–177, 2003.

[39] Ralf Ramsauer, Jan Kiszka, Daniel Lohmann, and Wolfgang Mauerer. Look mum, no vm ex-

its!(almost). arXiv preprint arXiv:1705.06932, 2017.

[40] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. Palloc: Dram bank-aware

memory allocator for performance isolation on multicore platforms. In IEEE 19th Real-Time and

Embedded Technology and Applications Symposium (RTAS), pages 155–166, 2014.

[41] Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan Rajku-

mar. Bounding memory interference delay in cots-based multi-core systems. In IEEE 19th Real-Time

and Embedded Technology and Applications Symposium (RTAS), pages 145–154, 2014.

[42] Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. E-warp: A system-wide framework

for memory bandwidth profiling and management. In IEEE Real-Time Systems Symposium (RTSS),

pages 345–357, 2020.

[43] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. Coloris: a dynamic cache partitioning system using

page coloring. In 23rd International Conference on Parallel Architecture and Compilation Techniques

(PACT), pages 381–392, 2014.

[44] Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A comparative study of predictable

dram controllers. ACM Transactions on Embedded Computing Systems (TECS), 17(2):1–23, 2018.

[45] Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. Drambulism: Balancing performance

and predictability through dynamic pipelining. In IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 82–94, 2020.

[46] Matteo Zini, Daniel Casini, and Alessandro Biondi. Analyzing arm’s mpam from the perspective of

time predictability. IEEE Transactions on Computers, (01):1–14, 2022.

[47] Arm Ltd. ARM Cortex -A53 MPCore Processor Technical Reference Manual. Accessed on: De-

cember 15, 2021. [Online] Available: https://developer.arm.com/documentation/ddi0500/
latest/.

[48] Arm Ltd. Fixed Virtual Platforms (FVP) Reference Guide. Accessed on: December 2, 2021. [Online]

Available: https://developer.arm.com/documentation/100966/1118/.

[49] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and Richard B

Brown. Mibench: A free, commercially representative embedded benchmark suite. In Proceedings

of the fourth annual IEEE international workshop on workload characterization. WWC-4 (Cat. No.

01EX538), pages 3–14, 2001.

[50] Thivanon Kansuwan and Thawatchai Chomsiri. Authentication model using the bundled captcha otp

instead of traditional password. In 2019 joint international conference on digital arts, media and

https://developer.arm.com/documentation/ddi0500/latest/
https://developer.arm.com/documentation/ddi0500/latest/
https://developer.arm.com/documentation/100966/1118/


BIBLIOGRAPHY 50

technology with ECTI northern section conference on electrical, electronics, computer and telecom-

munications engineering (ECTI DAMT-NCON), pages 5–8, 2019.

[51] Arm Ltd. AArch64 Programmer’s Guides Generic Timer. Accessed on: October 30, 2021. [Online]

Available: https://developer.arm.com/documentation/102379/0000/?lang=en.

[52] Arm Ltd. Arm Architecture Reference Manual Supplement - Memory System Resource Partitioning

and Monitoring (MPAM), for Armv8-A. Accessed on: March 20, 2022. [Online] Available: https:
//developer.arm.com/documentation/ddi0598/latest.

https://developer.arm.com/documentation/102379/0000/?lang=en
https://developer.arm.com/documentation/ddi0598/latest
https://developer.arm.com/documentation/ddi0598/latest

	List of Figures
	List of Tables
	Glossary
	Introduction
	Aim and Scope
	Dissertation Structure

	Background and State of the Art
	Embedded Systems
	Soft Real-Time Systems
	Hard Real-Time Systems
	Mixed Criticality Systems

	Virtualization and Hypervisors
	Types of Virtualization
	Hypervisor Architecture
	Static Partitioning Hypervisor

	Interference in Multicore Platforms
	Sources of Interference
	Interference Mitigation Techniques

	Related Work
	Hypervisors
	Mitigation Mechanisms


	Platform and tools
	Platforms
	Armv8-A Platforms
	Platform Selection

	Tools
	Arm Fast Models
	Arm Development Studio
	Test Benchmarks


	Design and Implementation
	Memory Throtlling - 'safe_mem'
	Aarch64 Timer
	Performance Monitoring Unit
	Integration of safe_mem in Bao Hypervisor

	MPAM - Arm Extension
	Memory-System Resource Partitioning
	Resource Partitioning Control Model
	Integration of MPAM Extension on Bao hypervisor


	Evaluation and Results
	Evaluation and Results
	Safe Mem Results
	MPAM Evaluation


	Conclusion
	Discussion
	Future Work


