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Abstract 
 
The challenges facing the textile finishing industry have intensified during the last 

decade. Current awareness of the negative environmental impact of chemical processing 

in textile industry, combined with increased strict legislation on industrial effluents, has 

led to the search for advanced, non-polluting processes, for treating both natural and 

synthetic fibre fabrics. Enzymes can represent good alternatives for the traditional 

textile processes allowing not only the reduction of costs, the protection of the 

environment, and increasing safety of employees but also contributing for the 

improvement of the quality and functionality of the final products.  

In the present work biotechnological approaches and genetic engineering methods were 

used aiming at the development and optimization of enzymatic eco-friendly processes 

for surface modification of synthetic and natural fibres. 

A general introduction is presented in Chapter 1 where an extensive bibliographic 

revision concerning the use of enzymes in textile industry is presented, through the 

identification and description of the major commercial processes, and the most recent 

developments obtained in this field.  

Chapter 2 deals with the surface modification of synthetic fibres by recombinant 

cutinase from the phytopathogenic fungus Fusarium solani pisi produced by molecular 

genetics tools. The Subchapter 2.1 is an introduction to the synthetic fibres utilized in 

the scope of this work. Subchapter 2.2 reports the structural modulation studies that 

allowed the identification of the aminoacids L81, N84, L182, V184 and L189 as targets 

to be substituted by Alanine allowing a better fit of large susbtrates in the active site of 

cutinase. All the mutations were obtained by site-directed mutagenesis and 

heterologously expressed in Escherichia coli. The genetically modified cutinase L182A 

presented higher stabilization on polyamide 6,6 (PA 6,6) and polyethylene terephthalate 

(PET) model substrates, a mutant variant that was chosen for further studies concerning 

the design and optimization of processes for functionalization of both fibres 

(Subchapters 2.3 and 2.4, respectively). Optimization of native enzyme was also 

performed, for the surface modificationof cellulose acetate, by creating chimeric fusions 

of the cutinase DNA coding sequence with either the fungal carbohydrate-binding 
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module (CBM) of Cellobiohydrolase I, or the bacterial CBM of Endoglucanase C. The 

new recombinant cutinase fused to the fungal CBM presented higher hydrolysis of 

cellulose diacetate and improved the colour levels of the treated fabrics (Subchapter 

2.5).  

The Chapter 3 describes the design of enzymatic-based technologies for wool fibres 

finishing industrial applications. Wool has the intrinsic characteristic to felt and shrink 

due to its scaly structure; the chlorine-Hercosett is the commercial process used to 

modify the scales of wool fibres with the purpose of providing resistance to felting and 

shrinkage. There have been several attempts to replace this chlorine process by 

proteases, in order to degrade scales, providing wool with anti-felting and anti-

shrinkage characteristics. However, proteases commercially available can diffuse inside 

the fibre causing unacceptable damages. In this thesis two novel approaches were 

followed to increase molecular weight of the subtilisin E by genetic engineering. Poly-

enzymes composed of two and four subtilisin E coding sequences fused in frame were 

constructed. Additionally, another chimeric subtilisin was obtained by 3´-terminus 

fusion with the nucleotidic sequence coding for the human neckdomain of surfactant 

protein D. All chimeric subtilisins were cloned and overexpressed into E. coli but the 

soluble and active forms were not attained, regardless the expression system or the 

strain used, under the culture conditions tested (Subchapter 3.2). Subchapter 3.3 

describes the fusion of subtilisin E gene in frame with the DNA coding an elastin-like 

polymer containing 220 repeats of the monomer VPAVG. With this strategy the 

construction of a chimeric enzyme presenting a molecular weight above 116 kDa was 

achieved. Wool yarns treated either with commercial or chimeric enzyme showed a 

size-dependent diffusion process: the commercial enzyme penetrated into wool cortex 

while the chimeric one was retained at the surface, in the cuticle layer. These results 

represent a major achievment: the production of a recombinant high molecular weight 

protease, for wool surface controlled-hydrolysis, is reported for the first time. 

Chapter 4 presents a general discussion, the major conclusions and gives some 

perspectives for continuing the work in this research field. 
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Resumo 
 
Os desafios que a indústria têxtil enfrenta têm-se intensificado na última década, 

especialmente devido ao impacto ambiental provocado pelos químicos derivados dos 

acabamentos das fibras têxteis. Concomitantemente, a legislação cada vez mais restrita 

no que respeita aos efluentes têxteis levou a uma procura de soluções avançadas, não-

poluentes, para o tratamento de fibras naturais e sintéticas. A aplicação de enzimas 

representa uma alternativa promissora aos processos químicos tradicionais, permitindo 

uma redução de custos e representando simultaneamente, vantagens no que concerne à 

protecção ambiental, ao aumento da segurança dos trabalhadores e à melhoria da 

qualidade e da funcionalidade do produto final. 

No presente trabalho seguiu-se uma abordagem biotecnológica, com recurso às técnicas 

de engenharia genética, com vista ao desenvolvimento e optimização de métodos 

enzimáticos, eco-sustentáveis, com aplicação na modificação da superfície de fibras 

têxteis naturais e sintéticas.  

O capítulo 1, correspondente à introdução geral, apresenta uma revisão bibliográfica do 

uso de enzimas na indústria têxtil através da identificação e descrição dos processos 

enzimáticos já implementados ao nível comercial, bem como da investigação e dos 

resultados mais recentemente obtidos nesta área.  

No Capítulo 2 apresentam-se as estratégias de modificação da superfície de fibras 

sintéticas por acção da enzima cutinase, originária do fungo fitopatogénico Fusarium 

solani pisi, produzida por expressão heteróloga em Escherichia coli. No Subcapítulo 2.1 

apresenta-se uma introdução teórica às fibras sintéticas utilizadas no âmbito deste 

trabalho. No Subcapítulo 2.2 descrevem-se os estudos de modelação estrutural da 

cutinase que permitiram a identificação dos resíduos aminoacídicos L81, N84, L182, 

V184 e L189 como alvos de substituição pelo aminoácido Alanina, viabilizando 

acomodar substratos de maior dimensão no centro activo. As mutações referidas foram 

obtidas recorrendo à técnica de mutagénese dirigida. A cutinase geneticamente 

modificada L182A apresentou uma maior estabilidade com os substratos modelo da 

poliamida 6,6 (PA 6,6) e do polietileno tereftalato (PET), tendo sido seleccionada para 

estudos ulteriores com vista ao desenho e optimização de processos de funcionalização 
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das fibras sintéticas referidas (Subcapítulos 2.3 e 2.4, respectivamente). A cutinase 

nativa foi ainda utilizada para a modificação da superfície da fibra acetato de celulose. 

Foram efectuadas duas construções quiméricas pela fusão do gene da cutinase com o 

módulo de ligação a carbohidratos (CBM) de origem fúngica, presente na enzima 

Cellobiohydrolase I e com o CBM de origem bacteriana, presente na enzima 

Endoglucanase C. Verificou-se que a enzima recombinante, fundida com o CBM de 

origem fúngica, apresentou maior actividade hidrolítica sobre o diacetato de celulose e 

aumentou os níveis de tingimento das fibras (Subchapter 2.5).  

O Capítulo 3 descreve o desenho de tecnologias baseadas em processos enzimáticos 

para aplicação industrial do acabamento da lã. A tendência da lã para feltrar e encolher é 

devida principalmente à sua estrutura em forma de escamas. O tratamento anti-

feltragem, normalmente utilizado para modificar as escamas das fibras de lã, utiliza 

cloro, pelo que, têm sido conduzidas abordagens para substituir este processo por uma 

alternativa mais ecológica, nomeadamente pelo recurso a proteases. Contudo, devido ao 

seu tamanho, as proteases difundem-se no interior da fibra, atacando não só a cutícula 

mas também o córtex, o que provoca danos inaceitáveis do ponto de vista comercial. Os 

Subcapítulos 3.2 e 3.3 descrevem as estratégias utilizadas para aumentar o peso 

molecular da protease subtilisina E através de técnicas de engenharia genética. Foram 

construídas duas poli-enzimas compostas por duas e por quatro repetições da unidade 

codificante, clonadas na mesma fase de leitura. Além disso, construiu-se ainda uma 

fusão da sequência nucleotídica da subtilisina E com a sequência codificante do 

neckdomain da proteína humana surfactante D. Todas as proteínas recombinantes 

referidas foram sobre-expressas mas, independentemente do sistema de expressão ou da 

estirpe usada, não foi conseguida a sua recuperação na forma solúvel e activa nas 

condições testadas (Subcapítulo 3.2). No Subcapítulo 3.3 descreve-se a fusão da 

sequência codificante da subtilisina E com a sequência nucleotídica que codifica um 

polímero elastomérico contendo 220 repetições do monómero VPAVG. A enzima 

quimérica obtida apresentou um peso molecular superior a 116 kDa. Quando comparada 

com uma protease comercial constatou-se que a difusão das enzimas no interior da lã 

era dependente do peso molecular das mesmas: a de origem comercial, de baixo peso 

molecular, penetrou no córtex, por outro lado a enzima quimérica, de elevado peso 
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molecular ficou retida à superfície na cutícula da fibra. Estes resultados representam um 

grande avanço para o objectivo deste trabalho uma vez que constitui o primeiro caso de 

sucesso, referido na literatura, em que foi consegida a produção de uma protease 

recombinante de elevado peso molecular, aplicável à hidrólise controlada da superfície 

da lã. 

O Capítulo 4 apresenta a discussão geral, as principais conclusões e algumas 

perspectivas que direccionam para a continuidade do trabalho desenvolvido nesta linha 

de investigação. 
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Abstract  

The aim of this paper is to highlight the use of enzymes in textile industry through the 

identification of the already commercial existing processes, as well as, the research that 

has been done in this field. Amylases have been used for desizing since the middle of 

last century. Enzymes used in detergent formulations have also been successfully used 

for the past 40 years. The application of cellulases for denim finishing and laccases for 

decolourization of textile effluents and textile bleaching are the most recent advances in 

the commercial sector. New developments rely on the modification of natural and 

synthetic fibres. The advances in enzymology, molecular biology and screening 

techniques provide good direction for the development of new enzyme-based processes 

for a more ecological approach for textile industry.  
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1. Biotechnology in textile industry 

Biotechnology is the application of scientific and engineering principles to the 

processing of materials by biological agents and/or their components to provide goods 

and services. White or industrial biotechnology is biotechnology applied to industrial 

processes. An example is the use of enzymes in textile industry which allows the 

development of environmentally friendly technologies in fibre processing and in 

strategies to improve the final product quality. The consumption of energy and raw-

materials, as well as, an increasing awareness with environmental concerns related to 

the use and disposal of chemicals into landfills, into water, or release in air during 

chemical processing of textiles are the principal reasons for the application of enzymes 

in finishing of textile materials (O'Neill et al., 1999).  

2. Production of enzymes: searching for efficient production systems 

Commercial sources of enzymes are obtained from any biological source: animal, plants 

and microbes. These naturally occurring enzymes are quite often not readily available in 

sufficient quantities for industrial use. With the advances in genomics, proteomics and 

bioinformatics, the number of proteins being produced using recombinant techniques is 

exponentially increasing. Screening approaches are being performed to rapidly identify 

enzymes with a potential industrial application (Korf et al., 2005). For this purpose, 

different expression hosts (Escherichia coli, Bacillus sp., Saccharomyces cerevisiae, 

Pichia pastoris, filamentous fungi, insect and mammalian cell lines) have been 

developed to express heterologous proteins (Makrides, 1996; Silbersack et al., 2006; Li 

et al., 2007; Ogay et al., 2006; Huynh and Zieler, 1999; Chelikani et al., 2006). Among 

the many systems available for heterologous protein production, the enteric Gram-

negative bacterium Escherichia coli remain one of the most attractive. Compared with 

other established and emerging expression systems, E. coli, offers several advantages 

including its ability to grow rapidly and at high density on inexpensive carbon sources, 

simple scale-up process, its well-characterized genetics and the availability of an 

increasingly large number of cloning vectors and mutant host strains (Baneyx, 1999). 

However, the use of E. coli is not always suitable because it lacks some auxiliary 

http://en.wikipedia.org/wiki/Industry
http://en.wikipedia.org/wiki/Enzymes
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biochemical pathways that are essential for the phenotypic expression of certain 

functions, e.g. degradation of aromatic compounds, antibiotic synthesis, sporulation, so 

there is no guarantee that a recombinant gene product will accumulate in E. coli at high 

levels in a full-length and biologically active form (Makrides, 1996). In such 

circumstances, the genes have to be cloned back into species similar to those from 

which they were derived. In these cases bacteria from the unrelated genera Bacillus, 

(Silbersack et al., 2006; Biedendieck et al., 2007) Clostridium (Girbal et al., 2005) 

Staphylococcus and the lactic acid bacteria Streptococcus (Arnau et al., 2006) 

Lactococcus (Miyoshi et al., 2002) and Lactobacillus (Miyoshi et al., 2004) can be 

used.  

If heterologous proteins require complex post-translational modifications and are not 

expressed in the soluble form using prokaryotic expression systems, yeasts can be an 

efficient alternative once they provide several advantages over bacteria for the 

production of eukaryotic proteins. Among yeast species, the methylotrophic yeast 

Pichia pastoris is a particularly well suited host for this purpose. The use of this 

organism for expression offers a number of important benefits: i) high levels of 

recombinant protein expression are reached under the alcohol oxidase1 gene (aox 1) 

promoter; ii) this organism grows to high cell densities; iii) scaled-up fermentation 

methods without loss of yield have been developed; iv) efficient secretion of the 

recombinant product together with a very low level of endogenous protein secretion 

represents a very simple and convenient pre-purification step; v), accurate post-

translational modifications are allowed (such as proteolytic processing and 

glycosylation). Furthermore, the existence of efficient methods to integrate several 

copies of the expression cassette carrying the recombinant DNA into the genome, 

eliminating the problems associated with expression from plasmids, is making this yeast 

the microorganism of choice for an increasing number of biotechnologists (Cereghino 

and Cregg, 2000; Hollenberg and Gellissen, 1997). 

Once fermentation is completed, the microorganisms are destroyed; enzymes are 

isolated and further processed for commercial use. 
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3. Role of enzymes in textile industry  

Textile processing has benefited greatly on both environmental and product quality 

aspects through the use of enzymes. From the 7000 enzymes known, only about 75 are 

commonly used in textile industry processes (Quandt and Kuhl, 2001).  

The principal enzymes applied in textile industry are hydrolases and oxidoreductases. 

The group of hydrolases includes amylases, celulases, proteases, pectinases and 

lipases/esterases. Amylases were the only enzymes applied in textile processing until 

the 1980’s. These enzymes are still used to remove starch-based sizes from fabrics after 

weaving. Cellulases have been employed to enzymatically remove fibrils and fuzz 

fibres and have also successfully been introduced to the cotton textile industry and later 

for lyocell processes. Further applications have been found for these enzymes to 

produce the aged look of denim and other garments. The potential of proteolytic 

enzymes was assessed for the removal of wool-fibre-scales resulting in improved anti-

felting behaviour. Despite the fact that investigations in this area are still on going, an 

industrial process has not yet been achieved. Esterases have been successfully studied 

for the partial hydrolysis of synthetic fibres surface, improving their hydrophilicity and 

further finishing steps. Besides hydrolytic enzymes, oxidoreductases have also been 

realized as powerful tools in various textile-processing steps. Catalases have been used 

to remove H2O2 after bleaching reducing in this way water consumption. A recent book 

edited by Wolfgang Aehle (2007), contains an excellent chapter dealing with enzyme 

technology application in the textile processing industry. A more detailed description of 

both the most common group of enzymes applied in textile industry and the processes 

where they are applied will be given in this review. 

4. Amylases  

Amylases are enzymes which hydrolyse starch molecules to give diverse products 

including dextrins and progressively smaller polymers composed of glucose units 

(Windish and Mhatre, 1965). This starch hydrolysing enzymes are classified according 

to the type of sugars produced by enzymatic reaction: α-amylases and β-amylases. α-

Amylases are produced by a variety fungi, yeasts and bacteria, however enzymes from 
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filamentous fungal and bacterial sources are the most used in industrial sectors (Pandey 

et al., 2000).  

Molecular weights of microbial α-amylases range from 50 to 60 KDa, with few 

exceptions, like a 10 KDa α-amylase from Bacillus caldolyticus and a 210 KDa α-

amylase from Chloroflexus aurantiacus (Grootegoed et al., 1973; Ratanakhanokchai et 

al., 1992). α-Amylases from most bacteria and fungi are quite stable over a wide range 

of pH from 4 to 11. Alicyclobacillus acidocaldarius α-amylase present an acidic pH 

optima of 3 in contrast to α-amylases from several alkalophilic and extreme alkalophilic 

Bacillus sp. with pH optima of 9 to 10.5 and 11 to 12, respectively (Schwermann et al., 

1994; Krishnan and Chandra, 1983; Lee et al., 1994; Kim et al., 1995). 

 Optimum temperature for the activity of α-amylases is also related to the growth of the 

producer microorganism (Vihinen and Mantsala, 1989). Temperatures from 25 to 30 ºC 

were reported for Fusarium oxysporum α-amylase (Chary and Reddy, 1985) and higher 

temperatures of 100 and 130 ºC for Pyrococcus furiosus and Pyrococcus woesei, 

respectively (Laderman et al., 1993; Koch et al., 1991).  

Addition of Ca2+ can, in some cases, enhance α-amylases thermostability (Vihinen and 

Mantsala, 1989; Vallee et al., 1959). They are extremely inhibited by heavy metal ions, 

sulphydryl group reagents, EDTA and EGTA (Mar et al., 2003; Tripathi et al., 2007). 

In general microbial α-amylases display highest specificity towards starch followed by 

amylase, amylopectin, cyclodextrin, glycogen and maltotriose (Vihinen and Mantsala, 

1989). 

4.1 Textile Desizing 

Amylases are the most successful enzymes used in textile industry for desizing. For 

fabrics made from cotton or blends, the warp threads are coated with an adhesive 

substance know as “size” to lubricate and protect the yarn from abrasion preventing the 

threads to break during weaving. Although many different compounds have been used 

to size fabrics, starch and its derivatives have been the most common sizing agents 

because of their excellent film forming capacity, availability, and relatively low cost 

(Feitkenhauer et al., 2003).  
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After weaving, the applied sizing agent and the natural non-cellulosic materials present 

in the cotton must be removed in order to prepare the fabric for dyeing and finishing. 

Before the discovery of amylases, this process (desizing) used to be carried out by 

treating the fabric with chemicals such as acids, alkali or oxidising agents at high 

temperatures. The chemical treatment was not totally effective in removing the starch 

(which leads to imperfections in dyeing) and also resulted in a degradation of the cotton 

fiber conducting to destruction of the natural, soft feel of the cotton.  

Nowadays amylases are currently commercialized (MAPS, India) and preferred for 

desizing due to their high efficiency and specific action. Amylases bring about complete 

removal of the size without any harmful effects on the fabric (Etters and Annis, 1998; 

Cegarra, 1996). The starch is randomly cleaved into water soluble dextrins that can be 

then removed by washing. The utilization of harsh chemicals in the textile desizing was 

substituted by amylases resulting in a lower discharge of waste chemicals to the 

environment and improved the safety of working conditions for textile workers. 

5. Pectinases 

Pectin and other peptic substances are complex polysaccharides present in plant cell 

wall as a part of middle lamella. Pectinolytic enzymes or pectinases are a complex 

group of enzymes involved in the degradation of pectic substances. They are primarily 

produced in nature by saprophytes and plant pathogens (bacteria and fungi) for 

degradation of plant cell walls (Lang and Dörenberg, 2000; Bateman, 1966). There are 

three major classes of pectin degrading enzymes: pectin esterases (PEs), 

polygalacturonases (PGs) and polygalacturonate lyases (PGLs).  

Pectin esterases are mainly produced in plants such as banana, citrus fruits and tomato 

and also by bacteria and fungi (Hasunuma et al., 2003). Pectin esterase catalyzes 

deesterification of the methyl group of pectin, forming pectic acid. The enzyme acts 

preferentially on a methyl ester group of galacturonate unit next to a non-esterifed 

galacturonate unit. The molecular weight of most microbial and plant PEs varies 

between 30 – 50 kDa (Hadj-Taieb et al., 2002; Christensen et al., 2002). The optimum 

pH for activity varies between 4.0 and 7.0. The exception is PE from Erwinia whose 
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optimum pH is in alkaline region. The optimum temperature ranges between 40 and 60 

ºC and pI between 4.0 and 8.0.  

Polygalacturonases are a group of enzymes which hydrolyze α-1,4 glycosidic linkages 

in pectin by both exo and endo splitting mechanisms. Endo PGs are widely distributed 

among fungi, bacteria and yeast. These enzymes often occur in different forms having 

molecular weights in the range of 30 – 80 kDa and pI between 3.8 and 7.6. Their 

optimum pH is in the acidic range of 2.5 – 6.0 and the optimum temperature between 30 

and 50 ºC (Singh and Rao, 2002; Takao et al., 2001). Exo PGs are widely distributed in 

Aspergilus niger, Erwinia sp. and in some plants such as carrots, peaches, citrus and 

apples (Pressey and Avants, 1975; Pathak and Sanwal, 1998). The molecular weight of 

exo PGs vary between 30 – 50 kDa and their pI ranges between 4.0 and 6.0. 

The polygalacturonate lyase cleaves polygalacturonate or pectin chains via a β-

elimination mechanism which results in the formation of a double bond between C4 and 

C5 at the non-reducing end and an elimination of CO2. Endo-polygalacturonate lyase 

cleaves polygalacturonate chains arbitrarily and exo-polygalacturonate lyase splits at the 

chain end of polygalacturonate which yields unsaturated galacturonic acid (Sakai et al., 

1993). The molecular weight of PGLs varies between 30–50 kDa except in the case of 

PGL from Bacteroides and Pseudoalteromonas (75 kDa) (McCarthy et al., 1985; 

Truong et al., 2001). The optimum pH ranges between 8.0 and 10.0 although PGL from 

Erwinia and Bacillus licheniformis were still active at pH 6.0 and 11.0 respectively. The 

optimum temperature for PGL activity is between 30 and 40 ºC. However, certain PGL 

from thermophiles have an optimum temperature between 50 and 75 ºC. The potential 

of some pectate lyases for bioscouring has been exploited. 

5.1 Enzymatic scouring  

Greige or untreated cotton contains various non-cellulosic impurities, such as, waxes, 

pectins, hemicelluloses and mineral salts, present in the cuticle and primary cell wall of 

the fibre (Batra, 1985; Etters et al., 1999). These non-cellulosic materials are 

responsible for the hydrophobic properties of raw cotton and interfere with further 

aqueous chemical processes on cotton, like dyeing and finishing (Freytag and Dinze, 
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1983). Therefore, before cotton yarn or fabric can be dyed, it needs to be pretreated to 

remove materials that inhibit dye binding. This step, named scouring, contributes to the 

wettability improvement of fabric that can be then bleached and dyed successfully. 

Highly alkaline chemicals such as sodium hydroxide were normally used for scouring. 

These chemicals not only remove the impurities but also attack the cellulose, leading to 

a reduction in strength and loss of fabric weight. Furthermore, the resulting wastewater 

has a high COD (chemical oxygen demand), BOD (biological oxygen demand) and salt 

content (Buschle-Diller et al., 1998). On the other hand, the enzymatic scouring, 

bioscouring, leaves the cellulose structure almost intact, so it prevents cellulose weight 

and strength loss. Bioscouring has a number of potential advantages over traditional 

scouring. Bioscouring is performed at neutral pH which reduces total water 

consumption, the treated yarn/fabrics retain their strength properties, the weight loss is 

reduced or limited compared to processing in traditional ways and increases cotton 

fibres softness. Several types of enzymes, including pectinases (Li and Hardin, 1997; 

Karapinar and Sariisik, 2004; Tzanov et al., 2001; Choe et al., 2004; Ibrahim et al., 

2004), cellulases (Li and Hardin, 1997; Karapinar and Sariisik, 2004), proteases 

(Karapinar and Sariisik, 2004), and lipases/cutinases, alone or combined, (Deganil et 

al., 2002; Sangwatanaroj and Choonukulpong, 2003; Buchert et al., 2000; Hartzell and 

Hsieh, 1998) have been studied for cotton bioscouring, pectinases seems to be the most 

effective for that purpose.  

Besides all the research done to develop an efficient bioscouring process, there is no 

broad commercial application yet on industrial scale. There is still a demand for a 

pectinase with higher activity and stability at hight temperatures and alkaline 

conditions. A new bio-scouring pectate lyase from Bacillus pumilus BK2 was reported 

by Klug-Santner and collaborators with optimum activity at pH 8.5 and around 70 ºC 

(Klug-Santner et al., 2006). The new isolated pectate lyase was assessed for bio-

scouring of cotton fabric. Removal of up to 80% of pectin was proven by means of 

ruthenium red dyeing and HPAEC. Liquid porosimetry was used to evaluate the 

increasing hydrophilicity of fabrics based on changes of the structural contact angle 

(Bernard and Tyomkin, 1994). Using this methodology the authors found that, upon 

enzyme treatment, hydrophilicity of the fabrics was dramatically enhanced (Klug-
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Santner et al., 2006). Solbak and collaborators developed a novel pectate lyase, by 

Directed Evolution, with improved thermostability. The new enzyme contained eight 

point mutations (A118H, T190L, A197G, S208K, S263K, N275Y, Y309W, and 

S312V). Compared to the wild-type, it presented a 16 °C higher melting temperature 

and exhibited better bioscouring performance at low enzyme dosage in a high 

temperature bioscouring process (Solbak et al., 2005).  

More recently, Agrawal and collaborators performed a wax removal step prior to 

enzymatic scouring of cotton. The authors hypothesized that removal of outer waxy 

layer would allow access and efficient reaction of pectinase with the substrate. They 

demonstrated that pre-treatment of fibres with n- hexane (for wax removal) improved 

alkali pectinase performance in terms of hydrophilicity and pectin removal (Agrawal et 

al., 2007).  

Characterization of chemical and physical surface changes of fabrics, after bioscouring, 

and identification of suitable methods, for surface analysis, are also subject of great 

interest in order to better understand the bioscouring mechanism and evaluate its effects 

on fabrics. Fourier-transform infrared (FT-IR) attenuated total reflectance (ATR) 

spectroscopy was used for the first time, by Chung and collaborators, for fast 

characterization of cotton fabric scouring process (Chung et al., 2004). Later, Wang 

combined FT-IR ATR spectroscopy with scanning electron microscopy (SEM) and 

atomic force microscopy (AFM) to characterize bioscoured cotton fibres (Wang et al., 

2006). SEM had been used before for this purpose (Li and Hardin, 1997), however, this 

technique did not provide information about height and roughness of sample surface. 

On the other hand, the authors demonstrated that AFM, which can generate fine surface 

topographies of samples at atomic resolutions, is a useful supplement to SEM in 

characterizing cotton surfaces (Wang et al., 2006). 

6. Cellulases 

Cellulases are hydrolytic enzymes that catalyse the breakdown of cellulose to smaller 

oligosaccharides and finally glucose. Cellulase activity refers to a multicomponent 
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enzyme system combining at least three types of cellulases working synergistically 

together (Teeri, 1997).  

Endoglucanases or endocellulases cleave bonds along the length of cellulose chains in 

the middle of the amorphous region. Cellobiohydrolases or exo-cellulases start their 

action from the crystalline ends of cellulose chains, producing primarily cellobiose. 

Cellobiohydrolases act synergistically with each other and with endoglucanases, thus 

mixtures of all these types of enzymes have greater activity than the sum of activities of 

each individual enzyme alone. Cellobiose and soluble oligosaccharides, produced by 

exo-cellulases, are finally converted to glucose by β-4-glucosidase (Teeri, 1997).  

These enzymes are commonly produced by soil-dwelling fungi and bacteria, being the 

most important Trichoderma, Penicillium and Fusarium (Verma et al., 2007; Jorgensen 

et al., 2005; Kuhad et al., 1999). Many of the fungal cellulases are modular proteins 

consisting of a catalytic domain, a carbohydrate-binding domain (CBD) and a 

connecting linker. The role of CBD is to mediate the binding of the enzyme to the 

insoluble cellulose substrate (Mosier et al., 1999).  

Cellulases are active in a temperature range from 30 to 60 ºC. Based on their sensitivity 

to pH, they are classified as acid stable (pH 4.5-5.5), neutral (pH 6.6-7) or alkali stable 

(pH 9-10). The application of cellulases in textile processing started in the late 1980s 

with denim finishing. Currently, in addition to biostoning, cellulases are also used to 

process cotton and other cellulose-based fibres. 

6.1 Denim finishing 

Many garments are subjected to a wash treatment to give them a slightly worn look, an 

example is the stonewashing of denim jeans. In the traditional stonewashing process, 

the blue denim is faded by the abrasive action of pumice stones on the garment surface. 

However, thanks to the introduction of cellulase enzymes, the jeans industry can reduce 

or even eliminate the use of stones. The use of less pumice stones results in less damage 

to garment, machine and less pumice dust in the laundry environment. Productivity can 

also be increased because laundry machines contain fewer stones or no stones at all and 

more garments. Denim garments are dyed with indigo, which adheres to the surface of 
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the yarn. The cellulase molecule binds to an exposed fibril on the surface of the yarn 

and hydrolyses it in a process know as 'Bio-Stonewashing', leaving the interior part of 

the cotton fibre intact. When the cellulases partly hydrolyse the surface of the fibre, the 

indigo is partly removed and light areas are created. There are a number of cellulases 

available, each with its own special properties. These can be used either alone or in 

combination in order to obtain a specific look. Heikinhemo and collaborators 

demonstrated that Trichoderma reesei endoglucanase II was very effective removing 

color from denim, producing a good stonewashing effect with the lowest hydrolysis 

level (Heikinheimo et al., 2000). Later Miettinen-Oinonen and collaborators developed 

new genetically engineered T. reesei strains able to produce elevated amounts of 

endoglucanase activity. Production of endoglucanase I and II was increased fourfold 

above that of the host strain, without any production of cellobiohydrolases. Cellulase 

preparations derived by the new T. reesei overproduction strains proved to be more 

efficient for stonewashing process than the ones produced by parental strain (Miettinen-

Oinonen and Suominen, 2002). Application research in this area is mainly focused on 

preventing or enhancing backstaining depending on the style required. Backstaining is 

defined as the redeposition of released indigo onto the garments. Cavaco-Paulo and 

collaborators were the first group studying in detail the nature of indigo-cellulase-

cellulose interactions (Cavaco-Paulo et al., 1998). These authors attribute the effect of 

backstaining to the high affinity between indigo and cellulase and proved that the strong 

ability of cellulase enzymes to bind to cotton cellulose is the major cause of 

backstaining (Cavaco-Paulo et al., 1998). Later, the affinity of cellulases from different 

fungal origins for insoluble indigo dye in the absence of cellulose was compared. The 

authors reported that acid cellulases from T. reesei have higher affinity for indigo than 

neutral cellulases of Humicola insolens (Campos et al., 2000). The same group studied 

the interactions of cotton with CBD peptides from family I and family II and they 

provided new highlights for tailoring cellulases when they found that truncated 

cellulases without CBDs caused less backstaining than entire enzymes (Cavaco-Paulo et 

al., 1999; Andreaus et al., 2000). These authors had previously studied the effect of 

temperature on the cellulose binding ability of cellulases from T. reesei and the 
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influence of agitation level on the processing of cotton fabrics with cellulases having 

CBDs from different families (Cavaco–Paulo et al., 1996; Andreaus et al., 1999). 

In order to overcome the lack of methods to access the performance of small quantities 

of enzymes, Gusakov and collaborators have developed a model microassay to test the 

abrasive and backstaining properties of cellulases on a “test-tube scale” (Gusakov et al., 

2000). Using these microassays, the same group identified an endoglucanase from 

Chysosporium lucknowense with a high washing performance and a moderate level of 

backstaining (Sinitsyn et al., 2001). 

Knowing that backstaining process could be significantly reduced at neutral pH range, 

neutral cellulases started to be screened in order to minimize backstaining. Miettinen-

Oinonen and collaborators reported the purification and characterization of three novel 

cellulases of Melanocarpus albomyces for textile treatment at neutral pH: a 20 kDa and 

50 kDa endoglucanases and a 50 kDa cellobiohydrolase. The 20 kDa endoglucanase had 

a good biostoning performance. Combining the 50 kDa endoglucanase, or the 50 kDa 

cellobiohydrolase with the 20 kDa endoglucanase, it was possible to decrease the 

backstaining levels (Miettinen-Oinonen et al., 2004). The respective genes were further 

cloned and efficiently expressed at adequate levels for industrial applications in T. 

reesei by the same group (Haakana et al., 2004; Pazarlioglu et al., 2005; Anish et al., 

2007). Nowadays due to availability of effective anti-backstaining agents based on 

chemicals or enzymes, like proteases and lipases, backstaining problems can be 

minimized. The combination of new looks, lower costs, shorter treatment times and less 

solid waste have made abrasion with enzymes the most widely used fading process 

today. 

6.2 Pilling and fuzz fibre removal  

Besides “biostoning” process, cotton and other natural and man-made cellulosic fibres 

can be improved by an enzymatic treatment called “biopolishing”. The main advantage 

of this process is the prevention of pilling. A ball of fuzz is called a 'pill' in the textile 

trade. These pills can present a serious quality problem since they result in an 

unattractive, knotty fabric appearance. Cellulases hydrolyse the microfibrils (hairs or 
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fuzz) protruding from the surface of yarn because they are most susceptible to 

enzymatic attack. This weakens the microfibrils, which tend to break off from the main 

body of the fibre and leave a smoother yarn surface. After treatment, the fabric shows a 

much lower pilling tendency. Other benefits of removing fuzz are a softer, smoother 

feel and superior colour brightness. Unlike conventional softeners, which tend to be 

washed out and often result in a greasy feel, the softness-enhancing effects of cellulases 

are washproof and non-greasy.  

Optimization of biofinishing processes has been an important matter of research. 

Azevedo and colleagues (2001) studied the desorption of cellulases from cotton which 

can be applied for recovering and recycling of cellulases (Azevedo et al., 2001). 

Lenting and collaborators came up with guidelines to minimize and prevent loss of 

tensile strength that can result from cellulase application. The choice of enzyme, 

enzyme concentration, incubation time, as well as, application of immobilized enzymes, 

use of liquids with different viscosities, use of foam ingredients and hydrophobic agents 

to impregnate clothes can prevent the drawbacks of cellulases action (Lenting and 

Warmoeskerken, 2001). Yamada and collaborators reported the action of cellulases on 

cotton dyed with reactive dyes which have an inhibitory effect on cellulase activity 

(Yamada et al., 2005). Ultrasound technology application can be an efficient way to 

improve enzymatic action in bioprocessing of cotton (Yachmenev et al., 2002).  

For cotton fabrics, polishing is optional for upgrading the fabric. However, this step is 

almost essential for the fibre lyocell, invented in 1991. It is made from wood pulp and is 

characterised by a tendency to fibrillate easily when wet (fibrils on the surface of the 

fibre peel up). If they are not removed, finished garments made from lyocell will end up 

covered with pills. Lyocell fabric is then treated with cellulases during finishing not 

only to avoid fibrillation, but also to enhance its silky appearance. There are several 

reports in literature concerning lyocell treatment with cellulases and the elucidation of 

its mechanism of action (Morgado et al., 2000; Valldeperas et al., 2000). Cellulases 

were reported not only for processing of lyocell but also for viscose type regenerated 

celluloses like viscose and modal (Carrillo et al., 2003).  
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7. Serine proteases: subtilisins 

Subtilisins are a family of alkaline serine proteases, generally, secreted by a variety of 

Bacillus species (Siezen and Leunissen, 1997). These enzymes catalyze the hydrolysis 

of peptide and ester bonds through formation of an acyl-enzyme intermediate. 

Subtilisins are biosynthesized as preproprotein precursors (Wells et al., 1983). The 

NH2-terminal prepeptide, of 29 amino acid residues is the signal peptide required for 

secretion of prosubtilisin across the plasma membrane. The propeptide of 77 amino 

acids, located between the prepeptide and mature sequence, acts as an intramolecular 

chaperone required for the correct folding of mature enzyme in active form (Stahl and 

Ferrari, 1984; Wong and Doi, 1986; Ikemura et al., 1987; Ikemura and Inouye, 1988). 

Subtilisins are characterized by a common three-layer α/ β/ α tertiary structure. The 

active site is composed of a catalytic triad of Aspartate, Histidine and Serine.  

Molecular weight of subtilisins is generally between 15 to 30 kDa, but there are few 

exceptions, like a 90 kDa subtilisin from Bacillus subtilis (natto) (Kato et al., 1992).  

The optimum temperature of alkaline proteases ranges from 50 to 70 ºC but these 

enzymes are quite stable at high temperatures.  

The presence of one or more calcium binding sites enhances enzyme thermostability 

(Paliwal et al., 1994). Phenyl methyl sulphonyl fluoride (PMSF) and diisopropyl-

fluorophosphate (DFP) are able to strongly inhibit subtilisins (Gold and Fahrney, 1964; 

Morihara, 1974). Most subtilisin protein engineering continues to involve enhancement 

of catalytic activity (Takagi et al., 1988; Takagi et al., 1997), and thermostability, 

(Takagi et al., 1990; Wang et al., 1993; Yang et al., 2000a; Yang et al., 2000b), as well 

as, substrate specificity and oxidation resistance (Takagi et al., 1997).  

7.1 Attempts for enzymatic treatment of wool 

Raw wool is hydrophobic due to epicutical surface membranes containing fatty acids 

and hydrophobic impurities like wax and grease. Different harsh chemicals are 

commonly used for removal of these impurities: alkaline scouring using sodium 

carbonate, pre-treatment using potassium permanganate, sodium sulphite or hydrogen 

peroxide.  
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Wool fabric has the tendency to felt and shrink on wet processing. The shrinkage 

behaviour of wool can be regulated by various chemical means. The most successful 

commercial shrink-resistant process available is the chlorine-Hercosett process 

developed more than 30 years ago (Heiz, 1981). Although the excellent advantages of 

this method (good antifelt effect, low damage and low weight loss), there are some 

important drawbacks (limited durability, poor handle, yellowing of fibres, difficulties in 

dyeing and environmental impact by the release of absorbable organic halogens to the 

effluents) (Julia et al., 2000; Schlink and Greeff, 2001).  

Several authors have suggested the use of benign chemical processes such as low 

temperature plasma to treat wool (Kan et al., 1998; Kan et al., 1999; Kan et al., 2006a; 

El-Zawahry et al., 2006; Kan et al., 2006b). Plasma treatment is a dry process, in which 

the treatment of wool fibre is performed by electric gas discharges (plasma). It is 

regarded as an environmentally friendly process, as no chemicals are used and can be 

applied as an effective technique for modifying the surface properties of wool without 

much alteration of the interior part of the fibre. However, costs, compatibility and 

capacity are obstacles to commercialization of a plasma treatment process and the 

shrink-resist properties obtained do not impart a machine-washable finish, which is one 

of the main objectives (McDevitt and Winkler, 2000). The posterior application of a 

natural polymer, such as chitosan, was also investigated to improve wool shrink-

resistance or anti-felting properties (Onar and Sariisik, 2004).  

More recently, mainly for ecological reasons, proteases, namely subtilisin type, are 

being studied as an alternative for chemical pre-treatment of wool. Several studies 

reported that pre-treatment of wool fibres with proteases, before the dyeing process, has 

been shown to improve anti-shrinkage properties, to remove impurities and to increase 

dyeing affinity (Levene et al., 1996; Parvinzadeh, 2007). 

However, due to its small size, the enzyme is able to penetrate into the fibre cortex 

which causes the destruction of the inner parts of wool structure (Shen et al., 1999). 

Several reports show that increasing enzyme molecular weight by chemical crosslinking 

with glutaraldehyde or by the attachment of synthetic polymers like polyethylene 

glycol, is possible to avoid enzyme penetration and the consequent reduction of strength 

and weight loss (Silva et al., 2004; Schroeder et al., 2006). Some of these processes 
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have been tested at the scale of industrial process (Shen et al., 2007). Pre-treatment of 

wool fibres with hydrogen peroxide, at alkaline pH in the presence of high 

concentrations of salts, also targets enzymatic activity on the outer surface of wool, by 

improving the susceptibility of cuticle for proteolytic degradation (Lenting et al., 2006). 

Some authors describe methods to improve the shrink resistance of wool by treating 

wool previously with a smoother oxidizing agent, like H2O2, instead of the traditional 

oxidizers, NaClO or KMnO4 and then with a protease (Yu et al., 2005). The strong 

oxidation power of NaClO or KMnO4 is always difficult to control. Besides, reaction of 

NaClO with wool produces halogenide. On the other hand, H2O2 seemed to provide a 

more controlled, cleaner and moderate oxidation. Zhang and collaborators used an 

anionic surfactant to promote the activities of proteases on wool (Zhang et al., 2006). 

Other authors refer processes to achieve shrink-resistance by treating wool with a 

protease followed by a heat treatment (Ciampi et al., 1996). The screening for new 

protease producing microorganisms with high specificity to cuticles is being 

investigated as an alternative for the existing proteases (Erlacher et al., 2006).  

8. Cysteine proteases: papain  

Cysteine proteases (CP´s) catalyse the hydrolysis of peptide, amide, ester, thiol ester 

and thiono ester bonds. More than twenty families of cysteine proteases have been 

described (Barrett, 1994). The CP family can be subdivided into exopeptidases (e.g. 

cathepsin X, carboxypeptidase B) and endopeptidases (papain, bromelain, ficain, 

cathepsins). Exopeptidases cleave the peptide bond proximal to the amino or carboxy 

termini of the substrate, whereas endopeptidases cleave peptide bonds distant from the 

N- or C-termini (Barrett, 1994). 

CPs are proteins of molecular mass in the range of 21 - 30 kDa. They are synthesized as 

inactive precursors with an N-terminal propeptide and a signal peptide. Activation 

requires proteolytic cleavage of the N-terminal propeptide that also functions as an 

inhibitor of the enzyme (Otto and Schirmeister, 1997; Grzonka et al., 2001). 

Papain is the best known cysteine protease. It was isolated in 1879 from the fruits of 

Carica papaya and was the first protease with the crystallographic structure determined 
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(Drenth et al., 1968; Kamphuis et al., 1984). Papain is a 212 amino acids protein with a 

molecular weight of 23.4 kDa. The enzyme has three internal disulphide bridges and an 

isoelectric point of 8.75. 

The optimal activity of papain occurs at pH 5.8 - 7.0 and at temperature 50 - 57 ºC when 

casein is used as the substrate (Light et al., 1964; Kamphuis et al., 1984). The general 

mechanism of papain action has been very well studied. The catalytic triad is formed by 

Cys25, His159 and Asn175 residues. Asn175 is important for orientation of the 

imidazolium ring of the histidine in the catalytic cleft. The reactive thiol group of the 

enzyme has to be in the reduced form for catalytic activity. Thus, the cysteine proteases 

require a rather reducing and acidic environment to be active (Theodorou et al., 2007). 

Generally, papain can cleave various peptide bonds and possesses therefore fairly broad 

specificity.  

8.1 Degumming of silk  

Papain is reported to be used for boiling off cocoons and degumming of silk. Raw silk 

must be degummed to remove sericin, a proteinaceous substance that covers the silk 

fibre. Degumming is usually performed in an alkaline solution containing soap, a harsh 

treatment that also attacks fibrin structure. Several alkaline, acidic and neutral proteases 

have been studied as degumming agents since they can dissolve sericin but are unable to 

affect silk fibre protein. Alkaline proteases have a better performance removing sericin 

and improving silk surface properties like handle, shining and smoothness (Freddi et al., 

2003; Arami et al., 2007), but there is no commercial application yet on this field.  

In the past, papain was also used to ‘shrink-proof’ wool. A successful method involved 

the partial hydrolysis of the scale tips. This method also gave wool a silky lustre and 

added to its value. The method was abandoned a few years ago for economic reasons. 

9. Transglutaminases (TGs) 

Transglutaminases are a group of thiol enzymes that catalyse the post-translational 

modification of proteins mainly by protein to protein cross-linking, but also through the 
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covalent conjugation of polyamines, lipid esterification, or the deamidation of 

glutamine residues (Folk and Cole, 1966; Folk et al., 1968; Folk, 1969; Folk, 1980; 

Lorand and Conrad, 1984). Transglutaminases are widely distributed among bacteria, 

plants and animals. 

The first characterized microbial transglutaminase (MTG) was that of the bacterium 

Streptomyces mobaraensis (Ando et al., 1989). This enzyme is secreted as a zymogen 

that is sequentially processed by two endogenous enzymes to yield the mature form 

(Zotzel et al., 2003). The mature enzyme is a monomeric protein with a molecular 

weight of 38 kDa. It contains a single catalytic cysteine residue (Cys64) and an 

isoelectric point (pI) of 9 (Pasternack et al., 1998; Kanaji et al., 1993).  

The optimum pH for MTG activity was found to be between 5 and 8. However, MTG 

showed some activity at pH 4 or 9, and was thus considered to be stable over a wide pH 

range (Ando et al., 1989). The optimum temperature for enzymatic activity was 55 °C; 

it maintained full activity for 10 min at 40 °C, but lost activity within a few minutes at 

70 °C. It was active at 10 °C, and retained some activity at near-freezing temperatures. 

 MTG does not require calcium for activity, shows broad substrate specificity and can 

be produced at relatively low cost. These properties are advantageous for industrial 

applications.  

9.1 Attempst for treatment of wool and leather 

The study of TGs for the treatment of wool textiles has been shown to improve shrink 

resistance, tensile strength retention, handle, softness, wettability and consequently dye 

uptake, as well as, reduction of felting tendency and protection from the damage caused 

by the use of common detergents (Cortez et al., 2004; Cortez et al., 2005). 

Treatment of leather with TG, together with keratin or casein, has a beneficial effect on 

the subsequent dyeing and colour properties of leather (Collighan et al., 2002). The 

application of TG for leather and wool treatment seems to be a promising strategy, but 

is still in the research level. There is no industrial application.  
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10. Lipases/ Esterases: Cutinase  

Esterases represent a diverse group of hydrolases that catalyze the cleavage and 

formation of ester bonds. They are widely distributed in animals, plants and 

microorganisms. These enzymes show a wide substrate tolerance, high regio- and 

stereospecificity, which make them attractive biocatalysts for the production of optically 

pure compounds in fine-chemicals synthesis. They do not require cofactors, are usually 

rather stable and are even active in organic solvents (Bornscheuer, 2002). Two major 

classes of hydrolases are of most importance: lipases (triacylglycerol hydrolases) and 

‘true’ esterases (carboxyl ester hydrolases). Both classes of enzymes have a three-

dimensional structure with the characteristic α/β-hydrolase fold (Ollis et al., 1992; 

Schrag and Cygler, 1997). The catalytic triad is composed of Ser-Asp-His (Glu instead 

of Asp for some lipases) and usually also a consensus sequence (Gly-x-Ser-x-Gly) is 

found around the active site serine (Ollis et al., 1992). 

The mechanism for ester hydrolysis or formation is essentially the same for lipases and 

esterases and is composed of four steps: First, the substrate is bound to the active serine, 

yielding a tetrahedral intermediate stabilized by the catalytic His and Asp residues. 

Next, the alcohol is released and an acyl-enzyme complex is formed. Attack of a 

nucleophile (water in hydrolysis, alcohol or ester in transesterification) forms again a 

tetrahedral intermediate, which after resolution yields the product (an acid or an ester) 

and free enzyme (Stadler et al., 1995). Lipases can be distinguished from esterases by 

the phenomenon of interfacial activation (which was only observed for lipases). 

Esterases obey classical Michaelis-Menten kinetics; lipases need a minimum substrate 

concentration before high activity is observed (Verger, 1998). Structure elucidation 

revealed that this interfacial activation is due to a hydrophobic domain (lid) covering 

lipases active site and only in the presence of a minimum substrate concentration, (a 

triglyceride phase or a hydrophobic organic solvent), the lid moves apart, making the 

active site accessible (Derewenda et al., 1992). Furthermore, lipases prefer water-

insoluble substrates, typically triglycerides composed of long-chain fatty acids, whereas 

esterases preferentially hydrolyze ‘simple’ esters (Verger, 1998). Lipases and esterases 

were among the first enzymes tested and found to be stable and active in organic 
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solvents, but this characteristic is more apparent with lipases (Schmid and Verger, 

1998). 

A comparison of amino acid sequences and 3D-structures of both enzymes reported that 

the active site of lipases displays a negative potential in the pH-range associated with 

their maximum activity (typically at pH 8); esterases show a similar pattern, but at pH 

values around 6, which correlates with their usually lower pH-activity optimum (Fojan 

et al., 2000). 

Cutinases are extracellular esterases secreted by several phytopathogenic fungi and 

pollen that catalyse the hydrolysis of ester bonds in cutin, the structural polyester of 

plants cuticle (Soliday and Kolattukudy, 1975). Cutinases are also able to hydrolyse a 

wide variety of synthetic esters and triacylglicerols, as efficiently as lipases, without 

displaying interfacial activation (Egmond and Van Bemmel, 1997; Martinez et al., 

1992). Therefore cutinases are suitable enzymes to be applied in laundry industry, 

dishwashing detergent composition to remove fats, in the synthesis of structured 

triglycerides, polymers and agrochemicals and in degradation of plastics (Flipsen et al., 

1998; Murphy et al., 1996; Carvalho et al., 1999).  

Among cutinases, the one from the phytopathogenic fungus Fusarium solani pisi is the 

best studied example of a carboxylic ester hydrolase. F. solani cutinase is a 22 kDa 

enzyme and it was shown to be present at the site of fungal penetration of the host plant 

cuticle (Purdy and Kolattukudy, 1975a; Purdy and Kolattukudy, 1975b; Shaykh et al., 

1977). Specific inhibition of cutinase was shown to protect plants against fungal 

penetration and consequently infection (Koller et al., 1982). The enzyme belongs to the 

family of serines esterases containing the so-called α/ β hydrolase fold. The active site 

of cutinase is composed of a catalytic triad involving serine, histidine and aspartate. F. 

solani pisi cutinase has an isoelectric point of 7.8 and an optimum pH around 8. The 

enzyme contains two disulfide bonds which are essential for structural integrity and 

catalytic activity (Egmond and de Vlieg, 2000).  
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10.1 Surface modification of synthetic fibres 

Synthetic fibres represent almost 50% of the worldwide market of textile fibres. 

Polyethyleneterephthalate (PET), polyamide (PA) and polyacrylonitrile (PAN) fibres 

show excellent features like good strength, high chemical resistance, low abrasion and 

shrinkage properties. However synthetic fibres share as common disadvantages high 

hydrophobicity and crystallinity which affect, not only wearing comfort, (making these 

fibres less suitable to be in contact with human skin), but also processing of fibres, 

impeding the application of finishing compounds and colouring agents. Most of 

finishing processes/agents are water-dependent which require an increase in 

hydrophilicity of fibre surface (Jaffe and East, 1998; Yang, 1998; Frushour and Knorr, 

1998; Burkinshaw, 1995).  

Currently, chemical treatments with sodium hydroxide are used in industry to increase 

hydrophilicity and improve flexibility of fibres. However, chemical treatment extension 

is hard to control, which leads to unacceptable losses of weight and strength and to 

irreversible yellowing in the case PAN and PA fibres. Besides, this is not an 

environmentally appealing process since it requires high amounts of energy and 

chemicals that are further discharged to the environment.  

A recently identified alternative under study is the use of enzymes for the surface 

modification of synthetic fibres (Gübitz and Cavaco-Paulo, 2003). The use of cutinase 

on vinyl acetate, (a comonomer in acrylic fibre) was reported for the first time by Silva 

and collaborators (Silva et al., 2005). Lipases and esterases are mainly used for 

biomodification of PET. Enzymatic hydrolysis of PET fibres with different lipases 

revealed to increase hydrophilicity, measured in terms of wettability and absorbent 

properties (Hsieh and Cram, 1998; Hsieh et al., 1997). A polyesterase was reported by 

Yoon et al (2002), for surface modification of PET and polytrimethyleneterephthalate 

(PTT). The authors reported that formation of terephthalic acid, (a hydrolysis product), 

could be monitored at 240 nm. The enzymatic treatment resulted in significant 

depilling, efficient desizing, increased hydrophilicity and reactivity with cationic dye 

and improved oily stain release (Yoon et al., 2002). The production of polyester-

degrading hydrolases from a strain of Thermomonospora fusca was investigated and 
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optimized (Gouda et al., 2002). Later, Alisch and collaborators reported 

biomodification of PET fibres by extracellular esterases produced by different strains of 

actinomycetes (Alisch et al., 2004). Fischer-Colbrie and collaborators found several 

bacterial and fungal strains, able to hydrolyse PET fibres, after screening using a PET 

model substrate (bis-benzoyloxyethyl terephthalate) (Fischer-Colbrie et al., 2004). 

O´Neill and Cavaco-Paulo came up with two methods to monitor esterase hydrolysis of 

PET fibres surface, as alternative to the detection of terephthalic acid release at 240 nm. 

Cutinase hydrolysis of PET, will cleave ester bonds, releasing terephthalic acid and 

ethylene glycol and remaining hydroxyl and carboxyl groups at the surface. The 

terephthalic acid is quantified, after reaction with peroxide, by fluorescence 

determination of the resulting hydroxyterephthalic acid. Colouration of PET fibres with 

cotton reactive dyes, specific for hydroxyl groups, allows direct measurement of 

hydroxyl groups that remain at fibre surface (O'Neill and Cavaco-Paulo, 2004). Given 

the promising results obtained with cutinase and other PET degrading enzymes, several 

authors performed important comparison studies between different class/activity types 

of enzymes. All of the studies confirmed that cutinase from F. solani pisi exhibits 

significant hydrolysis on PET model substrates, as well as, on PET fibres resulting in an 

increased hydrophilicity and dyeing behaviour (Vertommen et al., 2005; Alisch-Mark et 

al., 2006; Heumann et al., 2006). 

Despite the potential of cutinase from F. solani to hydrolyse and improve synthetic 

fibres properties, these fibres are non-natural substrates of cutinase and consequently 

turnover rates are quite low. By the use of site-directed mutagenesis recombinant 

cutinases, with higher specific activity to large and insoluble substrates like PET and 

PA, were developed (Araújo et al., 2007). The new cutinase, Leu181Ala mutant, was 

the most effective in the catalysis of amide linkages of PA and displayed a remarkable 

hydrolytic activity towards PET fabrics (more than 5-fold compared to native enzyme) 

(Araújo et al., 2007). This recombinant enzyme was further used to study the influence 

of mechanical agitation on the hydrolytic efficiency of cutinase on PET and PA in order 

to design a process for successful application of enzymes to synthetic fibres (Silva et 

al., 2007; O’Neill et al., 2007). The use of cutinase, open up new opportunities for 
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targeted enzymatic surface functionalisation of PET and PA, polymers formerly 

considered as being resistant to biodegradation. 

Recently, Nechwatal and collaborators have tested several commercial lipases/esterases 

for their ability to hydrolyse oligomers formed during manufacture of PET (Nechwatal 

et al., 2006). These low-molecular-weight molecules are insoluble in water and can 

deposit themselves onto the dye apparatus, damaging it. The authors found that lipase 

from Triticum aestivum removed 80 wt % of oligomers from liquor bath treatment, 

however the observed decrease seems to be more related with adsorption of oligomers 

on the enzyme than with catalytic hydrolysis of ester groups (Nechwatal et al., 2006). 

11. Nitrilases and Nitrile Hydratases  

Nitrilase was the first nitrile-hydrolysing enzyme described some 40 years ago. It was 

known to convert indole 3-acetonitrile to indole 3-acetic acid (Thimann and 

Mahadevan, 1964; Kobayashi and Shimizu, 1994). The nitrilase superfamily, 

constructed on the basis of the structure and analyses of aminoacid sequence, consists of 

13 branches. Members of only one branch are known to have true nitrilase activity, 

whereas 8 or more branches have apparent amidase or amide condensation activities 

(Pace and Brenner, 2001; Brenner, 2002). All the superfamily members contain a 

conserved catalytic triad of glutamate, lysine and cysteine, and a largely similar α-β-β-α 

structure.  

Nitrilases are found relatively frequently in nature. This enzyme activity exists in 3 out 

of 21 plant families (Gramineae, Cruciferae and Musaceae) (Thimann and Mahadevan, 

1964), in a limited number of fungal genera (Fusarium, Aspergillus, Penicillium) 

(Harper, 1977; Šnajdrová et al., 2004; Vejvoda et al., 2006; Kaplan et al., 2006) but it is 

more frequently found in bacteria. Several genera such Pseudomonas, Klebsiella, 

Nocardia and Rhodococcus are known to utilize nitriles as sole sources of carbon and 

nitrogen (Dhillon et al., 1999; Kiziak et al., 2005; Bhalla and Kumar, 2005; Hoyle et 

al., 1998; Bhalla et al., 1995). Manly due to the biotechnological potential of nitrilases 

different bacteria and fungi capable of hydrolysing nitriles were isolated (Singh et al., 

2006).  
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Most of nitrilases isolated consist of a single polypeptide with a molecular mass 

between 30 and 45 kDa, which aggregate to form the active holoenzyme under different 

conditions. The prevalent form of the enzyme seems to be a large aggregate composed 

of 6 to 26 subunits. Most of the enzymes show substrate dependent activation, though 

the presence of elevated concentrations of salt, organic solvents, pH, temperature or 

even the enzyme itself may also trigger subunit association and therefore activation 

(Nagasawa1 et al., 2000).  

Nitrile hydratase (NHase) is a key enzyme in the bienzymatic pathway of the 

conversion of nitriles to amides, which are further converted to the corresponding acid 

by amidases. Several microorganisms (Rhodococcus erythropolis, Agrobacterium 

tumefaciens) having NHase activity have been isolated and the enzymes have been 

purified and characterized (Stolz et al., 1998; Hirrlinger et al., 1996; Trott et al., 2001; 

Okamoto and Eltis, 2007). NHases are composed of two types of subunits (α and β) 

complexed in varying numbers. They are metalloenzymes containing either cobalt 

(cobalt NHases) or iron (ferric NHases).  

11.1 Surface modification of Polyacrylonitrile (PAN) 

PAN fibres exhibit excellent properties like high chemical resistance, good elasticity 

and natural-like aesthetic properties, which contribute to the increased use of these 

fibres, representing nowadays about 10% of the global synthetic fibre market. However, 

the hydrophobic nature of PAN fabrics also confers undesirable properties resulting in a 

difficult dyeing finishing process (Frushour and Knorr, 1998). Chemical hydrolysis of 

PAN fibres at the surface generally leads to irreversible yellowing of fibres. Thus, 

similarly to other synthetic fibres, selective enzymatic hydrolysis of PAN could 

represent an interesting alternative to chemical processes.  

The surface of PAN was modified by nitrile hydratase and amidase enzymes from 

different sources (R. rhodochrous and A. tumefaciens). After enzymatic treatment the 

fabric became more hydrophilic and the adsorption of dye was enhanced (Tauber et al., 

2000; Fischer-Colbrie et al., 2006). Similarly, in a work developed by Battistel and 

collaborators treatment of PAN with nitrile hydratases from Brevibacterium imperiale, 
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Corynebacterium nitrilophilus and Arthrobacter sp. resulted in an increase of amide 

groups on the PAN surface which leaded to increased hydrophilicity and dyeability 

(Battistel et al., 2001). In another study it was reported for the first time the use of a 

new Micrococcus luteus strain BST20 which produces membrane-bound nitrile 

hydrolysing enzymes. The enzymes were shown to hydrolyze the nitrile groups on the 

PAN surface by determining the NH3 release from PAN powder, and measuring the 

depth of shade of enzyme treated fabric after dyeing with a basic dye (Fischer-Colbrie 

et al., 2007).  

The biomodification of acrylic fibres using a nitrilase, instead of nitrile 

hydratases/amidases, was introduced for the time, by Matamá and collaborators. The 

addition of 1 M sorbitol and 4% N,N-dimethylacetamide to the treatment media 

enhanced nitrilase catalysis efficiency (Matamá et al., 2006).  

Although there is no industrial application yet, the results of research demonstrate that 

enzymatic treatment of PAN would give advantages in the quality of treated fibres as 

well as in energy saving and pollution control.  

12. Laccases 

Laccases are extracellular, multicopper enzymes that use molecular oxygen to oxidize 

phenols and various aromatic and nonaromatic compounds by a radical-catalysed 

reaction mechanism (Thurston, 1994). They belong to a larger group of enzymes termed 

the blue-multicopper oxidase family. Laccases have been found in plants, insect, 

bacteria, but are most predominant in fungi (Claus, 2004; Benfield et al., 1964; 

Baldrian, 2006).  

Laccase activity has been demonstrated in more than 60 fungal strains (Gianfreda et al., 

1999). Typical fungal laccase is a protein of approximately 60 – 70 kDa with pH optima 

in the acidic pH range. The optima temperature ranges between 50 and 70 ºC. Few 

enzymes with optima temperature below 35 ºC have been described, for example the 

laccase from Ganoderma lucidum with the highest activity at 25 ºC (Ko et al., 2001). 

The range of substrates with which laccases can react is very broad, showing a 

remarkable nonspecific activity regarding their reducing substrate. 
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12.1 Decolourization of dyes and textile bleaching  

Laccases are widely researched for the decolourization of textile effluents. Due to their 

ability to degrade dyes of diverse chemical structure, including synthetic dyes, laccases 

can be used as a more ecological alternative to treat dye wastewater (Abadulla et al., 

2000; Hou et al., 2004; Hao et al., 2007; Salony et al., 2006; Couto et al., 2006). They 

are also studied for textile bleaching. Bleaching of cotton is achieved by the 

decolourization of natural pigments giving cotton fibres a white appearance. The most 

common industrial bleaching agent is hydrogen peroxide usually applied at 

temperatures close to boiling. However high temperatures and alkaline pH can cause 

sever damage to the fibres, besides, high amounts of water are needed to remove 

hydrogen peroxide from fabrics that can interfere with dyeing.  

Laccases can improve whiteness of cotton by oxidation of flavonoids. The substitution 

or combination of chemical bleaching with an enzymatic bleaching system leads not 

only to less fibre damage but also to significant savings of water (Tzanov et al., 2003a). 

Pereira and collaborators isolated a new strain of Trametes hirsuta for cotton bleaching. 

Laccases of this organism were responsible for oxidation of the flavonoids morin, 

luteolin, rutin and quercetin. The authors reported that pretreatment of cotton with T. 

hirsuta laccases resulted in an increase of whiteness (Pereira et al., 2005).  

Later ultrasound was used to intensify the efficiency of enzymatic bleaching. The 

authors found that low intensity of ultrasound improved diffusion of the enzyme from 

the liquid phase to the fibres surface, acting synergistically with the enzyme in the 

oxidation of natural pigments (Basto et al., 2007). Regarding denim finishing, there are 

already some successful industrial applications of laccases like DeniLite® 

commercialized by Novozyme (Novo Nordisk, Denmark) and Zylite from the company 

Zytex (Zytex Pvt. Ltd, Mumbai, India). 

The application of laccases for the coating of natural and synthetic fibres is under study. 

Tzanov and co-workers developed a laccase-assisted dyeing process of wool. With this 

new process wool is dyed using low temperatures without dyeing auxiliaries which 

permit saving water and energy (Tzanov et al., 2003b; Tzanov et al., 2003c). More 
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recently, Kim and collaborators described the utilisation of the natural flavonoids to dye 

cotton by an enzymatic process catalyzed by laccases (Kim et al., 2007). 

13. Catalases 

Catalases (CATs), more correctly hydroperoxidases, catalyse the degradation of H2O2 to 

H2O and O2. Catalases are produced by a variety of different microorganisms including 

bacteria, moulds and yeasts (Mueller et al., 1997). Most of the known catalases have 

their activity optimum at moderate temperatures (20 - 50 °C) and neutral pH. 

CATs from animal sources (bovine liver) are generally cheap, therefore the production 

of microbial CATs will only be economically advantageous when recombinant strains 

and cheap technology is used specially for the production of CATs with special 

properties for instance to work at high or low temperatures or at alkaline or acidic pH.  

13.1 Treatment of bleach liquor 

In the textile industry, bleaching with H2O2 is performed after desizing and scouring, 

but before dyeing. Normally a reducing agent is used to destroy the hydrogen peroxide, 

or water to rinse out the hydrogen peroxide bleach. CAT is now used to decompose 

excess H2O2 to water and oxygen (Fraser, 1986). With the use of catalase, the reducing 

agent can be eliminated and the amount of rinse water can be dramatically reduced, 

resulting in less polluted wastewater and lower water consumption. The cost of enzyme 

for degradation of hydrogen peroxide in bleaching effluents could be reduced by the 

introduction of immobilised enzymes. Immobilization will allow not only the recovery 

of enzyme but also the reuse of treated bleaching effluents for dyeing (Fruhwirth et al., 

2002; Costa et al., 2001; Paar et al., 2001). 

14. Enzyme use in related market segment: the detergent industry 

Most of the enzymes previously reported can be used in detergent formulations. In fact 

the most successful and largest industrial application of enzymes is in detergents. The 

first use of enzymes in detergents goes back to the use of pancreatic extracts by Roehm 
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in 1913. However, the use of enzymes from animal sources led to few successes, as 

those enzymes were not suited to prevailing washing conditions. The first detergent 

containing a bacterial enzyme was introduced into the market in the 1960s (Maurer, 

2004). Due to environmental concerns detergent manufacturers have replaced since the 

early 1980s phosphate with other detergent builders such as zeolite and silicates, and 

developed and incorporated bleach activators. New proteases that were stable at alkaline 

pH, show good washing performance at low temperatures, also in the presence of 

sequestering agents, bleach and surfactants were sought. The bacterial subtilisins were 

identified as being the most suitable for detergent applications (Saeki et al., 2007).  

At present only proteases and amylases are commonly used. Proteases are the major 

component and used to facilitate the removal of proteinaceous stains. Likewise, 

amylases are able to facilitate the removal of stains of starchy food. More recently, 

cellulases are being incorporated in detergents to remove pills, reducing the fuzzy 

appearence and restoring lustre. Lipases are under research and can be used to remove 

fatty stains, especially at low temperatures and on blends of cotton/polyester.  

The most recent introduction of a new class of enzyme into detergent formulation is the 

addition of a mannanase. This enzyme helps removing various food stains containing 

guar gum, a commonly used stabilizer agent in food products (Bettiol and Showell, 

1999). The most recent innovation in detergent industry is the use of psychrophilic 

enzymes able to work effectively in cold water, allowing the save of energy 

(Cavicchioli et al., 2002).  

Currently, the majority of enzymes used in detergents are subtilisins isolated from 

Bacillus licheniformis, B. lentus, B. alcalophilus or B. amyloliquefaciens. They can now 

be generated by recombinant techniques (heterologous expression) and engineered in 

any aspect, as already described. Products like Purafect xP (Genencor), Everlase, 

Savinase, Esperase (Novozymes), were created and used as detergent additives which 

have been on the market for several years (Maurer, 2004).  
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15. Conclusions and future prospects 

As already mentioned, enzymes can be used in order to develop environmentally 

friendly alternative processes regarding almost all steps of textile fibres processing. 

There are already some commercial successful applications, like amylases used for 

desizing, cellulases and laccases for denim finishing and proteases incorporated in 

detergent formulations. Further research is still required for the implementation of 

commercial enzyme based processes for the biomodification of synthetic and natural 

fibers. Another field of research is the search for new enzyme-producing 

microorganisms and enzymes extracted from extremophilic microorganisms 

(Schumacher et al., 2001). 

Although some types of enzymes already play an important role in some textile 

processes, their potential is much greater and their applications in future processes are 

likely to increase in the near future.  
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1. Synthetic fibres 

Synthetic fibres are defined by the International Organization for Standardization (ISO) 

as fibres manufactured from polymers built up from chemical elements or compounds, 

in contrast to fibres made from naturally occurring fibre-forming polymers.  

Synthetic fibers represent almost 50% of the worldwide market of textile fibers. 

Common synthetic fibres include: acetate, nylon, modacrylic, olefin, acrylic and 

polyester. This chapter will focus on molecular biotechnology approaches aiming at the 

surface modification of poly(ethylene) terephthalate, polyamide 6,6 and acrylic. 

2. Polyester  

2.1. Poly(ethylene terephthalate) (PET) 

Polyester fiber, specifically poly(ethylene terephthalate) (PET), is the largest volume 

synthetic fiber produced worldwide. The total volume produced in 2002 was 21 million 

metric tons which corresponds to 58% of synthetic fiber production worldwide. 

Poly(ethylene naphthalate) (PEN); poly(butylene terephthalate) (PBT); poly(propylene 

terephthalate) (PPT); and poly(lactic acid) (PLA) are examples of other polyesters 

commercially produced in fiber form, however with lower volumes of production 

compared to PET. 

PET is the condensation product of terephthalic acid (TA) and ethylene glycol. The key 

to successful PET polymerization is monomer purity and the absence of moisture in the 

reaction vessel (Brown and Reinhart, 1971). 

The technology that allowed for the cost-effective polymerization of PET was the 

development of low-cost and pure TA from mixed xylenes in the mid-20th century 

(McIntyre, 2003). The alternative to TA, and the monomer of choice before the 

availability of low-cost TA, was dimethyl terephthalate (DMT). While direct 

esterification of TA is the preferred method of PET synthesis, ester interchange between 

DMT and ethylene glycol is still utilized in some PET manufacture, partially because of 

local choice and partially because DMT is a product of polyester recycling by 

methanolysis or glycolysis (Milgrom, 1993). The second monomer, ethylene glycol, is a 

http://en.wikipedia.org/wiki/Cellulose_acetate
http://en.wikipedia.org/wiki/Nylon
http://en.wikipedia.org/wiki/Modacrylic
http://en.wikipedia.org/wiki/Olefin_fiber
http://en.wikipedia.org/wiki/Acrylic_fiber
http://en.wikipedia.org/wiki/Polyester
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major material of commerce, produced by the oxidation of ethylene followed by ring 

opening with water. The large-scale production of all PET monomers assures low-cost 

polymers and makes competition from new compositions of fiber-forming polymers 

very difficult. 

2.2. PET fibres properties 

PET fiber has excellent properties like convenient processability and tailorable 

performance, associated with low cost production. Undesired characteristics of the most 

widely used synthetic fibres based on polyethyleneterephthalates (PET) include 

difficulties in finishing, build-up of electrostatic charge, the tendency to pilling, 

insufficient washability and wearing comfort due to low water absorbency (East, 2005). 

Although alkaline treatment of PET can easily increase hydrophilicity, favourable 

properties such as strength are negatively influenced (Zeronian and Collins, 1989). 

 

3. Polyamides  

3.1. Aliphatic polyamides 

Aliphatic polyamides are macromolecules whose structural units are characteristically 

interlinked by the amide linkage –NHCO-. The nature of the structural unit constitutes a 

basis for classification. Aliphatic polyamides with structural units derived 

predominantly from aliphatic monomers are members of the generic class of nylons, 

whereas aromatic polyamides in which at least 85% of the amide linkages are directly 

adjacent to aromatic structures have been designated aramids (Reimschuessel, 1998). 

    3.1.1. Polyamide 6,6 

Among various nylon compositions, nylon-6,6 is by far the most important polyamide 

for the commercial production of fibers. Nylon 6,6 is a copolymer of diamine 

(hexamethylene diamine) and diacid (adipic acid). These molecules alternate along the 

chain, each donating 6 carbons to the polymer.  

http://en.wikipedia.org/wiki/Hexamethylene_diamine
http://en.wikipedia.org/wiki/Adipic_acid
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In the laboratory, nylon 6,6 can also be made using adipoyl chloride instead of adipic. It 

is difficult to get the proportions exactly correct, and deviations can lead to chain 

termination at molecular weights less than a desirable 10,000 Daltons. To overcome this 

problem, a crystalline, solid "nylon salt" can be formed at room temperature, using an 

exact 1:1 ratio of the acid and the base to neutralize each other. Heated to 285 °C, the 

salt reacts to form nylon polymer. Above 20,000 daltons, it is impossible to spin the 

chains into yarn, so to combat this, acetic acid is added to react with a free amine end 

group during polymer elongation to limit the molecular weight. In practice, and 

especially for 6,6, the monomers are often combined in a water solution. The water used 

to make the solution is evaporated under controlled conditions, and the increasing 

concentration of "salt" is polymerized to the final molecular weight (Kohan, 1992). 

3.2. Polyamide 6,6  fibres properties 

Despite of all the excellent properties exhibited, nylon fibers present low hydrophylicity 

and low reactivity with the most usual finishing and colouring agents. Coating finishing 

effects are difficult to obtain when hydrophobic polyamide fabrics are used. Recent 

studies clearly indicate that the modification of synthetic polymers with enzymes is an 

effective and environmentally friendly alternative to chemical methods using alkaline 

products (Silva et al., 2004). 

4. Acrylic 

Acrylic fibers are synthetic fibers made from a polymer (polyacrylonitrile) with an 

average molecular weight of approximatly 100,000 Dalton. To be called acrylic the 

polymer must contain at least 85% acrylonitrile monomer (Greenley, 1989). Typical 

comonomers are vinyl acetate or methyl acrylate. The polymer is formed by free-radical 

polymerization. The fiber is produced by dissolving the polymer in a solvent such as 

N,N-dimethylformamide or aqueous sodium thiocyanate, metering it through a multi-

hole spinnerette and coagulating the resultant filaments in an aqueous solution of the 

same solvent. Washing, stretching, drying and crimping complete the processing.  

http://en.wikipedia.org/wiki/Adipoyl_chloride
http://en.wikipedia.org/wiki/Atomic_mass_unit
http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Salt
http://en.wikipedia.org/wiki/Room_temperature
http://en.wikipedia.org/wiki/Ratio
http://en.wikipedia.org/wiki/Acid
http://en.wikipedia.org/wiki/Base_%28chemistry%29
http://en.wikipedia.org/wiki/Yarn
http://en.wikipedia.org/wiki/Acetic_acid
http://en.wikipedia.org/wiki/Synthetic_fiber
http://en.wikipedia.org/wiki/Polyacrylonitrile
http://en.wikipedia.org/wiki/Acrylonitrile
http://en.wikipedia.org/wiki/Vinyl_acetate
http://en.wikipedia.org/wiki/Methyl_acrylate
http://en.wikipedia.org/wiki/Dimethylformamide
http://en.wikipedia.org/wiki/Sodium_thiocyanate
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End uses include sweaters, hand-knitting yarns, rugs, awnings, boat covers, and beanies; 

the fiber is also used as a precursor for carbon fiber. 

4.1. Polyacrylonitrile fibres Properties 

Polyacrylonitrile (PAN) fibres are characterised by a combination of desirable 

properties such as high resistance to outdoor exposure and chemicals, excellent 

elasticity, natural-like aesthetics properties and colour fastness. However, due to its 

hydrophobic nature, PAN fibres also exhibit undesirable properties such as 

uncomfortable hand and static charge accumulation (Lulay, 1995; Frushour and Knorr, 

1998). The quality and properties of acrylic fibres can be improved by chemical and 

physical means using co-monomers, additives and polymer blends (Burkinshaw, 1995). 

The surface modification is also considered an important tool to improve the quality and 

the processing properties of PAN fibres (Battistel et al., 2001). Traditional processes 

used to modify polymer surfaces are based on the addition of strong chemical agents. 

The application of enzymes towards the modification of this polymer has major 

advantages compared to those agents, such as milder reaction conditions, easier control, 

specific non-destructive transformations, and environmental friendly processes. 

 

5. Surface modification of synthetic fibres 

Major characteristics of synthetic fibers are their excellent strength, high hydrophobicity 

and low reactivity with most common chemical agents. The suitability of fibers for a 

given end-use application depends on several factors including mechanical behavior, 

chemical resistance, dimensions, and surface characteristics. For instance, the low 

hydrophobicity makes those fibers less suitable to be in contact with the human skin, 

and the low reactivity makes the fiber unsuitable to act as carrier to other chemical 

finishing agents. The interest in fiber surface modification is related to the introduction 

of specific properties required for a certain application. The desired properties may 

range from improved adhesion to response to stimuli from the environment. 
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Fibre surface modification has been one of the main areas of research in the 

development of functional fibres. In addition to research in developing/synthesizing 

new fibre forming polymers with specialized properties, surface modification offers 

many new opportunities. Properties of fibres such as anti-microbial, anti-odor, anti-

fungal, anti-static, wicking, soil resistance, adhesion, and biocompatibility are among 

fibre function surface properties. 

There are various techniques available for surface modification including hot and cold 

plasma irradiation (Cioffi et al., 2003; Xu and Liu, 2003), enzymatic treatment (Silva et 

al., 2005; Vertommen et al., 2005; Yoon et al., 2002; Battistel et al., 2000; Tauber et 

al., 2000), chemical finish (Cai et al., 2001) and metal vapor deposition (Jeon et al., 

2008). Among various surface modification techniques strong alkaline treatments can 

improve hydrophilicity and chemical reactivity of synthetic fibers but the treatment 

extension is hard to control, leading to unacceptable levels of strength loss. 

Enzyme treatment techniques are attractive to implement due to ecological and 

economic reasons however, the application of enzymes in textile processes often 

requires properties or performances not found in enzymes isolated from natural sources. 

Molecular biotechnology can be used to introduce desired changes in catalytic activity, 

thermal stability and molecular recognition behaviour of enzymes. The following 

subchapters describe the work developed in the scope of this thesis aiming at the 

optimization of cutinase activity for the surface modification of synthetic fibres 

polyethilene therephthalate, polyamide and cellulose acetate. 
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Abstract 

Cutinase from Fusarium solani pisi was genetically modified near the active site, by 

site-directed mutagenesis, to enhance its activity towards polyethylene terephthalate 

(PET) and polyamide 6,6 (PA 6,6) fibers. The mutations L81A, N84A, L182A, V184A 

and L189A were done to enlarge the active site in order to better fit a larger polymer 

chain. Modeling studies have shown enhanced free energy stabilization of model 

substrate tetrahedral intermediate (TI) bound at the enzyme active site for all mutants, 

for both model polymers. L81A and L182A showed an activity increase of four- and 

five-fold, respectively, when compared with the wild type, for PET fibers. L182A 

showed the one- and two-fold higher ability to biodegrade aliphatic polyamide 

substrates. Further studies in aliphatic polyesters seem to indicate that cutinase has 

higher ability to recognize aliphatic substrates. 
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1. Introduction 

Cutinase from the fungus Fusarium solani pisi is a secreted enzyme that degrades cutin, 

the structural polyester of plants cuticle, being a versatile serine hydrolase showing 

unusual stereolytic activity (Carvalho et al., 1998). In vitro, cutinases display hydrolytic 

activity towards a broad variety of esters including triglycerides (Carvalho et al., 1998). 

Synthetic activities of cutinases have also been described for the production of 

triglycerides, polymers and agrochemicals containing one or more chiral centers 

(Carvalho et al., 1999).  

Our group showed for the first time the ability of cutinase to biodegrade polyamide 6,6 

(PA 6,6) and vinyl acetate (co-monomer of acrylic fiber) fibers (Silva et al., 2005) and 

we also confirmed that cutinase is an enzyme with a high potential to hydrolyze and 

improve the surface properties of polyethylene terephthalate (PET) fibers in an 

environmentally friendly way (Silva et al., 2005). However, these synthetic fibers are 

non-natural substrates and, despite the broad specific activity of cutinase, turnover rates 

are very low.  

The analysis of the 3D structure of the cutinase from F. solani pisi (PDB code 1CEX) 

(Longhi et al., 1997) shows that the external, but closed active site is hindering the 

access to the fiber substrate. In the present work, site-directed mutagenesis was 

performed on selected residues allowing the fit of a larger substrate in the active site. 

A comparative discussion is made on the biodegradation ability of the several mutations 

based on modeling data, enzyme activity and protein adsorption levels from the 

polymeric substrates. The cutinase ability to biodegrade polyamide aliphatic substrates 

was confirmed by measuring the activity on hydrophobic aliphatic polyesters, which 

present a similar structure to cutin. Amidase and esterase activity of cutinase is also 

discussed. 
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2. Materials and methods 

2.1. Fibers and reagents 

Oligonucleotides (0.05 μmol scale) were purchased from MWG Biotech, Germany. 

Restriction and modification enzymes were supplied by Roche Applied Science, 

Germany. Accuzyme DNA Polymerase was obtained from Bioline, Germany. The 

Escherichia coli strain BL21(DE3) and the plasmid vector pET25b (+) were purchased 

from Novagen, Madison, WI, USA. The succinic acid kit Cat No. 10 176 281 035 was 

obtained from R-Biopharm, Germany. For biodegrading experiments it was used 

commercial polyamide woven fabric, a plain woven structure with 63 g/m2 and 

commercial polyester taffeta fabric with 62 g/m2, both supplied by Rhodia, Switzerland. 

All other reagents used were laboratory grade reagents. 

2.2. Modeling studies 

Modeling studies were performed using the cutinase X-ray structure of Longhi et al., 

(1997), PDB code 1CEX, solvated dodecahedral water box (minimum distance between 

the protein and box wall of 0.8 nm), with the model substrates tetrahedral intermediate 

(TI) bound at the enzyme active site. These model substrates, 1,2-ethanodiol dibenzoate 

and PA 6,6 mimics the polyester and polyamide hydrophobic properties, respectively, 

and are suitable models for simulation and experimental studies.  

The formation of the TI is known to be the rate limiting step in the catalytic mechanism 

of serine proteases (Warshel et al., 1989). This model system was chosen in order to 

evaluate the free energy of stabilization of the TI provided by selected mutations to 

alanine of residues located at the enzyme active site (Figure 1): L182A, V184A, L189A, 

L81A and N84A according to Scheme 1. These mutations were initially designed as 

possible changes leading to a better fitting of the 1,2-ethanodiol dibenzoate and PA 6,6 

TI in the active site. Molecular dynamics/molecular mechanics (MD/MM) simulations 

(van Gunsteren and Berendsen, 1990) were performed with the GROMACS package 

(Berendsen et al., 1995; Lindahl et al., 2001) Version 3.1.4, using the GROMOS96 
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force field (Scott et al., 1999) with an integration time step of 2 fs. Five simulations 

(with different initial velocities) were made, both with the free enzyme and enzyme 

bound to the TI. Bond lengths of the solute were constrained with LINCS and the ones 

of water with SETTLE. Non-bonded interactions were calculated using a twin-range 

method with short and long range cut-offs of 8 and 14 A°, respectively. The SPC water 

model was used (Hermans et al., 1984).  

A reaction field correction (Tironi et al., 1995; Barker and Watts, 1973) for electrostatic 

interactions was applied, considering a dielectric of 54 for SPC water (Smith and van 

Gunsteren, 1994). The solute and solvent were coupled to two separate heat baths 

(Berendsen et al., 1984) with temperature coupling constants of 0.1 ps and reference 

temperatures of 300 K. The pressure control was implemented with a reference pressure 

of 1 atm and a relaxation time of 0.5 ps (Berendsen et al., 1984).  

Free energy calculations (Beveridge and Dicapua, 1989) were made using 

thermodynamic integration by slowly changing the selected residues to alanine using 11 

equally spaced sampling points 100 ps each. Five replicates based on the five different 

trajectories were made for each mutation. The trajectories were run for 2 ns prior to the 

free energy calculations. 

 

 
A                          B 

Figure 1. Detail of the active site X-ray structure of cutinase with the energy minimized 

structure of the TI of 1,2-ethanodiol dibenzoate (PET model substrate) (A) and PA 6.6 

(B). Catalytic histidine (H188) and oxianion-hole (OX) are shown. Residues mutated in 

this study are labelled as: L81A, N84A, L182A, V184A and L189A. 
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Scheme 1. Thermodynamic cycle employed in the calculation of the relative free energy 

of stabilization of the model substrate TI between native and genetically modified (Mut) 

enzyme, ΔΔGnative-Mut = ΔG2 - ΔG1. This thermodynamic cycle evaluates the 

preferential stability of the model substrate TI to be bound to the native or to the 

genetically modified enzyme. This is achieved through the calculation of ΔG1 and ΔG2 

by thermodynamic integration (Beveridge et al., 1989). 

2.3. Plasmid construction and protein expression 

The native cutinase gene sequence was PCR-amplified with the primers CutFor (5´-

CGGGATCCCATGAAACAAAGCACTATTGCACTG- 3´) and CutRev (5´-

CGAGCTCGCAGCAGAACCACGGACAGCC- 3´) from the vector pDrFST (kindly 

provided by Professor G. Georgiou, Institute for Cell and Molecular Biology, 

University of Texas, Austin, USA) (Griswold et al., 2003). The PCR product was 

restricted with BamHI and SacI and cloned into the BamHI and SacI restricted and 

dephosphorilated pET25b(+), resulting in the final pCWT vector. The plasmid construct 

was verified by DNA sequencing. The sequencing was performed following the method 

of Sanger et al., (1977), using an ABI PRISM 310 Genetic Analyzer.  

Site-directed mutagenesis was performed using recombinant PCR technique (Ansaldi et 

al., 1996). This approach is based on the PCR amplification of an entire plasmid by 

mutagenic primers (Table I) divergently oriented but overlapping at their 5´ends. The 

mutagenic nucleotides are located only in the reverse primer.  

Enzyme(native) 

Enzyme(native):
TI 

Enzyme(Mut):TI 

Enzyme(Mut) 
ΔG1

ΔG2

ΔG3 ΔG4
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Table I. Primers used for site-directed mutagenesis of cutinase gene from Fusarium 

solani pisi. The codons corresponding to the specific mutations introduced are indicated 

in bold. The overlapping regions (22 bp) of primers forward (F) and reverse (R) are 

underlined. 

Mutation Primer (5´→ 3´) Bp GC % 

L81A F1  CTCTCCCTCGCGGAACCTCTAGCGCCGCAATCAGGGAGA 39 64.1 

 R1 CTAGAGGTTCCGCGAGGGAGAGCATTGTCTCCGGCAGTGGCTCGGTAGGCAC 52 63.5 

N84A F2  GCGGAACCTCTAGCGCCGCAATCAGGGAGATGCTCGGTC  39 64.1 

 R2 ATTGCGGCGCTAGAGGTTCCGCGAGGGAGAGCGGCGTCTCCAAGAGTGGCTC 52 65.4 

L182A F3 CACCTCACTTGGCTTATGGTCCTGATGCTCGTGGCCCTG 39 59.0 

 R3 GGACCATAAGCCAAGTGAGGTGCAGCAACGATGGCGCTACCAGTACAAACGA 52 53.8 

V184A F4 ACTTGGCTTATGGTCCTGATGCTCGTGGCCCTGCCCCTG 39 61.5 

 R4 GCATCAGGACCATAAGCCAAGTGAGGTGCAGCGGCGATCAAGCTACCAGTAC 52 55.8 

L189A F5 CTGATGCTCGTGGCCCTGCCCCTGAGTTCCTCATCGAGA 39 61.5 

 R5 GGGGCAGGGCCACGAGCATCAGGACCATAAGCGGCGTGAGGTGCAGCAACG 51 66.7 

 
 
The pET25b (+) carrying native and genetically modified cutinases were first 

established in E. coli strain XL1 Blue, according to the SEM method (Inoue et al., 

1990), and the presence of each specific mutation was confirmed by sequencing. DNA 

cloning and manipulation were performed according to the standard protocols 

(Sambroock et al., 1989). T7 expression host strain BL21(DE3) was used for protein 

expression. 

Strains were grown at 37 ºC in Luria-Broth medium, supplemented with 50 μg/ml 

ampicillin until an absorbance A600 nm of 0.6 was reached. Cells were then induced by 

adding isopropyl-1-thio-β-galactopyranoside (IPTG) (final concentration 1 mM), 

followed by 16 h at 18 ºC. The cells were harvested by centrifugation (5000 rpm for 10 

min) and washed twice with phosphate buffered saline solution (10 mM Na2HPO4, 

2 mM KH2PO4, 137 mM NaCl, 3 mM KCl, pH 7.4), supplemented with a mixture of 

protease inhibitors. Ultrasonic treatment of bacterial cells was performed at 20 KHz 

with a 13-mm probe in an Ultrasonic Processor GEX 400. Four 2-min pulses with 2 min 

in ice between each pulse were performed. The lysate was centrifuged for 30 min at 
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14000 rpm at 4 ºC. The supernatant, periplasmatic fraction was decanted and reserved 

for cutinase purification. 

2.4. Protein purification by immobilized metal affinity chromatography (IMAC) 

An IMAC system was performed with the XK 16 column (Amersham Pharmacia 

Biotech) containing 2.5 ml Chelating Sepharose Fast Flow (Amersham Pharmacia 

Biotech). The XK 16 column was linked to an AKTA P900 workstation (Amersham 

Pharmacia Biotech). After loading with 3 ml 0.1M NiSO4 in H2O, equilibration was 

performed with 10 mM imidazole, 0.5 M NaCl and 20 mM phosphate buffer pH 7.6. 

Samples were applied onto the column at a flow rate of 2 ml/min, followed by washing 

with the equilibration buffer until the UV baseline was reached. Elution was performed 

with a buffer containing 500 mM imidazole, 0.5 M NaCl and 20 mM phosphate buffer, 

pH 7.6. The activity-containing fractions were collected and used as the pure enzyme 

for polyester enzymatic hydrolysis. 

Sodium dodecyl sulphate-polyacrylamide gel (SDS-PAGE) electrophoresis, using a 

Tris–SDS–glycine buffer system, was used to monitor the fractions obtained from 

IMAC (Laemmli, 1970). Protein detection was done by Coomassie Brilliant Blue R250, 

as well as by InVision His-tag In-gel Stain (Invitrogen, California, USA). The total 

protein concentration was estimated by the Bradford quantitative protein determination 

assay (Bradford, 1976) using bovine serum albumine as standard. 

2.5. Cutinase activity towards p-nitrophenyl butyrate (p-NPB) 

The stereolityc activity of cutinase was determined spectrophotometrically following 

the hydrolysis of p-nitrophenyl butyrate (p-NPB) at 400 nm (Shirai and Jackson, 1982). 

One unit of activity was defined as the amount of enzyme required to convert 1 μmol of 

p-nitrophenyl butyrate to p-nitrophenol (p-NP) per minute. All the activity assays were 

done in triplicate. 
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2.6. Cutinase activity towards polyethylene terephthalate (PET) and polyamide 6,6 (PA 
6,6) fibers 

One gram of polyamide fabric was incubated with 20 mg/l of native and genetically 

modified mutant enzymes, in 300 ml of phosphate buffer (0.1 M NaOH, 0.1 M KH2PO4, 

pH 7.5) at 37 ºC. For this experiment, the samples were incubated in Erlenmeyers using 

a shaking bath with orbital agitation (90 rpm) for 48 h. After treatment all samples were 

washed with 2 g/l of Na2CO3 for 2 h, in order to stop the enzymatic reaction, followed 

by washing with 10 g/l of Lutensol at 25 ºC for 1 h. The same procedure was followed 

for PET fabrics with an incubation period of 24 h. The hydrolysis products were 

quantified as previously described (O’Neill and Cavaco-Paulo, 2004; Silva and Cavaco-

Paulo, 2004). 

2.7. Determination of protein adsorption 

The protein adsorption was obtained measuring the protein content in the incubation 

solutions before and after the enzymatic treatment of PET and PA 6,6 fabrics. The 

difference between the values obtained for these two periods measures the protein 

adsorbed by the substrates. 

2.8. Cutinase activity towards aliphatic polyesters 

In order to measure the activity of native and L182A cutinase mutant towards aliphatic 

substrates, 0.05 g of each substrates, poly(ethylene succinate), poly(1,3-propylene 

succinate) and poly(1,4-butylene succinate) were incubated with 1 U (μmol of p-NP per 

min)/ml in a 3 ml phosphate buffer bath (pH 7.5) at 37 ºC for 5 h. The activity towards 

aliphatic substrates was quantified by measuring succinic acid formation, using the 

succinic acid UV kit method. 

The total protein concentration was estimated by the Bradford quantitative protein 

determination assay (Bradford, 1976) using bovine serum albumine as standard. 
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3. Results and discussion 

Molecular modeling studies were performed by docking the synthetic model substrates 

of PET and PA 6,6 at the cutinase active site (Figure 1). All mutations were done to 

create more space in order to fit the large inaccessible polymer in the active site of the 

cutinase. 

The modeling studies show that mutations L182A, L189A, L81A and V184A provide a 

better stabilization of the TI of the model substrates relatively to the native enzyme 

(Table II), while the N84A mutation fails in stabilizing the TI model substrates due to 

the favourable interaction of the aspargine with the oxianion hole (Longhi and 

Cambillau, 1999). This is in accordance with the experimental activity obtained for p-

NPB and PA 6,6 (Table III). Higher stabilization is achieved with L182A as shown by 

the experimental results (Table III). The modeling results suggest that L189A, L81A 

and V184A also stabilize both TI, but in a lower extent. Of all these four mutations 

found to stabilize the TI theoretically, experimentally L182A, L81A and V184A 

displayed an increased activity for PET fibers, while L189A showed a decreased 

activity. Experimentally, in the case of PA 6,6 fibers, a higher hydrolytic activity was 

obtained with L182A form (119%) while L189A, V184A and L81A displayed a slight 

decrease (Table III). 

Structural analysis of the enzyme active site suggests that, replacing the bulky side 

chain of L182 by a smaller residue such as alanine (the L182A mutant) provides a less 

restrained active site, allowing a better accommodation of the model substrate, which 

gave the best enzyme activity improvement. This mutation allows the opening of the 

hydrophobic cleft of the enzyme active site, providing a better fit and stabilization of 

both model substrates than the native enzyme. The modeling studies also predict that 

the longer polymer chain in PET and PA 6,6 fabrics will also be more stabilized by this 

modified enzyme, which is corroborated by the experimental results, since there is a 

wider channel in the active site for these polymers to go through (Figure 2). 
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Figure 2. Cutinase surface rendering of a representative configuration of an equilibrated 

simulation: Native (A), and genetically modified cutinase L182A (B). L182A mutation 

is responsible for the highest increase of TI stabilization and enzymatic activity toward 

the 1,2-ethanodiol dibenzoate substrate. The 1,2-ethanodiol dibenzoate TI model is 

rendered in sticks. 

 

Table II. Stabilization free energy of the model substrate TI estimated for the 

genetically modified enzymes. Free energies are calculated relatively to the native 

enzyme. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 ∆∆G (kJ/mol) 

Mutation PA 6.6 PET 

L182A -3.80 -4.81 

L189A -2.38 -2.83 

V184A -2.44 -1.81 

L81A -1.77 -2.35 

N84A 15.95 14.64 

A B 
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Table III. Activity of cutinases towards PET and PA 6,6 and protein adsorption levels. 

Values are normalized to the native enzyme. 

 
 PET  PA 6,6  

Mutation 

p- Nitrophenyl butyrate (p-

NPB) 

 

CH3CH2CH2 C

O

NO2O

 

% (Umg-1) 

Terephthalic acid 

formed after incubation 

with PET fibers (24 h)* 

O CH2CH2

O

CC O

O

n  

 % (mM) 

Protein 

adsorption 

levels after 

incubation 

 (24h) 

(%) 

Amines formed in solution 

with PA66 fibers (48 h)*  

C

O

(CH2)4 C

O

N

N

(Ch2)6 N

H

n  

% (mM) 

Protein 

adsorption 

levels after 

incubation 

(48h) 

(%) 

Native 100 (210) 100 (0.024) 95 100 (0.094) 30 (± 1.5) 

L182A 465 (± 1.8) 528  95 119 (± 2.5) 25 (± 2) 

L189A 147 (±1.3) 78 45 94 (± 3) 37 (± 2) 

V184A 289 (± 2.2) 203  95 98 (± 3) 21 (± 2.5)  

L81A 125 (± 1.8) 399 75 98 (± 2.8) 43 (± 2) 

N84A 45 (± 2.6) 170 95 83 (± 3) 15 (± 3) 

*See references (O’Neill et al., 2004) (Silva et al., 2004) for experimental details. 
 

The activity of cutinases towards PET and PA 6,6 fibers was expressed as mmolar 

(mM) of soluble terephthalic acid and soluble amines, respectively, obtained after a 

certain period of time. Due to the fact that these substrates are solid, no proper 

Michaelis–Menten kinetic could be calculated. Since we wanted to compare 

performances of each mutant enzyme based on equal amounts of protein, we expressed 

those estimated activities in mM of hydrolysis products. 

The experimental hydrolytic activity on p-NPB was higher for all the mutant enzymes, 

when compared with the native cutinase, with the exception of N84A, which is 

explained by the modeling studies on basis of the favorable interaction of the aspargine 

with the oxianion hole (Table III). Modified cutinases L182A and V184A have shown a 

remarkable increase in activity on p-NPB. Hydrolytic activity of L182A form increased 

more than four-fold. This seems to be a promising mutation to modify the hydrophobic 
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surface of polyamide and polyester fibers. Concentrations of PET hydrolysis products 

were calculated after 24 h of PET fabric incubation with the enzyme, in the linear area 

of substrate conversion. Again L182A was the most active enzyme. The relative ratios 

of activities were similar for PET fibers and p-NPB, except for L189A and N84A.  

Cutinase is also able to biodegrade polyamide 6,6 substrates, but the designed mutations 

failed to give a clear increase of activity (Table III). Just 19% of increase was found for 

L182A. These results tend not to be in agreement with the modeling studies of the free 

energy of stabilization of TI for all mutant enzymes for polyamide 6,6 (Table II). 

Given that PET and PA 6,6 fibers are mostly hydrophobic, the adsorption properties of 

native and mutant unbound enzymes were modeled considering an analysis based on the 

total enzyme hydrophobic surface. Modified enzymes tested have an equal or lower 

percentage of hydrophobic surface in comparison with the native, as it was expected 

(Table IV), given that large hydrophobic residues were changed by smaller ones (with 

the exception of N84, which is polar). Our studies predict that L182A, N84A and L81A 

do not significantly affect the adsorption by the hydrophobic fibers, but V184A and 

L189A show a decrease in hydrophobic area, suggesting that fiber adsorption is reduced 

in this order. The modeling studies predictions are not in total agreement with the 

experimental results. N84A, L81A, V184A and L189A displayed different behavior of 

protein adsorption levels for both fibers when compared with the modeling studies. 

On the other hand, the L182A seems to maintain the same adsorption properties as the 

native enzyme for PET fibers and a slight decrease in the case of PA 6,6. 

Given that the biotransformation of a fiber is a heterogeneous reaction, a pre-adsorption 

of the enzyme on the solid substrate is assumed before the catalysis can proceed. By 

looking at adsorption data it is possible to verify that cutinase adsorption levels are 

higher for PET than for PA 6,6 (Table III). For the same concentrations of native 

cutinase, PET fibers seems to be fully covered with enzyme (± 95%) while this level 

was not reached for PA 6,6 fibers (± 30%). 

Despite the stabilization of TI for several mutant cutinases, other adsorption and 

substrate recognition issues seem to play a major role on the enzymatic hydrolysis of 

solids substrates by cutinase. According to these results, L182A was considered to be 

the most promising enzyme for future studies.  
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Table IV. Hydrophobic surface percentage (hydrophobic surface/total surface) with SE 

of native and genetically modified enzymes (Eisenhaber et al., 1995). 

 

Enzyme Hydrophobic surface 
(hydrophobic/total) (%) 

 
Standard 
error (SE) 

Native 40.710 0.096 
L81A 40.780 0.192 
N84A 40.650 0.243 
L182A 40.610 0.147 
V184A 40.560 0.154 
L189A 40.410 0.185 

 
We further measured the activity of the native and L182A cutinases towards aliphatic 

polyesters, which resemble the original cutin substrate. Apparently, the native form 

seems to have a decrease of activity and protein adsorption levels as the hydrophobicity 

of the substrate increases (Table V). The opposite seems to happen with L182A, which 

presents a lower hydrophobic area (Table IV). However, the space created by the 

substitution of leucine by alanine close to the active site, appears to be enough to better 

“accommodate” hydrophobic aliphatic substrates. These results seem to indicate that 

cutinase is designed to recognize aliphatic chains, being one of the reasons why this 

enzyme shows activity towards the aliphatic structure of polyamide 6,6. 

In summary, we have obtained cutinases with enhanced activity towards polyester 

fibers, namely L81A and L182A. The increase in activity of these mutations can be 

explained by a higher stabilization of TI and a better accommodation of the substrate, as 

has been shown by our modeling studies. Furthermore, the L182A mutation does not 

affect the adsorption levels. Regarding polyamide treatment, our findings suggest that 

these fibers can be more efficiently modified when L182A cutinase is used. Being 

cutinase an esterase, it seems unlikely that it will biodegrade polyamide substrates. 

However, our findings suggest that the similarity of polyamide structure with cutin and 

the diversified substrate recognition of cutinase, might explain the ability of this enzyme 

to modify the surface of these fibers, showing however a slow enzymatic kinetics (Silva 

and Cavaco-Paulo, 2004). 
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Table V. Activity of cutinases towards aliphatic polyesters and protein adsorption 

levels. 

 
Enzymes  

Native L182A  

Aliphatic Polyesters 
Succinic acid 
(mM) 

Protein 
adsorption 
(%) 

Succinic acid 
(mM) 

Protein 
adsorption 
(%) 

Poly(ethylenesuccinate) 

OCH2CH2O C

O

CH2CH2 C

O

n  

728 50 127 20 

Poly(1,3-propylenesuccinate) 

OCH2CH2CH2O C

O

CH2CH2 C

O

n  

626 41 330 29 

Poly(1,4 -butylene succinate) 

 

C

O

CH2CH2 C

O

OCH2CH2CH2CH2O

n  

432 43 339 24 
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Abstract 

Two polyamide 6,6 substrates with different construction, namely a model substrate and 

a fabric, were hydrolyzed using native cutinase and L182A cutinase mutant (from 

Fusarium solani pisi) and a protease (subtilisin from Bacillus sp.). The catalytic 

efficiency of these enzymes, measured in terms of hydrolysis products release, was 

measured for both substrates and the protease released 5 times more amines to the bath 

treatment. The L182A cutinase mutant showed higher activity when compared with the 

native enzyme. All enzymes have shown activity additive effects with higher levels of 

mechanical agitation for polyamide fabrics. The results achieved are of paramount 

importance on the design of a process of enzymatic functionalization of polyamide 
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1. Introduction 

Polyamide 6.6 (nylon 6.6) is an aliphatic semi-crystalline polymer made up of adipic 

acid and hexamethylenediamine. The amide groups -(-CO-NH-)- provide hydrogen 

bonding among polyamide chains, giving high strength properties at high temperatures, 

toughness at low temperatures, as well as stiffness, wear and abrasion resistance, low 

friction coefficient and good chemical resistance. 

Nylons are therefore one of the strongest synthetic fibers commonly used, with an 

extensive range of applications such as clothing, apparel, carpets, tyre reinforcement, 

parachutes and many other applications (Guillen, 1986; Reimschuessel and Herbert, 

1998). Despite of all the excellent properties exhibited, nylon fibers present low 

hydrophylicity and low reactivity with the most usual finishing and colouring agents 

(Silva et al., 2004; Vertommen et al., 2005). Coating finishing effects are difficult to 

obtain when hydrophobic polyamide fabrics are used. Recent studies clearly indicate 

that the modification of synthetic polymers with enzymes is an effective and 

environmentally friendly alternative to chemical methods using alkaline products 

(Guebitz and Cavaco-Paulo, 2003). New processes using cutinases have been developed 

for the surface modification of polyamide fibers and quite satisfactory results were 

obtained (Silva et al., 2004; Vertommen et al., 2005; Guebitz and Cavaco-Paulo, 2003; 

Silva et al., 2005). 

Cutinase from Fusarium solani pisi is a α/β hydrolase that degrades cutin, the cuticular 

polymer of higher plants, which is an insoluble hydrophobic polyester composed of 

hydroxyl and epoxy fatty acids (Carvalho et al., 1998; Heredia, 2003; Osman et al., 

1993). This enzyme has a catalytic mechanism similar to that presented by serine 

proteases. It is characterized by the triad Ser, His, Asp residues and by an oxyanion 

binding site that stabilizes the transition state via hydrogen bonds with two main chain 

amide groups (Carvalho et al., 1998; Heredia, 2003; Osman et al., 1993; Nicolas et al., 

1996; Lau and Bruice, 1999; Longhi et al., 1997). 

Serine proteases such as subtilisin have a structural homology however they do not 

recognize the same substrates (Gupta et al., 2002). 

Being cutinase an esterase, it seems improbable that it will hydrolyze polyamide 

substrates. Although, polyamide has a structure quite similar to the cutin, that is an 
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aliphatic polyester. This similarity and the diversified substrate recognition of cutinase 

makes it able to modify the polyamide surface, showing however a slow enzymatic 

kinetics (Silva et al., 2004). 

The high crystallinity of the polyamide structure and the low affinity of the enzyme to 

the non-natural substrate are the main factors responsible for that. A more detailed study 

is needed in a way to know which process variables are the most significant in 

determining the efficiency of enzymatic hydrolysis. These variables may include 

different genetic modifications as well as the more usual operating conditions such as 

enzyme concentration, liquor ratio, treatment time, temperature, pH and mechanical 

agitation (Azevedo et al., 2000). 

Site direct mutagenesis is a way of developing the cutinase in order to obtain a higher 

specific activity to insoluble substrates like polyamide fiber. The modeling studies are 

based on the substitution of the specific amino acid residues close to the active site of 

cutinase, resulting in a modified enzyme with different properties and bigger binding 

sites. A previous work was performed in order to increase cutinase activity towards 

polyamide substrates (Araújo et al., 2007). Site-directed mutagenesis of cutinase was 

performed and five genetically modified enzymes were obtained by changing specific 

amino acids residues around the active site by alanine (L81A, N84A, L182A, V184A 

and L189A). The L182A mutant form was the most efficient in the catalysis of the 

amide linkages (Araújo et al., 2007). 

The process of enzyme adsorption is also of main importance to the enzymatic 

hydrolysis of polyamide. Different studies reveal that the adsorption of proteins follows 

different steps and that the mechanical agitation plays an important role in all of them 

(Cavaco-Paulo et al., 1996; Maldonado-Valderrama et al., 2005). Earlier investigation 

with cellulases proved that higher mechanical agitations increased greatly the enzyme 

performance at the fibers surface, although it can lead to an increase of the weight loss 

(Azevedo et al., 2000; Araújo et al., 2007; Cavaco-Paulo and Almeida, 1994; 

Maldonado-Valderrama et al., 2005; Cavaco-Paulo, 1998; Cavaco-Paulo and Almeida, 

1994). 

Different levels of mechanical agitation might lead to different levels of protein 

adsorption and enzymatic hydrolysis. The surface properties have an enormous effect 
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on the mechanism, rate and degree of adsorption. The hydrophilicity of the surface has 

generally been regarded as a very important factor: the hydrophobicity of the surface 

increases the adsorption degree (Palonen et al., 2004). Cutinases, as well as proteases, 

have hydrophobic amino acids exposed on the surface which can increase the binding to 

the hydrophobic surface of polyamide fibres. 

The purpose of the present work is to provide new insights about the influence of 

mechanical agitation on cutinase and protease activities towards polyamide substrates. 

The interaction between the activity of the genetically modified cutinases, the activity of 

a protease and the mechanical agitation were studied. 

2. Materials and methods 

2.1. Enzymes and reagents 

Commercial polyamide (PA 6.6) woven fabric, a plain woven structure with 63 gm-2, 

was supplied by Rhodia (Switzerland). The polyamide model substrate (trimmer) was 

synthesized as described (Heumman et al., 2006). The genetic modification of cutinase 

was performed as previously described (Araújo et al., 2007). The protease, subtilisin 

from Bacillus sp. (E.C. 3.4.21.62), was a commercial enzyme purchased from SIGMA 

(St. Louis, USA). The reactive dye used, Lanasol Red 5B (C.I. Reactive Red 66 – 

17555), was generously supplied by CIBA (Switzerland). All other reagents used were 

laboratory grade reagents. 

2.2. Quantification of protein concentration 

Total protein concentration was determined by the Bradford methodology using bovine 

serum albumin (BSA) as standard (Bradford, 1976). For each sample three 

determinations were made. 
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2.3. Determination of the amino groups in the liquor treatment 

To quantify the amino groups released to the liquor treatment during enzymatic 

hydrolysis, the trinitrobenzenesulfonic acid (TNBS) method was adapted from a 

methodology already described (Silva et al., 2004).  

2.4. Determination of the amino end groups at the fiber surface by reactive staining 

The amino groups at the surface of the polyamide fabric resulting from the enzymatic 

hydrolysis were detected by staining polyamide with a wool reactive dye, specifically 

designed to react with the primary amino groups. The reaction occurred only at the 

surface of the fabric as can be depicted from Figure 1 and the free amino groups were 

detected by the specific reaction with the α-bromoacrylamide dye reactive group 

(Lewis, 1992). 

All stainings were carried out in a 150 cm3 capacity sealed stainless steel dyepots, 

housed in a dyeing machine (AHIBA Spectradye, from Datacolor). Stainings of 4% 

o.w.f (weight of fabric) were obtained using a liquor ratio of 1:100 at different 

temperatures (50, 60 and 70 ºC) for 90 minutes with a temperature gradient of 4 ºCmin1. 

After staining, the samples were washed with 2 g L-1 of a Lutensol AT 25 solution and 

then rinsed in running cold tap water for 10 min and air dried. Two independent staining 

experiments were performed and the results represent the mean of these experiments. 

Colour differences of the stained fabrics were measured by using a reflectance-

measuring apparatus, Spectraflash 600 Plus, from Datacolor International according to 

the CIELab colour difference concept, at standard illuminant D65. The colour strength 

was evaluated as K/S at maximum absorption wavelength (570 nm) and the results were 

summarized by the overall K/S differences (Harold, 1987).  

2.5. Determination of the wettability of the polyamide treated fabric samples 

In order to obtain the degree of wettability (hydrophilicity) of the untreated and treated 

polyamide fabrics, a water-drop test was applied according AATCC standard method, 

(1980). The wetting time was determined by placing a drop of distilled water on the 

stretched fabric sample (5*5 cm) from a burette held 1 cm from the fabric. The time of 
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disappearance of the water-mirror on the surface (in other words the time for the water 

drop to lose its reflective power) was measured as the wetting time. This procedure was 

applied to both untreated and treated fabrics. 

2.6. Enzymatic hydrolysis of polyamide model substrate (trimmer) 

     2.6.1. Cutinases 

In the first part of the work, a native and a mutated cutinase (L182A) were used to 

incubate the polyamide trimmer. Two sets of experiments were performed where 0.01 g 

of a polyamide model substrate was incubated in two different solutions. The first 

solution contained 10 mL of phosphate buffer (pH 7.5) and 35 U (μmol of p-NP per 

min)/mL of native cutinase and the second solution contained the same amount of 

buffer and 47 U (μmol of p-NP per min)/mL of cutinase mutant (L182A). Both 

experiments were performed at 35 ºC for 8 hours under continuous shaking (using an 

AHIBA Spectradye, from Datacolor, with vertical agitation). At different periods of 

incubation, the total protein content in the solution was determined as described in 

section 2.2. After 8 hours of incubation, a protein precipitation step was performed and 

the primary amino groups resulting from enzymatic hydrolysis were quantified by the 

TNBS method (Silva et al., 2004).  

     2.6.2. Protease 

On this set of experiments, 10 mL of Tris-HCl buffer (pH 7.6) containing 18 U (μmol of 

Tyrosine per min)/mL of protease were incubated with 0.01 g of model substrate under 

the same conditions already described for cutinases. At different periods of incubation, 

the total protein content in solution was determined as described in section 2.2. After 8 

hours of incubation, a protein precipitation step was performed and the primary amino 

groups resulting from enzymatic hydrolysis were quantified by the TNBS method (Silva 

et al., 2004).  
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2.7. Enzymatic hydrolysis of polyamide fabric 

     Pre-treatment 

All samples of polyamide fabric used on this work were subjected to a previous 

washing with 2 gL-1 of a non ionic agent, Lutensol AT 25 (10 gL-1) and water for 1 

hour, followed by washing with a 2 gL-1 of Na2CO3 solution for 1 hour, both at 50 ºC.  

     2.7.1. Cutinase - vertical agitation  

In 500 mL stainless steel pots of a laboratory Rotawash MKII machine, from SDL 

International Ltd, rotating at 20 rev/min, 1 g of pre-treated polyamide fabric was 

incubated with 78 U (μmol of p-NP per min)/mL and 282 U (μmol of p-NP per 

min)/mL of native cutinase in 300 mL of phosphate buffer (0.1 M NaOH, 0.1 M 

KH2PO4, pH 7.8) at 37 ºC for 4 hours under continuous vertical agitation. A higher level 

of mechanical agitation was achieved by adding 5 stainless steel discs (each disc with 

average weight of 19.1 g, 32 mm x 3 mm) into the reaction mixture. The L182A 

cutinase mutation was also tested, where 1524 U (μmol of p-NP per min)/mL were 

incubated using the same conditions of the native one, as already described. 

The experiments were performed in the presence of the discs as well as in their absence. 

For protein and amino groups quantification, aliquots were taken from the liquor 

treatment at 0.5, 1, 2, 3 and 4 hours. After 4 hours of incubation, the fabrics were 

removed from the liquor and rinsed in sodium carbonate solution (2 g L-1) for 2 hours to 

stop the enzymatic reaction, followed by washing with 2 g L-1 of Lutensol AT25 

solution for 1 hour. After that, the samples were rinsed in running cold tap water for 

5 min and allowed to dry at open air. Two independent experiments were done for each 

treatment, and the results represent the mean of these experiments. 

     2.7.2. Cutinase - orbital agitation 

In 300 mL of phosphate buffer (0.1 M NaOH, 0.1 M KH2PO4, pH 7.8), 1 g of pre-

treated polyamide fabric was incubated with 78 U (μmol of p-NP per min)/mL of native 

cutinase at 37 ºC for 48 hours under continuous orbital agitation. The low level of 

mechanical agitation was achieved using an Erlenmeyer held in a shaking water bath 
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operating at 90 strokes min-1. For protein and amino groups determination, aliquots 

were taken from the liquor treatment at 4, 6, 24, 36 and 48 hours of incubation. After 48 

hours of incubation, the same procedure already described for the enzymatic treatment 

using vertical agitation was followed. 

     2.7.3. Protease - vertical agitation  

In this set of experiments, 3 g of pre-treated polyamide fabric were incubated with 36 U 

(μmol of Tyrosine per min)/mL of subtilisin in 300 mL of Tris-HCl buffer (0.3 M Tris, 

3 M HCl, pH 7.5) at 35 ºC for 4 hours under continuous vertical agitation. A higher 

level of mechanical agitation was achieved by adding 5 stainless steel discs (each disc 

with average weight of 19.1 g, 32 mm x 3 mm) to the reaction mixture contained in 

500 mL stainless steel pots of a Rotawash MKII machine, rotating at 20 rev/min. The 

experiments were performed both in the presence and absence of stainless steel discs. 

For protein and amino groups determination, aliquots were taken from the liquor 

treatment at 0.5, 1, 2, 3 and 4 hours. After 4 hours of incubation, the same procedure 

already described for the enzymatic treatment with cutinase using vertical agitation was 

followed.  

2.8. Wide-angle X-ray diffraction (WAXD) 

WAXD patterns of the PA 6.6 fabric were obtained for the samples treated with 

cutinases and protease, both in the presence and absence of stainless steel discs. The X-

ray diffractometer used was the model PW1710, from Philips. The Cu Kα radiation 

source (λ=0.154 nm) was operated at 40 kV and 30 mA. The WAXD spectra were 

continuously recorded in the diffraction angular range of 5 º to 35 º (2θ). The scan speed 

was 0.01º s-1. 

The WAXD data were analyzed by profile fitting of the obtained scans. The Pearson 

VII functions were applied and several simulations were performed in order to provide 

the best fit. At the end several parameter values were obtained such as pick intensities, 

pick positions, full width at half-maximum and others. 
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The crystallinity value (CV) of the different assayed samples was obtained using eq. (1), 

available in literature where d100 and d010 are the interplanar distances related to the 

planes (100) and (010), respectively (Dismore and Sttaton, 1966; Botelho et al., 2002). 

 

CV = 
[ ]

100
189.0

1/ 100010 ×
−dd

                                           (1) 

 
Equation (1) can be simplified and expressed as eq. (2), where the θ100 and θ010 are 

the angles related to the (100) and (010) interplanar distances (d); 546.7 is a constant 

related with polyamide crystallinity and 0.50 is the other constant obtained by 

calculating the reason between the crystalline area and the total area (crystalline and 

amorphous) of each sample. 
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2.9. Fourier transformed infrared spectroscopy (FT-IR) 

Infrared spectra were taken with a Bomem M Series Spectrophotometer. All the spectra 

reproduced were collected using an attenuated total reflectance accessory (ATR). 

Before colleting, the background scanning was performed using KBr powder. The 

fabric samples were placed in a large sample cup in top of KBr. At least 32 scans were 

obtained to achieve an adequate signal to noise ratio. The spectra were taken in the 

region of 800-4000 cm-1 with a resolution of 8 cm-1 at room temperature. 

2.10. Scanning electronic microscopy (SEM) 

The scanning electronic microscopy (SEM) pictures were obtained in a scanning 

electronic microscope model LEICA S360 with a backscattered and secondary electrons 

detector. 
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3. Results and discussion 

3.1. Enzymatic activity of cutinase and protease towards polyamide trimmer 

One of the objectives of this work was to prove that cutinase and protease were able to 

hydrolyze polyamide surface substrates. Therefore, before the enzymatic treatment of 

the main substrate (polyamide fabric), a smaller substrate was studied. Our purpose was 

to prove that if these enzymes were able to work on the hydrolysis of small polyamide 

substrates, they could probably act also on bigger ones. For that reason a small amount 

of PA 6.6 trimmer was incubated with native, mutated cutinase (L182A) and protease 

and their activity was measured as the amino groups formation. The protein adsorbed 

during the enzymatic process was also quantified for all the enzymes assayed. 

Comparing the obtained data for both cutinases assayed, it can be observed (Table I) 

that the protein adsorption, as well as the enzymatic activity, expressed as mM of 

amines in solution, is higher when L182A mutant was used. These values are explained 

based on the assumption that the site-directed mutagenesis, that consisted on the 

substitution of the Leu amino acid by a smaller (Ala) amino acid, close to the active 

site, resulted in a more “open” enzyme structure. This allows for a better 

“accommodation” of the bigger polyamide substrate into the active site. The protein 

adsorption values for protease were quite similar to those obtained for the L182A 

mutant but the enzyme activity was higher. This result can be attributed to the 

specificity of this enzyme to hydrolyze amide bonds.   

The data obtained for PA trimmer shows relative ability to hydrolyze small substrates of 

polyamide. A posterior study was performed to confirm these results and the ability of 

these enzymes to modify the surface of a bigger substrate (PA fabric). 
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Table I. Protein adsorption and enzyme activity (measured as amines formation) of 

native cutinase, L182A cutinase mutant and protease. 

 

Enzyme 
Protein 

adsorption (%) 
Amines (mM) 

Native (35 UmL-1) 18 0,0728 

L182A mutant (47UmL-1) 53 0,1053 

Protease (18 UmL-1) 54 0,3228 

3.2. Enzymatic activity of cutinase and protease towards polyamide fabric 

     3.2.1 Cutinase 

The ability of cutinase to modify bigger polyamide substrates was determined as well as 

the interaction of mechanical agitation with enzymatic activity. 

Different levels of mechanical agitation were applied on the described experiments in 

order to measure its influence on enzymes activity. 

The activity of native cutinase, measured as amino groups released in the liquor bath 

treatment, increased when higher mechanical agitation was used (stainless steel discs 

addition) (Figure 2). The findings seem to suggest that mechanical agitation influences 

greatly the enzyme hydrolysis on the polyamide fabric. Comparing the experiments 

performed on the Rotawash machine (vertical agitation), it seems clear that the increase 

of the native cutinase activity was due to the incorporation of the stainless steel discs on 

the treatment pots.  This process variable lead to an increase of the fibre-metal friction, 

as well as an increase of the betting effects during enzymatic incubation. The higher 

mechanical agitation used increased the action of cutinases. The combined action of the 

enzyme and the mechanical agitation lead to a more pronounced effect compared with 

the enzyme action it self. The additive effects of the enzyme and the mechanical 

agitation created more superficial cuts along the polymer, corresponding to the breakage 

of the amide linkages. Mechanical action raised these broken ends, creating micro 

fibrils and consequently more sites for possible enzyme attack. This phenomenon was 
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accomplished by the mechanical abrasion of the fabrics’ surface where the amino end 

groups formed by enzymatic action were released to the liquor bath treatment and could 

be spectrophotometricaly quantified (Figure 2). In order to measure the hydrolysis 

extent, a fabric reactive staining was performed (Figure 3). In the absence of the 

stainless steel discs was obtained an increase of the staining values corresponding to an 

increase of the amino groups at the surface of the treated fabrics since they were not 

released to the bath treatment. The K/S values decreased when temperatures above Tg 

were applied. Above 57 ºC the polymer structure is more exposed and the dye does not 

link only at the surface of the fabric (Figure 1) but is also able to penetrate into the 

interior of the fibres. It is important to notice that, to measure the hydrolysis extent at 

the surface of the treated fabric, the reactive staining should be performed below glass 

transition temperature. Regarding the other values obtained, it can be seen that 

mechanical agitation preferentially removed microfibrillar material with a high content 

of end groups which can not be detected by reactive staining. High levels of mechanical 

agitation are aggressive and cause fabric fibrillation. The formed fibrils (pills) represent 

a more exposed specific surface area of enzyme attack and will present a more 

pronounced color intensity compared with the other part of the treated fabric. However, 

these results were not considered because the spectrophotometrically measure is 

technically difficult to obtain. 

 

 
 
Figure 1. Microscopic image of the polyamide stained samples (the reactive dye is 

linked only at the surface of the fabric). 
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In the same set of experiments described was used a shaker bath with orbital agitation. 

In this apparatus the polyamide samples were incubated for a long period (48 hours) at 

90 strokes per minute. A slow kinetic of enzymatic activity in the first 24 hours of 

incubation was obtained. After this period the activity of cutinase increased reaching the 

same level of the one obtained on the Rotawash machine (vertical agitation), without 

discs (Figure 2).  
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Figure 2. Native cutinase (78 U mL-1) activity (measured as amines released to the bath 

treatment) vs protein adsorption. 

 

The results of reactive staining obtained for vertical agitation, as well as the results 

obtained for orbital agitation show that the incorporation of discs on the system 

increased the release of the amines to the bath system (Figure 3). The K/S values 

decreased when a higher level of mechanical agitation was applied. 

Adsorption studies were also performed in order to measure the influence of mechanical 

agitation on the protein adsorption on the fibres. The results given in Figure 2 show that 

protein adsorption increased when stainless steel discs were included in the system, 
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reaching a high level of about 60% of adsorption. Orbital agitation provided values of 

protein adsorption in the order of 30%.  
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Figure 3. K/S variation, proportional to the amino groups at the surface of the treated 

fabric (4% of reactive dye; liquor ratio 1:100; 90 minutes). 

 

As obtained for polyamide model substrate (Table I), on fabric the L182A cutinase 

mutant presented a considerably higher activity when compared with the native one. 

(Figures 4 a) and 4 b)) Protein adsorption values are similar for both enzymes and 

presented higher values when stainless steel discs were included on the enzymatic 

system. 
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Figure 4 a). Protein content in the liquor treatment after 4 hours of incubation with 

native (282 U mL-1) and cutinase mutant (1524 U mL-1). 
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Figure 4 b). Amino groups concentration in the liquor treatment after 4 hours of 

incubation with native (282 U mL-1) and cutinase mutant (1524 U mL-1). 
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     3.2.2. Protease 

Similarly to the results obtained for cutinases, the protease activity as well as the protein 

adsorption, increased when high levels of mechanical agitation were used. Mechanical 

abrasion has been indicated as to synergistically cooperate with protease activity. This is 

explained by the fact that mechanical agitation causes more fibrillation. In this situation, 

the loose fibrils (pills) formed represent an increased and more exposed specific surface 

area for enzyme attack. The synergistic action of the enzyme specificity and the 

mechanical agitation lead to a higher activity, measured as amino groups released, 

compared with the cutinases (Figure 5 b). The amino groups concentration, when 

protease was used, reached 1 mM, a value which is five times higher when compared 

with that obtained for cutinases (0.2 mM) (Figure 4 b). Spectral values obtained after 

reactive staining of treated fabric samples increased which can be correlated with an 

increase of the amino groups at the surface of the treated fabrics (Figure 6).  

The increase of the staining temperature lead to a lower increase of the K/S values due 

to the fact that above glass transition temperature the polymer structure is more open 

and the dye penetrates in the interior of the fibre. Differences between samples are not 

so easily detected when analyzing the obtained data it can be seen that when a higher 

level of mechanical action was used, the amino groups at the surface were partially 

removed and consequently the K/S values decreased. Protease hydrolysis was efficient 

on surface fabric modification. 
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Figure 5 a). Protein adsorption after 4 hours of incubation with Protease (35 U mL-1). 
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Figure 5 b). Amino groups concentration in the liquor treatment after 4 hours of 

incubation with Protease (35 U mL-1). 
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Figure 6. K/S variation, proportional to the amino groups at the surface of the fabric 

samples treated with protease (4% of reactive dye; liquor ratio 1:100; 90 minutes). 

3.3. Wettability 

Polyamide fabric samples were tested in terms of water absorption after enzymatic 

incubation procedure. This measurement is an evidence that the content of hydrophilic 

groups at the surface have increased. The samples without treatment presented a 

hydrophobic behavior (>10 min. of absorption). The enzymatic hydrolysis with 

cutinases and protease were able to modify the surface of polyamide fabrics with a 

consequent decrease of the time of water drop absorption to 5 min (Table II). The 

surface of polyamide fabrics became more hydrophilic and probably more able to be 

finished. 
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Table II. Time of water drop absorption of fabrics treated with different enzymes. 
 

Enzymes Time of water drop 
absorption (min.) 

Control > 10  
Native  

(282 UmL-1) 
 

5.34 ± 0.20 
L182A mutant  

(1524 UmL-1) 
 

4.67 ± 0.20 
Protease  

(36 UmL-1) 
 

5.00 ± 0.40 

 

3.4. Crystalline measurements 

WAXD studies of treated polyamide samples show, as expected, two strong diffraction 

peaks, one located at 2θ = 20.2º and the other one at 2θ = 23.4º (Botelho et al., 2002). 

The crystallinity value (CV) of the control and the treated samples was calculated as 

defined in Eq. (2). As expected, no significant changes were observed. Enzymatic 

action occurs only at the surface of the fabric and the formation of hydrophilic groups 

by hydrolysis does not influence the intrinsic physical properties of polyamide polymer. 

 
 
Table III. Crystallographic results of polyamide samples treated with cutinases and 
protease. 
 

Sample % of crystallinity 
Control (no discs) 42.837 

Native  42.964 
L182A mutant 42.911 

Protease 42.957 
Control (with discs) 43.037 

Native  43.419 
L182A mutant 43.723 

Protease 43.838 
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3.5. Infrared studies 

Infrared spectra, taken for PA 6.6 samples are shown on figure 7 a) and 7 b), as an 

example. In this study the different spectra obtained for control and each treated sample 

were compared. The band region used for comparison was 1700-1650 cm-1 where it 

seams to show some relative intensity differences. The carbonyl amide stretching 

vibration in the region of 1680-1630 presented different intensities depending on the 

enzyme. 

Regarding the spectra obtained (band 1660 cm-1) for samples treated with the native, 

L182A mutant cutinase and protease without stainless steel discs it seems clear that 

there is a decrease of the absorbance value relatively to the control. The breakage of the 

amide linkages of the polyamide polymer and the increase of the other groups at the 

surface of the fabric might influence the amide vibrations and consequently its 

absorbance intensity. The spectra obtained for the samples treated with all the enzymes 

in presence of stainless steel discs does not show significant changes on the absorbance 

intensity value.  

These results can be correlated with the spectral results already described. Samples 

treated in the absence of discs presented higher K/S values than samples treated in their 

presence. The simultaneous action of enzyme and mechanical agitation lead to the 

surface abrasion of the superior layer of polyamide fabric (Figure 8) and consequently 

the hydrophilic groups formed by enzymatic hydrolysis can not be so easily detected by 

reactive staining.  
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Figure 7a). Infrared spectra of samples treated with Native, L182A cutinase mutant and 

protease in the absence of stainless steel discs (most significant band).  
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Figure 7b). Infrared spectra of samples treated with Native, L182A cutinase mutant and 

protease in the presence of stainless steel discs (most significant band).  
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Control without discs Native without discs L182A without discs Subtilisin without discs

Control with discs Native with discs L182A with discs Subtilisin with discs
 

Figure 8. Scanning electronic microscopy (SEM) of samples treated with native, 

L182A mutant and proteases in the absence and in the presence of stainless steel discs. 

4. Concluding remarks 

This study provided new insights about the influence of mechanical agitation on 

cutinase and protease activities towards polyamide substrates. The cutinase mutant 

(L182A) showed more ability to modify the surface of polyamide substrates when 

compared with the native one. However, the higher catalytic efficiency was obtained for 

protease due to its enzymatic specificity. The results obtained support the idea that 

when higher levels of mechanical agitation were introduced on the system the level of 

surface modification increased. The simultaneous action of the enzymes and the 

stainless steel discs lead to an increase of the enzymatic conversion, although a careful 

balance between the enzyme activity and the mechanical agitation is required to achieve 

higher level of hydrolysis without excessive fabric strength and weight loss.  

For a future industrial application of this process it is necessary to find this equilibrium. 

To produce the large amount of amino groups, short times of incubation must be used as 

well as vertical agitation. More studies have to be performed in order to predict and 

better control the polyamide finishing. 
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Abstract 

The effect of agitation on adsorption, desorption and hydrolytic efficiency of native and 

the genetically modified cutinase (L182A) on polyethylene terephthalate fibres is 

reported in this paper. The effect of mechanical agitation was studied using a shaker 

bath with orbital agitation and a Rotawash machine with vertical agitation with and 

without extra steel discs inside the reaction pots. The results obtained indicate that 

mechanical agitation combined with enzymatic action enhances the adsorption and 

activity of cutinases towards PET (polyethylene terephthalate) fibres. L182A showed 

higher adsorption than the native enzyme for all the levels of mechanical agitation. 

Lower units of L182A lead to similar yields of terephthalic acid formed in all levels of 

mechanical agitation. The highest increase of hydroxyl surface groups was found for the 

genetically modified L182A at the lowest level of mechanical agitation with a shaker 

bath. These results indicate that enzymatic functionalization of PET is favoured with a 

process with lower levels of mechanical agitation. 
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1. Introduction 

Advances in biotechnology enabled the design of enzymes with improved catalytic 

activities towards the substrates of interest and better stabilities than those previously 

available (Araújo et al., 2007). The use of genetic engineering stands as a powerful tool 

that has been used to modify an enzyme to improve its action on polyester fibres 

(Araújo et al., 2007). It is known that cutinases are able to catalyse the hydrolysis of 

ester bonds in polyester, resulting in the generation of hydroxyl and carboxyl groups at 

the surface and in the formation of terephthalic acid and ethylene glycol as reaction 

products (Carvalho et al., 1999; Silva et al., 2005). The cutinase from Fusarium solani  

pisi is an extracellular enzyme that is naturally designed to catalyse the hydrolysis of 

cutin, the structural polyester from the cuticle of plants. This enzyme was modified, by 

site directed mutagenesis, around the active centre in order to fit a larger polymer 

substrate and therefore improve its activity towards a non-natural substrate such as 

polyester (PET) fibre (Araújo et al., 2007). The change of specific amino acid residues 

was performed based on the native enzyme structure. The modified cutinase L182A has 

been shown in a previous work to have a higher affinity and to be more effective for 

polyester hydrolysis than the native one (Araújo et al., 2007). 

The process of enzyme adsorption is of key importance concerning fundamental 

knowledge of enzymatic hydrolysis of water insoluble fibre substrates (Araújo et al., 

2007; Cavaco-Paulo and Almeida, 1996; Azevedo et al., 2000; Palonen et al., 2004). 

Enzyme adsorption and desorption on polyester is a pre-requisite for the hydrolysis 

process to occur (Azevedo et al., 2001; Cavaco-Paulo et al., 1998). The adsorption of 

proteins starts with the formation of various contacts between the adsorbing protein 

molecule and the sorbent surface (Stuart, 2003; Norde, 2003). Protein adsorption is very 

complex and involves different steps that have been subject of earlier studies in order to 

understand this process (Kim and Yoon, 2004; Nicolau and Nicolau 2004: Maldonado-

Valderrama et al., 2005). The hydrophobic amino acids exposed on the surface of the 

enzyme will lead to binding to the hydrophobic surface of the PET fibre. The important 

substrate characteristics that influence the enzymatic hydrolysis are: accessibility, 

degree of crystallinity and degree of polymerization (Palonen et al., 2004).  
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A balance between enzyme activity and mechanical agitation is required to achieve the 

desired effect on the textile substrates. For cotton fibres, it was observed that high 

mechanical agitation lead to an increased accessible surface area. Consequently higher 

levels of enzyme adsorption were measured (Cortez et al., 2001). The mechanical action 

on these fibres is expected to protruding fibres and therefore more sites in the fibre for 

enzymatic attack. In short treatment times, the enzyme attacks what is more exposed, 

i.e., the pills or raised microfibrils at the fabric surface (Cavaco-Paulo, 1998; Morgado 

and Cavaco-Paulo, 2000).  

In this work we studied the influence of the level of mechanical agitation on the 

adsorption and activity of cutinases on PET fabrics. Industrially suitable conditions such 

as short processing times were reproduced at both low and high level of mechanical 

agitation during the enzymatic process. The low level was reproduced with orbital 

agitation in a shaker bath and the high level with vertical agitation in a laboratory 

washing machine with and without metal disks added. 

 

2. Experimental 

2.1 Materials 

The fabric used was 100% polyester, 107 g/m2, 18 yarns/cm, 29 Tex (warp and weft) 

obtained from Rhodia. Activity of cutinases was assayed towards p-

Nitrophenylpalmitate (pNPP) as described in literature (Quyen et al., 1999). The 

enzymes used in this work were cutinases from Fusarium solani pisi (native cutinase 

with a specific activity of 221.0 U (μmol of pNPP per minute)/mg-1 and a genetically 

modified cutinase L182A with a specific activity of 125.0 U (μmol of pNPP per 

minute)/ mg-1 produced and purified as previously described (Araújo et al., 2007).  The 

dye used for staining was C.I. Reactive Black 5 (RB5) from Ciba, Switzerland. All 

other chemicals used were laboratory grade reagents. 
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2.2. Enzymatic treatment 

The polyester fabric was washed with 2% v/v of Lutensol AT25 at 50 ºC during 60 min, 

with distilled water for 60 min at 50 ºC and dried at oven at 40 ºC for 24 h. The 

enzymatic treatments were performed in sealed, stainless steel dye pots of 400 cm3 in a 

Rotawash machine (laboratory scale dyeing machine) with and without stainless steel 

discs (10 discs were used in each pot, each disc with an average weight of 19 g, 

32mmx3mm) with vertical agitation of 40 rpm. For comparing different agitation 

modes, samples were also incubated in 250 mL glass flaks in a shaker bath with orbital 

agitation of 80 rpm. The enzyme concentration used was 100 mgprotL-1 of both purified 

enzymes corresponding to esterase activity if 22.1 U (μmol of pNPP per minute) L-1 of 

native and 12.5 U (μmol of pNPP per minute) L-1 of L182A. The enzymatic treatments 

were performed at 35 ºC using phosphate (KH2PO4 0.1 M, NaOH 0.1 M) buffer 0.1 M 

pH 8.5. All samples were incubated for 5 h. For each incubation period (1, 2, 3, 4 and 5 

h) a fabric sample and an enzymatic solution sample were taken for further analysis. 

Five PET fabric samples, each with 0.2 g, were incubated with enzyme in 150 mL of 

phosphate buffer. Control samples were incubated in the same buffer solution but 

without enzyme and samples removed after each incubation period. After enzymatic 

treatment, all samples were washed first with tap water, then with a 2 g L-1 sodium 

carbonate solution for 60 min at 50 ºC (to remove the remaining proteins) and finally 

with distilled water at 50 ºC for one hour.  

2.3. Staining with reactive dye 

The staining was performed at 60 ºC, below the glass transition temperature (Tg) of 

PET fibre, which is approximately 69 ºC. Polyester fabric samples after enzymatic 

treatment were stained all together in the same sealed, stainless steel dye pot of 120 mL 

capacity in an Ahiba machine (laboratory scale dyeing machine). The dyeing was 

performed with RB5 (10%) owf, bath ratio of 100:2 (100 mL of liquor for 2 g of fabric), 

at pH 11.0 using 20 gL-1 sodium carbonate and 60 gL-1 sodium sulphate at 60 ºC during 

90 min with 30 rpm of agitation. After the dyeing process, samples were all washed in a 
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flask with stirring with water at 50 ºC for 1 h and then dried in an oven at 40 ºC for 24 

h.  

2.4. Terephthalic acid (TPA) determination by fluorescence 

We measured the TPA in the enzymatic treatment solution for the different incubation 

periods in order to study the enzymatic hydrolysis efficiency, since TPA is one of the 

hydrolysis reaction products. Fluorescence scans were performed with a luminescence 

spectrometer between 300 and 600 nm wavelengths after reaction of terephthalic acid 

solution with hydrogen peroxide 30% at boiling temperature and using an excitation 

wavelength of 315 nm. The presence of hydroxy-terephthalic acid (HTA) (O’Neill and 

Cavaco-Paulo, 2004) is detected by analyzing the wavelength of 425 nm. If the 

concentration of TPA increases, there will be a higher intensity at this wavelength will 

be observed due to the presence of more HTA ions. One mL of solution was added to 2 

mL of hydrogen peroxide and heated at 90 ºC for 30 min. After cooling down to room 

temperature, samples were measured by fluorescence and the intensity of the peak at 

425 nm was used for the determination of TPA concentration (O’Neill and Cavaco-

Paulo, 2004).  

The calibration curve was determined using standard solutions with different 

concentrations of TPA (0.006, 0.03, 0.06 and 0.12 mM) dissolved in a 0,05 M NaOH  

solution. The calibration curve attained shows a linear fit between 0.006 and 0.12 mM 

TPA with a standard deviation below 4% and R2=0.995. All measurements were 

performed using duplicate samples and results represent the mean. Values had a 

standard deviation below 10%. 

2.5. Colour measurements 

The K/S increase after the enzymatic treatments and after staining with a reactive dye 

(RB5) was measured in order to detect differences of hydroxyl groups formed at the 

surface (Araújo et al., 2007). The colorimetric data (K/S) of the dyed samples with 

Reactive Black 5 was collected using a spectrophotometer Spectraflash 600 plus 

interfaced to a PC using an illuminant D65 at the wavelength of maximum absorption 
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(600 nm) as an average of five readings. The control samples were incubated in 

phosphate buffer solution. 

2.6. Protein adsorption and desorption 

The remaining protein in the enzymatic treatment solution for different incubation 

periods was measured to study the adsorption and desorption phenomena (Araújo et al., 

2007). For this adsorption/desorption studies the protein in solution was determined by 

the Bradford method using bovine serum albumin (BSA) as standard (Bradford, 1976). 

Different time samples of enzymatic treatment solution were measured (0, 1, 2, 3, 4 and 

5 h). After 5 h of incubation, the enzymatic treatment solution was diluted (1:2) with the 

same previously specified phosphate buffer and the mixture was subsequent incubated 

for another 60 minutes, with the same agitation and temperature conditions, to verify the 

desorption phenomena. Values had a standard deviation below 9%. The percentage of 

adsorption was calculated by the following expressions as described in literature 

(Azevedo et al., 2000): 

 

% adsorption =
100×

−
A

BA
  (1) 

% desorption = 
100×

−
A

CD
  (2) 

 
Where: A – initial protein concentration (at 0 h); B – protein concentration at time t (1, 

2, 3, 4 and 5 h); C – dilution (dilution 1:2 with buffer solution); D – final protein 

concentration (after the dilution and 60 more minutes of incubation). 

3. Results and Discussion 

The formation of terephthalic acid (TPA) and the protein adsorption for the two studied 

cutinases, with a low agitation level (shaker bath, 2A) and strong agitation level 

(Rotawash, 2B), is shown in figure 1. In table 1 the values of percentage of protein 

adsorbed for the different incubation periods are shown for both modes of mechanical 

agitation. 
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Figure1. Terephthalic acid concentration and remaining protein concentration in the 

incubation liquor in a shaker bath (A) and a Rotawash machine with and without 

stainless steel discs (B) for different incubation periods. Initial cutinase dosed is 100 

mgprotL-1. 

 

 
 



Effect of the Agitation on the Adsorption and Hydrolytic Efficiency of Cutinases on Polyethylene Terephthalate fibres 
 

 

119 
 

 
Table 1. Values of percentage of protein adsorbed after 1, 2, 3, 4 and 5 hours of 

incubation with native and genetically modified cutinases with different modes of 

mechanical agitation (Shaker bath with 80 rpm and Rotawash machine with 40 rpm) at 

35 ºC. 

 
 Protein Adsorbed (%) 

 Native cutinase 
Genetically modified cutinase 
L182A 

Incubation 
Time (h) 

Shaker 
bath 
(80 rpm) 

Rotawash 
without 
discs 
(40 rpm) 

Rotawash 
with discs 
(40 rpm) 

Shaker 
bath 
(80 rpm) 

Rotawash 
without 
discs 
(40 rpm) 

Rotawash 
with discs 
(40 rpm) 

1 
2 
3 
4 
5 

15 
8 
9 
-- 
24 

-- 
13 
24 
28 
37 

-- 
-- 
41 
43 
47 

18 
15 
23 
-- 
34 

-- 
31 
66 
67 
75 

-- 
21 
59 
62 
62 

 
In all cases, no desorption was detected after the dilution 1:2 and 1 hour of incubation at 

35 ºC. Therefore, this data is not shown. 

The highest amount of TPA formed in solution was obtained under higher levels of 

mechanical agitation used for both enzymes (native and genetically modified cutinase). 

In case of applying orbital agitation (shaker bath), the concentration of TPA in solution 

was nearly 2 fold lower.  

The higher amount of TPA (hydrolysis reaction product) in the enzymatic treatment 

solutions with high levels of mechanical agitation (Rotawash) can be due to the 

mechanical agitation action on the PET fibres, raising the broken ends and creating 

microfibrils that result in more sites in the fibre for cutinase attack (Cavaco-Paulo, 

1998; Morgado and Cavaco-Paulo, 2000). However, no TPA was detected in solution 

without enzyme with low or high levels of mechanical agitation. 

After 5 hours of incubation, almost the same amount of TPA was formed in solution at a 

lower activity of the genetically modified when compared to the native one (22.1 UL-1 
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of native cutinase and 12.5 UL-1 of L182A). Since the same amount of protein was used 

at the beginning of the incubation for both enzymes, this result indicate that using less 

units of activity on pNPP with the genetically modified cutinase, the same activity on 

PET is obtained. The activity on a soluble substrate is different on an insoluble one as 

PET fibre, since with only 12.5 UL-1 of L182A the same amount of TPA was detected 

in the enzymatic treatment liquor as for the 22.1UL-1 used for the native enzyme. 

This behaviour was obtained for both types of mechanical agitation (≈ 0.10 mM – 

native and L182A in shaker bath and ≈ 0.20 mM – native and L182A in Rotawash). A 

constant value, corresponding to a saturation level, could be expected if longer 

incubation periods were used. That specific profile was not observed since only short 

periods were used in this study.  

Both enzymes had the highest adsorption when the strongest mechanical agitation was 

used (Rotawash). At the end of the incubation period, the adsorption levels were 37% 

for Rotawash without discs, 47% for Rotawash with discs and only 24% for the shaker 

bath, all for the native cutinase. For the genetically modified cutinase L182A, the 

difference between the several mechanical agitation levels was even bigger, with 75% 

for Rotawash without discs, 62% for Rotawash with discs and only 34% for the shaker 

bath. When the strongest mechanical agitation was used, the maximum adsorption 

values were obtained with the genetically modified cutinase L182A.  

The effect of the presence of the stainless steel discs is not so pronounced in the 

genetically modified cutinase (L182A) compared to the native enzyme. This result was 

already expected since the mutant L182A was specially designed for better 

accommodation of the PET fibre as a substrate. Therefore, the native enzyme seems to 

be more influenced by the action of agitation. The change of Leu 182 by an Ala resulted 

in an enlargement of the area around the active site and consequently, better 

accommodation of the substrate (Araújo et al., 2007). Due to this, the effect of the 

stainless steel discs is not so pronounced for the genetically modified cutinase (L182A) 

as for the native. The surface displayed hydrophobic amino acids influence the 

adsorption behaviour of proteins. In this case, the change was one amino acid (Ala) into 

another (Leu), which is more hydrophobic. As the primary goal of this change was 

enlargement of the active site, via change of one amino acid, changes to the adsorption 
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behaviour were not expected, however, some influence to this was noted as detailed 

previously. 

The vertical agitation using the Rotawash machine was by itself much more effective 

for hydrolysis (TPA formation) and protein adsorption than the lower agitation level 

(orbital agitation) for both enzymes (native and genetically modified cutinases). This 

fact is due to the beating effects of the type of Rotawash agitation (vertical). Also, the 

abrasion provoked by fibre-metal friction of the stainless steel discs increases the effect 

of this type of agitation (Silva et al., 2007). 

The enzymatic hydrolysis at the surface of the polyester fabric generates not only 

terephthalic acid (product of the hydrolysis) but also hydroxyl end groups. The hydroxyl 

end groups can be detected by reaction with cotton reactive dyes and their amount by 

quantification as K/S. After the enzymatic treatment, control samples (incubated 

without enzyme in buffer solution) and enzymatically treated samples were dyed with 

reactive dye (Reactive Black 5) and the K/S increase in percentage relative to control is 

shown in Figure 2 (A and B).  
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Figure 2. K/S values at 600 nm, in percentage relative to stained control samples, for 

polyester after staining with reactive black 5 (10% v/v). Fabric samples were treated 

with 100.0 mgprotL-1 of cutinase (native and genetically modiefied L182A) for 

indicated incubation periods, both in a shaker bath (A) and Rotawash (B).  

 
At lower level of agitation a systematic increase of hydroxyl end groups is verified for 

both enzymes. On the Rotawash machine, the increase of hydroxyl end groups is 

inconsistent as whilst the strong mechanical agitation enhances hydrolysis, it also 

results in the release of soluble and/or insoluble hydroxyl end groups to the bath. No 

visible debris is formed in the pots during the treatments with the Rotawash and it can 

be assumed that only soluble oligomers and/or monomers are released to the solution.  

The higher level of agitation results in greater amount of hydrolysis in terms of TPA in 

solution. Since PET is produced from polyethylene glycol and TPA, the hydrolysis of 

ester bonds will generate equal amounts of hydroxyl (OH) and carbonyl (COOH) 

groups. However, this hydrolysis also generates oligomeric products, either in solution 

or on the fabric surface. With the highest level of mechanical agitation, these products 

are removed from the fabric surface and released to the enzymatic treatment solution. 

Therefore, the highest K/S increase was obtained for the sample treated with the 

genetically modified cutinase (L182A) at the lowest mechanical agitation (shaker bath).  
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Additionally, FT-IR spectra were obtained for both control and enzymatically  

treated samples. However, no significant differences were detected with this  

method. 

4. Conclusions 

Mechanical agitation greatly enhances the hydrolysis process of PET fibres, measured 

as TPA formation. Turnover yields are very low for both cutinases, as no significant 

changes are verified in fabric appearance. The major advantage of enzyme treatment 

seems to be the formation of hydroxyl end groups at the surface of the fibres. These 

groups can be used to attach surface finishing agents to the fibre. The results of our 

work indicate that surface functionalisation is better done at low levels of mechanical 

agitation. Our results have important application to the design of an industrial process to 

functionalize PET with enzymes, where padding processes can be chosen. 
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Abstract 

The surface of commercial cellulose diacetate and triacetate fabrics was modified with a 

cutinase (EC 3.1.1.74). The enzymatic hydrolysis of acetyl groups on the fibre surface 

was evaluated by the release of acetic acid and by the specific chemical staining of the 

fabrics with the cotton reactive dye Remazol Brilliant Blue R. The fabric treatment, 

during 8 hours at 30 ºC and pH 8, led to an acetyl esterase activity of 0.17 nkat and 0.12 

nkat on cellulose diacetate and triacetate, respectively. The colour levels for samples 

treated with cutinase for 24 hours increased 25% for cellulose diacetate and 317% for 

cellulose triacetate, comparing to the control samples. Cross-sections of both fibres 

were analysed by fluorescence microscopy and confirmed the superficial action of 

cutinase. Crystallinity of both fibres was slightly decreased as a result of the enzymatic 

treatment. For further improvement of cutinase catalysis, fusion cutinases at the C-

terminal ends were produced with either the carbohydrate-binding module of 

Cellobiohydrolase I, from the fungi Trichoderma reesei, or the carbohydrate-binding 

module of Endoglucanase C, from the bacteria Cellulomonas fimi. The knew 

recombinant cutinase fused to the fungal CBM was better than the bacterial one in 

improving the colour levels of treated fabrics, in particular for cellulose diacetate.  

In this work, evidences are provided showing that cutinase is a good candidate for 

superficial regeneration of cellulose hydrophilicity and reactivity on highly substituted 

cellulose acetates, although further studies will be necessary to better characterize the 

nature of the fibre transformations induced by the modular cutinases. 

Nomenclature:  

C.I. - Colour Index 
CBH I - Cellobiohydrolase I of Trichoderma reesei 
CDA - Cellulose diacetate 
CenA - Endoglucanase A of Cellulomonas fimi 
CenC - Endoglucanase C of Cellulomonas fimi 
CTA - Cellulose triacetate 
DS - degree of substitution 
K/S - Kubelka-Munk relationship: K - adsorption coefficient, S - scattering coefficient  
o.w.f. - of weight of fabric 
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1. Introduction 

Cellulose is the most abundant natural polymer and it is a valuable renewable resource 

(Steinmann, 1998; Kamide, 2005). However, it presents major drawbacks in its 

applicability due to its insolubility in most solvents and its decomposition prior to 

melting (Braun and Kadia, 2005). Since the end of the 19th century, the attained 

development on cellulose chemistry allowed new processes and a continuous expansion 

of the applications of cellulose derivatives, particular the cellulose esters. Cellulose 

acetate is used as a raw material for plastics, textiles, filter tows, films or membranes 

(Rustemeyer, 2004). In the textile field, cellulose acetates are characterised by a 

combination of desirable and unusual properties like soft and silk-like hand, good textile 

processing performance and higher hydrophilicity than synthetic fibres, thus being more 

comfortable to use (Steinmann, 1998; Law, 2004). The native cellulose properties of 

cellulose esters can be partially recovered by chemical hydrolysis of the acyl groups 

(Braun and Kadia, 2005). The surface hydrolysis is also considered an important tool to 

improve the surface reactivity and hydrophilic character without radically change the 

tensile properties of the fibres and films (Braun and Kadia, 2005). Traditional processes 

used to modify polymer surfaces are based on the addition of strong chemical agents. 

The major advantages of using enzymes in polymer modification compared to 

chemicals are milder reaction conditions and easier control. In addition, they are 

environmental friendly and perform specific non-destructive transformations on 

polymer surfaces (Guebitz and Cavaco-Paulo, 2003, 2007). 

Work on the modification of cellulose acetate with enzymes has been mostly done in 

the context of its biodegradation (Puls et al., 2004). The degradation of cellulose and 

hemicellulose is naturally carried out by microorganisms and requires the concerted 

action of many enzymes. Among these carbohydrate-active enzymes, there is the group 

of carbohydrate esterases which hydrolyse the ester linkage of polysaccharides 

substitutents, allowing the exo- and endoglycoside hydrolases to cleave the polymer 

chains. Cellulose acetate was found to be a carbon source for several microorganisms 

and a substrate of several acetyl esterases in cell-free systems (Gardner et al., 1994; 

Samios, 1997; Sakai et al., 1996; Altaner et al., 2003a, 2003b). A negative correlation 

between the degree of substitution and the biodegradability of cellulose acetates was 
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identified (Samios, 1997). The deacetylation efficiency of carbohydrate esterases 

decreases with the increase in the degree of substitution of cellulose acetate and 

consequently its hydrophobicity.  

In the work here reported, the hydrolysis of acetate surface groups of cellulose diacetate 

(CDA) and cellulose triacetate (CTA) fabrics was investigated using Fusarium solani 

pisi cutinase (E.C. 3.1.1.74). It is an extracellular enzyme able to degrade cutin, the 

lipid-polyester natural coating of plants, thus conferring phytopathogenicity to the 

fungus from which it originates. This enzyme is a small ellipsoid protein (~22 KDa, 

45x30x30 Å) that belongs to the class of serine esterases and to the superfamily of α/β-

hydrolases (Longhi and Cambillau, 1999). The F. solani pisi cutinase also belongs to 

the family 5 of carbohydrate esterases (www.cazy.org/fam/CE5.html), sharing a very 

similar 3D-structure with other two members with known structure: the acetylxylan 

esterase (E.C. 3.1.1.72) from Trichoderma reesei and the acetylxylan esterase II from 

Penicillium purpurogenum (Hakulinen et al., 2000; Ghosh et al., 2001). Although they 

present very similar overall structures, the conformation of the active site is different, 

reflecting the lipid nature of the cutinase substrates (Ghosh et al., 2001). The preference 

for hydrophobic substrates, as well as the versatility in respect to soluble, insoluble and 

emulsified substrates makes cutinase an attractive esterase for highly substituted 

cellulose acetates. 

The enzymatic modification of highly substituted cellulose acetate fibres is a 

heterogeneous process. An attempt was made to increase cutinase efficiency towards 

this substrate by mimicking other carbohydrate-active enzymes with modular nature. 

Two different carbohydrate-binding modules (CBMs) were fused to the C-terminal of 

cutinase. The CBMs act synergistically with the catalytic domains by increasing the 

effective enzyme concentration at the substrate surface and, for some CBMs, by 

physical disruption (Linder and Teeri, 1997; Boraston et al., 2005). Two types of CBMs 

were chosen on the basis of ligand affinity, since the two cellulose acetate fibres used in 

this work are structurally different from cellulose (the native ligand) and different 

between themselves, presenting two different overall crystallinities. Type A, the CBM 

of Cellobiohydrolase I (CBHI) from T. reesei belongs to the family CBM1, has 

preference for crystalline or microcrystalline regions of cellulose while type B,  the 

http://www.cazy.org/fam/CE5.html
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CBM of Endoglucanase C (CenC) from Cellulomonas fimi, which belongs to the family 

CBM4, is able to bind amorphous cellulose (Boraston et al., 2005). 

To our knowledge, this is the first report of the hydrolysis of surface acetyl groups from 

CDA and CTA with a cutinase. It constitutes a promising approach for the partial 

regeneration of cellulose reactivity and hydrophilicity in these fibres, here demonstrated 

by the enhanced reactive dye uptake of treated fabrics. The production of fusion 

cutinases with new functionalities is here described and a comparison with cutinase 

regarding its efficiency for CDA and CTA modification is presented. 

2. Materials and methods 

2.1. Reagents and enzymes 

The cellulose diacetate and triacetate plain woven fabrics used were kindly supplied by 

Mitsubishi Rayon Co. Ltd., Tokyo, Japan. The CDA fabric has 41/27 ends/picks per cm 

and 64 g m-2. The CTA fabric has 45/31 ends/picks per cm and 98 g m-2. 

All other reagents were laboratory grade reagents from Sigma-Aldrich, St. Louis, USA, 

unless stated otherwise. 

The cutinase (EC 3.1.1.74) from F. solani pisi used in this work was expressed and 

purified as previously reported by Araújo et al., 2007. 

Restriction enzymes were purchased from MBI Fermentas (Vilnius, Lithuania) and 

from Roche Diagnostics GmbH (Penzberg, Germany). AccuzymeTM DNA polymerase 

was purchased from Bioline GmbH (Luckenwalde, Germany) and recombinant Taq 

DNA polymerase was purchased from MBI Fermentas. T4 DNA ligase was purchased 

from Roche Diagnostics GmbH (Penzberg, Germany). 

2.2. Esterase activity assay 

Esterase activity was determined following the product release (p-nitrophenol) 

continuously through the increase in the absorbance at 400 nm at 30º C. The assay 

conditions for the determination of cutinase activity were described previously (Matamá 

et al., 2006). All the assays were performed at least in triplicate. Standard solutions of 
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p-nitrophenol were used to obtain the calibration curve. One unit of esterase activity 

was defined as one μmol of p-nitrophenol released per minute. 

2.3. Treatment of cellulose di- and triacetate fabric with cutinase 

All samples of cellulose acetate fabric were washed prior to use in order to remove 

possible impurities from manufacture and from human handling. Washing was 

performed at 35º C and 20 rpm, in stainless steel pots of 450 mL in capacity and housed 

in a laboratory scale machine, the Rotawash MKIII (vertical agitation simulating 

European washing machines, from SDL International Ltd.). The fabric was washed 

twice for 30 min in 40 mg L-1 Lutensol AT25 (non-ionic detergent, BASF, 

Ludwigshafen, Germany), then rinsed four times with distilled water for 30 min each 

and left to dry at room temperature. 

Several sets of experiments were carried out taking into account the amounts of 

enzyme, fabric and time of incubation. For all experiments, the treatment of cellulose 

acetate fabric was performed in 50 mM phosphate buffer pH 8 with vertical agitation, in 

the Rotawash machine operating at 30 ºC and 20 rpm. To evaluate the effect of enzyme 

concentration, samples of CDA and CTA fabric, with an average weight of 0.1 g, were 

incubated in duplicate for 8 hours with 0, 25, 50, 75 and 100 U mL-1 of cutinase, in a 

total volume of 5 mL. To obtain a progress curve, samples of CDA and CTA fabric, 

with an average weight of 0.1 g, were treated with 50 U mL-1 of cutinase, in a final 

volume of 10 mL for different periods of time. For each sample a control was run in 

parallel in which the buffer substituted the corresponding volume of enzyme. In another 

treatment, the average weight of both type of fabric was increased to 0.5 g and the 

incubation extended to 24 hours. The initial activity of cutinase was 25 U mL-1 in a final 

volume of 25 mL. For each sample a control was run in parallel without the enzyme. 

After enzymatic treatment, all fabric samples were washed at 35 ºC, in the Rotawash 

machine, to remove the adsorbed protein, according to the order: 250 mgL-1 Lutensol 

AT25 for 30 min, 70% ethanol for 20 min, 15% isopropanol for 15 min, three steps of 

increasing concentrations of NaCl for 10 min each, three steps in distilled water for 
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20 min each. Between the detergent/alcohol and alcohol/salt steps the fabric was rinsed 

under running cold tap water for 5 min. 

2.4. Determination of acetic acid concentration in the treatment solutions 

Detection of acetic acid in the reaction media was performed with the acetic acid UV 

test from Roche (Darmstadt, Germany). Protein was previously precipitated using 

perchloric acid according to the manufacture instructions. The samples pH was 

neutralized using 1 M potassium hydroxide and the subsequent salts were removed by 

centrifugation. 

2.5. Quantification of total protein concentration 

Total protein in solution was quantified following Bradford methodology (Bradford, 

1976) using BSA as standard. All samples were measured at least in duplicate.  

2.6. Cellulose acetate fabric staining with a reactive dye 

After enzymatic treatment, samples were competitively stained in 50 mM phosphate 

buffer pH 8 with 2% o.w.f. (of weight of fabric) Remazol Brilliant Blue R, C.I. 61200, 

in duplicate. The staining was performed at 50º C or 60º C, for 90 min at 20 rpm, in 

sealed stainless steel beakers of 140 mL in capacity and housed on a lab-scale dyeing 

machine (AHIBA Spectradye, from Datacolor International). 

After staining, all samples were washed once with 0.25 g L-1 Lutensol AT25 and several 

times with distilled water in Rotawash, until no more dye could be detected in the 

solution. The washing temperature was 5º C higher than the staining temperature. 

The colour measurements (5 for each sample) were carried out with a reflectance 

spectrophotometer having a standard illuminant D65 (Spectraflash 600 Plus, from 

Datacolor International). The colour strength was evaluated as K/S at the maximum 

absorption wavelength (660 nm) which is proportional to the dye concentration in the 

samples. The ratio between absorption (K) and scattering (S) is related to reflectance 

(R) data by applying Kubelka-Munk’s law at each wavelength (Kuehni, 1997). 
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2.7. Fluorescein Isothiocyanate (FITC) labelling  

Enzymes were incubated with FITC (33:1 w/w) in 0.5 M sodium carbonate buffer 

pH 9.5, for one hour at room temperature. The unconjugated FITC was removed with 

HiTrap Desalting 5 mL columns (GE Healthcare Bio-Sciences Europe GmbH, Munich, 

Germany) while the carbonate buffer was exchanged by the 50 mM phosphate buffer 

pH 8.  

2.8. Fluorescence microscopy  

Thin strips of CDA and CTA fabric samples were embedded in an epoxy resin (Epofix 

kit, Struers, Copenhagen, Denmark) and cross sections were cut with 20-25 µm 

thickness. The samples were observed under a Leica Microsystems DM5000 B 

epifluorescence microscope equipped with a 100 W Hg lamp and an appropriate filter 

setting. Digital images were acquired with Leica DFC350 FX digital Camera and Leica 

Microsystems LAS AF software, version 2.0 (Leica Microsystems GmbH, Wetzlar, 

Germany) 

2.9. Fourier Transformed Infrared Spectroscopy  

The diffuse reflectance (DRIFT) technique was used to collect the infrared spectra of 

CDA and CTA fabric samples treated during 24 hours with cutinase and respective 

controls. The spectra were recorded in a Michelson FT-IR spectrometer MB100 

(Bomem, Inc., Quebec, Canada) with a DRIFT accessory. The fabric pieces were placed 

and hold on top of the sample cup, previously filled with potassium bromide powder 

that was used to collect the background. All the spectra were obtained under a nitrogen 

atmosphere in the range 4000 800 ־ cm-1 at 8 cm-1 resolution and as the ratio of 32 scans 

to the same number of background scans. The spectra were acquired in Kubelka-Munk 

units and baseline corrections were made using Bomem Grams/32R software, version 

4.04. 
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2.10. Wide Angle X-ray Scattering 

The X-ray diffraction patterns were obtained for the CDA and CTA fabric samples 

treated during 24 hours with cutinase and respective controls. The X-ray diffraction 

experiments were undertaken in a Philips PW1710 apparatus, using Cu Kα radiation 

and operating at a 40 KV voltage and 30 mA current. The patterns were continuously 

recorded in the diffraction angular range 2θ from 4º to 40º, with a step size of 0.02º at 

0.6ºmin-1. The non linear fitting of the diffraction patterns was performed using the 

Pseudo-Voigt peak function from OriginPro 7.5 (Origin Lab Corporation, USA) 

considering the cellulose acetate structural polymorphism II (Cerqueira et al., 2006). 

The crystallinity index was determined according to the equation (1) 

  

)( ac

c
C AA

AI +=      (1) 

 

Ac is the total area of the crystalline peaks and Aa is the total area of the amorphous 

peaks. The peaks that were considered crystalline were at the diffraction angles 2º 11º 

and 17º, for CDA, and 8º, 10º, 13º, 17º, 21º and 23º, for CTA (Chen et al., 2002; 

Hindeleh and Johnson, 1972). 

2.11. Cloning and expression of cutinase fused to carbohydrate-binding modules  

       2.11.1. Bacteria, plasmids and genes 

The bacterial hosts used for cloning and expression of cutinase fusion genes were the 

Escherichia coli strain XL1-Blue and strain BL21 (DE3), respectively. The plasmid 

pGEM®-T Easy (Promega Corporation, Madison, USA) was used to clone and sequence 

the PCR products. The plasmid pCWT (pET25b(+) carrying native cutinase gene from 

F. solani pisi, (Araújo et al., 2007) was used to insert the genes coding for the CBMs at 

the 3’ end of the cutinase gene and to express the fusion proteins. 

The DNA coding the wild type linker and wild type CBM of T. reesei CBH I, 

wtCBMCBHI, was synthesized and purchased from Epoch Biolabs (Missouri City, USA), 

as well as, the DNA fragment coding for a smaller linker and the wild type CBM, 
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sCBMCBHI. The plasmid pTugN1 containing the gene of CBMN1 from C. fimi CenC was 

kindly provided by Professor Anthony Warren (Department of Microbiology, 

University of British Columbia, Vancouver, Canada) (Johnson et al., 1996).  

     2.11.2. Plasmid construction 

Standard techniques were used for all the DNA manipulations. The wtCBMCBHI and 

sCBMCBHI were amplified by PCR, using the primers supplied by Epoch Biolabs, and 

cloned directly into pGEM®-T Easy. Transformants were selected and the gene 

sequences were confirmed by DNA sequencing, following the method of Sanger 

(Sanger et al., 1977). The constructs pGEM::wtCBMCBHI and pGEM::sCBMCBHI were 

digested with SacI and SalI, the DNA fragments were extracted and purified from 

agarose gels and cloned into the SacI/SalI restricted and dephosphorilated pCWT, 

resulting in the final pCWT::wtCBMCBHI and pCWT::sCBMCBHI vectors. The CBMN1 

sequence was PCR-amplified from pTug, with the primers CBM N1 for (5’-

ATAAGAATGCGGCCGCTAGCCCGATCGGGGAGGGAACGT) and CBM N1 rev 

(5’-ACCGCTCGAGCTCGACCTCGGAGTCGAGCGC) containing the NotI and XhoI 

sites (in bold). The PCR product was cloned into pGEM®-T Easy and a positive clone 

was selected and confirmed by DNA sequencing. The construct pGEM::CBMN1 was 

restricted with NotI and XhoI, the DNA fragment was extracted and purified from 

agarose gel and cloned into the NotI/XhoI restricted and dephosphorilated pCWT, 

resulting in the final pCWT::CBMN1 construct. The DNA coding the linker PTbox of C. 

fimi CenA (Shen et al., 1991) was obtained by PCR amplification of two overlapping 

primers (underlined sequence) containing the SalI and NotI sites (in bold): PTbox for 

(5’CTCGAGCTCAGTCGACCCGACGCCAACCCCGACGCCTACAACTCCGACT

CCGACGCCGACCCCGACTC) and PTbox rev 

(5’GAGGGACTGCGTCGCGGCCGCGGTAGGGGTCGGTGTTGGAGTCGGGGT

CGGCGTCGGAGTCGGAGTTG). The PCR amplification consisted in 30 cycles of 20 

s at 94 ºC and 20 s at 72 ºC for Accuzyme extension. The PCR product was cloned into 

pGEM®-T Easy and a positive clone was selected and confirmed by DNA sequencing. 

The plasmid pGEM::PTbox was restricted with SalI and NotI, the DNA fragment was 
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extracted and purified from agarose and cloned into the SalI/NotI restricted and 

dephosphorilated pCWT::CBMN1, resulting in the final pCWT::PTbox::CBMN1 vector. 

    2.11.3. Expression and purification of cutinase fusion proteins 

The constructs pCWT::wtCBMCBHI, pCWT::sCBMCBHI, pCWT::CBMN1 and 

pCWT::PTbox::CBMN1 were first established in E. coli strain XL1-Blue. Medium-scale 

purifications of plasmid DNA were made and used to transform the E. coli strain 

BL21(DE3). Clones harbouring the constructs were grown, at 15º C and 200 rpm, in 

2.5 L Luria-Broth medium supplemented with 100 µg mL-1 ampicillin until an 

absorbance A600 nm of 0.3-0.5 was reached. Cells were induced with 0.7 mM isopropyl-

1-thio-β-D-galactopyranoside, and further incubated for 16 hours at 15º C. The cells 

were harvested by centrifugation at 4º C (7500 xg, 10 min), washed with PBS pH 7.4 

and frozen at -80º C. The ultrasonic disruption of the bacterial cells was accomplished 

on ice with a 25.4 mm probe in an Ultrasonic Processor VCX-400 watt (Cole-Parmer 

Instrument Company, Illinois, USA). The lysate was centrifuged for 30 min at 16000 xg 

and 4 ºC. The supernatant was collected, pH was adjusted to 7.6 and imidazole was 

added to a final concentration of 25 mM. Protein purification was performed with the 

affinity chromatography system HiTrap Chelating HP (GE Healthcare Bio-Sciences 

Europe GmbH, Munich, Germany) coupled to a peristaltic pump. The 5 mL column was 

loaded with 100 mM Ni2+ and equilibrated with the binding buffer (20 mM phosphate 

buffer pH 7.6, 500 mM NaCl, 25 mM imidazole). The samples were loaded and washed 

with 10 column volumes of binding buffer followed by buffers with 50 and 100 mM 

imidazole. The fusion proteins (figure. 1) were eluted with 550 mM imidazole buffer.  

The fractions obtained were monitored by SDS-PAGE with Coomassie Brilliant Blue 

staining. The elution buffer was changed to 50 mM phosphate buffer pH 8 with HiTrap 

Desalting 5 mL columns (GE Healthcare Bio-Sciences Europe GmbH, Munich, 

Germany).  Prior to the 2.5 L culture scale up, Western blotting was performed with 

monoclonal Anti-polyHistidine-Peroxidase Conjugate from mouse to confirm the 

expression of the fusion proteins. The detection was made with ECL Western blotting 
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reagents and analysis system (Amersham Biosciences Europe GmbH, Freiburg, 

Germany). 

 

 

 

 

 

 

Figure 1. Schematic representation of the recombinant wild-type cutinase from F. 

solani pisi (Araújo et al., 2007) and its new fusion proteins with the fungal 

carbohydrate-binding module of CBH I, from T. reesei, and the bacterial carbohydrate-

binding module N1 of CenC, from C. fimi. The primary sequences of the linkers used 

are specified in the figure. 

2.12. Treatment of cellulose di- and triacetate fabric with cutinase fused to 

carbohydrate-binding modules 

All samples of cellulose acetate fabric used were previously washed as already 

described in 2.3. 

Cellulose acetate fabric samples with an average weight of 0.1 g were incubated with 

100 U mL-1 of cutinase and cutinase-CBMN1, 50 U mL-1 of cutinase-PTboxCBMN1 and 

cutinase-wtCBMT.reesei, 25 U mL-1 of cutinase-sCBMT.reesei in 10 mL of 50 mM 

phosphate buffer pH 8 with 0.01% sodium azide, under continuous vertical agitation at 

30º C and 20 rpm, for 18 hours. A control for both types of fabric was run in parallel in 
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which the buffer substituted the enzyme. After enzymatic treatment, all fabric samples 

were washed according to the procedure described earlier (see 2.3). 

3. Results and discussion 

3.1. Effect of cutinase concentration on the modification of cellulose di- and triacetate 

The media conditions, such as buffer, pH and temperature, were chosen based on earlier 

studies performed in our laboratory (Matamá et al., 2006), using the esterase activity 

determination methodology described earlier. The conditions chosen were phosphate 

buffer pH 8 and the lowest optimum temperature 30º C. The hydrolysis of the acetate 

groups in cellulose ester substrates leads to the formation of hydroxyl groups at the 

fibres surface and to the release of acetic acid to the treatment solution. The effect of 

cutinase concentration was analysed by measuring the acetic acid in the treatment 

solutions, after an incubation period of 8 hours (figure. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Effect of cutinase concentration on the acetic acid release. The CDA and 

CTA fabrics (2% w/v) were treated during 8 hours, at pH 8 and 30º C, with several 

concentrations of cutinase expressed as esterase activity in U mL-1 (see 2.2).  
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The acetic acid release was not directly proportional to all the tested enzyme 

concentrations as it would be expected (Tipton, 2002; Lee and Fan, 1982). The 

observed upward curvature could be caused by several factors like inadequate 

sensitivity of the method used to quantify the acetic acid and/or, most probably, by a 

very slow enzyme reaction. The higher level of released acetic acid from the less 

substituted cellulose acetate was according to the irreversible relation between the 

degree of substitution and the degree of bio-deacetylation (Samios et al., 1997; Altaner 

et al., 2001, 2003b; Moriyoshi et al., 1999, 2002). Steric hindrance and crystallinity are 

considered important factors in the adsorption and mostly in the effectiveness of the 

adsorbed enzyme to promote the hydrolysis (Lee and Fan, 1982). These factors should 

favour CDA over CTA. At the maximum concentration used, the enzyme activity was 

0.17 nkat and 0.12 nkat (nmol/s of acetic acid) while only 0.54% and 0.36% of the 

acetyl groups were released from CDA and CTA, respectively. These values were 

obtained considering a DS 2.4 for CDA and a minimum DS 2.7 for CTA commercial 

fibres (Steinmann, 1998; Zugenmaier, 2004). A very low yield in deacetylation is not 

uncommon for highly substituted cellulose acetates treated with cell-free enzymes (Puls 

et al., 2004). By comparison, in view of the fact that at least one of the cellulose acetate 

used has higher DS, cutinase showed potential as cellulose acetate esterase. Altaner et al  

(2001) reported that acetylesterases from 13 different commercial origins could 

significantly use cellulose acetates with DS ≤1.4 as substrates. Only one enzyme from 

Humicola insolens was able to release a small amount (10%) of acetyl groups from a 

cellulose acetate DS 1.8, after 220 hours. Another enzyme purified from a commercial 

preparation, derived from Aspergillus niger, was able to hydrolyse 5% of the existing 

acetyl groups on a cellulose acetate DS 1.8 after 140 hours (Altaner et al., 2003b). 

Considering the values found in the literature, the percentage of acetic acid released 

obtained with cutinase was not insignificant having in consideration that the final 

purpose of this modification is not biodegradation of the substrate, but the modification 

of the fibre surface. The amount of cutinase was a limiting factor, therefore amounts of 

enzyme used in subsequent treatments were ≤50 U mL-1. 
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3.2. Progress curves for the modification of cellulose di- and triacetate fabrics and 

protein adsorption 

Samples of CDA and CTA fabric (1% w/v) were treated with 50 U mL-1 of cutinase for 

different periods of incubation. The action of cutinase was evaluated by indirectly 

measuring the hydroxyl groups formed at the fibres. Since the cellulose acetates used in 

this work were insoluble, the enzyme adsorption to the substrate was a prerequisite for 

the formation of the enzyme-substrate complex. The protein adsorption was indirectly 

calculated by the decrease in total protein remaining in the treatment solution. For CDA 

(figure. 3A), an equilibrium level of relative protein adsorption of 45% (3 mg g-1 of 

protein per fabric weight) was reached. For CTA (figure.3B), the equilibrium level of 

protein adsorption was higher, with 57% of relative protein adsorption (3.5 mg g-1). The 

hydrophobic character of the substrate should not be a problem for cutinase adsorption 

since this enzyme is a lipolytic enzyme and its natural substrate, cutin, is hydrophobic 

(Egmond and Vlieg, 2000; Mannesse et al., 1995; Kolattukudy, 2004). 

The formation of hydroxyl groups at the fibre surface was evaluated by staining the 

fabric with a cotton reactive dye. The basic principle is the specific reaction between a 

vinylsulphonic group from a reactive dye, in this case Remazol Brilliant Blue R, and the 

hydroxyl group at the fibre surface. The sensitivity is high due to the large molar 

absortivities of dye molecules. If the cutinase is able to hydrolyse some of the acetyl 

groups at the surface, then more dye can be chemically linked to the fibre, resulting in 

an increase in K/S. The staining ‘titration’ methodology was already reported (Silva et 

al., 2005; Matamá et al., 2006, 2007; O’Neill et al., 2007) and proved to be a valuable 

and a very sensitive qualitative method. 

In the case of CDA fibre, the sensitivity is not as good as for the CTA fibre. The dye has 

more affinity for diacetate and, as a result, the controls are very coloured while the 

triacetate controls are very faint. This is the reason for the observed differences between 

the two fibres in the relative increase in the colour strength values (figure 3).  
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Figure 3. Progress curves for the formation of hydroxyl groups at the surface of fibres, 

measured as relative increase in K/S values, and protein adsorption for the (A) CDA and 

(B) CTA. All the samples (1% w/v) were treated with 50 U mL-1 of cutinase, at pH 8 

and 30º C. The controls were treated under the same conditions except for the enzyme. 

Samples and controls were competitively dyed at 60º C. The relative increase in K/S is 

calculated as 
control

controlenzyme
SK

SKSK
/

)//( −  (%) and the relative protein adsorption 

as 
h

th
P

PP
0

0 )( −  (%), where P is the total protein in solution. 
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After 18 hours, the relative difference in colour strength between treated samples and 

controls was around 50% for CDA and 450% for CTA. For both fabrics, the relative 

K/S increased rapidly in the first hours of treatment and slowed down as the protein 

adsorption equilibrium was being settled. In the particular case of these modifications, a 

very slow enzymatic reaction occurs. We believe that the fast initial increases in colour 

are an artefact created by an incomplete protein removal during the washing procedure 

at the end of each treatment. It seems that the dye is also able to react with hydroxyl 

groups present in the protein molecules not removed from the fabric. If this argument is 

correct the actual relative K/S increase is bellow the observed values. 

3.3. Surface modification of cellulose di- and triacetate fabrics with cutinase 

Samples of CDA and CTA fabric (2% w/v) were treated with 25 U mL-1 of cutinase for 

24 hours. Table I shows the values of increase in colour strength and acetic acid 

liberated to the reaction medium for both cellulose acetates (the control values were 

subtracted). 

 

Table I. Hydrolysis of CDA and CTA fabrics by cutinase. The parameters evaluated 

were the amount of hydroxyl groups at the fibre surface, measured as relative increase 

of K/S values at 590 nm, and the acetic acid release to the liquor. The samples (2% w/v) 

were treated with 25 U mL-1 of cutinase, at pH 8 and 30º C, for 24 hours. The controls 

were subjected to the same conditions except the for enzyme. Samples and controls 

were competitively dyed at 50º C. 
 

 CDA CTA 

K/S 590nm (%) 25 ± 9 317 ± 32 

Acetic acid (mg L-1) 1.9 ± 0.2 Nd 
       nd – non detected 

 

Evidence of hydrolysis was obtained by the increase in K/S for both fabrics and by the 

formation of acetic acid for CDA. It was not possible to detect this product in the 
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treatment medium of CTA. Compared to previous results, the levels of acetic acid are 

lower than the observed for the same esterase activity per weight of the substrate. 

The diffuse reflectance (DRIFT) technique was used to collect the infrared spectra of 

CDA and CTA fabric samples and respective controls in order to obtain further 

evidence of the hydrolysis of the ester linkage at the surface of treated fibres. This 

technique allows examining the IR absorption by rough surfaces. Figure 4 shows the IR 

spectra in the region of 1800-1720 cm-1 which is the wavenumber region for the 

stretching vibration of the carbonyl group (Krasovskii et al., 1996). 

For CTA (figure. 4B) there was a clear difference in both the intensity and shape of the 

carbonyl stretching band between the treated sample and the control. There was a 

decrease in the intensity after the cutinase treatment and there was also a shift of the 

band to lower wavenumbers. The decrease in the intensity was correlated to the 

enzymatic hydrolysis of some ester linkages at the surface of the samples. The 

displacement could be caused by the formation of intermolecular hydrogen bridges 

between the remaining carbonyl groups and the newly formed hydroxyl groups (Ilharco 

and Barros, 2000) or it could be due to a preferential hydrolysis of the carbonyl groups 

at C2 e C3 positions (Krasovskii et al., 1996). Regarding CDA (figure. 4A), the observed 

differences between the control and sample were considered not significant. The 

absence of a significant difference was unexpected because in the treatment liquor it 

was possible to detect acetic acid while for CTA it was not. 
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Figure 4. DRIFT spectra showing the carbonyl group stretching band of (A) CDA and 

(B) CDT controls and samples. The samples (2% w/v) were treated with 25 U mL-1 of 

cutinase, at pH 8 and 30º C, for 24 hours. The controls were treated under the same 

conditions but without enzyme. 

 

After the fabric samples and controls were competitively stained, cross sections of 

fibres were made and observed by Fluorescence microscopy to assess the diffusion of 

the dye inside the fibre and indirectly to confirm the surface action of cutinase. 

The inherent affinity of Remazol Reactive Blue R for CDA did not allow any 

significant difference in the dye distribution in the fibres (results not showed). The 
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differences between controls and treated samples were more evident for CTA (figure. 

5).  

 

 

 

 

 

 

 

Figure 5. Epifluorescent photographs of cross-sections from (A) control and (B) treated 

sample of CTA, competitively stained with Remazol Reactive Blue R, C.I. 61200. The 

samples (2% w/v) were previously treated with 25 U mL-1 of cutinase, at pH 8 and 

30º C, for 24 hours. The controls were subjected to the same conditions except for the 

enzyme. Both images were acquired under the same conditions with a total 

magnification of 1000x. 

 

The hydroxyl groups appeared to be located mainly on the fibre surface where the dye 

was chemically fixed, which could be attributed to a superficial action of cutinase. 

Therefore, cross sections of fibres treated with cutinase conjugated with FITC were also 

observed by Fluorescence microscopy (figure. 6). 

 

 

 

 

 

 

 

 

 

Figure 6. Epifluorescent photographs of cross-sections from (A) CDA and (B) CTA 

samples. The samples (2% w/v) were treated with 10 mg g-1 of FITC-conjugated 
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cutinase per fabric weight, at pH 8 and 30º C, for 15 hours. Both images were acquired 

with a total magnification of 1000x. 

The protein was found at the fibre surface of both fabrics and it was also possible to see 

some lack of uniformity as for the reactive dye staining. Scanning electronic 

microscopy images were also obtained for both fabrics treated for 18 hours with 

50 U mL-1 cutinase (results not shown). The surface of CDA was not apparently altered 

by the enzymatic treatment while a slight fibrillation of the triacetate surface was visible 

after the cutinase treatment. The impact of the hydrolysis of acetyl groups should be 

more drastic on the highly ordered structure of CTA than on the more disordered CDA. 

From the mathematical fitting of X-ray diffraction patterns, crystallinity indexes were 

determined for CDA and CTA, samples and respective controls (table II). There was a 

small decrease in the crystallinity index after the enzymatic treatment, for both fibres. 

CTA was most affected, with a decrease of 12% while CDA had a decrease of 8%. 

 

Table II. Crystallinity indexes for CDA and CTA. The samples (2% w/v) were treated 

with 25 U mL-1 of cutinase, at pH 8 and 30º C, for 24 hours. 

 CDA CTA 

Control 0.38 0.68 

treated sample 0.35 0.60 

 

Cutinase was able to modify the surface of the cellulose acetate fabrics, increasing the 

number of hydroxyl groups and consequently the hydrophilic character and the dye 

affinity. Since there were changes on the crystallinity index, other physical properties 

should be tested for a better evaluation of the impact of such surface modifications on 

the textile performance of these fibres. 

3.4. Cellulose di- and triacetate treatment with cutinase fused to cellulose-binding 
modules 

For further improvement of cutinase catalysis, several fusion proteins with known and 

well characterized CBMs were produced. The inclusion of spacers between the cutinase 

and the CBMs was performed in three of the fusion proteins. The importance of these 
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spacers was studied by several authors mainly through deletion studies. It was 

demonstrated that linker peptides, connecting the catalytic domains of carbohydrate-

active enzymes and the CBMs, are necessary for the synergistic activity between the 

two domains (Srisodsuk et al., 1993; Shen et al., 1991). The wild-type linker of CBHI 

was included in the fusion protein with the CBM from the same enzyme. A smaller 

linker was also used to connect cutinase to the fungal CBM (figure. 1). The initial 

purpose was to increase the levels of expression in E. coli of the soluble cutinase fused 

to CBMCBHI, by removing from the wild-type linker a sequence of residues that 

constitute possible sites for O-glycosylation. Since E. coli does not possess the 

machinery necessary for this post-translation eukaryotic modification, removing those 

residues could promote correct folding of the fusion protein. The expression levels were 

very low for soluble cutinase-wtCBMCBHI and were not significantly improved in the 

case of cutinase-sCBMCBHI. The bacterial linker used was the proline-threonine box 

(PT)4T(PT)7 present on the CenA from C. fimi (Shen et al., 1991). This type of PT 

linker is also naturally glycosylated, but when it is not, the conformations of catalytic 

domain and CBM are preserved, since only a partial increase in the linker flexibility 

seems to occur (Poon et al., 2007). 

In the treatment of CDA and CTA with cutinase and its fusion proteins, it was not 

possible to detect acetic acid as previously. For longer treatments, the quantification of 

acetic acid was somehow impaired. The reasons could be some volatility, 

microbiological contamination (in spite of the sodium azide) and/or different 

efficiencies of cutinase from different batches.  

Protein quantification after treatment with cutinase-CBMN1 and cutinase-PTboxCBMN1 

was unviable due to the turbidity of solutions. This turbidity happened only for the 

referred assays, where protein adsorption might be underestimated. The turbidity could 

be precipitated protein or due to non-hydrolytic disruption of cellulose acetate fibres, in 

particular, of CDA for which this phenomenon was most visible. This mechanical 

disruption was already described for cellulose and cotton in the presence of CenA, Cex 

and isolated CBMs (Din et al., 1991 and 1994, Cavaco-Paulo et al., 1999). Comparing 

the amount of protein adsorbed and relative K/S between chimeric proteins and 

cutinase, there was a clear difference between the two cellulose acetates studied (figure. 
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7). The fusion of cutinase to the CBMs had a more pronounced effect for the less 

substituted acetate, independently of the CBM type. The steric constrains should be 

stronger in the triacetate fibre and consequently the interactions necessary for the ligand 

recognition by the CBM should be more impaired on this fibre surface regarding the 

diacetate fibre. Due to the fact that different initial amounts of protein were used, is not 

possible to compare directly the protein adsorption behaviour of the several constructs. 

But it is possible to see for this particular treatment that there was no obvious relation 

between the colour differences and the amount of protein adsorbed. 

Taking in account the different esterase activities used, the cutinase-wtCBMCBHI and 

cutinase-sCBMCBHI seem the most efficient catalysts under the treatment conditions 

used. For CDA, the relative K/S was improved 3.8 and 2.6 fold by cutinase-wtCBMCBHI 

and cutinase-sCBMCBHI, respectively, regarding cutinase alone. For treated CTA, the 

relative increase in K/S was not different between cutinase alone and fused to the fungal 

CBMs, but the initial esterase activity of cutinase was higher (figure. 7). The differences 

in relative K/S were also improved with the fusion of the bacterial CBM to cutinase. For 

CDA, cutinase-CBMN1 improved the relative K/S by 1.8 fold, the same as cutinase-

PTboxCBMN1.  

The treatment was performed at pH 8. The optimum pH for binding of most CBMs 

corresponds to the optimum pH for the catalytic domain of the respective carbohydrate-

active enzyme and it is in the range of acidic to neutral. The better performance on 

cellulose acetate fibres of the fungal CBM could be explained by the affinity of 

CBMCBHI to insoluble ligands being relatively more insensitive to pH than the affinity 

of CBMN1 (Tomme et al., 1996). In fact, lowering the treatment pH to neutral increased 

the adsorption of cutinase-CBMN1 to CDA (results not shown). Other reason could be 

the difference in size of both CBMs. The activity of cutinase could be more constrained 

by the bigger bacterial CBM than by the smaller fungal CBM. Indeed, using half the 

esterase activity in the treatment with cutinase-PTboxCBMN1, the increase in K/S 

obtained was in the same range of that with cutinase-CBMN1, for both fabrics (figure. 

7). 

Further studies, aiming at a better characterization of the action of chimeric cutinases on 

the surface modification of cellulose acetates, would contribute to clarify these issues.  
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Figure 7. Protein adsorption and relative increase in K/S values for the (A) CDA and 

(B) CTA treated with cutinase and cutinase fused to CBMs. All the samples (1% w/v) 

were incubated during 18 hours with 100 U mL-1 of cutinase and cutinase-CBMN1 (cut-

N1), 50 U mL-1 of cutinase-PTboxCBMN1 (cut-PT-N1) and cutinase-wtCBMT.reesei (cut-

wtCBM), 25 U mL-1 of cutinase-sCBMT.reesei (cut-sCBM), at pH 8 and 30º C. A control 

was treated under the same conditions but without any enzyme. Samples and control 
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were competitively dyed at 60º C. Relative protein adsorption was calculated as  

cutinasecutinase hh

hh

PP
PP

180

180

−
−  and relative K/S was calculated as 

controlcutinase
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//
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−
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4. Concluding remarks 

The biomodification of the surface of cellulose acetate with high degree of substitution 

with cutinase was demonstrated by the acetic acid release and the improvement in the 

chemically specific staining of the fabrics with a reactive dye. From the acetic acid 

release, the hydrolysis yield is higher for the less substituted cellulose acetate fabric, but 

the consequences of the acetyl hydrolysis are more pronounced for CTA, as shown by 

the differences in colour, morphology of the fibres surface and crystallinity between 

controls and treated samples. Further studies will be necessary to evaluate the impact of 

cutinase activity in the physical properties of the fabrics and to assess the contribution 

of the incomplete protein removal and of the physical, rather than chemical, 

modifications on the differences seen upon enzymatic treatment. 

The design of hybrid enzymes mimics the strategies that nature uses to evolve and it is a 

powerful tool in biotechnology. The production and application of the cutinase fused to 

CBMs, especially to the fungal CBM of CBHI of T. reesei, provided strong evidences 

of being an interesting strategy to pursuit. Future work is needed to improve the 

recombinant production of modular cutinases and to study in detail their affinities 

toward the cellulose acetates. 

From the above considerations, it could be suggested that the cutinase has potential in 

textile industry for the surface modification and consequently on the “bicomponent 

yarns/fibres” production of cellulose acetate. 
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1. Properties of Wool 

Wool is one of the oldest textile fibres known with unique natural properties like being 

easy to processe into yarn and as a consequence, the panoply of products into which it 

can be converted determines its commercial value as a textile fibre. Because it absorbs 

moisture vapour, wool clothing provides superior comfort in both hot and cold weather; 

it has excellent natural flame-resistance properties; good resilience, which makes it 

comfortable to wear by fitting the shape of the body; high static and dirty resistance; it 

can be easily dyed, and the range of colours is limitless. Wool is also a very good 

insulator against noise, by absorbing sound and reducing noise level considerably. 

Despite all the remarkable properties of wool, its laundry and durability performance 

are inferior to synthetic fibres which are the main causes of the research done in the 

wool industry.  

2. The Morphological Structure of Wool 

Sheep wool is the most important commercial fibre obtained from animal sources, 

(Rippon, 1992). Wool is produced in the fibre follicle in the skin of the sheep and the 

physical properties such as diameter, length and crimp, as well as, chemical 

composition can deeply vary depending of: 

- Parts of the body of the sheep; 

- Strains of the sheep within a breed;  

- Age of the sheep; 

- The diet and health of the sheep; 

- Breeds;  

- Environments (the climate, terrain, pasture, etc); 

- Farming properties; 

- Shearing regimes (timing, frequency, preparation procedures); 

- Geographic regions; 

- Seasons of the year (Pailthorpe, 1992). 
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Wool is a complex natural fibre being mainly composed of proteins (97%) and lipids 

(1%). 82% of total protein content of wool is keratinous proteins, which are 

characterized by a high concentration of cystine. Approximately 17% of wool is 

composed of proteins which have been termed non keratinous, because of their 

relatively low cystine content (Feughelman, 1997 Rippon, 1992). 

 

 
Figure 1. Cross-section diagram of a merino wool fibre showing the structure at 

progressive magnification (Feughelman, 1997). 

 

 

Wool fibres have approximately the form of elliptical cylinders, with average diameters 

ranging from 15 μm to 50 μm and lengths depending of the rate of growth and the 

shearing regimes, as previous mentioned (Makinson, 1979). The wool fibre consists of 

two major morphological parts: cuticle and cortex. The cuticle (also referred as scale 

layer of wool) is composed of laminar and rectangular structures which form a sheath of 

overlapping scales enveloping the cortex (Speakman, 1985; Naik and Speakman, 1993). 

It is normally one cell thick and usually constitutes about 10% by weight of the total 

fiber. The cuticle is subdivided into three layers: exocuticle (which is subdivided into 

two main layers, A and B that differ mainly in the cystine content), endocuticle, and an 

outermost membrane called the epicuticle (Figure 2).  
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Figure 2. Schematic scale structure of the cuticle showing the major components (based 

on Rippon (1992). 

 

 

The epicuticle, is very inert chemically, being resistant to acids, oxidising and reducing 

agents, enzymes, and alkalis (Makinson, 1979; Negri et al., 1993).The epicuticle is 

known for its hydrophobicity, probably due to the lipid component 18-methylicosanoic 

acid (Negri et al., 1993). This fatty acid is covalently bound to the protein matrix via 

cystine residues, forming a layer that can be removed by treatment with alkaline or 

chlorine solutions in order to enhance many textile properties such as wetability, dye 

uptake and polymer adhesion (Negri et al., 1993; Brack et al., 1999). Another important 

characteristic is the cross-linking of the exocuticle. The A-layer contains 35% cystine 

residues. In addition to the normal peptide bonds, the cuticle is cross-linked by 

isodipeptide bonds, (ε-(γ-glutamyl) lysine) (Rippon, 1992; Heine and Höcker 1995). 

The A and B layers are both resistant to boiling in diluted hydrochloric acid and to 

trypsin digestion; however they can be solubilised by trypsin treatment after oxidation 

or reduction. The endocuticle is preferentially attacked by proteolytic enzymes, and 

readily degraded in diluted boiling hydrochloric acid (Naik, 1994; Sawada and Ueda, 

2001).  



Subchapter 3.1 

 
 

166 
 

The cortex comprises the main bulk. Cortical cells are long, polyhedral, and spindle-

shaped and consist of intermediate filaments (microfibrils) embedded in a sulfur-rich 

matrix. 

Cuticle cells and cortical cells are separated by a continuous intercellular material, the 

cell membrane complex, which is mainly composed of non-keratinous proteins and 

lipids (Rippon, 1992; Makinson, 1979; Plowman, 2003; Negri et al., 1993). 

The composition and morphology of the wool surface is primarily modified in fibre pre-

treatment processes (Brack et al., 1999). 

 

3. Conventional Finishing Processes for Wool Fibre 

A variety of processes are available to improve the appearance, handle, performance 

and durability of the wool fabrics. Such processes include scouring, carbonizing, 

bleaching, dyeing, antimicrobial finishing and shrinkproofing. 

3.1. Scouring 

Raw wool contains 25-70% by mass of impurities. These consist of wool grease, 

perspiration products, dirt and vegetable matter such as burrs and seeds (Rippon, 1992; 

Pearson et al., 2004). Before the more specialised finishing processes are applied, 

fabrics usually require cleaning (scouring) to remove these impurities (Pearson et al., 

2004; Lewis, 1992). 

3.2. Carbonizing 

If not completely degraded and removed from the textile goods, vegetable matter and 

skin residues will lead to uneven dyeing and printing. The vegetable matter is normally 

removed by carbonizing, a process where wool is impregnated with sulfuric acid and 

then baked to char the cellulosic impurities. The residuals are then crushed and 

extracted from the wool as carbon dust by brushing and suction.  
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3.3. Bleaching 

Bleaching is a chemical process employed to destroy the natural creamy colourants in 

wool and produces a whiter wool. This operation is only performed when wool is 

intended to be white dyed or light dyed. Bleaching may take place at the sliver, top, 

yarn or fabric stages of production. Hydrogen peroxide based bleaching recipes are 

commonly employed although these compounds can damage wool fibres, due to 

progressive oxidation of disulfide bonds ultimately forming cysteic acid (Gacen and 

Cayuela, 2000). 

3.4. Dyeing 

Dyeing operations are used at various stages of production to add colour and 

sophistication to textiles and increase product value. Wool textiles are dyed using a 

wide range of dyestuffs, techniques, and equipment. Until fairly recently, most of the 

dyes used on wool were acid dyes. Nowadays, acid, chrome, metal-complex and 

reactive dyes may all be used for the dyeing of wool (Pailthorpe, 1992). 

3.5. Antimicrobial Finishing 

Natural fibres are more susceptible to microbial attack than synthetic fibres, once they 

provide the basic requirements for microbial growth (such as nutrients and moisture). In 

the carpet industry, the antimicrobial and/or mothproofing of wool fabric is an 

important finishing step. Various chemicals have been applied to wool to control 

microbial and larval attack, however, more recently, due to environmental concerns, 

restrictions have been placed on the type of agent which may be employed (Purwar and 

Joshi, 2004; Han and Yang, 2005). Magnesium hydroperoxide and related compounds, 

and chitin and chitosan based antimicrobial agents are the new generation of 

environmentally friendly antimicrobial agents (Purwar and Joshi, 2004). Non-toxic 

natural dyes have also been tested on the antimicrobial activity of wool with good 

results (Han and Yang, 2005). 
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3.6. Felting and shrinkage  

One of the intrinsic properties of wool is its tendency to felting and shrinkage under a 

moisturizing environment, heat or mechanical agitation. Wool shrinkage is basically 

due to its scaly structure.  

The shrinkage behaviour of wool can be regulated to a greater or smaller degree by 

various chemical means. There are various successful commercial shrink-resist 

processes available for textile industries that have been developed decades ago. These 

shrinkproofing processes aim at the modification of the fibre surface either by oxidative 

or reductive methods and/or by the application of a polymer resin onto the surface. 

These processes can be combined in 3 groups: 

 

Subtractive processes – The first type of shrinkproofing treatment involves chemical 

attack on the cuticle of the fibres using a chlorine agent. Chlorination was introduced as 

a shrinkproofing treatment during the latter half of the nineteenth century (Makinson, 

1979). The principal mode of action of subtractive antifelting treatment is that it making 

the cuticle cells softer in water than those of untreated fibres. This softening is the result 

of oxidation and scission of the numerous disulfide bonds in the exocuticle of the fibre 

and causes a reduction in the directional frictional effect (Makinson, 1979). 

 

Additive processes – The second class of shrinkproofing treatments consists on the 

addition of a polymer to the wool. This treatment promotes fibres to stick among 

themselves at many points along their length, thereby preventing relative movement and 

thus shrinkage. The polymer can be applied to wool fabric or yarn as solutions or 

emulsions. The polymers contain reactive side-chains, which form cross-links between 

the polymer chains during a curing process and may form covalent links with the wool 

protein. 

 

Combination of subtractive and additive processes- The most common surface specific 

treatment for wool is probably the chlorine-Hercosett process which renders the wool 

fibre shrink-resistant. The process uses chlorine gas generated in situ from sodium 

hypochlorite and sulphuric acid or chlorine gas dissolved in water. The treatment is 
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surface specific because the reaction with the cuticle takes place in less than 10 seconds.  

Chlorination results in the oxidation of cystine residues to cysteic acid residues in the 

surface of the fiber and allows the Hercosett 125 polymer, applied afterwards, to spread 

and adhere evenly along the fibre surface (Heine, 2002). This polymer, which is 

normally used to improve the wet strength of paper products, swells to 10x its normal 

thickness in water thus preventing the scale edges of adjacent fibres from interacting 

and causing felting during washing.  

The chlorine-Hercosett process has been employed in the industry for the last 30 years, 

and about of 75% of the world's treated wool is processed by this route in one of its 

forms (Holme, 2003). As previously mentioned (Chapter 1) this process has excellent 

advantages (antifelt effect, low damage and low weight loss) but it also shows a number 

of drawbacks like limited durability, poor handle, yellowing of wool, difficulties in 

dyeing and the most important today, release of absorbable organic halogens (AOX) to 

the effluents (Heine, 2002; Schlink and Greeff, 2001). There is therefore an increasing 

demand for environmentally friendly alternatives.  

4. Enzymatic Finishing Processes for Wool 

Enzymes can be used in order to develop environmentally friendly alternative 

processes. Since wool mainly consists of proteins and lipids especially proteases and 

lipases have been investigated for wool fibre modification. However, the complex 

structure of natural fibres, especially of wool, brings complexicity to enzymatic fibre 

modification. Proteases and lipases can catalyse the degradation of different fibre 

components of wool preventing an accurate control of the reaction. If not controlled, 

this diffusion leads to a strong damage of the wool fibre, being crucial to restrict the 

enzymatic action to the wool fibre surface. The following subchapters describe the 

approaches developed in the scope of this thesis aiming to restrict subtilisin E 

hydrolysis to the surface of wool. 
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Abstract  

Subtilisin E is an alkaline serine protease secreted by the Gram positive bacteria 

Bacillus subtilis and widely used in industry as biocatalyst for various processes. The 

most common application of subtilisins is in laundry detergents but, due to 

environmental concerns, the application of subtilisins to treat wool is under study. There 

are some reports regarding the attempts to substitute the conventional chlorine treatment 

by an enzymatic process capable of providing the same characteristics to the fabric, like 

anti-shrinking and better uptake and fixation of the dyestuff. However, the uncontrolled 

hydrolysis degree due to diffusion of the enzyme inside the wool fibre causes 

unacceptable losses of strength. To overcome this fact, and taking advantage of the x-

ray crystallographic structure, we have genetically modified subtilisin E, increasing its 

molecular weight, to restrict the hydrolysis to the surface of the wool fibres. Therefore, 

three genetically modified enzymes with a molecular weight 2-fold to 4-fold higher than 

the native subtilisin E were produced and assessed for activity. The prokaryotic 

expression systems, pET25b (+), pET11b and pBAD C were explored for the 

production of recombinant enzymes. The results demonstrated that regardless the 

expression system or strain used, chimeric subtilisins were not expressed with the 

correct folding. No active and soluble recombinant protein was recovered under the 

testing conditions. Despite this drawback, we have described here a novel approach to 

increase subtilisin molecular weight. The reported results are noteworthy and can 

indicate good guidelines for future work aiming the solubilization of recombinant 

chimeric subtilisins.   
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1. Introduction 

Subtilisins are a family of alkaline serine proteases generally secreted by a variety of 

Bacillus species. There are also some reports of subtilisins production by 

Flavobacterium (Morita et al., 1998). They are characterized by a common three-layer 

α/ β/ α tertiary structure and a catalytic triad of aspartate, histidine and serine residues 

(Graycar et al., 1999). The molecular weight of subtilisins ranges from 15 to 30 kDa, 

with few exceptions, like a 90 kDa subtilisin from Bacillus subtilis (natto) (Kato et al., 

1992). They present optimum pH range between 10.0 and 12.5 and an isoelectric point 

(pI) near 9.0 (Rao et al., 1998). Subtilisins from Bacillus sp. are quite stable at high 

temperatures and addition of Ca2+ enhances enzyme thermostability (Paliwal et al., 

1994). They are strongly inhibited by phenyl methyl sulphonyl fluoride (PMSF), 

diisopropyl-fluorophosphate (DFP) and potato inhibitor (Gold and Fahrney et al., 1964; 

Mirihara, 1974).  

Due to their widespread distribution, availability and broad substrate specificity, 

subtilisins are useful as biocatalysts for detergent industry, leather processing, silver 

recovery in photographic industry, for management of industrial and household waste, 

for food and feed processing, as well as, for medical purposes and chemical industry 

(Kumar and Takagi, 1999; Gupta et al., 2002). Regarding the cited industrial 

applications, subtilisins have been extensively investigated as promising targets for 

protein engineering. 

Among subtilisins, subtilisin E, from B. subtilis, is one example of the best studied 

alkaline serine proteases. Subtilisin E is first synthesized as a membrane-associated 

precursor preprosubtilisin (Wells et al., 1983). The NH2-terminal prepeptide, consisting 

of 29 amino acid residues is a typical signal peptide that is required for secretion of 

prosubtilisin across the plasma membrane. The propeptide located between the 

prepeptide and mature sequence has 77 amino acids and is essential for producing active 

subtilisin in vivo, as well as, in vitro. It acts as an intramolecular chaperone required for 

the correct folding of mature enzyme (Stahl and Ferrari, 1984; Wong and Doi, 1986; 

Ikemura et al., 1987; Ikemura and Inouye, 1988). The mechanism of maturation by 

propeptide consists of three steps: (1) folding of mature region mediated by its 

propeptide; (2) cleavage of the peptide bond between propeptide and subtilisin and (3) 
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removal of the propeptide by an auto-proteolytic degradative process (Ikemura and 

Inouye, 1988; Zhu et al., 1989; Shinde et al., 1993; Li and Inouye, 1994; Yabuta et al., 

2001). Degradation is required, because the propeptide can inhibit the active site of 

subtilisin forming a stable and inactive propeptide-subtilisin complex (Li et al., 1995; 

Fu et al., 2000; Jain et al., 1998). 3D structure of subtilisin E has been used to develop 

protein engineering strategies, aiming the enhancement of catalytic activity and 

thermostability, as well as, substrate specificity and oxidation resistance. 

Catalytic efficiency of subtilisin E was 2-6 fold increased after changing the isoleucine 

at position 31 by a leucine, using site-directed mutagenesis (SDM) (Takahi et al., 1988). 

The same group constructed a novel subtilisin E with high specificity, activity and 

productivity through three cumulative amino acid substitutions (Takagi et al., 1997). 

Sroga and Dordick performed protein engineering to convert subtilisin E into an 

enzyme with broader esterase activity as opposed to its native amidase activity (Sroga 

and Dordick, 2001). 

Improvement of thermal stability was first achieved by Takagi and collaborators by the 

introduction of an additional disulfide bond linkage between cysteines 61 and 98 in 

subtilisin E (Takagi et al., 1990). SDM was used to introduce a N218S mutation that 

increased the thermostability of the enzyme (Wang et al., 1993). SDM was also used by 

Yang and collaborators to generate a S236C mutant subtilisin E with a half-life, at 60 

ºC, 4-fold longer than that of native subtilisin E. Using this mutant, thermostability 

could also be increased, by forming a disulfide bridge between two molecules of S236C 

subtilisin E (Yang et al., 2000a). The same group used random mutagenesis PCR 

technique to develop a thermal stable and oxidation-resistant mutant. The new 

M222A/N118S subtilisin E was 5-fold more thermal stable than native enzyme (Yang et 

al., 2000b). In another report, the thermal stability of subtilisin E was increased using 

directed evolution to convert B. subtilis subtilisin E into an enzyme functionally 

equivalent to its thermophilic homolog thermitase from Thermoactinomyces vulgaris 

(Zhao and Arnold, 1999).  

Proteases, like subtilisin E can be used for wool fibre modification. Since wool mainly 

consists of proteins and lipids, proteases and lipases have been extensively studied in 

order to achieve more environmentally friendly processes (Schumacher et al., 2001). 



Strategies Towards the Functionalization of Bacillus subtilis Subtilisin E for Wool Finishing Applications 
 

 

179 
 

Wool cuticle treatment with subtilisin improves anti-shrinkage properties, leads to a 

reduced felting tendency and an increased dyeing affinity (Schumacher et al., 2001). 

However, due to its small size, the enzyme is able to penetrate into the fibre cortex 

which causes the destruction of the inner parts of wool structure (Shen et al., 1999). 

Several reports show that the increase of enzyme molecular weight, by attaching 

synthetic polymers like polyethylene glycol (PEG) or by crosslinking with 

glutaraldehyde (GTA), is effective avoiding enzyme penetration and the consequent 

reduction of strength and weight loss (Schroeder et al., 2006; Silva et al., 2004). Pre-

treatment of wool fibres with hydrogen peroxide at alkaline pH in the presence of high 

concentrations of salts also targets enzymatic activity on the outer surface of wool, by 

improving the susceptibility of cuticle for proteolytic degradation (Lenting et al., 2006). 

Surfactant protein D (SP-D) is a member of the C-type lectin superfamily (Zhang et al., 

2001). It is synthesized and secreted by alveolar and bronchiolar epithelial cells and 

participates in the innate response to inhaled microorganisms and organic antigens. It 

also contributes to immune and inflammatory regulation within the lung (Zhang et al., 

2001). Each SP-D subunit (43 KDa) consists of four major domains: an N-terminal 

cross-linking domain, an uninterrupted triple helical collagen domain, a trimeric coiled-

coil or neck domain and a C-type lectin carbohydrate recognition domain. The neck 

domain of SP-D is the unit responsible for driving the trimerization of the three 

polypeptide chains of SP-D and it was demonstrated that the presence of this sequence 

permits spontaneous and stable non-covalent association of a heterologous type IIA pro-

collagen amino propeptide sequence (McAlinden et al., 2002). SP-D neckdomain 

(SPDnd) was used for possible formation of subtilisin E trimers. 

Increasing subtilisin molecular weight is crucial for its successful application in wool 

finishing. The main objective of this work was to provide an alternative to chemical 

modification of subtilisin, by expressing a genetically modified subtilisin E with 

increased molecular weight, to be used for wool finishing applications. Two novel 

approaches were followed, the construction of two polysubtilisins, (pro2subtilisin and 

pro4subtilisin) and the formation of a subtilisin trimer by fusion of native prosubtilisin 

with SP-D neckdomain. We were able to express the three modified enzymes although 

no activity was recovered for these enzymes yet. The expression systems tested, as well 
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as, the fermentation conditions that could increase the solubility of recombinant proteins 

are presented in great detail.  

2. Materials and Methods 

2.1. Bacterial strains, plasmids, and enzymes 

The Escherichia coli strains BL21(DE3), BL21(DE3)pLysS and Tuner and the T7 

plasmids pET25b (+) and pET11b were purchased from Novagen (Madison WI, USA). 

Plasmid pBAD C and E. coli strains TOP 10 and LMG194 were from Invitrogen, 

(Carlsbad, CA). The genetic sequences coding for native prosequence, subtilisinE and 

prosubtilisinE were PCR-amplified with the primers listed in table 1 using as template 

DNA, the vector pET11a containing the full sequence coding for pro-subtilisin E from 

Bacillus subtilis (kindly provided by Professor Masayori Inouye, Robert Wood Johnson 

Medical School, University of Medicine and Dentistry, Piscataway, New Jersey) (Hu et 

al., 1994). Oligonucleotides (0.01 and 0.05 µmol scale) were purchased from MWG 

Biotech, (Germany). Restriction and modification enzymes were from Roche Applied 

Science, (Germany). The theoretical molecular masses of recombinant proteins were 

calculated using the Compute pI/Mw application from Expasy 

(http://www.expasy.ch/tools). 

Unless specifically stated, all the other reagents were from Sigma-Aldrich (St. Louis 

MO, USA). 

2.2. Transformation and DNA sequencing 

All the vectors constructed were first established in E. coli XL1-Blue strain, according 

to SEM method (Inoue et al., 1990). The correct plasmid constructs were verified by 

restriction map analysis followed by DNA sequencing with an ABI PRISM 310 Genetic 

Analyzer, using the method of Sanger (Sanger et al., 1977). DNA cloning and 

manipulation were performed according to the standard protocols (Sambrook et al., 

1989). 
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2.3. Design of chimeric subtilisin genes and construction of expression vectors based on 
pET system 

The PCR products purified from a 2% (w/v) agarose gel electrophoresis were first 

cloned into the p-GEM T-easy cloning system (Promega, USA), resulting in the 

following vectors: pGEM:prosequence, pGEM:subtilisinE and pGEM:prosubtilisinE. 

For the construction of the pro2subtilisinE chimeric gene, containing two subtilisin 

coding sequences cloned in frame, the BamHI/BglII fragment of pGEM:subtilisinE was 

ligated with the BglII linearized pGEM:proSubtilisinE (figure 1). Identical strategy was 

used for the construction of the chimeric gene pro4subtilisinE: the pGEM-

pro2subtilisinE construction, linearized with BglII, and chimeric gene BamHI-

2subtilisin-BglII were ligated. 

The gene corresponding to prosubtilisinE-SPDnd was chemically synthesized by 

EpochBiolabs, Texas, USA. 

Flanked by BamHI and BglII restriction sites, the entire DNA coding sequences for 

native and the three chimeric subtilisins, were subcloned into BamHI digested and 

dephosphorilated pET25b (+) and pET11b (table 2). 

2.4. Site-directed mutagenesis of pBAD C plasmid and construction of pBAD expression 
vectors  

The pBAD C plasmid was modified by site-directed mutagenesis (SDM), using 

recombinant PCR technique (Ansaldi et al., 1996), in order to allow the introduction of 

the inserts in frame with C-myc and His6 tags. The primers were designed to remove an 

adenine at the end of pBAD C multiple cloning site (the overlapping regions are 

underlined and the mutation is indicated by an asterisk): BADmutF (5´- 

TCATCTCAGAAGAGGATCTGAATAGCGCCGTCGACCATC- 3´); BADmutR (5´- 

TTCAGATCCTCTTCTGAGATGAGTTTTTGTTC*AGAAAGCTTCGAATTCC-3´). 

The mutation eliminates a recognition site for XbaI (TCTAGA → TCT*GA) which 

permitted to check the insertion of this mutation. Subtilisins coding sequences were 

recovered from cloning vectors by digestion with restriction enzymes BamHI and BglII, 

and further cloned into dephosphorilated pBAD C* linearized with BglII (table 2).  
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Figure 1. Strategy used for the construction of chimeric gene pro2subtilisinE in pGEM 

T-easy. PCR was carried out with pET11a:prosubtilisin (Hu et al., 1994) containing the 

native prosubtilisinE as template. PCR products were subcloned into pGEM T-easy. 

Construction pGEM-subtilisinE was digested with BamHI and BglII to recover the 

BamHI-subtilisinE-BglII fragment, which was then ligated to the BglII linearized 

pGEM-prosubtilisinE. BamHI and BglII recognize different restriction sites generating 

compatible sticky-ends. 

  
The original Bacillus subtilis presequence, described by Ikemura and collaborators 

(1987) was synthesized in vitro using self-annealing oligonucleotides Fpres and Rpres, 

overlapping in 33 bp (table III). The full DNA sequence was obtained in a PCR of 20 s 

at 94 ºC and 20 s at 72 ºC, for Accuzyme (Bioline, Germany) extension, for 30 cycles. 

Primers Famp and Ramp (flanked with XhoI restriction site) were further used to 

amplify the presequence (table III). The PCR product was digested with XhoI, purified 

from a 2% (w/v) agarose gel electrophoresis and cloned into the XhoI digested and 

dephosphorilated pBAD C* constructions, resulting in the final expression vectors 

pBAD-pre-prosubtilisinE, pBAD-pre-pro2subtilisinE, pBAD-pre-pro4subtilisinE and 

pBAD-pre-prosubtilsinE-SPDnd (table 2). 

 
Table I. Primers used to amplify the genes prosequence, subtilisinE and prosubtilisinE 
 

Gene Primer (5´→ 3´) bp GC 
% 

Prosequence ProF  CGC  GGA  TCC  CAT  GGC  CGG  AAA  AAG  CAG  TAC  AG   32 59.4 
 ProR  GGA  AGA  TCT  CCA  TAT  TCA  TGT  GCA  ATA  TGA  T 31 35.5 
SubtilisinE SubF  CGC  GGA  TCC  CAT  GGC  GCA  AAG  CTT  TCC  TTA  TG 32 56.3 
 SubR  GGA  AGA  TCT  CCT  TGT  GCA  GCT  GCT  TGT  ACG  TTG 33 51.5 
proSubtilisinE ProF   CGC  GGA  TCC  CAT  GGC  CGG  AAA  AAG  CAG  TAC  AG   32 59.4 
 SubR  GGA  AGA  TCT  CCT  TGT  GCA  GCT  GCT  TGT  ACG  TTG 33 51.5 
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Table II. Heterologous protein expression systems used: E. coli strains and recombinant 

vectors. 

E. coli strain/ vector Constructs 

BL21(DE3)/ pET25b (+) 
prosubtilisinE 
pro2subtilisinE 
pro4subtilisinE 

Tuner/ pET25b (+) 
prosubtilisinE 
pro2subtilisinE 
pro4subtilisinE 

BL21(DE3)pLysS/ pET25b (+) 
prosubtilisinE 
pro2subtilisinE 
pro4subtilisinE 

BL21(DE3)/ pET11b 
prosubtilisinE 
pro2subtilisinE 
pro4subtilisinE 
prosubtilisinE-SPDnd 

TOP10/ pBAD C* 
prosubtilisinE 
pro2subtilisinE 
pro4subtilisinE 
prosubtilisinE-SPDnd 

LMG194/ pBAD C* 

Prosequence 
prosubtilisinE 
pro2subtilisinE 
pro4subtilisinE 
prosubtilisinE-SPDnd 
pre-prosubtilisinE 
pre-pro2subtilisinE 
pre-pro4subtilisinE 
pre-prosubtilisinE-SPDnd 

 

2.5. Induction conditions for protein expression  

Expression host strains BL21(DE3), BL21(DE3)pLysS and Tuner, transformed with 

pET25 constructions, were used for protein expression. Cells were grown in Luria-

Broth, (LB), medium containing 100 μg/μL ampicillin, and induced according to the 

conditions described in table IV.  

Cells of the strain BL21(DE3) containing pET11 constructions were grown in LB 

medium/100 μg/μl ampicillin, at 37 ºC and induced with isopropyl β-D-1-

thiogalactopyranoside (IPTG) 1 mM at 18 ºC.  

E. coli strains TOP10 carrying the pBAD C* constructions were grown in Complete 

Minimal (CM) medium supplemented with 20 amino acids (40 μg/mL) and vitamin B1 

(5 mg/L). Glycerol was used at a concentration of 0.20% (w/v). Cells of the strain 

http://en.wikipedia.org/wiki/IPTG
http://en.wikipedia.org/wiki/IPTG
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LMG194 were grown in RM medium. In both cases ampicillin was used at the 

concentration of 100 μg/μL. Cells were induced according to conditions described in 

table IV. 

 

Table III. Primers used to generate and amplify B. subtilis presequence. XhoI 

restriction site is underlined. 

Gene Primer (5´→ 3´) bp 
GC 
% 

Presequence Fpres CTC GAG TGA GAA GCA AAA AAT TGT GGA TCA GCT TGT 
TGT TTG CGT TAA CGT TAA TCT TTA CGA  63 38.1 

 Rpres  CTC GAG CCT GCG CAG ACA TGT TGC TGA ACG CCA TCG 
TAA AAG TTA ACG TTA AGC CAA ACA ACA 63 47.6 

    
 Famp CCC TCG AGT GAG AAG CAA AA 20 50 
 Ramp  CCC TCG AGC CTG CGC AGA CA 20 70 

 
 
Table IV. Fermentations conditions performed for E. coli pET25b (+) and pBAD 

vectors. 

 

E. coli strain/ Vector Temperature 
of growth (ºC) [Inducer] 

Temperature of 
induction (ºC) / 

time 
BL21(DE3)/ pET25b (+) 37; 30; 25 IPTG 1.0; 0.5; 0.3 (mM) 30;18; 4 h 
BL21(DE3)pLysS/ pET 25b (+) 30; 25 IPTG 1.0; 0.5; 0.3 (mM) 18 h 
Tuner/ pET25b (+) 30; 25 IPTG 1.0; 0.5; 0.3 (mM) 18 h 
TOP10 and LMG194/ pBAD C* 37; 30 Arabinose 0.2; 0.1(%) 18 h / ON and 3 h 

2.6. Cell fractionation  

Overnight cell cultures from all the strains transformed with pET25 and pBAD C* 

constructions were harvested by centrifugation (5000 rpm for 15 minutes) and 

resuspended in Osmotic Solution I (OS I: 20 mM Tris-HCl pH 8.0, 2.5 mM EDTA, 2 

mM CaCl2, sucrose 20%, w/v) to an OD600 of 5.00. Cells resuspended in OS I were 

incubated on ice for 10 min and centrifuged at 4 ºC. Supernatants were decanted and the 

cell pellets resuspended in the same volume of Osmotic Solution II (OS II: 20 mM Tris-

HCl pH 8.0, 2.5 mM EDTA, 2 mM CaCl2). The suspension was incubated for 20 min 
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on ice and centrifuged at 4 ºC. The supernatants (periplasmic fractions) were reserved. 

The pellet samples (cellular fractions) were resuspended in phosphate buffered saline 

(PBS) solution (10 mM Na2HPO4, 2 mM KH2PO4, 137 mM NaCl, 3 mM KCl, pH 7.4). 

Ultrasonic treatment of bacterial cells was performed at 20 KHz with a 13-mm probe in 

an Ultrasonic Processor GEX 400. Four 2 min pulses, with 2 min on ice between each 

pulse, were performed. The lysates were centrifuged for 30 min at 14000 rpm at 4 ºC. 

The supernatants, soluble fractions, were decanted and reserved. The pellets, insoluble 

fractions, were resuspended in PBS solution and reserved. 

Overnight cell cultures from BL21(DE3) strain transformed with pET11b constructions 

were harvested by centrifugation (5000 rpm for 15 minutes) and resuspended in PBS 

solution to an OD600 of 5.00. Cells were broken with ultrasonic treatment and lysates 

centrifuged for 30 min at 14000 rpm at 4 ºC and pellets reserved. 

2.7. In vitro renaturation of recombinant enzymes 

The pellets (inclusion bodies) from fermentations of E. coli carrying pET11 

constructions were solubilized in urea 6 M. After overnight incubation at 4 ºC, the 

insoluble materials were removed by ultracentrifugation at 90000 x g for 40 min. The 

supernatants were then dialyzed against an excess of 50 mM sodium-potassium 

phosphate buffer (pH 5.0) containing 5 M urea at 4 ºC. Renaturation of recombinant 

proteins were performed by a stepwise dialysis procedure against 10 mM Tris-HCl 

(pH 7.0), 0.5 M (NH4)SO4, 1 mM CaCl2, 5 mM β-mercaptoethanol and decreasing 

amount of urea. Buffer was changed every 24 h until urea was completely removed. 

 

2.8. Isolation and purification of prosequence 

For prosequence purification an Immobilized Metal Affinity Chromatography (IMAC) 

system was used with HiTrap Chelating HP 5 ml column containing 5 ml of Chelating 

Sepharose High Performance (Amersham Pharmacia Biotech). The HiTrap Chelating 

HP column was linked to a peristaltic pump. After loading with 2.5 ml 0.1 M NiSO4 in 

H2O, equilibration was performed with 10 mM imidazole, 0.5 M NaCl, 20 mM 

phosphate buffer pH 7.6. 
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Samples were applied onto the column at a flow rate of 5 ml.min-1, followed by washing 

with the equilibration buffer. Elution was performed with a buffer containing 500 mM 

imidazole, 0.5 M NaCl and 20 mM phosphate buffer, pH 7.6.  

2.9. Prosequence Mediated Folding 

Prosequence mediated folding was performed by addition of IMAC purified 

prosequence, produced by E. coli LMG194, to native and chimeric enzymes, purified 

from BL21(DE3) inclusion bodies, in a 1:1 molar ratio. The mixture was allowed to 

incubate for 12 h at 4 ºC.  

2.10. Analytical Methods for the Enzymes 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis, using a Tris-SDS-glycine 

buffer system was used to monitor the soluble and insoluble fractions (Laemmli, 1970). 

Protein detection was done by Coomassie Brilliant Blue R250. The total protein 

concentration was estimated by Bradford quantitative protein determination assay using 

bovine serum albumin as standard (Bradford, 1976).  

2.11. Activity assay  

Proteolytic activity was determined using azocasein as substrate, based on Sako and co-

workers (Sako et al., 1997). The reaction mixture containing 0.250 ml 50 mM Tris-HCl, 

pH 8.0, 2% (w/v) azocasein and 0.150 ml enzyme solution to a final volume of 0.400 

ml, was incubated at 25 ºC for 30 minutes. The negative control was prepared replacing 

the enzyme solution with buffer. The reaction was stopped by the addition of 1.2 ml of 

10% trichloroacetic acid (TCA). The solution was mixed thoroughly and allowed to 

stand for 15 minutes to ensure complete precipitation of the remaining azocasein and 

azocasein fragments. After centrifugation at 8000 × g for 5 min, 1.2 ml of the 

supernatant was transferred to a test tube containing 1.4 ml of 1 M NaOH solution. The 

absorbance of this solution was measured at 440 nm using a spectrophotometer Genesis 

20 (Thermospectronic). The assays were performed in triplicate. One unit of protease 



Subchapter 3.2 
 

 

188 
 

activity is defined to be the amount of enzyme required to produce an absorbance 

change of 1.0 in a 1 cm cuvette, under the conditions of the assay. 

3. Results 

3.1. Expression of recombinant proteins using pET25b (+) expression system 

All the constructions reported in this work were originally cloned by PCR from the 

vector pET11a:pro-subtilisin (Hu et al., 1994). The final constructions that are 

described in table 2 were transformed into the appropriate strains. Depending on the 

vector used, the expression of recombinant proteins was induced with IPTG or with 

arabinose, as well as, by varying the cell cultures temperature incubation, as described 

in Material and Methods.  

E. coli BL21(DE3) cells transformed with pET25b (+) constructions (table II), grown at 

37 ºC, were able to express prosubtilisinE, pro2subtilisinE and pro4subtilisinE in the 

presence of 1 mM IPTG at 30 ºC at a high level (figure 2). The molecular mass of 

prosubtilisinE, estimated as 45.0 kDa, is not in agreement with the expected molecular 

weight for mature subtilisinE, (30 kDa) (Ikemura et al., 1987). The chimeric proteins 

pro2subtilisinE and pro4subtilisinE showed a molecular mass near 67 and 125 kDa, 

respectively, probably due to the unprocessed pelB-prosubtilisinE, pelB-pro2subtilisinE 

and pelB-pro4subtilisinE. The theoretical molecular mass of the processed proteins 

according to Expasy is near 58 and 116 kDa. pelB leader signal peptide directs the 

recombinant proteins to the periplasmic space, where they were mostly expected to be 

found. However, recombinant proteins were only found in the insoluble fractions 

(pellets) (figure 2). The same results were obtained for expression strains 

BL21(DE3)pLysS and Tuner using the same fermentation conditions (data not shown). 

In order to increase the solubility of the recombinant proteins, all bacterial strains were 

grown under different temperatures (30 and 25 ºC) and induction phase was performed 

with lower concentrations of IPTG (0.5 and 0.3 mM) at lower incubation temperatures 

(18 and 4 ºC). It was assumed that combining decreasing of temperature with lower 

concentrations of inducer would prevent overloading the E. coli periplasmic transport 

system and recombinant enzymes would be able to fold properly. However, none active 
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subtilisin was secreted to the periplasmic space, (figures 3 and 4), which revealed that 

pET25b (+) pelB leader sequence was not a suitable signal sequence to export this 

protease, in the set of conditions tested. In figures 3 and 4 representative results 

obtained for strain BL21(DE3) are shown for all the parameters tested (culture 

temperature, inducer concentration and induction phase temperature). Similar results 

were obtained for the strains BL21(DE3)pLysS and Tuner, using the same 

fermentations conditions. 

 

 

 
 

 

 

 

 

 

Figure 2. SDS-PAGE of proteins from E. coli BL21(DE3) cells grown at 37 ºC, 

induced with IPTG 1 mM at 30 ºC. Lanes 1, 4, 7 and 10: pET25pro-SubtilisinE. Lanes 

2, 5, 8 and 11: pET25-pro2SubtilisinE. Lanes 3, 6, 9 and 12: pET25-pro4SubtilisinE. 

MW: SDS-PAGE Standard, Broad Range (Bio-Rad). The solid arrowheads indicate the 

position of recombinant proteins.  
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Figure 3. SDS-PAGE of proteins from E. coli BL21(DE3) cells grown at 30 ºC, 

induced with IPTG 0.5 mM at 18 ºC  and grown at 30 ºC, induced with IPTG 0.3 mM at 

4 ºC. Lanes 1, 4, 7 and 10: pET25-prosubtilisinE. Lanes 2, 5, 8 and 11: pET25-

pro2subtilisinE. Lanes 3, 6, 9 and 12: pET25-pro4subtilisinE. MW: SDS-PAGE 

Standard, Broad Range (Bio-Rad). The solid arrowheads indicate the position of 

recombinant proteins.  
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Figure 4. SDS-PAGE of proteins from E. coli BL21(DE3) cells grown at 25 ºC, 

induced with IPTG 0.5 mM at 18 ºC and grown at 25 ºC, induced with IPTG 0.3 mM at 

4 ºC.  Lanes 1, 4, 7 and 10: pET25-prosubtilisinE. Lanes 2, 5, 8 and 11: pET25-

pro2subtilisinE. Lanes 3, 6, 9 and 12: pET25-pro4subtilisinE.  MW: SDS-PAGE 

Standard, Broad Range (Bio-Rad). The solid arrowheads indicate the position of 

recombinant proteins.  
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3.2. Expression of recombinant proteins using pBAD expression systems 

The E. coli pBAD expression system has been described to express B. subtilis 

subtilisinE (Sroga and Dordick, 2001; Sroga and Dordick, 2002), where the entire 

preprosubtilisinE gene was used and full functional enzyme was efficiently targeted to 

the periplasmic space. The pBAD plasmid has a geneIII signal sequence that can be 

used for periplasmic expression of recombinant enzymes. SDM by recombinant PCR 

was performed into pBAD C vector in order to allow in frame integration of inserts. The 

native and chimeric genes were cloned into pBAD C* expression system and E. coli 

strains TOP10 and LMG194 were used. TOP 10 E. coli did not express any of 

recombinant enzymes (data not shown). LMG194 cells, carrying pBAD C* 

constructions, produced the recombinant proteins in the insoluble fraction in all the 

conditions tested. Figure 5 shows representative results of these assays.  

Unlike Sroga and its collaborators (2002) we were not able to produce active and 

soluble subtilsin E using pBAD expression system, since no azocasein activity could be 

detected in soluble fractions, derived both from cytoplasm or periplasmic space. As 

previously observed for pET25b (+) pelB leader sequence, also pBAD C geneIII leader 

sequence did not revealed to be a suitable signal peptide to export these recombinant 

proteins to the periplasmic space. It was assumed that these facts might be explained by 

the absence of native B. subtilis presequence. Following this hypothesis, in all the 

pBAD C* constructions, the original B. subtilis prepeptide was introduced in frame 

upstream the pBAD geneIII signal sequence. Cells LMG194 harboring the pBAD-pre-

prosubtilisinE, pBAD-pre-pro2subtilisinE, pBAD-pre-pro4subtilisinE and pBAD-pre-

prosubtilisinE-SPDnd, were grown and induced as previously described. The results 

demonstrated that no production of active and soluble recombinant protein using 

pBAD/gIII expression system was achieved, even in the presence of the original leader 

sequence of B. subtilis (figure 6). 
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Figure 5. SDS-PAGE of proteins from E. coli LMG194 cells grown at 37 ºC, induced 

with 0.2% arabinose at 18 ºC. Lanes 1 to 5: soluble fractions of negative control pBAD, 

pBAD-prosubtilisinE, pBAD-pro2subtilisinE, pBAD-pro4subtilisinE and pBAD-

prosubtilisinE-SPDnd respectively and lanes 6 to 10: insoluble fractions of negative 

control pBAD, pBAD-prosubtilisinE, pBAD-pro2subtilisinE, pBAD-pro4subtilisinE 

and pBAD-prosubtilisinE-SPDnd. MW: SDS-PAGE Standard, Broad Range (Bio-Rad). 

The solid arrowheads indicate the position of recombinant proteins.  
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Figure 6. SDS-PAGE of proteins from E coli LMG194 cells grown at 30 ºC, induced 

0.2% arabinose at 18 ºC. Lanes 1 to 3: soluble fractions of pBAD-pre-prosubtilisinE, 

pBAD-pre-pro2subtilisinE and pBAD-pre-pro4subtilisinE respectively and lanes 4 to 6: 

insoluble fractions of pBAD-pre-prosubtilisinE, pBAD-pre-pro2subtilisinE and pBAD-

pre-pro4subtilisinE. MW: SDS-PAGE Standard, Broad Range (Bio-Rad). 

The solid arrowheads indicate the position of recombinant proteins.  
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3.3. Expression of recombinant proteins using pET11b expression system 

Since B. subtilis subtilsinE was previously expressed in E. coli pET11 system (Hu et al., 

1994), the genes coding for the native enzyme, as well as, the three chimeric enzymes, 

pro2subtilisinE, pro4subtilisinE and prosubtilisinE-SPDnd were cloned into this vector, 

using E. coli BL21(DE3) as host strain. The transformants carrying pET11 vectors were 

able to produce all the constructs at a level of almost 80 % of total cellular proteins in 

the presence of 1 mM IPTG (Figure 7).  

After cell disruption, by ultra-sonic treatment, the products isolated in the pellets, were 

collected by low-speed centrifugation, indicating that the proteins aggregated to form 

inclusion bodies. Purification and refolding of native and chimeric enzymes were 

carried out with the isolated inclusion bodies as described under Materials and Methods. 

All samples were assayed for azocasein activity. Except for native subtilisinE, (3.2 U), 

no activity was detected for chimeric enzymes pro2subtilisinE, pro4subtilisinE and 

prosubtilisinE-SPDnd (data not shown).  

Mature subtilisinE and pro2subtilisinE purified and renatured from inclusion bodies 

were used for circular dicroism analysis. Compared to active mature subtilisinE, 

chimeric pro2subtilisinE presented only 30% of secondary structure (data not shown) 

which suggests that in vitro renaturation of chimeric enzymes do not result in the 

correct folding necessary for enzymatic activity. 

3.4. Prosequence mediated folding 

E. coli LMG194 cells carrying the construction pBAD-prosequence, grown at 30 ºC and 

induced at 18 ºC, were able to express the prosequence at high level in the soluble, as 

well as, in the insoluble fractions (Figure 8). 

Soluble fractions were purified by IMAC using a nickel column, and used for refolding 

procedures. Prosequence-mediated folding was performed by addition of prosequence 

to recombinant proteins purified from inclusion bodies in a 1:1 molar ratio and 

incubation at 4 ºC for 12 h. All the experiments were repeated three times. In previous 

work developed by Shinde and its collaborators (1993) the refolding of Gdn-HCl-

denatured subtilisinE was achieved by incubation with prosequence in the same 
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conditions described above. In all the assays performed refolding of prosubtilisinE was 

attained, since activity was recovered, but refolding of chimeric pro2subtilisinE, 

pro4subtilisinE and prosubtilisinE-SPDnd enzymes was not achieved (data not shown). 

                    

 

 
 
 
 
 
 
Figure 7. SDS-PAGE of insoluble fractions from E coli BL21(DE3) cell cultures grown 

at 37 ºC, induced with IPTG 1 mM at 37 ºC. Lane 1: pET11-prosubtilisinE, lane 2: 

pET11-pro2subtilisinE and lane 3: pET11-pro4subtilisinE. MW: SDS-PAGE Standard, 

Broad Range (Bio-Rad). The solid arrowheads indicate the position of recombinant 

proteins.  
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Figure 8. SDS-PAGE of proteins from E. coli LMG194 transformed with pBAD C*-

prosequence. Lane 1: soluble fraction and lane 2: insoluble fraction. MW: SDS-PAGE 

Standard, Broad Range (Bio-Rad). The solid arrowhead indicates the position of 

recombinant prosequence.  
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4. Discussion 

The results demonstrated that chimeric subtilisins were not expressed with the correct 

folding using three different E. coli expression systems, pET25b (+), pET11b and 

PBAD C. 

The first objective was to choose an expression system for periplasmic secretion of 

recombinant proteins. Compared to cytosolic production, secretory production provides 

several advantages, for example, the possibility to obtain proteins with authentic N-

termini, after cleavage of signal sequence by a specific signal peptidase; enhanced 

disulphide-bond formation, because periplasmic space provides a more oxidative 

environment than the cytoplasm; decreased proteolysis and minimization of harmful 

actions of recombinant proteins which are deleterious to the cell (Makrides, 1996). 

Furthermore, the periplasm contains only about 100 proteins as compared with about 

400 proteins in the cytoplasm, so recombinant protein purification procedures can be 

more efficient when proteins are targeted to the periplasm (Blattner et al., 1997). 

Although active subtilisin has been expressed in E. coli periplasm using the IPTG 

inducible pIN-III-ompA vector, the amount of functional enzyme obtained was very 

low (Ikemura et al., 1987). This vector has a strong Ipp promoter, as well as, a lac 

promoter operator fragment to ensure that expression is dependent on the addition of a 

lac inducer (Masui et al., 1984). A disadvantage of this promoter is the absence of 

complete down-regulation under non-induced conditions, since an early overproduction 

of chimeric subtilisins could impair cell growth. Therefore we used a more tightly 

regulated IPTG-inducible system, the pET system, an alternative expression system for 

common lab-scale fermentations. pET vectors have a T7 promoter which is transcribed 

only by T7 RNA polymerase and must be used in strains carrying a chromosomal T7 

RNA polymerase gene, that is under the control of a lac promoter (Studier, 1991; 

Studier et al., 1990). pET25b (+) vector allowed to control the level of chimeric 

subtilisins expression. By having the pelB leader sequence it is possible to direct the 

proteins for periplasmic space which, in combination with the addition of a 6 x His tag 

to the enzyme´s C-terminus, improves recombinant proteins purification. It also allows 

easy immunological detection by adding the C-terminal HSV-epitope tag. Recombinant 

subtilisins were over expressed, but in a misfolded and inactive form, associated with E. 
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coli insoluble proteins. In order to test another signal sequence, different from pET25b 

(+) pelB leader, the genes were cloned into pBAD/gIII C expression vector. This vector, 

that contains the pBAD promoter from the arabinose operon, is tightly regulated and 

contains the gene III signal sequence utilized for secretion of the recombinant protein 

into the periplasmic space. Similarly to the results obtained for pET25b (+), also using 

pBAD C expression system none of the recombinant proteins were secreted to the 

periplasm. Since periplasmic expression did not revealed to be appropriated for the 

recombinant proteins under study, chimeric genes were subsequently cloned into 

pET11b. Using this system, proteins were expressed in the form of inclusion bodies. 

The dense inclusion bodies could be rapidly recovered by centrifugation and a high 

purity of proteins preparations obtained. The main disadvantage with inclusion bodies 

formation is the need for solubilization and refolding steps, necessary to achieve the 

correct folding and activity of recombinant proteins. This strategy was efficient to fold 

native subtilisin E correctly but not the chimeric enzymes. We are currently analysing 

the factors affecting solubility and studying alternative systems for chimeric enzymes 

expression. The co-expression of chimeric proteins with chaperons could be a strategy 

to promote the correct folding and to increase solubility of recombinant subtilisins. 

Different chaperone plasmid sets, able to express multiple molecular chaperons, have 

been successfully used to increase recovery of expressed recombinant proteins in the 

soluble fraction. Such proteins were hardly recoverable using conventional methods due 

to the formation of inclusion bodies (Nishihara et al., 1998; Kim et al., 2005; 

Schlapschy et al., 2006). Addition of metal ions to culture medium could also have a 

positive effect on solubilization of recombinant proteins produced by E. coli (Yang et 

al., 2003). If the expression of chimeric proteins in E. coli is found to be not effective, 

the genes could be cloned back into bacteria from the genera Bacillus (Silbersack et al., 

2006; Biedendieck et al., 2007).  
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Abstract 

In this work, we propose the construction of a novel high molecular weight subtilisin 

based on the fusion of prosubtitlin E DNA sequence from Bacillus subtilis with a DNA 

sequence that codifies to an elastin-like polymer. Wool yarns were treated with both 

commercial and chimeric subtilisins. It was shown that using the chimeric subtilisin 

there was a significant reduction of felting, pilling and tensile strength loss of wool 

yarns since the hydrolysis is restricted to the cuticle of wool.  

The results stated here are of great importance once it is reported for the first time the 

microbial production of a chimeric high molecular weight protease for wool surface 

hydrolysis. This novel process of enzymatic-controlled hydrolysis overcomes the 

unrestrained diffusion and extended fibre damage which is the major obstacle on the use 

of enzymes for wool finishing applications.  
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1. Introduction  

The morphology of wool is highly complex, not only in the fibre stem but also on the 

surface as well. It is in fact the surface morphology that plays an important role in the 

wool processing. Unwanted effects such as shrinkage, felting and barrier of diffusion 

are most probably due to the presence of wool scales on the fibre surface (Negri et al., 

1993). 

Wool surface treatment with proteolytic enzymes seems to be a promissing alternative 

to the traditional pollutant Chlorine/Hercosett process. However, enzymatic reaction 

needs to be controlled, either by chemical or genetic modification, to avoid diffusion of 

enzyme into wool cortex and consequent fibre damage (Silva et al., 2004; Silva et al., 

2005).  

In contrast to chemical modification, the size and entire sequence of aminoacids of a 

recombinant high molecular weight protein can be precisely controlled bythe DNA 

coding sequence. In previous work developed by our group different cloning strategies 

were used to increase subtilisin E molecular weight. Although the recombinant enzymes 

were expressed, the soluble and active form of proteins was not achieved (Araújo et al., 

2008).  

In this work we have used a protein based polymer to solubilize subtilisin E.  A protein 

polymer is a polypeptide chain composed of amino acids sequences, commonly found 

in nature, which are arranged within a block or a set of blocks which are repeated in 

tandem, producing a high molecular weight repetitive protein (Urry, 2006). This type of 

polymers has been used for the solubilization and purification of hard proteins (Banki et 

al., 2005, Trabbic-Carlson et al., 2004). Since this is a high molecular weight polymer 

this may also function as an interesting possibility to functionalize subtilisin E for wool 

finishing applications. 

The present work compares the behaviour of two proteases, the commercial subtilisin, 

Esperase, with low molecular weight, and a chimeric hight molecular weight subtilisin-

GAG220, in the diffusion and hydrolytic attack to wool fibres.  
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2. Materials and Methods 

2.1. Bacterial strains, plasmids, and enzymes 

The Escherichia coli strain BL21(DE3), the T7 plasmid pET25b (+) and Overnight 

Express Instant TB Medium were purchased from Novagen (Madison WI, USA). 

Restriction and modification enzymes were from Roche Applied Science, (Germany). 

The commercial enzyme used in this study was the protease Esperase (E.C.3.4.21.62) 

from Sigma-Aldrich. Unless specifically stated, all the other reagents were from Sigma-

Aldrich (St. Louis MO, USA). 

2.2. Wool material 

Untreated pure wool woven fabrics were provided by Albano Antunes Morgado Lda, 

Portugal.  

2.3. Construction of chimeric prosubtilisin E-polimer 

The strategy used for the construcion of polymeric gene was previously described 

(Girotti et al., 2004; Rodríguez-Cabello et al., 2005) and reported as the “Gutenberg 

Method”. Briefley, the DNA coding for the peptide monomer containing 10 repetitions 

of VPAVG, was chemically synthesized and subjected to concatenation. The multimeric 

block genes (flanked by Eam1104I recognition sites) were obtained by recursive 

directional ligation in the cloning vector (Machado et al. unpublished work).  

The construction/concatenation was performed in a modified cloning vector, pDrive 

(Qiagen) resulting in the construction pDrive:VPAVG220. Construction was confirmed 

with the restriction enzymes Eam1104I and EcoRI (Fermentas).  

The construction pDrive-GAG220 was digested with MboII. The fragment MboII-

VPAVG220-MboII was Klenow blunted and purified from a 1% (w/v) agarose gel 

electrophoresis. After DNA extraction the gene was cloned into the XhoI digested, 

Klenow blunted and dephosphorilated pET25b-prosubtilisinE (Araújo et al., 2008), 

resulting in the final construction pET25-prosubtilisinE-GAG220. This vector was used 

to transform E. coli strain XL1 Blue, according to the SEM method (Inoue et al., 1990). 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3C-4MTK930-1&_user=2459786&_coverDate=03%2F10%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000057396&_version=1&_urlVersion=0&_userid=2459786&md5=dbc13fed437c70cf59bd3d007d6a3751#bib12
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The plasmid construct was verified by restriction with LguI and by DNA sequencing, 

following the method of Sanger (Sanger et al., 1977), using an ABI PRISM 310 Genetic 

Analyzer. DNA cloning and manipulation were performed according to the standard 

protocols (Sambroock et al., 1998). The recombinant plasmids were then transformed 

into the expression strain Escherichia coli BL21(DE3) (Novagen).  

2.4. Protein expression and purification 

Expression host strain BL21(DE3) transformed with pET25:proSubtilisin-VPAVG220 

was used for protein expression. Bacterial cultures were grown at 30 ºC in Novagen 

Auto-induction medium, containing 100 μg/mL ampicilin. After fermentation time, 

(usually overnight) the cells were harvested by centrifugation, washed with phosphate 

buffered saline solution (10 mM Na2HPO4, 2 mM KH2PO4, 137 mM NaCl, 3 mM KCl, 

pH 7.4) and lysed by ultrasonic disruption (Ultrasonic Processor GEX 400). 

Supernantant was reserved for protein purification and the pellet, insoluble debris, was 

ressuspended in phosphate buffered saline solution and reserved for analysis by sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis, SDS-PAGE. 

Recombinant protein was purified using an IMAC system with a HisPrep FF 16/10 

column (GE Healthcare) already prepacked with pre-charged Ni Sepharose 6 Fast Flow. 

Column equilibration was performed with 10 mM imidazole, 0.5 M NaCl, 20 mM 

phosphate buffer pH 7.6. Samples were applied onto the column at a flow rate of 2 

ml.min-1. Elution was performed with a buffer containing 80 mM imidazole, 0.5 M 

NaCl and 20 mM phosphate buffer, pH 7.6.  

Proteins were detected by SDS-PAGE using a Tris-SDS-glycine buffer system 

(Laemmli, 1970). SDS PAGE gel images were acquired with Molecular Imager 

ChemiDoc XRS system and Quantity One software from Biorad. Protein detection was 

done by Coomassie Brilliant Blue R250.  

2.5. Enzyme assay and protein concentration 

The activity of commercial Esperase and chimeric subtilisin was measured, according to 

Silva et al., (2004) using casein as substrate. One unit of activity is defined as the 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3C-4MTK930-1&_user=2459786&_coverDate=03%2F10%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000057396&_version=1&_urlVersion=0&_userid=2459786&md5=dbc13fed437c70cf59bd3d007d6a3751#bib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3C-4MTK930-1&_user=2459786&_coverDate=03%2F10%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000057396&_version=1&_urlVersion=0&_userid=2459786&md5=dbc13fed437c70cf59bd3d007d6a3751#bib18
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amount of enzyme that hydrolyses casein to produce equivalent colour to 1 μmol of 

Tyrosine, per minute, at pH 7.5 and 37 ºC (colour by the Folin & Ciocalteu’s reagent). 

The total protein concentration was determined by a modification of the micro Lowry 

method (Lowry et al., 1951), using bovine serum albumin as standard and using Sigma 

test kit no. P5656.  

2.6. FITC linkage to proteins 

Enzymes (same Units of both enzymes were used) were linked to FITC (100/1, w/w) in 

sodium carbonate buffer pH 8.5. Free FITC was removed using HiTrap desalting 

columns (Amersham). Wool samples were treated in this solution at 37 ºC, 20 rpm, for 

24 h. 

Wool fibres cross-sections were analyzed on a Leica Microsystems DM-5000B 

epifluorescence microscope with appropriate filter settings using a 100× oil-immersion 

objective. Images were acquired with a Leica DCF350FX digital camera and processed 

with LAS AF Leica Microsystems software.  

2.7. Pre-treatments performed on wool yarn 

Before enzymatic treatment, wool yarns were subject to two different pre-treatment 

washings: 

Surfactant washing (S): wool was washed with Lutensol ON 30 (non-ionic surfactant) 

1 g/l, in a bath ratio 1:20, at pH 9.0 (Na2CO3 0.1 M and NaHCO3 0.1 M buffer), for 30 

min, at 40 ºC, on a Rotawash machine. After the washing procedure, the surfactant was 

removed from wool first with tap water, followed by distilled water. 

Bleaching washing (S + B): After the previous washing, wool was immersed in a bath 

with 1% (o.w.f.) H2O2, at pH 9.0 (Na2CO3 0.1 M and NaHCO3 0.1 M buffer), for 1 h at 

55 ºC, on Rotawash machine. 

2.8. Enzymatic treatment of wool yarns  

Enzymatic treatment experiments were performed in plastic boxes each containing 0.5 g 

of 23 μm (mean diameter) wool yarns, subjected to the different pre-treatments 
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described above. Volumes of phosphate buffer solution (pH 7.6, 0.01 M) and protein 

stock solution were added to the sorbent so that every flask contained the same total 

volume (50 ml) and the same units of enzyme activity. Then, the flasks were closed and 

rotated at 90 rpm for 24 h at 37 ºC in a shaking water bath. Several controls were run 

simultaneously: a control test with wool without pretreatment and without protein (C), a 

control test with surfactant washed wool (C, S) and without protein and a control test 

with bleaching washed wool (C, S+B) and without protein. After incubation, wool yarns 

were removed and washed for tensile strength, felting and pilling evaluation. 

    2.8.1. Tensile strength 

Tensile strength resistance was determined by using a tensile tester machine, 

accordingly to ASTMD5035-90. The samples were conditioned before testing in a 

standard atmosphere. 

The tensile strength resistance values are given as the mean of an n≥10 replicates, 

together with the standard deviation (the coefficient of variation was bellow 10% for all 

cases). 

    2.8.2. Felting and pilling 

Felting and pilling were visually evaluated after repeated washing (3 times) at 50 ºC, for 

60 min and 20 rpm. 

3. Results  

3.1. Expression and purification of recombinant protein  

E. coli BL21(DE3) transformants carrying pET25:proSubtilisin-GAG220 grown and 

induced at 30 ºC were able to express the quimeric enzyme at high level in the soluble 

fraction (Figure 1A). The SDS-PAGE analysis of the cellular lysate revealed the 

presence of a soluble chimeric protein with a high molecular weight (> 116 kDa).  This 

chimeric protein was efficiently purified from all other contaminating proteins present 
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in the cellular lysate (Figure 1B). Preparations of purified chimeric enzyme were used 

for wool treatment experiments.  

 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. SDS-PAGE of A) soluble fraction from two different clones of E. coli 

BL21(DE3) transformed with pET25:prosubtilisin-VPAVG220 and B) purified 

subtilisin-VPAVG220 polymer stained with copper chloride. The solid arrows indicate 

the position of recombinant protein.  

3.2. Effect of subtilisin size  

    3.2.1. On diffusion trought the fibre 

Native subtilisins have a molecular mass of approximately 30 kDa, which is the major 

drawback on the application of subtilisins for wool treatment. Due to their relatively 

small size the enzymes can diffuse into the fibre cortex causing the degradation of the 

internal parts of wool structure. We postulate that an increase of more than four-fold on 

subtilisin E molecular weight would prevent diffusion on enzyme into wool. To follow 

the diffusion of the enzymes into yarns, they were fluorescently labelled with a 

fluorescent dye, FITC. After the covalent coupling of enzymes to FITC, wool yarns 

were incubated in these solutions for 24 h. After enzymatic treatment, the yarns were 

entrapped in a non-fluorescent resin and sliced in thin layers with a microtome. 

Fluorescence microscopy images show that native subtilisin penetrates completely 
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inside the fibre cortex while chimeric subtilisinE-VPAVG220, with a molecular weight 

higher than 116 kDa, appears to be restricted to the surface of yarns (Figure 2A and B). 

Silva and collaborators have obtained similar results after chemical modification of 

subtilisins with PEG and Eudragit S-100. The chemically modified enzymes presented 

molecular weights higher than 97 KDa which appeared to be effective to limit the 

hydrolysis only at the wool cortex (Silva et al., 2004; Silva et al., 2005).  

Fluorescence microscopy results provide good indication that chimeric subtilisin-

VPAVG220 has the proteolytic activity restricted to wool surface.  

 

   

 

 

 

 

         A       B 

Figure 2. Fluorescence microscopy images of fibre cross-sections of wool yarns treated 

with FITC-labelled commercial Esperase (A) and chimeric subtilsin-VPAVG220 (B), 

(100x). 

    3.3.2. On yarns tensile strength  

The wool fibre cuticle is covered by a covalently bound lipid layer, the main responsible 

for the hydrophobicity of wool. Alkaline pre-treatments can partially remove some of 

these lipids reducing its hydrophobic nature and enhancing at the same time protein 

diffusion inside the fibre (Brack et al., 1999). Wool yarns were then subjected to two 

alkaline pre-treatments, a scouring washing (S) and a scouring washing followed by 

bleaching (S + B). Wool yarns previously pre-treated were incubated with the same 

units of commercial subtilisin and chimeric subtilisin-VPAVG220 for 24 h for tensile 

strength resistance valuation.  

Figure 3 demonstrate that there are no significant differences in the tensile strength of 

yarns subjected to both pre-treatments compared to the control samples.  
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The maximum tensile strength supported by wool yarns was drastically lower for 

samples treated with commercial subtilisin. This treatment promoted more than 50% of 

reduction in the original tensile strength of yarns, indicating higher fibre degradation as 

a consequence of enzyme diffusion. On the other hand wool yarns incubated with 

chimeric subtilisin-VPAVG220 retained maximum tensile strength comparable to those 

of control samples (without enzyme). It seems that the high molecular weight subtilisin-

VPAVG220 is retained at the surface of wool yarns. Since there is a strong reduction of 

diffusion of enzyme inside the wool fibres, only the cuticle is under proteolytic attack 

what can explain the higher tensile strength of yarns after enzymatic treatment. 
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Figure 3. Maximum tensile strength (N) supported by wool yarns subjected to different 

pre-treatments without enzyme and yarns treated with the same enzyme units of 

commercial and chimeric subtilisin. 

    3.3.3. On yarns induced damage  

To evaluate the damage of enzymatic treatment on wool yarns, samples pre-treated as 

previously described and incubated with both enzymes were washed for 3 consecutive 

cycles in a rota-wash machine. Felting and pilling were visually evaluated (Figure 4). 

Both pre-treatments seem to induce a slight degree of damage (although we found no 

differences on yarn´s tensile strength) (Figure 3). This degradation is higher when 

commercial Esperase is used. Wool yarns treated with Esperase presented a higher level 
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of felting and pilling than samples treated with chimeric enzyme. In fact it seems that 

yarns treated with subtilisin-VPAVG220 felted even less than the control samples what 

emphasize the idea that, due to its size, the hydrolytic activity of chimeric enzyme is 

restricted to the surface of wool yarns and also that the elastomeric polymer 

VPAVG220 can provide some kind of protection of yarns against excessive damage 

after 3 cicles of washing. 

 
 
 
                                 

 
  
 
 
 
 
 
 
 
 
               
 
 
 
Figure 4. Visual damages on wool yarns after 3 cycles washing in a Rotawash machine. 

A) Wool yarns without enzyme; B) wool yarns treated with commercial subtilisin and 

C) wool yarns treated with subtilisin-VPAVG220. 

 
 
 
4. Conclusion 
 
In this work we have achieved the production of a recombinant high molecular weigh 

subtilisin through the fusion of subtilisin E DNA sequence with a sequence that codifies 

to an elastomeric polymer. The effect of chimeric high molecular weight subtilisin on 

wool yarns was compared to the commercial Esperase. It was found that, as already 

expected, due to its small size, the commercial subtilisin is able to penetrate inside the 

wool cortex, damaging the fibre. 

Without pre-treatment Scouring washing Scouring washing 
and bleaching 

Control without 
enzyme (A) 

Esperase (B)

Subtilisin-GAG220 
(C) 
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Chimeric subtilisin-VPAVG220, the high molecular weight enzyme, hydrolyzed just the 

cuticle layer of wool. Yarns treated with this enzyme presented higher tensile strength 

and lower felting.  

The recombinant hight molecular weight enzyme can be a promissing economical and 

ecological alternative to the tradicional chlorine treatment.  
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General Discussion and Future perspectives 
 
The introduction of synthetic fibers in textile industry, like polyethylene 

terephthalate, nylons or acrylics, had a significant impact on the quality of life. 

However, nowadays, there is an increased demand for natural fibers, especially for 

their properties including aesthetics, comfort, and biodegradability. Besides the 

traditional natural materials like cotton, wool and silk, many researches are also 

focused on exploring fibers from alternative sources like agricultural by-products, 

which are often underutilized (Collier et al., 1992). 

Independently on the use of natural or synthetic fibers, with old or new agricultural 

materials, the textile industry must search for sustainable technologies and develop 

methods of processing and finishing fabrics that meet customer expectations with the 

finished products performance, human health and environmental safety. Fiber surface 

modification has been one of the main areas of research in the development of 

functional fibers. In addition to research in developing/synthesizing new fiber 

forming polymers with specialized properties, surface modification offers many new 

opportunities. 

Properties of fibers such as anti-shrinkage, anti-microbial, anti-odor, anti-fungal, 

anti-static, higher hidrophylicity, dyeing, soil resistance, adhesion, biocompatibility, 

are all function of fiber surface properties.  

For the last years chemical modification has been employed with variable level of 

success. Chemical modification relates to an alteration of chemical structure. It can 

be conducted in the stage of synthesis of fibre-forming polymers by 3 methods: (1) 

copolymerization of the initial fibre-forming monomer with second comonomers 

containing the functional groups that carry new properties; (2) by addition of new 

side functional groups and (3) inclusion of new substances that react with the fibres 

during processing (Kozlowski, 1998; Rouette, 2001). Chemical modification is also 

possible in the stage of finishing materials being effective giving new properties to 

the fibres (Carr, 1992; Lee et al., 2005; Freddy et al., 2002; Freddy et al., 1999). 

However, these treatments are not environmentally benign and frequently reduce the 
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quality of the fibres causing losts of fibre material during the process (Shukla et al., 

1997; Zeronian and Collins, 1989). 

Nowadays, due to environmental concerns and especially due to more strict 

legislation and regulations on the wastewater discharges that were established and 

implemented, there is an incresed interest in the replacing of the chemical traditional 

textile processing for enzymatic processes. Enzymes can offer to the textile industry 

the ability to reduce costs, protect the environment, address health and safety and 

improve quality and functionality. Genetic engineering allowed the developement of 

many automated protocols for screening proteins with desirable properties and then 

provides the tools for amplification, cloning, expression of genes and purification of 

the recombinant selected proteins. However, in some cases, the technological 

application of enzymes under the demanding industrial conditions is not possible. In 

fact, among all the enzymes known, only a few are recognized as commercial 

products. 

Molecular geneticsa associated with techniques of site-directed mutagenesis and/or 

random mutagenesis led to newer enzymes with altered functions that are desired for 

their application like improvement of catalytic efficiency, higher substrate specificity 

and increased stability.  

For instance, the structure and function of cutinases are well studied, and genetic 

engineering was previously used to improve their properties for several applications 

as for example, fat stain removal in detergents (Carvalho et al. 1999; Longhi and 

Cambillau 1999).  

In the first part f this work the potential of molecular genetics tools to modify 

cutinase from Fusarium solani pisi was demonstrated. Site-directed mutagenesis of 

cutinase was carried out to enlarge the active site, which could then better 

accommodate polymeric synthetic substrates like polyamide (PA) or polyethylene 

terephthalate (PET). Several cutinase mutants, all of which exhibited an enlarged 

active site were expressed. A single amino acid replacement, L182A, was shown to 

better stabilise the PET model substrate 1,2-ethanodiol dibenzoate tetrahedral 

intermediate at the enzyme active site (Subchapter 2.2- Araújo et al., 2007). This 

mutant also showed increased PA-hydrolysing activity and up to five-fold higher 
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activity on PET when compared with the native enzyme (Subchapter 2.3- Silva et al., 

2007 and Subchapter 2.4- O’Neill et al., 2007). 

Similarly the activity of a nylon-oligomer hydrolysing enzyme EII’ from 

Flavobactererium sp. was increased 200-fold by genetic engineering (Negoro, 2000).  

In addition to genetic engineering, reaction engineering (temperature and additives) 

seems to be an important factor and enzymatic hydrolysis of PA can be increased in 

the presence of solvents (Silva et al., 2005a). 

Not only the structural design of the active site of the enzymes but also the regions 

required for sorption and for guiding the enzyme along the substrate, might be 

important for polymer hydrolysis. Cellulose-binding modules (CBM) accomplish this 

role in cellulases. For this reason, the biomodification of the surface of cellulose 

acetate was performed with cutinase fused with either the carbohydrate-binding 

module of Cellobiohydrolase I, from the fungi Trichoderma reesei, or the 

carbohydrate-binding module of Endoglucanase C, from the bacteria Cellulomonas 

fimi. The knew recombinant cutinase fused to the fungal CBM presented better 

performance hydrolysing cellulose diacetate and improving the colour levels of 

treated fabrics (Subchapter 2.5- Matamá et al., 2008).  

The second part of this thesis relates to the biomodification of wool, to accomplish 

total easy care wool i.e. machine washability plus tumble dryability, to compete with 

other fibres.  

The traditional method to confer dimensional stability to wool articles uses chlorine 

which has various drawbacks. Several enzymatic methods have been attempted to 

replace this hazardous chemical finishing treatment, without great success mainly 

due to diffusion of enzyme into wool cortex (Shen et al., 1999). Chemical 

modification of proteases proved to be effective for wool finishing, however the 

presence of small amounts of free enzyme still representes a drawback (Silva et al., 

2004; Silva et al., 2005b). In our work we used subtilisin E from Bacillus subtilis, 

genetically modified, in order to avoid its penetration inside the fibre. 

The first attempt was to create a chimeric poly-subtilisinE composed of 2, 3 and 4 

subtilisin units. Chimeric subtilisins were overexpressed but no active and soluble 

recombinant proteins were recovered (Subchapter 3.2- Araújo et al., 2008a). The 
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other approache describes the fusion of subtilisin E with a high molecular weight 

elastin-like polymer (Subchapter 3.3- Araújo et al, 2008b). The chimeric enzyme 

presented a molecular weight above 116 KDa. Wool yarns treated with the chimeric 

enzyme and subjected to several machine washings, presented a significantly lower 

damage than wool treated with the native enzyme, in the same conditions. Moreover 

yarns treated with chimeric high molecular weight subtilisin presented a tensile 

strength resistance comparable to the original one while yarns treated with 

commercial enzyme kept less than half of its initial resistance. 

The results presented in this thesis prove that molecular biotechnology provides the 

approaches that make possible the genetic modification and production of enzymes 

either by site-directed mutagenesis or by fusion with functional domains or protein-

based polymers, wich can represent promising alternatives for fibres bio-finishing 

processes at an industrial level. Here we developed effective ways of hydrolysing 

both synthetic and natural fibres surface and created environmentally friendly 

options to the conventional chemical treatments.  

Nevertheless, the power of molecular genetics approaches linked to biotechnology 

has not yet been fully exploited and the processes developed here need to be further 

characterized for its complete understanding and optimization. 

Further studies will contribute to a better understanding of the interaction of these 

enzymes with the substrates concerning factors such as sorption, movement on the 

fibre surface and the role of binding modules. It is also our intention to design new 

genetically modified enzymes and upgrading the enzymatic surface modification 

technology from laboratory to a large-scale process, contributing for new ecological 

industrial processes.  
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Appendix I 
 
Restriction enzyme(s) digestion of plasmid minipreps 
(adapted from Sambrook et al., 1989) 
 
Add 2 μl of appropriate restriction enzyme buffer (10x), 11.5 (or 11) μl of ultra pure 
water, 0.5 μl restriction enzyme A (generally Roche 10 U/μl), (0.5 μl restriction enzyme 
B (generally Roche 10 U/μl) for double digestions) and 6 μl of plasmid DNA miniprep 
or midiprep. Incubate at appropriate temperature (37 ºC for most enzymes) for 3 h. 
Analyse digestion fragments by gel electrophoresis.  
 
 
Standard ligation of DNA fragments to plasmid vectores 
(adapted from Sambrook et al., 1989) 
 
Digest DNA fragment and plasmid vector with appropriate restriction enzyme(s). Purify 
using QIAquick Gel Extraction Kit (QIAGEN).  
To 50 ng of digested plasmid vector add digested DNA fragment enough to get a molar 
vector:insert ratio of 1:5 (insert quantity (ng) = (insert size x 50 x 5)/ plasmid size). Add 
1 μl ligase buffer (10x), 1 μl of ligase T4 1 U/ μl (Roche) and, if necessary, ultra pure 
water to a final volume of 10 μl. Incubate overnight at 4 ºC.  
 
 
Preparation and transformation of competent E. coli (XL1 Blue) SEM method 
(adapted from ) 
 
Reagents 
 
DMSO (Sigma) 
 
IPTG (isopropyl-β-D-thiogalactopyranoside (Sigma) 
  40 mg/ml in sterilized destilled water 
 
Luria-Bertani (LB)-Ampicillin agar 
  Tryptone  10 g/l 
  Yeast extract   5   g/l 
  NaCl   10 g/l 
  Agar   2% 

Autoclave, cool to 50 ºC and add a stock solution of ampicillin 100 
mg/ml to a final concentration of 75 mg/l, pour onto Petri plates. 

 
LB medium (liquid) 
  Tryptone  10 g/l 
  Yeast extract   5   g/l 
  NaCl   10 g/l 



 
 

 
 

  Autoclave 
 
 
 
 
SOB  
  Tryptone  2% 
  Yeast extract   0.5% 
  NaCl   10% 
  Autoclave, add sterilized MgCl2 to a final concentration of 20 mM. 
 
TE buffer 
  PIPES  10 mM 
  CaCl2  5 mM 
  KCl   250 mM 

Dissolve, adjust pH to 6.7 with KOH and add MnCl2 to a final 
concentration of 55 mM, sterilize the solution by filtration and keep at 
4 ºC. 
 

X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside)  
  40 mg/ml in dimethylformamide (DMF) 
 
 
Preparation of competent E. coli (XL1 Blue)  
 
Inoculate 250 ml SOB medium in a 2 L flask with 10 colonies;  
Grow at 18 ºC with vigorous shaking (200-250 rpm) until an OD600 of 0.6. 
Cool on ice for 10 min. 
Spin cells down at 4ºC for 10 min at 2500 x g. 
Resuspend cells in 80 ml of ice-cold TB buffer. 
Cool on ice for 10 min. 
Spin cells down at 4 ºC for 10 min at 2500 x g. 
Gently resuspend pellet in 20 ml of ice-cold TB and add DMSO to a final 
concxentration of 7 %. 
Leave on ice for 10 min 
Distribute into 200 ml aliquots (into sterile, ice-cold 1.5 ml eppendorf tubes) and freeze 
in liquid nitrogen. 
Store at -80 ºC. 
 
 
Transformation of competent E. coli (XL1 Blue) 
 
Thaw the competent E. coli cells on ice. 
Add the experimental DNA (generally 1 μl of midi or mini and 10 μl of a ligation 
reaction) to 200 μl of competent cells. 
Mix gently and incubate on ice for 30 min. 



 
 

 
 

Heat-shock the tubes in a thermoblock, at 42 ºC for 30 s with gentle agitation. 
Incubate the tubes on ice for 10 min. 
Add 800 μl of SOC medium and incubate the tubes for at 37 ºC for 1 hour with vigorous 
shaking. 
Spin cells down for a few seconds and discard about 950 μl of supernatant. 
Ressuspend the pellet in the remaining 50 ul supernatant and plate on LB selective agar 
plates. For blue-white colour screening add X-Gal 40 mg/ml to a final concentration of 
40 μg/ml and IPTG 40 mg/ml to a final concentration of 40 μg/ml. Allow the plates to 
dry before plating the transformation mixtures.  
Incubate the plates at 37 ºC overnight. 
 
 
Preparation of plamid DNA (Miniprep) 
(adapted from Sambrook et al., 1989) 
 
Reagents 
 
Alkaline lysis solution I 
  0.2 M NaOH 
  1% (w/v) SDS 
 
Alkaline lysis solution II 
  NaAc 3 M, pH 5.2 
 
Ethanol 100% and 70% (v/v)  
 
 
Plate 8 E coli colonies, per Petri plate, on LB selective agar. Incubate the plates 
overnight at 37 ºC.  
Resuspend ¾ of biomass, from each colony, in 200 μl of destilled water. Vortex for10 
sec.  
Add 200 μl of alkaline lysis solution I. Close the tubes tightly and mix the contents by 
inverting the tubes rapidly for four times. Do not vortex.  
Add 200 μl of alkaline lysis solution II. Close the tubes tightly and disperse alkaline 
solution II through the viscous bacterial lysate by inverting the tubes rapidly for four 
times. 
Centrifuge the bacterial lysate at maximum speed for 5 min at 4 ºC. Transfer the 
supernatant to a clean tube. 
Precipitate nucleic acids from the supernatant by adding 500 μl of ethanol. Mix the 
solution by inverting four times.  
Collect the precipitated nucleic acids by centrifugation at maximum speed for 10 min at  
4 ºC.  
Remove the supernatant and add 500 μl of 70 % ethanol to the pellet. Centrifuge at 
maximum speed for 5 min at 4 ºC.  
Remove all of the supernatant and store the open tubes at room temperature until all the 
ethanol has evaporated.  



 
 

 
 

Dissolve the nucleic acids in 30 μl of TE-RNase and incubate for 1 h at 37 ºC for RNA 
digestion.  
Store nucleic acids at -20 ºC. 
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