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“To suppose that the eye with all its inimitable contrivances for adjusting the 

focus to different distances, for admitting different amounts of light, and for 

the correction of spherical and chromatic aberration, could have been formed 

by natural selection, seems, I freely confess, absurd in the highest degree.”  

Charles Darwin in “The origin of species”
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Abstract 
 

Biomedical devices are susceptible to microbial contamination. Adhering bacteria to contact 

lenses (CLs) may induce ocular infections, being microbial keratitis (MK) the most sight 

threatening. The work presented in this Thesis aimed at investigating the role of surface 

properties and conditioning film on microbial colonization, bacterial adhesion, detachment, 

viability and disinfection of silicone hydrogel CLs. 

The results herein presented confirmed that the physico-chemical properties of the material 

influenced the composition of the adsorbed tear film, which in turn affected the hydrophobicity, 

roughness and the extent of colonising or adhering microbes to CLs. In silicone hydrogel CLs, the 

presence of adsorbed tear film tended to reduce their hydrophobicity whereas in a conventional 

hydrogel it increased. This fact might be explained by the amphipilic nature of proteins and lipids 

that resulted in a decrease of hydrophobicity in silicone hydrogel materials and an increase in the 

convencional hydrogel lens. Protein adsorption was assessed under “in vivo” conditions. It was 

found that silicone hydrogel CLs are less susceptible to protein adsorption than conventional 

hydrogel lenses. The electrophoresis analysis demonstrated that lenses with different chemical 

composition exhibited distinct protein profiles. The presence of oxidised lipids on CLs was 

estimated under “in vitro” conditions. The results showed that lenses incorporating N-Vinyl 

pyrrolidone presented greater amounts of such molecules.  

One of the great concerns of silicone-hydrogel material regards its high hydrophobicity and 

consequently higher propensity for microbial colonisation and/or adhesion. In fact, worn silicone 

hydrogel CLs, especially balafilcon A exhibited a greater number of colonizing microbes 

comparing with the other materials. However, adhesion studies of Staphylococcus epidermidis to 

worn and unworn CLs revealed that all worn silicone hydrogel materials are equally susceptible to 

bacterial adhesion, and less prone than worn conventional hydrogel CLs. This result can be 

explained by the decrease of surface hydrophobicity of silicone-hydrogel CLs due to tear film 

adsorption during wear, already discussed above.  
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Daily maintenance of CLs is a procedure of outermost importance, conceived to ensure CL 

hygiene and a safe wear. In this Thesis, the efficacy of a commercially available multipurpose 

solution (MPS) in the removal and viability of adhered S. epidermidis is described. The results 

suggest that bacterial removal is material-dependent, since etafilcon A and galyfilcon A lenses 

exhibited a significant percentage of cell removal regardless being unworn or worn. Conversely, 

the viability of remained adhered bacteria seems to be influenced by the presence of tear film in 

particular by the presence of bacteriolytic proteins, given that the number of non-viable cells on 

worn CL was greater.  The disinfection efficacy of several MPS against adhered bacteria to CLs 

was also assessed using three bacterial strains, four CL materials and three MPS. The protocol 

was based on the guidelines proposed by the international standard guidelines (ISG) ISO 

14729:2001 for ophthalmic disinfecting products. The results revealed that all MPS were 

capable of accomplishing the goals proposed by stand-alone test, however when challenged 

against adhered bacteria to CLs, their efficacy was highly affected by the lens material 

composition. Finally, the use of the surfactants octylglucoside and sodium cholate as quoting 

agents to enhance MPS efficacy was tested. The results revealed that octylglucoside enabled the 

reduction of lens surface hydrophobicity and inhibited adhesion of Pseudomonas aeruginosa and 

Staphylococcus epidermidis both to silicone-based lenses and to conventional hydrogel materials.  

 

 

 

 

 

 

 
 

 



 ix 

 

 

 

Sumário 
 

Os dispositivos biomédicos são susceptíveis à contaminação microbiana. Quando aderidas a 

lentes de contacto (LC), as bactérias podem induzir infecções oculares, sendo a queratite 

microbiana (QM) a mais lesiva. O trabalho descrito na presente Tese teve como objectivo 

investigar a contribuição das propriedades superficiais e do filme lacrimal na colonização 

microbiana, adesão, remoção e viabilidade bacteriana e desinfecção em LC.  

Os resultados obtidos confirmam que as propriedades físico-químicas dos materiais controlam a 

composição do filme lacrimal depositado, o que por sua vez poderá afectar a hidrofobicidade, 

rugosidade e o grau de colonização ou adesão microbiana a LC. Quando uma LC é colocada no 

olho, adsorve de imediato proteínas provenientes do filme lacrimal. A presença de filme lacrimal 

adsorvido nas LC de silicone hidrogel, tende a reduzir a sua hidrofobicidade devido às 

propriedades anfifílicas das proteínas e lípidos. A análise electroforética das proteínas em lentes 

usadas revelou que os perfis diferem em função da composição química do material. A presença 

de lípidos oxidados nas LC foi determinada através de ensaios de adsorção “in vitro”. Os 

resultados demonstraram que as lentes que incorporavam N-vinil pirrolidona apresentavam uma 

maior quantidade destas moléculas.  

Uma das maiores preocupações em relação aos materiais de silicone hidrogel reside na sua 

elevada hidrofobicidade e subsequentemente maior propensão para a adesão microbiana. De 

facto, as LC usadas de silicone hidrogel, em particular a lente balafilcon A exibiu um elevado 

grau de microrganismos colonizadores quando comparada com os outros materiais. No entanto, 

estudos de adesão realizados “in vitro” com Staphylococcus epidermidis em lentes novas e 

usadas revelaram que a adesão bacteriana é sensivelmente a mesma entre lentes usadas de 

silicone hidrogel e inferior à observada na lente usada de hidrogel convencional. Este resultado 

foi discutido previamente em relação à adsorção de proteínas devendo-se à diminuição da 

hidrofobicidade superficial das LC de silicone hidrogel durante o uso. 

A manutenção diária das LC com soluções multiuso (SMU) é um procedimento importante a ter 

no cuidado das lentes tendo sido concebida para promover uma utilização segura das mesmas. 

Nesta Tese, a eficácia de SMU disponíveis no mercado na remoção e morte de bactérias 
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aderidas, bem como a adequabilidade da norma internacional (NI) para testar produtos 

oftalmológicos para desinfecção de LC foram discutidas. Para além disso, foram realizados 

ensaios com o objectivo de aumentar a capacidade das SMU de inibirem a adesão bacteriana a 

LC, através da incorporação de tensioactivos naturais. 

Os resultados aqui descritos sugerem que a remoção bacteriana induzida pela SMU depende do 

material da lente e não é afectada pelo respectivo uso, uma vez que as lentes etafilcon A 

galyfilcon A apresentaram uma percentagem de remoção bacteriana significativa. Pelo contrário, 

a eficácia da desinfecção parece aumentar devido à presença de moléculas do filme lacrimal em 

lentes de contacto usadas, uma vez que se verificou que o número de bactérias viáveis que 

permaneceram aderidas era inferior nas LC usadas. Foram realizados estudos de desinfecção de 

acordo com a NI para produtos oftalmológicos de desinfecção e os resultados revelaram que 

apesar de as SMU cumprirem os objectivos delineados pelo critério primário, não alcançaram os 

objectivos do critério secundário em algumas combinações estirpe bacteriana/LC. Para finalizar, 

o uso de tensioactivos como agentes potenciadores da eficácia de SMU foi testada e os 

resultados demonstraram que o octilglucosídeo promoveu a redução da hidrofobicidade 

superficial das lentes e inibiu a adesão de Pseudomonas aeruginosa e Staphylococcus 

epidermidis tanto em lentes de silicone como de hydrogel convencional. 
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Outline of this Thesis 
 

The present Thesis is organised into nine chapters.  

Chapter 1 provides an overview of the aspects involved in tear film deposition, bacterial adhesion, 

detachment and disinfection on silicone hydrogel and conventional hydrogel CLs.  

The experimental methods with more relevance under the scope of this work are described in 

Chapter 2.  

Chapter 3 focuses the influence of surface treatment on hydrophobicity, protein adsorption and 

microbial colonization of CLs. 

Chapter 4 examines the surface properties in particular hydrophobicity, roughness and 

topography of unworn and worn CLs and their susceptibility to Staphylococcus epidermidis 

adhesion.  

Chapter 5 describes the susceptibility of silicone hydrogel and conventional hydrogel lenses to 

encompass oxidized lipids.  

Chapter 6 describes the performance of the surfactants octylglucoside and sodium cholate and a 

MPS as inhibiting agents of bacterial adhesion to CLs. 

Chapter 7 examines the detachment capability of a multipurpose solution (MPS, ReNu Multiplus) 

against adhered Staphylococcus epidermidis cells. Viability of remaining adhered bacteria was 

assessed as well.  

In Chapter 8, the disinfection capabilities of several MPS were tested against suspended and 

adhered bacteria to CL.  

Chapter 9 provides the general conclusions of the present Thesis and propose recomendations 

for future work.   
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1. Chapter 1 Introduction 
 

 

 

 

 

The study of CL is a challenging task, as it requires a comprehensive and multidisciplinary 

approach. The present Chapter reviews some important aspects in particular the surface 

properties of CLs, microbial colonization, tear film deposition, bacterial adhesion, bacterial 

detachment, and disinfection. 
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1.1 Aim of this Thesis 

Silicone hydrogel CLs became commercially available in the late 1990s. This type of material 

supplies upper levels of oxygen to the cornea than conventional ones; thus reducing episodes of 

hypoxia and overnight oedema.  

CL associated microbial keratitis (MK) is a severe eye infection that might lead to vision 

impairment. Previous studies revealed that such event is less likely to occur in people sleeping 

with silicone hydrogel CLs than those sleeping with conventional hydrogel CLs(1;2). Also, it was 

reported that the incidence of MK in people wearing silicone hydrogel CLs as many as 30 nights 

is the same for those who sleep with conventional hydrogel CL during less consecutive nights(3).  

Although important advances have been accomplished, cases of MK are still reported among 

silicone hydrogel CL wearers. In theory, silicone hydrogel CLs are more susceptible to microbial 

adhesion because of attractive hydrophobic interactions established between the lens surface 

and the microbial cell. This means a higher concentration of inoculums transferred to the cornea, 

thus increasing the chances of developing MK. Other hypothesis concerns the disinfection 

efficacy of multipurpose solutions (MPS) commercially available. Most contemporary MPS were 

designed to disinfect conventional hydrogel CLs and not silicone hydrogel materials. Thus, the 

performance of such products on silicone hydrogel materials is unknown. A poor disinfection 

efficacy might contribute to the prevalence of MK among silicone hydrogel CL wearers. It must be 

stressed that some silicone hydrogel CLs are recommended for daily wear and others for 

continuous wear excluding any disinfection procedure. However, even these last ones can be 

wearing according to a daily wear schedule. Therefore, disinfection of silicone-hydrogel CL is 

surely a matter of concern for all kinds of materials. The objectives of the work developed and 

described in the present Thesis is to investigate the role of surface properties and conditioning 

film on microbial colonization, bacterial adhesion, detachment and viability and disinfection of 

silicone hydrogel CLs. Hopefully, the results obtained will contribute for a better understanding of 

MK prevalence among silicone hydrogel CL wearers. 
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1.2 Historical overview 

The history of CL conception is rather interesting. It begun in 1508 when Leonardo da Vinci 

suggested the modification of the corneal power through the immersion of the eyes into a 

recipient filled with water(4;5). In the 1940s, Kevin Touhey developed the first hard lens using 

the resin PMMA (Polymethylmethacrylate) and in the 1960s, Otto Wichterle and Drahoslav Lím 

created the material, pHEMA (poly(2-hydroxyethyl methacrylate)), giving birth to soft CLs(4-6). 

More recently, the combination of conventional hydrogel monomers with silicone elastomers gave 

origin to a new kind of soft lenses, silicone hydrogel CLs(4;5;7). Currently, CLs are used as a 

successful form of vision correction by approximately 125 million people worldwide(8). 

 

1.3 Bacterial adhesion: general considerations 

Adhesion and biofilm formation are two different concepts. While microbial adhesion is simply 

defined as adhered cells to a substratum, biofilms are micro-colonies embedded within an EPS 

(extracellular polysaccharides) matrix, tenaciously adhered to a substratum, and surrounded by 

channels filled with liquid allowing the inflow of nutrients and the outflow of wastes(9;10). 

It is assumed that when a biofilm develops in a CL surface, the wearer loses visual acuity and 

comfort leading to lens removal or unemployment. Biofilms are found with more frequency and 

with more density in a lens case than in a CL surface(11). For these reasons, the present Thesis 

will address bacterial adhesion rather than biofilm formation. 

Bacterial adhesion is mediated by the physico-chemical interactions between the microbial cells 

and the substratum. This process can be interpreted according to the thermodynamic approach 

and the extended DLVO (approach of Derjaguin, Landau, Verwey and Overbeck, XDLVO) 

theory(12).  

In short, the thermodynamic approach considers the existence of three interfacial free energies: 

bacterium-substratum (BS), bacterium-liquid (BL) and substratum-liquid (SL)(12). In nature, all 

systems strive to reach equilibrium, a state of minimum free energy. Microbial adhesion to biotic 

or non-biotic substrates is not an exception, and this approach allows to predict if adhesion is 
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favourable or not from a thermodynamic point of view. This can be done using the Dupré’s 

equation(12): 

ΔGadh = γBS-γBL-γSL 

Where ΔGadh is the free energy of adhesion per unit of surface area, and γBS, γBL and γSL 

represent the interfacial energy between bacterium-substratum, bacterium-liquid and substratum-

liquid, respectively. Accordingly, microbial adhesion is considered thermodynamically favourable 

if ΔGadh< 0 and unfavourable if ΔGadh>0. 

 

Figure 1.1 Representative scheme of a bacterium adhering to a surface and the interactions involved  

 

The XDLVO theory considers three non-covalent forces acting in aqueous media: Lifshitz-van der 

Waals (LW), electrostatic interactions (EL) and Lewis acid-base (AB) interactions. AB forces are 

electron-donating/electron-accepting interactions between polar moieties in aqueous solutions. 

This type of interaction can be either attractive or repulsive. However, to be effective the range of 

action must be less than 5 nm. Still, in polar mediums such as water, AB forces are far 

predominant(12;13). LW is a non-polar force established between non-polar molecules of certain 

surfaces. This type of interaction is normally attractive and has the longest range of action. EL 

can be either repulsive or attractive; however, since microbial cells and substrata are usually 

negatively charged, this force is generally repulsive(13;14).  

Although not considered by the previous theories, bacterial adhesion can be assisted by 

extracellular appendages such as flagella and fimbriae(9). Flagella is a motility device that allows 
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cell locomotion and approaching to the substratum, while fimbriae are hair-like structures more 

directly involved in adhesion as they anchorage the cell to the substratum.  

 

1.3.1 Bacterial adhesion to contact lenses 

When a CL is placed in the eye, it becomes rapidly coated with proteins and lipids of the tear 

film. The presence of tear film on the lens surface has been a matter of debate. While some 

authors suggested that tear film enhance microbial adhesion(15), others show otherwise(16;17). 

One fact seems certain, lens wear and inherent tear film adsorption modify the surface 

hydrophobicity(18-20), which in turn may affect the extent of microbial adhesion(16-19).  

The presence of tear film on silicone hydrogel CLs, seems to reduce their hydrophobicity, and in 

several cases the number of cells adhered decreased as well(16;17). Conversely, the presence of 

tear film on conventional hydrogel materials, appears to increase their hydrophobicity(20), 

potentially leading for the augmentation of the number of adhered bacteria.  

 

1.4 Contact lens associated microbial keratitis and bacterial virulence 

CL associated MK is a severe eye infection arising from the presence of adhered microorganisms 

on the lens surface. It affects 1 in 10,000 individuals using rigid gas permeable lenses in a daily 

basis, 3 to 4 in 10,000 individuals using soft CL in a daily basis and 10 to 20 in 10,000 

individuals using soft CL according to an extended wearing basis. The chances of vision loss 

range between 0.3 and 3.6 in 10,000 individuals(21). The following chart (Figure 1.2) illustrates 

the cascade of steps involved in MK. 
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Figure 1.2 Steps involved in microbial keratitis 

Adapted from Sankaridurg et al.(22) 

 

MK normally occurs in patients suffering from ocular injury(23), however continuous and 

overnight wear(24;25), contaminated lens care solutions and lens cases(22;26) are predisposing 

factors as well. P. aeruginosa and Staphylococci sp. are common causative pathogens; but fungi 

and acanthamoeba can also cause this infection(22;27-29). P. aeruginosa and Staphylococci sp. 

exhibit several virulence mechanisms, but only the most directly related with MK will be address 

herein. 

P. aeruginosa is a Gram-negative bacterium. It is considered an opportunistic pathogen and has 

multiple virulent factors including lipopolysaccharides (LPS) flagella, fimbriae and outer 

membrane proteins. LPS presents a double function: while protecting the microbial cell against 

defensive proteins of the tear film it mediates adhesion between the CL and the corneal 

epithelium(30). Fimbriae are used to anchorage either to the CL surface as to the corneal 

epithelium. In some strains it was identified the presence of proteases, capable of depleting  the 

protective mucous layer that covers the ocular surface(31).  

A photograph of a central corneal ulcer induced by P. aeruginosa is presented in Figure 1.3. 

Rapid infiltration associated with necrosis and mucopurulent discharge is typically caused by this 

species. 
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Figure 1.3 Central corneal ulcer in an eye with microbial keratitis 

Source: Online Journal of ophthalmology (http://www.onjoph.com/portal/index.php) 

 

S. aureus and S. epidermidis are both Gram-positive staphylococcal species. S. epidermidis is a 

commensal bacterium of the human skin and mucosa, however under certain circumstances is 

opportunist and can induce ocular infections(22). Some strains excrete a slime layer, normally of 

poly-N-acetylglucosamine (PNAG) which mediates bacterial adhesion to the lens surface and is 

further involved in biofilm formation(32;33). It appears that this layer is also implicated in the 

severity of MK occurrence(34). 

S. aureus produces alpha-toxin and protein A that are believed to damage corneal tissue during a 

MK episode(35;36). These bacteria also have a collagen-binding adhesin, which interacts with 

the collagen present in the cornea. It was previously suggested that the collagen-binding adhesin 

and alpha-toxin influences the severity in which MK occurs(37;38). 

 

1.5 Tear film 

The tear film is a complex fluid that covers the ocular surface, delimited by the eyelids. In 1946, 

Wolff proposed a 3-layered model which is still the most widely accepted(39).  

The external layer is composed by lipids secreted by the Meibomian gland and Zeis accessory 

sebaceous gland(40). It’s mainly composed by wax esters, sterol esters and triglycerides(41). 

Their main function consists in reducing the rate of evaporation of the open eye, lubricating the 

interface existing between the eye and the eyelids. It also exhibits optical properties.  
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The main lachrymal gland, and Krause and Wolfring accessory glands produce the middle 

aqueous layer. This layer has several proteins some of them with bactericidal and bacteriostatic 

properties, protecting the eye against pathogens(42).  

The inner layer is secreted by conjunctival globlet cells possessing high molecular weight 
glycoproteins called mucins. These molecules help to stabilize and spread the tear film, keep the 
ocular surface moist, and prevent desiccation and microbial invasion(43;44).  

Table 1.1 shows the concentrations of the principal components of the tear film. 

 

Table 1.1 Composition of the tear film 

Component Concentration Concentration 

Mucus   

Glycoproteins  85% of dry weight   

Main proteins  (g.l-1) *  (g.l-1) ‡ 

Lysozyme  2.39  2.07 

Lactoferrin  1.51  1.65 

Lipocalin  -  1.55 

SIgA - 1.93 

IgA  0.411  0.876 

IgG  0.032  0.004 

Albumin  0.054  0.042 

Lipids  (%) †   

Wax esters  32.32-34.96   

Sterol (mainly cholesterol) esters  27.28-29.50   

Polar lipids  14.83-16.04   
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Hydrocarbons  0-7.54   

Diesters  7.74-8.37   

Triglycerides  3.70-4.0   

Free sterols  1.63-1.77   

Free fatty acids  1.98-2.14   

*Data from Gachon et al.(45); †Data from Nicolaides et al.(46). Secretions from the Meibomian gland;‡Data from Fullard et al.(47) 

 

As observed so far, the tear film plays important physiological functions in the eye. However the 

excessive adsorption of proteins and lipids to CLs may lead to build-up of deposits, reduced 

visual acuity and development of inflammatory events(48).  

 

1.6 Lipids and proteins 

Proteins  

Proteins are biomolecules of amino acid units bonded by peptides. These molecules possess 

aromatic rings called of fluorophores or amino acid residues(Figure 1.4). The fluorophores such 

as tryptophan and tyrosine exhibit intrinsic fluorescence when excited at 280 nm(49).  

 

Figure 1.4  Representative scheme of tryptophan and tyrosine molecules 

 

According to Teale spectral classification, proteins are divided into three classes: class A, proteins 
containing tyrosine residues, but not containing tryptofan residues; class B, proteins containing 
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both tyrosine and tryptophan residues; and class C, proteins containing only phenylalanine 
residues(50). Lysozyme, which the most abundant protein of the tear film ( 
Table 1.1 has 6 tryptophan residues per molecule(51). The fluorescence quantum yields of such 

residues are distinct. For tryptophan ranges near 0 to 0.35 and for this reason is often used as 

fluorescence probe(52).  Although lipids and proteins seem to be separated within the tear film 

layers, they interact with each other and contribute to the human tear viscosity(53).  

 
 

Lipids 

Lipids are molecules soluble in non-polar organic liquids. They can be divided into several 

classes: phospholipids, sphingolipids triglycerides, wax esters, cholesterol esters, free fatty and 

hydrocarbons(54). Figure 1.5 shows a scheme of the cholesterol molecule. 

 

Figure 1.5 Representative scheme of the cholesterol molecule 

 

Lipids oxidation is a phenomenon involved in several pathologies(55-58). The formation of lipids 

deposits on CLs is recognised as harmful to the lens wearer, however the oxidation of such 

molecules on the polymeric matrix has not been studied yet and the clinical implications to the 

lens wearer are unknown.  

Lipid oxidation can arise from external factors, or by the presence of free radicals or peroxides 

present in the eye or in the eye fluids(59). Amino acid residues such as tryptophan and tyrosine 

exhibit pro-oxidative activity and readily crosslink with lipids metabolites, producing conjugated 

Schiff-bases. Conjugated Schiff-bases presents the following chemical structure R-N=C-C=C-N-R, 

where R represents the protein fluorophore to which cross-linked. These molecules exhibits 
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fluorescence with typical excitation/emission wavelengths of 360nm and 440nm, 

respectively(60-65). 

 

1.7 Contact lens materials and lens care solutions 

1.7.1 Contact lenses 

Considering their modulus of elasticity, CLs can be classified as either hard or soft. Soft CLs are 

divided according to a classification of FDA (Food and Drug Administration) into 4 groups:  

Group I - low water content and non-ionic 

Group II - high water content and non-ionic 

Group III - low water content and ionic 

Group IV - high water content and ionic  

Soft CL materials are composed of high molecular weight monomers organised according to a 3-

dimensional structure. The most common ones are described as follows: 

 Hydroxyethylmethacrylate (HEMA) is a widespread monomer and possesses OH radicals. 

This radical contributes to an increase of lens hydration and therefore to the wearers’ 

comfort. It exhibits 38% of water content, which may differ upon copolymerization with 

other monomers.  

 Methacrylic acid (MA) is a very hydrophilic monomer and the radicals COOH attract water 

to the polymer surface at physiological pH.  

 N-Vinyl pyrrolidone (NVP) is also very hydrophilic and hygroscopic as well. Both MA and 

NVP can be use to increase the water content of HEMA. These monomers also confer an 

anionic character to the lens materials.  

 Ethyleneglycol dimethacrylate (EGDMA) is a cross-linking agent mainly used to provide 

structure and stability to the lens material.  

 Methyl methacrylate (MMA) is a hydrophobic monomer used in hard lenses 

manufacturing; however it is very useful in giving stability and some stiffness to soft 

CLs(66;67). 
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 Polydimethylsiloxane (PDMS) is a silicone elastomer used in silicone hydrogel CLs. 

 (Trimethylsiloxy)-silypropyl methacrylate (TRIS), TRIS-like monomers and fluoracrylates 

were primarily used in RGP fabrication. Currently are incorporated in silicone hydrogel 

CLs(68-70). Figure 1.6 shows a few monomers used in silicone hydrogel CL fabrication. 

 

 

Figure 1.6 Chemical structure of some monomers used in soft contact lenses fabrication 

1.7.2 Multipurpose lens care solutions 

CLs disinfection is an important strategy to prevent MK as well as other complications associated 

with lens wear. Multipurpose solutions (MPS) are single solutions which allow to clean, disinfect 
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and store CLs. Data from Europe, Australia and Canada indicate that 80% of CL wearers use 

MPS to disinfect their lenses instead of other type of solutions(71).  

 

1.7.2.1 Surfactants 

Surfactants are surface-active molecules, which simultaneously possess hydrophobic and 

hydrophilic domains (amphiphilic). MPS have small concentrations of surfactants, being 

poloxamine and poloxamer the most common ones. Their major function is to clean the lens 

surface particularly from debris and deposits (may include microorganisms). To achieve such 

cleaning, surfactant molecules form micelles around the debris or deposits, being removed 

during rinsing. Figure 1.7 shows a representative scheme of surfactant molecules adsorbing on 

hydrophobic and hydrophilic surfaces. 

a) Hydrophobic surface 

 

b) Hydrophilic surface 

 

Figure 1.7 Representative scheme of surfactant molecules on a) hydrophobic and b) hydrophilic 
surfaces 
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Adapted from Holmberg et al.(72) 

 

When incorporated on the MPS formulation, surfactants can eliminate between 10 to 50% of 

deposited proteins(73), still dedicated surfactant solutions can express higher levels of 

efficiency(74). A comparative study revealed that Opti-Free Express and Opti-Free Express No 

Rub Lasting Comfort formula seems to remove more proteins than ReNu Multiplus or SOLO Care 

Plus(75). Other study but comparing ReNu Multiplus and Complete Comfort PLUS, found that the 

last one is more effective in protein removal(76). 

Surfactants can also improve lens wettability, leading not only to the augment of wearer 

comfort(77) but also to a possible reduction of the levels of protein adsorption(78;79) and 

bacterial adhesion(80). Hydrophilicity and wettabilty should not be mismatched. The first term 

mainly refers to the affinity between a solid surface and water molecules, whereas the second 

term is more general and expresses the contact between a liquid and solid surface. If the wetting 

is favourable the contact angle is low, conversely if it is high the wetting is unfavourable. The only 

situation where they can be synonymous is in the context of water. In this case, a wettable 

surface may be also termed as hydrophilic.  

 

1.7.2.2 Biocides and lens disinfection 

Small concentrations of biocides are present in MPS formulation. Their major role is to kill 

pathogens, which may threaten the eye integrity. One of the most common biocides is 

polyhexamethylene biguanide (PHMB). PHMB belongs to the biguanide family, is cationic and 

exhibits a high molecular weight. Being cationic, PHBM tends to create an electrostatic attraction 

between microorganisms (microorganisms usually carry negative charge). Because of the 

electrostatic attraction, the biocide is pull towards the inner membrane disrupting it. Microbial 

death occurs when the membrane function is lost and the intracellular components 

precipitate(81). 

Polyquartenarium-1 (PQ-1) belongs to the polymeric quaternary ammonium compounds family 

and is a cationic high molecular weight biocide as well. Due to the electrostatic attraction, PQ-1 

penetrates the cell wall towards the cytoplasmatic membrane opening a pathway for progressive 
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leakage of the intracellular material(82). This disinfectant presents poor activity against fungi and 

acanthamoeba(83).  

Myristamidopropyl dimethylamine (MAPD) is a biocide composed by a fatty acid coupled to a 

cationic group. Their molecular size and weight are smaller than PHBM and PQ-1, but it has 

demonstrated effectiveness against fungi, and trophozoide and cystic form of 

Acanthamoeba(83;84). 

In accordance to Food and Drugs Administration (FDA), a MPS should have a biocide 

concentration capable of destroying microorganisms in a significant way. These requirements are 

described in the standard ISO 14729 Ophthalmic optics - Contact lens care products - 

Microbiological requirements and test methods for products and regimens for hygienic 

management of contact lenses(85). This standard describes two tests: the primary (stand-alone 

test) and the secondary (regimen test). According to stand-alone test, products should kill 99.9% 

of suspended bacteria and 90% of yeast. This corresponds approximately to 3-log and 1-log 

reduction, respectively. If it fails, the product must be tested according to the regimen test. In this 

case, a 4 to 5-log reduction of adhered bacteria to CL must be accomplished. For both tests, the 

panel of microorganisms is the same and includes P. aeruginosa, S. aureus, S. marcescens, C. 

albicans and F. solani, which can be purchased from culture collections. 

One critic that can be addressed to this standard lye in the inability of stand-alone test to provide 

a reliable assessment of disinfection. Under real conditions, disinfection is performed against 

adhered microbes to CLs and not against suspended ones. In addition when microbes are 

adhered to a substratum or within a biofilm, they exhibit higher patterns of resistance to 

disinfection than suspended ones(86). Although most studies were made according to stand-

alone test(87-90), there is one that shows that some MPS meeting stand-alone test, fail the 

regimen test for some bacteria/lens material(91) supporting the hypothesis that stand-alone test 

is inappropriate to asses CL disinfection.  

Other critic that can be point out to this standard concerns the type of microorganisms used in 

the disinfection assessment. Clinical isolates are often more tolerant to biocides than 

microorganisms from collection cultures(92) and the biocide activity may vary upon different 

species, and even between strains of the same species(93). Additionally, some biocides may lose 

their activity during lens storage(94-96). 
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Besides disinfection, microbial detachment is also an important issue. If a MPS fail to induce 

detachment, the non-viable microbes may remain adhered to the lens surface being attractive to 

living ones(97). In RGP CLs, two MPS stimulated minor cell removal; however in in soft CLs 

ReNu® Multiplus™ was able to remove P. aeruginosa in a significantly way(98). 

 

1.7.2.3 Resistance of microorganisms to biocides 

Microorganisms exhibit innate and acquired resistance mechanisms against biocides(83;99-

102). Innate mechanisms include bacterial adhesion (adhered cells are 500 times less 

susceptible to biocides) and the presence of impermeable barriers(92;103-105). EPS accumulate 

outside the cell may protect the bacteria against the biocide activity(93). Efflux pumps are other 

defence mechanisms and can be either considered intrinsic or acquired. Roughly an efflux pump 

is a system that removes toxic compounds from the microbial cell surface(92;103-106). 

Mutations, adaptations or the acquisition of plasmids, transposons or other genetic features are 

considered extrinsic resistance mechanisms(92;103-105). 

It is generally accepted that Gram-negative bacteria are less susceptible to antimicrobial agents, 

since they possess an additional membrane (outer membrane), which reduces cell permeability 

and therefore the biocide uptake. The same outer membrane can also carry proteins implicated 

in multiple drug resistance(107;108) and the composition of the membrane fatty acids play a 

role in the resistance of this type of bacteria(109). It has been shown that the most cytotoxic 

strains of P. aeruginosa are also the most resistant to the biocide activity(110). Other study 

regarding biocide resistance, revealed that some strains of P. aeruginosa were insusceptible to 

PQ-1(111). The presence of cationic molecules on the surface of such strains repealed the 

biocide. In other studies, imaging techniques were used to visualise damages provoked by PQ-1 

and MAPD on several bacterial species(102). According to that, PQ-1 caused significant damages 

in the cytoplasmatic membrane of P. aeruginosa and S. marcescens, and in less extent to S. 

aureus. Indeed, S. aureus can remove PQ components from the membrane core using efflux 

pumps and that might be related with such result(112). Other study confirmed that S. 

marcescens is susceptible to PQ-1 as their cytoplasmatic membrane was easily disrupted(113). 

MAPD also induce damages in the cytoplasmatic membrane; however, since no potassium 

release was observed, it appears that damages were not so extensive. 
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2. Chapter 2 Methods and rationale for 
their utilization 

 

 

The methods and techniques used in the present work are described in this Chapter. The 
rationale beyond its employment is also discussed. 
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Most studies described in this Thesis were conducted with worn CLs. Some lens materials are 

deteriorated during wear(1). In view of that, it is expected that wear modify the lens surface 

properties as well, which in turn might influence microbial adhesion and detachment. Therefore, 

the assessment of worn CLs was found important since the results obtained are surely more 

realistic than if performed with new ones. 

Lens fitting and follow-up consultations were carried out in the Laboratories of Clinical Optometry 

of the Physics Department of the University of Minho. Volunteers were neophytes from the 

University of Minho comprising students, workers and professors. A contra-lateral eye model was 

employed. Accordingly, each volunteer used a silicone hydrogel CL in one eye and a conventional 

one as contra-lateral pair. The volunteers were subject to follow-up consultations in the first, third 

and sixth month. The conventional hydrogel lens was replaced every two weeks and the silicone 

hydrogel ones in a monthly basis. Figure 2.1 gives the age distribution of the volunteers enrolled 

in this study. 

 

 

Figure 2.1 Age distribution of the volunteers enrolled in this study 

 

Age 

To 20 years; 42; 34%  

21-25 years;  52, 43% 

26-30 years; 12; 10% 

31 years or more; 16; 13% 
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2.1 Hydrophobicity 

It is generally recognized that hydrophobicity plays an important role in microbial adhesion to 

biomedical implants and implant-related infections(2-10). Hence, the assessment of this property 

was considered essential to provide a better understanding of microbial adhesion results. 

Hydrophobicity was calculated as the free energy of interaction between two identical surfaces (s) 

immersed in water (w)(11): 

 
















 

wswswwss

2
LW
w

LW
s

tot
sws 42G  

tot
swsG  expresses the degree to which the attraction of the surface (s) towards water (w) is greater 

(hydrophilicity) or smaller (hydrophobicity) than the attraction between two moieties of that 

surface. Thus, when the global free energy of interaction between two identical surfaces (s) 

immersed in water is repulsive (has a positive value) the surface (s) is considered hydrophilic. On 

the other hand, the more negative G sws
tot  is, the higher the solid surface hydrophobicity is. 

LW
S is the non-polar component of the surface tension of the solid surface and  



S , 

S  the 

electron-acceptor and electron-donor parameters of the polar component. These parameters can 

be estimated through contact angle measurements using liquids of different polarities. The 

polarity values of some reference liquids, including water are detail in Table 2.1. Water and 

formamide are polar, while α-bromonaphthalene is non-polar. 

Table 2.1 Polarity values of bromonaphthalene, water and formamide 

Reference liquid 
γl

TOT 

(mJ.m-2) 

γl
LW 

(mJ.m-2) 

γl
+ 

(mJ.m-2) 

γl
- 

(mJ.m-2) 

α-Bromonaphthalene 44.4 44.4 0.00 0.0 

Water 72.8 21.8 25.50 25.5 

Formamide 58.0 39.0 2.28 39.6 
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Figure 2.2 shows a representative scheme of a contact angle established between a drop of 

liquid and a CL surface, where ls represents the liquid-solid interface, la the liquid-air interface 

and as the air-solid interface. 

 

Figure 2.2 Contact angle established by a drop of liquid in contact with a contact lens 

 

Contact angle measurements were performed through the advancing type technique on air. Other 

standard technique is the sessile drop technique on air. However, advancing type was found 

simpler to be employed instead of sessile drop, as in very hydrophilic materials a single droplet of 

liquid rapidly spreads.  

The equation of Young-Dupré establishes the relation between contact angles and the surface 

tension components of the reference liquid.  

  lsls
LW
l

LW
s

TOT
l  2)cos1(  

Where θ is the measured (advancing) contact angle, TOT
l , is the surface tension of the liquid 

with which the contact lens is measured, LW
S , 

S , 

S  are the non-polar component of the 

surface tension of the solid surface, the electron-acceptor and electron-donor parameters of the 

polar component, respectively.  

The non-polar component of the lens surface is calculated as follows: 

  LW
l

LW
s

LW
slsG   2  
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While the polar component is calculated through the equation: 

   lslsll
LW
s

LW
s

AB
slsG 4  

The unknown solid surface tension components can be calculated with a 3-equation system 

derived from this equation and the surface tension components of the reference liquids. 

 

2.2 Roughness and topography 

The atomic force microscope is a high resolution scanning probe microscope. This apparatus 

permits to obtain topographic images and roughness values within the nanometer range. Atomic 

force microscopy (AFM) measurements comprise scanning surfaces with a sharp probe attach to 

a cantilever, usually made of silicon or silicon nitride. Among other parameters, AFM allows the 

determination of surface roughness and topography. These parameters may affect CL microbial 

adhesion and thus their assessment was undertaken(10;12;13).  

 

2.2.1 Tapping Mode™ AFM 

Tapping Mode™ AFM was the technique used to estimate roughness and topography of CL 

surfaces. This technique has been previously employed on CLs since the scanning process does 

not damage their delicate surface. As the name suggests in Tapping Mode™ AFM, the probe 

intermittently taps the surface instead of continuously contacting with it. This fact allows 

eliminating drag forces, hence maintaining the lens surface integrity. When the probe is in close 

proximity to the lens surface, forces such as van der Waals or electrostatic forces drive the probe 

away. These forces create an amplitude decrease; however, when the probe is far enough to 

suffer their influence, tends to approach to the surface again giving origin to the oscillatory 

movement typically termed as tapping mode. The amplitude is maintained constant by this 

feedback(14). 
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2.3 Protein adsorption 

2.3.1 SDS-PAGE 

Medical devices in contact with body fluids readily adsorb proteins(15). Adsorbed proteins on CLs 

can be estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE)(4;10). This technique allows protein separation according to their molecular weight within 

a polyacrylamide gel. The passage of an electrical current through the gel is the driving force of 

protein migration. Prior to electrophoresis, proteins must be denaturated with SDS. Proteins may 

exhibit secondary and tertiary structures and denaturation makes them loosing these structures 

acquiring a primary one. The possession of a primary structure is important because in this state 

proteins exhibit a typical molecular weight (MW) which is the characteristic that allows estimating 

the type of protein. In Figure 2.3 a polyacrylamidade gel electrophoresis can be visualised. The 

visible spots are proteins. The ones closer to the bottom exhibit low MW, while the ones near the 

top have high MW. A 10% gradient enables the retention of proteins with a molecular weight 

between 14 kDA and 205 kDA. This gradient was found appropriate since the most 

representative proteins in tears have a molecular weight within this range of values.  
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Figure 2.3 Section of a polyacrylamide gel stained with silver nitrate 

 

Beside denaturation, SDS plays another important role. This surfactant is anionic and while it 

binds to proteins grants them a negative charge, permitting them to migrate during 

electrophoresis.  

 

2.3.2 Fluorescence spectroscopy 

Fluorescence is a photon emission process that occurs during molecular relaxation from excited 

electronic states. This process involves transitions between electronic and vibrational states of 

polyatomic fluorescence molecules (fluorophores)(16;17). The Jablonski diagram represents the 

excited state and relevant transitions (Figure 2.4).  



Methods 63 

 

 

L
ív

ia
 J

o
a

n
a

 R
o

c
h

a
 d

o
s

 S
a

n
to

s
 

 

Figure 2.4 Jablonski diagram of fluorophore excitation, radiative decay and nonradiative decay 
pathways 

 

Absorption of a light quantum, induce molecule transference from the ground state (S0) to one of 

the vibrational levels of the excited states, S1, S2, and so on.  Fluorescence emission occurs 

when the molecule transit from S1 to S0 state. The number of quanta emitted per unit time is 

proportional to the number of quanta adsorbed per unit time and fluorescence quantum 

yield(16;17): 

Nf=I0(1-10-D).qf 

Where I0 is the intensity of the incident light, D is the absorbance of the solution and q f is the 

fluorescence quantum yield. The fluorescence quantum yield is the ratio of the number of quanta 

emitted from an excited state to the number of quanta absorbed during the transitions from the 

ground to the excited state per time unit. Several factors may affect the fluorescence quantum 

yield such as radiative and nonradioactive processes, coalitional quenching among 

others(16;17).  

 

Quantification of adsorbed proteins 

Fluorescence spectroscopy is a widespread method and allows estimating the amount of proteins 

adsorbed to a CL(18-21). As mentioned in the introduction section, protein exhibits intrinsic 
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fluorescence because of the presence of fluorophores such as tyrosine and tryptophan(18). 

Although each protein species may possess different numbers of these fluorophores, is assumed 

that the fluorescence intensity is proportional to the protein quantity.  

Adsorbed proteins were extracted from the lens matrix using a solution of trifluoracetic acid and 

acetonitrile, as described by Keith et al.(19). The fluorescence intensity of the extracted portion 

was measured in the fluorescence spectroscope using a xenon lamp. Solutions with different 

concentrations of bovine serum albumin (BSA) were prepared to verify the linearity of the 

apparatus (Figure 2.5) and the wavelength according to which emitted the highest fluorescence 

intensity value. When excited at 280 nm, BSA emited a maximum of fluorescence intensity at 

360 nm. Changes of the medium pH, provokes a reversible conformation of this protein. BSA 

can exhibit conformation E expanded (E) fast, (F) (normal) (N), Basic (B) and aged (A) is observed 

for pHs ranging from 2.9 to 9.0(21). Tryptophan was used as fluorescence probe once the 

fluorescence quantum yield of tryptophan (0.20 at pH 7.0 and 20 °C) is superior to tyrosine 

(0.14 at pH 7.0 and 20 °C). Although both residues absorb at 280 nm, they emit at different 

wavelengths. Under neutral conditions (pH 7 in water), the maximum emission wavelength of 

tryptophan is 348 nm whereas tyrosine is 303 nm.  

 

 

Figure 2.5 Linearity of BSA fluorescence intensity obtained with solutions at different concentrations 

 



Methods 65 

 

 

L
ív

ia
 J

o
a

n
a

 R
o

c
h

a
 d

o
s

 S
a

n
to

s
 

Tryptophan absorption is caused by ππ* electron-vibrational transition in the indole 

chromophore, consisting of aromatic π-system of which formed by ten π-electrons(20). 

Tryptophan residues and tyrosine residues absorb in the same wavelength region and at neutral 

pH, when the excitation wavelength used is 280 nm this could result in some energy transfer 

from tyrosine to tryptophan and because of that the fluorescence of tryptophan could be 

augmented by this process(22). To overcome the problem an acidic solution was used to extract 

the adsorbed proteins since under acid conditions, this process is eliminated due to the 

configuration of the protein (expanded configuration). Figure 2.6 shows the typical absorption and 

emission spectra of tryptophan. 

 

Figure 2.6 Absorption and emission spectra of tryptophan 

 

Quantification of oxidized lipids 

Atmospheric oxygen and photo-oxidation were the pathways used to promote lipid oxidation. For 

the assays, a 24-well culture plate was employed (Figure 2.7). Lenses were individually inserted 

into each well containing an artificial tear solution made with proteins and lipids. Proteins were 

part of the artificial tear solution not only to mimic natural tear film, but also to promote the 

formation of conjugated Schiff-bases as explained in Chapter 1.  

To improve their solubility, lipids were firstly dissolved in foetal calf serum. After dissolving 

completely, proteins were added to the formula followed by phosphate buffer saline solution.  
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Figure 2.7 Contact lenses incubated in artificial tear solution 

 

2.5 Bacterial adhesion and detachment 

Microbial adhesion to medical devices can be studied under static and dynamic 

conditions(6;8;34;35).  

A parallel plate flow chamber (dynamic) was previously used to asses bacterial adhesion and 

detachment on CLs(4;5;10). In the present work, this system was used to study the initial 

adhesion of bacteria to CLs under a laminar regimen as well as to promote cell removal(36). 

Static assays were employed to study the capability of surfactants and a MPS in inhibiting 

bacterial adhesion to CLs. 

 

2.5.1 Parallel plate flow chamber 

The external dimensions of the chamber used in this study are 16x8x1.6 cm. The chamber is 

composed of a bottom plate made of Perspex and a top plate made of glass. The Perspex/glass 

dimensions are both 7.8x4.8 cm. In the Perspex plate, two circular sections were removed in 

order to fit the CLs (Figure 2.8). In between the plates, a Teflon 0.0.6 cm spacer is inserted.  

The chamber core is transparent so that adhesion can be imaged through phase contrast 

microscopy and the number of adhered cells can be quantified. Therefore, the flow chamber can 

be placed on the microscope. The overall system also includes two flasks, one containing a 
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saline buffer and the other a microbial suspension connected to the flow chamber. The flow is 

regulated by a peristaltic pump connected to the chamber. 

 

Figure 2.8 Representative scheme of the parallel plate flow chamber system 

 

A CCD camera coupled to the microscope allows the capture of pictures of adhered 

microorganisms to CLs. Phase contrast and a long-range objective is required. The camera 

should be set to 512x512 pixels frame (corresponds to 0.0041 mm2). Although flatten, CLs can 

still exhibit some curvature, so, to diminish this problem a small frame is preferred. 

As mentioned above, bacterial detachment can also be evaluated using a parallel plate flow 

chamber. After adhesion occur, it is possible to dispense a solution (surfactant or MPS) 

throughout the system to induce such detachment.  

 

2.5.2 Static adhesion 

Static adhesion assays were performed to assess the ability of certain surfactants to inhibit 

bacterial adhesion to CLs. Surfactants are capable of adsorbing to CLs, and the interaction 

between the chemical structure and the lens chemical composition rules the orientation 

according to which is adsorbed. Lens coating with surfactants inhibits bacterial adhesion by 

exposing their hydrophilic groups to the surrounding environment. Hidrophilicity is a known 
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repulsive force, and might act to reduce adhesion(37). A 24-well tissue culture plate was used to 

promote lens coating and bacterial adhesion either to uncoated and coated materials.  

 

2.6 Cell viability  

Viable bacteria are metabolic active microorganisms. However, several factors may contribute to 

the loss of their viability, namely the contact with MPS and bacteriolytic proteins. Viability 

assessment of adhered bacteria is important because viable bacteria are potentially harmful to 

the lens wearer. On the other hand, non-viable bacteria that remain adhered to lens surface may 

attract living ones. 

In the present work the fluorochrome propidium iodide (PI) was use to evaluate bacterial viability. 

This dye stains non-viable cells through bonding to DNA molecules. This is possible because the 

cellular membrane is damage and thus permeable to this dye(26).  

To obtain the number of viable cells, the number of non-viable bacteria should be subtract to the 

number of total adhered cells. The number of total adhered bacteria can be estimate through 

phase contrast microscopy followed by enumeration using adequate software. The number of 

non-viable bacteria can be estimate by epifluorescence microscopy followed by enumeration 

using proper software. The excitation and emission wavelengths are respectively 530 nm and 

615 nm(26). 

Figure 2.9 shows bacteria adhered to CLs observed under phase contrast microscopy and 

fluorescence microscopy. Cells stained with PI exhibit red colour. 
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Figure 2.9 Bacterial cells observed under phase contrast microscopy (left) and epifluorescence 
microscopy (right) 

 

2.7 Confocal laser scanning microscopy 

Confocal laser scanning microscopy (CLSM) is a valuable research instrument of biology and 

medicine. The confocal microscope produces high-resolution optical images even from thick 

samples. This is possible due to a process known as optical sectioning. With adequate software, 

images can be stack and form a 3-dimensional image. Like in epifluorescence microscopy, 

samples have to be previous stained with an adequate fluorocrome(38).  

In this Thesis, CLSM was use to visualise adhered bacteria to worn lenses. Prior to image 

processing, cells were killed by exposing to a MPS, and stained with PI. Several scan where 

made above the lens surface. Afterwards, the scans were gathering through proper software 

creating a 3-dimensional image as can be seen in Figure 2.10. 

 

Figure 2.10 CLSM observation of non-viable Staphylococcus epidermidis cells adhered to a worn 
contact lens. 
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4. Chapter 3 The influence of surface 
treatment on hydrophobicity, protein 
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3.1 Abstract 
 

Purpose: To evaluate the influence of surface treatment of silicone hydrogel contact lenses (CLs) 

on lens hydrophobicity and “in vivo” protein adsorption and microbial colonization on several 

worn silicone hydrogel CLs with and without surface treatment. The lenses used in this study 

were balafilcon A, lotrafilcon A, lotrafilcon B and galyfilcon A. A conventional hydrogel CL 

(etafilcon A) was also tested. 

Methods: Hydrophobicity was determined through contact angle measurement using the 

advancing type technique on air. The type and quantity of proteins adsorbed were assessed 

through SDS-PAGE and fluorescence spectroscopy, respectively. Microbial colonization was 

studied by removing the microbes from the lenses through sonication, and counting the colony-

forming units on agar plates.  

Results: Regarding hydrophobicity, both surface and non-surface-treated silicone hydrogel CLs 

were found to be hydrophobic, and the conventional hydrogel CL was found to be hydrophilic. 

Concerning protein adsorption, different protein profiles were observed on the several lenses 

tested. Nevertheless, the presence of proteins with the same molecular weight as lysozyme and 

lactoferrin was common to all lenses, which is probably related to their abundance in tears. In 

terms of total protein adsorption, silicone hydrogel CLs did not exhibit any differences between 

themselves. However, the conventional hydrogel etafilcon A adsorbed a larger amount of 

proteins. Regarding microbial colonization, balafilcon A exhibited the greatest amount of 

colonising microbes, which can be due to its superior hydrophobicity and higher electron 

acceptor capacity.  

Conclusion: This study suggests that silicone hydrogel lenses adsorb a lower amount of proteins 

than the conventional hydrogel lenses and that this phenomenon is independent of the presence 

of surface treatment. Concerning microbial colonization, the surface treated balafilcon A, 

exhibited a greater propensity, a fact that may compromise the lens wearer’s ocular health.
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3.2 Introduction 

Silicone hydrogel contact lenses (CLs) are the latest kind of soft lenses commercially available. 

This type of lens provides excellent oxygen transmissibility to the cornea on account of silicone’s 

high oxygen transmissibility when compared to the conventional hydrogel CLs(1,2). Silicone is a 

hydrophobic polymer, and for this reason most of the silicone-based CLs possesses surface 

treatment, which decreases the surface hydrophobicity. The reduction in hydrophobicity gives a 

greater comfort to the wearer and additionally prevents the formation of deposits such as lipids 

and proteins, as well as microbial colonization(3-6). The reduction in the lens surface 

hydrophobicity can be obtained through two methods. The first one consists in performing a 

treatment on the lens surface, which can be achieved in a gas plasma reactive chamber by 

creating an ultra-thin permanent coating in the cases of lotrafilcon A and lotrafilcon B (Ciba 

Vision), or by plasma oxidation, transforming the silicone into silicate compounds, in the case of 

balafilcon A (Bausch & Lomb, Inc.) (Table 3.1). The second method consists in the incorporation 

of a wetting agent such as Polyvinyl Pyrrolidone (PVP), which is the case of galyfilcon A (Johnson 

& Johnson Vision Care) (Table 3.1).  

Silicone hydrogel CL, despite the advantages they offer due to their high oxygen transmissibility, 

also present some pitfalls, which are related to the migration of the silicone hydrophobic moieties 

to the lens surface(7). As mentioned above, less hydrophobic surfaces are advantageous, since 

they prevent protein adsorption and microbial colonization. 

The main goal of this study is to evaluate the influence of surface treatment on CL 

hydrophobicity, protein adsorption, and microbial colonization, since lenses with surface 

treatment are expected to exhibit different behaviours to the non-surface-treated lenses. For that, 

a group of human volunteers wore four types of silicone hydrogel lenses: three surface-treated 

CLs and one non-surface-treated CL. A conventional hydrogel CL (etafilcon A, Johnson & Johnson 

Vision Care) was also tested. The implications of protein adsorption and microbial adhesion have 

already been established through “in vitro” studies(8-13). However, due to the complexity of the 

ocular environment, it is difficult to mimic all the conditions affecting protein adsorption and 

microbial adhesion. Therefore, “in vivo” experiments offer potentially more reliable and 

conclusive results. Moreover, the degree of protein adsorption and microbial colonization in 

lotrafilcon B has never been reported before. 
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3.3 Materials and methods 

Contact lenses and subjects  

The properties of the CLs used in this study are detailed in Table 3.1. The experiments were 

performed on CLs previously worn by a group of 31 subjects from both sexes. The group of 

subjects was selected according to several criteria: the subjects had never worn CLs before, were 

not taking any medication during the trial, did not suffer from any kind of ocular allergy, and had 

no predisposition to dry eye syndrome. Each type of silicone hydrogel CL was worn by 

approximately 8 subjects and the conventional hydrogel CL was worn by all the 31 patients, since 

each individual wore a certain type of silicone hydrogel CL in one eye and the conventional 

hydrogel CL in the other one. The subjects were instructed to wear their lenses on a daily wear 

schedule for 12 and 14 h, and to clean and disinfected the CLs overnight with a multipurpose 

lens care solution (ReNu MultiPlus®, Bausch & Lomb, Inc.). The patients were not informed 

about the brand or type of lenses they were using. Silicone hydrogel CLs were replaced every 30 

days and the conventional hydrogel CL was replaced every 15 days during the 6-month period. At 

the end of each wearing period, the CLs were collected, placed in sterile saline solutions, and 

preserved at 4 °C until further analysis. According to the manufacturer’s instructions, galyfilcon A 

should only be worn for a 15-day period. However, in this study, patients wore this type of lens 

for 30 days, in order to make possible the comparison with the other silicone hydrogel CLs 

tested. It must be stressed that full ethics approval was obtained, and clinical cover was provided 

during the trials. 

Table 3.1 Contact lens properties 

Commercial name Manufacturer Material 
FDA 

group 
Water 

content 
Surface 

treatment 

Acuvue® 
Johnson & Johnson 

Vision Care Etafilcon A IV 58% No 

Acuvue®Advance™ 
Johnson & Johnson 

Vision Care Galyfilcon A I 47% No 

Purevision™ Bausch & Lomb, Inc. Balafilcon A III 36% Plasma oxidation 

Focus® Night & 
Day™ 

CIBA Vision Lotrafilcon A I 24% 25nm plasma 

O2Optix™ CIBA Vision Lotrafilcon B I 33% 25 nm plasma 
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Culture medium and solutions 

The culture medium used in this work was tryptic soy agar (Merck, Germany). This medium was 

prepared according to the manufacturer’s instructions, sterilised and transferred to Petri dishes. 

A solution of NaCl (0.9 %, Sigma-Aldrich, Germany) was also prepared and sterilized. 

 

Contact angle measurements 

CL hydrophobicity was determined through the measurement of the advancing contact angle on 

air with a measurement apparatus. The measurements were performed at room temperature 

using three standard liquids of different polarities – Millipore water, formamide and 1-

bromonaphtalene. Water and formamide are polar liquids, whereas 1-bromonaphtalene is non-

polar. For the measurements, unworn CLs were removed from their original blisters and cut into 

quarters. Each quarter was flattened onto a microscope slide and the excess water was gently 

removed with a tissue paper. The measurements were immediately performed, in order to avoid 

lens dehydration, using the apparatus OCA 20 (DataPhysics, Germany). For each standard liquid, 

4 CLs from each type were tested and 4 measurements per lens were performed.  

 

Polyacrylamide gel electrophoresis (SDS-PAGE) 

The types of proteins adsorbed onto worn CLs were determined through SDS-PAGE, with a 10% 

gradient gel. For protein extraction, lenses were cut into quarters and incubated in 100 µl of 

electrophoresis buffer (1mM EDTA, 10 mM Tris-HCL pH 8.0, 2.5% SDS and 5% ß-

mercaptoethanol). After boiling for 15 min, the CLs were centrifuged for 10 minutes at 9000 

rpm. The supernatant was removed and applied to a 10% gradient gel. Electrophoresis was 

performed in the MINI-PROTEAN® 3 Cell (BIO-RAD, USA) using 60 volts. Gels were stained with 

silver nitrate.  

Fluorescence spectroscopy 

The total amount of proteins adsorbed onto worn CLs was estimated by fluorescence 

spectroscopy. When excited at 280 nm, proteins emit fluorescence due to the presence of 
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fluorophore tryptophan(14). Since there is no standard solution of tear-film proteins, the method 

was calibrated with different concentrations of bovine serum albumin (BSA) (Sigma-Aldrich, 

Germany). An excellent linearity between the BSA concentration and fluorescence intensity was 

found ( 9998.0;6409.6895.1  RxY ). Protein extraction was performed as 

described by Keith et al.(15). According to the authors’ procedures, CLs were soaked in 

extraction buffer (acetonitrile and 0.2% trifluoroacetic acid (50:50)) and incubated in an orbital 

shaker (140 rpm) overnight. After this period, lenses were centrifuged for 10 minutes at 9000 

rpm. Samples were analysed at an excitation wavelength of 280 nm and an emission of 360 nm 

(Spectrofluorimeter Jasco FP-6200, Japan). The measurements were performed in a quartz cell 

(Hellma, Germany).  

 

Colony-forming units 

Microbial colonization was evaluated through the enumeration of colony-forming units (CFU). 

After wear, each CL was aseptically removed from the eye of the volunteer and placed in 1 ml of 

sterile saline solution (0.9% NaCl). The lenses were sonicated (450W Ultrasonic Processor, Cole 

& Parmer, USA) for 1 minute at an amplitude of 20 with a 1/8 inch probe. The suspension was 

spread onto a TSA plate and the CFU were enumerated after 24 and 48 h of incubation at 37 

°C. The sonication time and power were optimised in order to detach the maximum number of 

adhered cells without cell disruption (assessed by plating the final suspension onto TSA plates). 

 

Statistical analysis 

The total amounts of proteins adsorbed onto the different types of CLs was compared through 

one-way ANOVA, and the amounts of microbial cells colonising each CL were compared using the 

non-parametric Mann-Whitney U test at a 95% confidence level. The statistical analysis was 

performed using the statistical program SPSS (Statistical Package for the Social Sciences). 
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3.4 Results  

Hydrophobicity 

The values of the surface tension components and hydrophobicity are detailed in Table 3.2. From 

the results obtained it can be concluded that silicone hydrogel CLs are hydrophobic, since 

G sws
tot is <0, and the conventional hydrogel CL is hydrophilic. Balafilcon A surface presents the 

greatest surface hydrophobicity and can be considered a great electron acceptor (high value of 

γ+).  

Table 3.2 Apolar component (γLW), electron donnator (γ-) and electron acceptor parameter (γ+) of 
the lens surface tension and hydrophobicity expressed in mJ/m2  

Material γLW γ+ γ- 
tot
swsG  

Etafilcon A 28.34 0.83 7.40 23.14 

Galyfilcon A 3.59 1.63 13.50 -36.17 

Balafilcon A 5.53 11.50 7.41 -39.40 

Lotrafilcon A 39.40 2.16 12.37 -27.10 

Lotrafilcon B 35.60 3.00 7.40 -34.24 

Surface tension components and lens surface hydrophobicity (
tot
swsG ) 

 

Types of proteins adsorbed 

The adsorbed proteins’ molecular weights are detailed in Table 3.3. According to the results 

obtained, every lens material exhibited a specific protein profile, galyfilcon A being the lens 

presenting a greater variety of molecular weights. Proteins with molecular weights similar to 

those of lactoferrin and lysozyme were the most frequently found in the lenses tested.  
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Table 3.3 Proteins of different molecular weights adsorbed onto different worn contact lenses (%) 

Adsorbed 

proteins 

(Mw-kDa) 

Etafilcon A Galyfilcon A Balafilcon A Lotrafilcon A Lotrafilcon B 

14.4 (lysozyme)  29.27 5.70 11.76 14.28 0.00 

21.0 (lipocalin) 7.31 5.70 0.00 0.00 25.00 

80.0 (lactoferrin) 12.20 17.14 11.76 14.28 50.00 

37.0 (igA) 4.88 8.60 5.88 0.00 0.00 

66.2 (human 

serum albumin) 
4.88 11.40 0.00 14.28 0.00 

Other proteins  14.46 51.56 70.60 57.16 25.00 

 

Total amount of proteins 

The estimated amounts of proteins adsorbed are present in Table 3.4. It is possible to conclude 

that all silicone hydrogel CLs exhibit lower levels of protein adsorption (p=0.000) when compared 

with the conventional hydrogel CL (etafilcon A). Despite the diversity of proteins observed in 

galyfilcon A using SDS-Page, this lens is not more prone to protein adsorption than the other 

silicone hydrogel CLs. It must be stressed that the amounts of proteins were estimated using 

BSA as standard - therefore, the values presented can not be seen as absolute amounts of 

proteins. 

 

Table 3.4 Fluorescence intensity at 360 nm of the contact lens extract 

* Statistically different (ANOVA performed with 95% of confidence level) 

 

 

Etafilcon A Galyfilcon A Balafilcon A Lotrafilcon A Lotrafilcon A 

472.97±196.95* 9.19±5.53 44.64±15.24 20.45±10.85 35.34±31.96 
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Microbial colonization 

The values of CFU/ml present in Table 3.5 indicate the amount of microbial cells able to grow on 

TSA plates at 37 °C, and are estimates of the extent of the CL’s colonization with viable microbial 

cells. The results show that balafilcon A seems to be more prone to microbial colonization than 

the other CLs, exhibiting an average value of 2.32xE6 CFU/ml, which is statistically significant 

(p<0.005). Microbial colinisation in galyfilcon A, despite the absence of surface treatment, was 

similar to those of lotrafilcon A (p=0.231) and lotrafilcon B (p=0.817). Concerning the 

conventional hydrogel CL (etafilcon A), this lens exhibited a greater amount of viable cells than 

galyfilcon A (p=0.017) and lotrafilcon A (p=0.000). 

Table 3.5 Colony forming units of worn conventional and silicone hydrogel contact lenses 

 

 

 

 

 

* Statistically different from all tested lenses;  Statistically different from Galyfilcon A and Lotrafilcon A 
Mann-Whitney U performed with 95% of confidence level 

 

3.5 Discussion 

The present study focuses on the effect of silicone hydrogel CL’s surface treatment on 

hydrophobicity, protein adsorption, and microbial colonization. Due to the important role of 

hydrophobicity in protein adsorption and microbial colonization, this property was evaluated in a 

quantitative way, contrarily to most of the studies(17-19). 

In the present study, it was found that silicone hydrogel CLs with surface treatments (Table 3.2) 

and the non-surface-treated CL (galyfilcon A) present similar degrees of hydrophobicity, meaning 

that the wetting agent and the application of a surface treatment have a similar effect on the lens 

hydrophobicity. The conventional hydrogel CL is hydrophilic, as reported in other studies(17). 

SDS-PAGE analysis (Table 3.3) revealed different protein profiles on the several lens materials. 

Proteins with molecular weights equivalent to the molecular weights of lactoferrin and lysozyme 

were the most frequently extracted from all lens materials, probably on account of their 

abundance in the tear film(20). It seems that 14.4 kDa proteins (probably lysozyme) 

Etafilcon A Galyfilcon A Balafilcon A Lotrafilcon A Lotrafilcon A 

 

9.30E5±3.49E5 

 

4.08E5±2.0E5 

 

2.32E6±1.45E6* 

 

2.30E5±1.17E5 

 

8.83E5±7.84E5 
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preferentially adsorb onto etafilcon A CL. This is probably due to the electrostatic attraction 

between these two entities, since this protein is positively charged at physiological pH, while 

etafilcon A is negatively charged. It is well reported that protein adsorption is a phenomenon 

determined by the lens hydrophobicity and, in lesser extent, by the hydrophobicity of the proteins’ 

amino acid residues. This interaction is also influenced by the electrostatic attraction between the 

lens surface and proteins with opposite charges(21). Galyfilcon A adsorbed a greater diversity of 

proteins when compared with all the other lenses, which may be related to the absence of 

surface treatment and also to its chemical composition. It must be stressed that this type of lens 

was worn for a longer period than that recommended by the manufacturer (30 days). 

Nevertheless, neither signs of material degradation nor wearer discomfort were observed (data 

not shown) during the wearing period.  

The fluorescence data (Table 3.4) revealed that etafilcon A adsorbs a greater amount of proteins 

than silicone hydrogel CLs. This result has been previously reported by several authors(9,12,13), 

while specifically studying “in vitro” lysozyme adsorption. Hydrophilic polymers such as etafilcon 

A naturally hinder protein adsorption because the water must be displaced for protein adsorption 

to occur, and this process is energetically unfavourable. However, the accentuated dehydration of 

this lens(22) could allow the interaction with other molecules - in this case, proteins. “In vitro” 

dehydration studies have revealed that conventional hydrogel CLs are more prone to dehydration 

than silicone hydrogel CLs(23), so, regardless of their hydrophilicity, conventional hydrogel CL 

adsorb more proteins than the other lenses, even if worn for a shorter period of time (15 days). 

Concerning galyfilcon A, it was interesting to conclude that the absence of surface treatment did 

not lead to an increase in the amount of proteins adsorbed, despite the great diversity of proteins 

adsorbed. It should be considered the possibility that the variety and amount of proteins 

adsorbed onto the different CLs could have been influenced by the lens material or by the lens 

care solution used. According to Pritchard et al.(24), the use of ReNu Multiplus has been 

associated to higher levels of corneal staining when compared to ReNu Multipurpose Solution 

and Opti-Free Express. The measurement of the corneal staining is a useful tool to determine the 

impact of a multipurpose system or the impact of their interaction with the lens material on 

cornea. Despite being out of the aim of the present study, this evaluation was performed. The 

main finding is that all CL wearers exhibited corneal staining with the exception of one silicone 

hydrogel lens. As different levels of corneal abrasion may induce different levels in irritation and 
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protein secretion, we believe that the protein levels and profiles observed for each CL may have 

been influenced either by the multipurpose lens care solution as by their interaction with lens 

material. 

Regarding CFU’s analysis, the CLs presented different levels of microbial colonization (Table 3.5), 

balafilcon A being the lens more prone to microbial colonization. This fact may be related to its 

hydrophobicity, as it is already well established that microbial adhesion is determined by lens 

surface hydrophobicity(25), as well as microorganisms, are usually negatively charged. However, 

hydrophobic interactions are stronger than repulsive forces and tend to attract bacteria near to 

the surface, leading to their adhesion(26). Moreover, this lens presents a high electron acceptor 

capacity, which may possibly enhance adhesion on account of the increase in Lewis acid base 

interactions with the microbial cells. Henriques et al. reported the results of “in vitro” adhesion 

study of S. epidermidis and Pseudomonas aeruginosa to several silicone hydrogel CLs and they 

found that balafilcon A was also more prone to adhesion than the others lenses(25). In that 

study, the adhesion assays were performed on unworn CLs. However, “in vivo” CLs are 

subjected to the adsorption of tear-film molecules that may influence lens surface’s 

properties(19) and adhesion propensity. Nevertheless, both “in vivo” and “in vitro” studies led to 

the same conclusion concerning the high susceptibility to microbial colonization of balafilcon A. 

One other factor that may bear influence on this lens’s susceptibility to microbial colonization is 

its high roughness. Balafilcon A is rougher than both lotrafilcon A and galyfilcon A due to its 

surface treatment, which presents silicate islands(27). The surface treatment of this lens based 

on plasma oxidation is different from those of lotrafilcon A and lotrafilcon B, which are made 

through plasma coating, resulting in a smoother surface with a high refractive index. It was 

previously demonstrated that microbial adhesion may increase by enhancing roughness(28,29), 

and for this reason we believe that this surface property may have played an important role in 

microbial colonization.  

Summarising, all silicone hydrogel CLs are hydrophobic and adsorb smaller amounts of proteins 

than the conventional hydrogel CL, regardless of the presence of surface treatment. Nonetheless, 

all lenses exhibited the presence of different protein profiles. The possibility of the multipurpose 

lens care solution or the lens material having an impact on this result should not be excluded, 

since shifts on ocular irritation may induce different protein secretion. The surface-treated 

balafilcon A seems to be more prone to microbial colonization, which might be relate to its 
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greater hydrophobicity and higher electron acceptor capacity. In terms of clinical implications, 

there are apparently no differences between surface-treated and untreated CLs, except for 

balafilcon A, since it exhibited a higher amount of colonising microbes. 
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4.1 Abstract 
 

Purpose: The aim of this study was to, firstly, investigate whether silicone-hydrogel contact lenses 

(CLs) are more or less susceptible to bacterial adhesion than conventional ones and, secondly, 

assess the influence of lens wear in the extent of “in vitro” bacterial adhesion. Four silicone-

hydrogel CLs (galyfilcon A, balafilcon A, lotrafilcon A and lotrafilcon B) and one conventional 

hydrogel (etafilcon A) CL were tested. 

Methods: Bacterial adhesion experiments were performed on unworn and worn CL using the 

strain Staphylococcus epidermidis 9142. Worn lenses were obtained from a group of 31 subjects 

fitted with a silicone-hydrogel CL in one eye and a conventional hydrogel CL as contralateral pair. 

These lenses were used on a daily basis in combination with a multipurpose lens care solution 

(MPS). Adhesion assays were carried out in a parallel plate flow chamber, followed by image 

analysis. Hydrophobicity, roughness and topography of the lenses surfaces were assessed 

through contact angle measurements and atomic force microscopy (AFM).  

Results: Unworn conventional and silicone-hydrogel CLs were equally susceptible to bacterial 

adhesion of S. epidermidis. Conversely, worn conventional hydrogel (etafilcon A) were more 

prone to bacterial adhesion than worn silicone-hydrogel materials, which exhibited similar 

adhesion extents among them. The results also showed that the lens surface properties such as 

hydrophobicity, roughness and surface topography changed during wear. The alteration of 

surface hydrophobicity of silicone and conventional hydrogel CLs during wear had a great impact 

on their bacterial adhesion susceptibility. Accordingly, balafilcon A becomes significantly less 

hydrophobic and less prone to bacterial adhesion after lens wear, whereas etafilcon A becomes 

more hydrophobic and also more susceptible to bacterial adhesion (p<0.05). 
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4.2 Introduction  

Microbial keratitis is a rare but serious ocular infection, which can lead to permanent vision loss. 

Extended wear(1), ocular trauma(2;3), hypoxia(3) and lack of compliance(3), among other 

factors, are predisposing issues for its occurrence.  

With the introduction of silicone hydrogel CLs several improvements were achieved. Overnight 

oedema was found to be similar to those found on non-CL wearers and much smaller than 

observed on conventional hydrogel CL wearers as a result of their high oxygen transmissibility(4). 

It was also found that the incidence of microbial keratitis was five times smaller than with 

conventional hydrogel lenses, for extended wearing periods(5) This lower incidence seems to be 

associated with their higher oxygen transmissibility. However, some authors have also suggested 

that it could be related with less bacterial binding to the lens surface as well(6). 

The first aim of this study was to verify whether silicone-hydrogel CL bind fewer bacteria than 

HEMA-based conventional ones, which might serve to reduce the incidence of microbial keratitis. 

The second aim involved assessing the influence of lens wear in the extent of adhesion. For this 

purpose, microbial adhesion assays onto four unworn and worn silicone-hydrogel CLs and one 

conventional hydrogel CL were performed. It is well established that an increase in surface 

hydrophobicity or roughness can lead to an increase of bacterial adhesion susceptibility(7;8). 

Therefore, these properties were also assessed in this work. Microbial adhesion studies to 

silicone-hydrogel have been previously performed by several authors(9-11). Nevertheless, the 

present work covers a wider range of CL materials with different surface treatments, some of 

them never evaluated before with respect to roughness and bacterial adhesion(9-11). 

 

4.3 Materials and methods 

Contact lenses 

The properties of the CL used in this study are detailed in Table 4.1. Four silicone (galyfilcon A, 

balafilcon A, lotrafilcon A and lotrafilcon B) and one conventional hydrogel (etafilcon A) CL were 

tested in their unworn and worn states. The silicone-hydrogel lenses are surface treated by gas 
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plasma during manufacturing, except galyfilcon that has an incorporated wetting agent 

(Hydraclear®).  

Table 4.1 Contact lens properties 

Commercial 

name 
Manufacturer Material 

FDA 

group 

Water 

content 
Surface treatment 

Acuvue® 
Johnson & Johnson 

Vision Care 
Etafilcon A IV 58% No 

Acuvue®Advance™ 
Johnson & Johnson 

Vision Care 
Galyfilcon A I 47% No 

Purevision™ Bausch & Lomb, Inc. Balafilcon A III 36% Plasma oxidation 

Focus® 

Night&Day™ 
CIBA Vision Lotrafilcon A I 24% 

25 nm plasma coating 

with high refractive index 

O2Optix™ CIBA Vision Lotrafilcon B I 33% 
25 nm plasma coating 

with high refractive index 

 

Experimental design 

Thirty one subjects from both sexes were enrolled in this study, excluding any lost to follow-up. 

The average age of the individuals was 23.6±5.5 years and they were chosen according to the 

following parameters: they had never worn CL before (neophytes), they were not taking any 

medications during the trial, they did not suffer from any kind of ocular allergy and they had no 

tendency for dry eye syndrome.  

The subjects were randomly divided into 4 groups. Each group wore a specific type of silicone-

hydrogel lens and a conventional one as contralateral pair in a single masked fashion way. The 

silicone-hydrogel CL were monthly replaced and the conventional hydrogel every 15 days, for 6 

months. Apart from physiological changes, no complications occurred during the trial. For the 

adhesion studies 8 galyfilcon A, balafilcon A, lotrafilcon A and etafilcon A and 7 lotrafilcon B CLs 

were assayed. CLs were worn on a daily wear schedule of between 12 and 14 hours. The 
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subjects were instructed to remove the lenses at the end of this period and to soak them 

overnight in a multipurpose solution (ReNu MultiPlus®, Bausch & Lomb, Inc. polyhexanide 

0.0001%, hydranate 0.03% and poloxamine 1%).  

At the end of the wearing period, each lens was aseptically removed from the eye and placed in a 

sterile vial containing sterile saline solution (0.9% NaCl). Vials were labelled with a code and 

details of the lens material. The CL were stored at 4 °C for no longer than 5 days until analysis. 

The research followed the tenets of the Declaration of Helsinki. Informed consent was obtained 

from the subjects after explanation of the nature and possible consequences of this study. 

According to the manufacturer’s recommendation, galyfilcon A and lotrafilcon B should be 

replace every two weeks. However, in this study they were worn for 30 days in order to establish 

a comparison with the other lenses which are recommended for use up to 30 days. It must be 

stressed that no complications resulted from the extension of the wearing period. 

 

Bacterial Strain and Growth Conditions 

The bacterium S. epidermidis 9142 was used in the present study. This species is a Gram-

positive pathogen commonly involved in extended wear microbial keratitis(12) and was therefore 

chosen for the in vitro adhesion assays. S. epidermidis 9142 is a well known producer of the 

polysaccharide that promotes coagulase negative staphylococci adherence and biofilm formation, 

which is referred to as either polysaccharide intercellular adhesin (PIA) or by its chemical 

composition, poly-N-acetyl glucosamine (PNAG). This strain was kindly provided by Dr. Gerald B. 

Pier, Harvard Medical School, Boston, USA and its adhesion and biofilm formation capabilities 

have been characterized in previous studies(13;14). 

A 4 °C culture stock was inoculated into an Erlenmeyer flask containing 10 ml of tryptic soy 

broth (TSB, Merck, Germany) and incubated at 37º C for 24 h. Following this period, 1 ml of the 

culture suspension was transferred to a second Erlenmeyer flask containing 30 ml of TSB and 

incubated at 37 °C for 18 h in order to obtain a mid-exponential growth culture. Cells were 

harvested by centrifugation (15 min, 4000 rpm) and washed twice with ultrapure water and 
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finally, the cells were ressuspended in phosphate buffer saline (PBS, 8g l-1 NaCl 0.2 g l-1 KCl 0.2 g 

l-1 KH2PO4 1.15 g l-1 Na2HPO4 pH 7.4).  

 

Adhesion assays and image analysis 

The adhesion assays were performed with unworn and worn CLs in a parallel plate flow chamber. 

Two opposite edges of each CLs were cut to flatten the surface and the lens mounted on the 

bottom plate of the flow chamber. All the tubes and the flow chamber were filled with a PBS 

solution (special care was taken in order to remove all air bubbles from the system) which 

circulated through the system for 15 minutes. A pulse-free flow was established by hydrostatic 

pressure, and the suspension was fed using a peristaltic roller pump. Afterwards, the flow was 

switched to a bacterial suspension (6E10CFU/ml) that circulated throughout the system at room 

temperature for 120 minutes in laminar regime, at a flow rate of 2E-4 ml/s. After this period, 

fresh PBS was circulated throughout the system to remove the non-adhered or loosely adhered 

cells. Cell quantification was performed using a phase contrast microscope (Carl Zeiss, Germany) 

connected to a CCD video camera (Carl Zeiss, Germany) that acquires images at a magnification 

of 1622 with a resolution of 13001030 pixels. Twenty images were randomly taken from each 

lens. In order to eliminate image interference, the background was captured and subtracted from 

the original image. Cells were enumerated using the Sigma Scan Pro program and, with the 

magnification used, 1 cm2 was equivalent to 5110 captured images. These measurements were 

repeated 7 or 8 times for each lens material. 

 

Hydrophobicity 

CL hydrophobicity has been assessed in other studies. Some authors(18) have estimated lens 

surface hydrophobicity using the sessile drop technique while, more recently, other authors(19) 

have made use of the advancing type technique. In the present study, water contact angle 

measurements were performed with Millipore ultrapure water using the advancing type technique 

and an apparatus OCA 20 (Dataphysics, Germany). Each lens was cut into four pieces and 

placed on a microscope slide. The excess moisture was removed by gentle blotting with 
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absorbent paper. The measurements were carried out on 4 CL from each type and repeated 4 

times on each lens piece. 

 

Roughness 

Surface roughness was assessed through atomic force microscopy (AFM) using the Tapping® 

Mode (PicoScan Controller, Molecular Imaging, USA). Measurements were performed in a liquid 

cell containing PBS and using a V-shaped Si3N4 cantilever with a constant spring of 0.58 N/m. 

AFM assays were performed on unworn and worn CL. Roughness was expressed as average 

roughness (Ra) of the surface.  

The analysed lenses were balafilcon A, lotrafilcon B and galyfilcon A. Balafilcon A and lotrafilcon 

B exhibit different types of surface treatment and galyfilcon A incorporates wetting agents as an 

alternative to surface treatment. The analysed area for balafilcon A was 100 µm2 due to the fact 

that some surface details can only be observed with this frame(15), whereas galyfilcon A and 

lotrafilcon B were analysed within a 25µm2  frame. The measurements were repeated 3 or 4 

times per CL material.  

 

Data analysis 

Hydrophobicity data were evaluated by the one-way ANOVA test. The extent of bacterial adhesion 

and lens roughness was statistically evaluated through the non-parametric Mann-Whitney U test 

because data were not normally distributed. All tests were performed with a 95% confidence level 

using the statistical program SPSS (Statistical Package for the Social Sciences). Two distinct 

comparisons were made: between lens materials and within the same material before and after 

lens wear. 

 

4.4 Results 

Bacterial adhesion of Staphylococcus epidermidis 
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The number of adhered cell to unworn and worn CL is presented in Figure4.1. No statistical 

differences were found among unworn CL (p>0.05). Comparing worn CL, silicone-hydrogel 

materials showed to be less prone to bacterial adhesion than the conventional hydrogel lens 

(p<0.05). Lotrafilcon B was the only exception, exhibiting a value (p=0.055) that is almost 

statistically significant. After wear, balafilcon A became less susceptible to bacterial adhesion, but 

no statistical differences were found among the other silicone-hydrogel materials. Conversely, the 

conventional hydrogel became more prone to bacterial adhesion. 

 

Figure4.1 Number of adhered cells to unworn and worn contact lenses 

*Statistically different compared to unworn CL; †Statistically different from worn etafilcon A; Error bars represent standard deviations (n=7)  
(Mann-Whitney U Test) 

 

Hydrophobicity  

Inspection of Figure 4.2 reveals that unworn silicone-hydrogel CL have water contact angles 

greater than 50° (the breakpoint between hydrophilicity and hydrophobicity) and are relatively 

more hydrophobic than the conventional hydrogel. Balafilcon A and galyfilcon showed to be the 

most hydrophobic ones (p<0.05). After lens wear, silicone-hydrogel CLs became less 

hydrophobic (p<0.05) and balafilcon A remained relatively more hydrophobic than the other 

materials (p<0.05). Conversely, the conventional hydrogel etafilcon A, after being worn, displayed 

an increase in the water contact angle values from 44.8°±2.4 to 82.3°±11.6. 
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Figure 4.2 Contact angle (advancing) measurements performed with water to unworn and worn CL 

*Statistically different from unworn lenses; †Statistically different from lotrafilcon A, lotrafilcon B and unworn etafilcon A‡ Statistically different from 
worn galyfilcon A, lotrafilcon A and lotrafilcon B; Error bars represent standard deviations (n=16) 

(One-way ANOVA performed with 95% of confidence level) 

 

Roughness and topography 

The mean roughness (Ra) values are detailed in Table 4.2. Analysis of unworn CL revealed that 

galyfilcon A seems to exhibit the smoothest surface (p=0.05). After lens wear, galyfilcon A and 

balafilcon A roughness increased and galyfilcon A became significantly rougher than lotrafilcon B 

(p=0.05). As can be observed in Figure 4.3, balafilcon A shows the presence of macropores, 

while lotrafilcon B (Figure 4.4) exhibits grooves. These structures disappeared after lens wear in 

both cases.   Figure 4.5 confirms that galyfilcon A has a very smooth and uniform 

surface. Although galyfilcon A become rougher after lens wear, maintained the same smooth 

appearance. 

Table 4.2 Mean roughness of unworn and worn CL (nm) 

 Galyfilcon A (55 µm) Balafilcon A (1010 µm) Lotrafilcon B (55 µm) 

Unworn 2.32 ± 0.085† 7.04±0.66 4.51±2.83 

Worn 30.09±11.27*‡ 17.63±14.78* 4.96±4.12 

*Statistically different from unworn CLs; †Statistically different from unworn balafilcon A and lotrafilcon B; ‡ Statistically different from 
worn lotrafilcon B; (Mann-whitney with 95% confidence level) (n=3) 
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Figure 4.3 Topography of balafilcon A before (a) and after wear (b) 

 

Figure 4.4 Topography of lotrafilcon B before (a) and after wear (b) 

 

  Figure 4.5 Topography of galyfilcon A before (a) and after wear (b) 



Bacterial adhesion to worn contact lenses 105 

 

 

L
ív

ia
 J

o
a

n
a

 R
o

c
h

a
 d

o
s

 S
a

n
to

s
 

4.5 Discussion 

The present study focuses on bacterial adhesion to four silicone hydrogel CLs and one 

conventional hydrogel lens. The main purpose was to compare the propensity of silicone-hydrogel 

CLs for bacterial adhesion and to verify if these materials are more or less prone to bacterial 

adhesion than a conventional hydrogel material. A similar comparative study was previously 

performed; however, in that case the adhesion assays were performed only on unworn CL and 

using static adhesion methods(15). Therefore, in this work the “in vitro” adherence experiments 

were carried out on both worn and unworn materials in order to address the influence of wear on 

the susceptibility for adhesion. Moreover, in the present work, adhesion was assessed by a 

dynamic adhesion method, using a parallel plate flow chamber as this is a more realistic 

methodology and virtually induces less variability(16). 

The results obtained in the present work revealed that worn silicone hydrogel CL exhibited similar 

levels of adhered bacteria and are thus equally prone to microbial colonization. However, when 

compared with worn etafilcon A, these materials generally bind fewer cells (Figure4.1). This fact 

supports the hypothesis that silicone-hydrogels potentially induce fewer cases of microbial 

keratitis on account of their weaker susceptibility to S. epidermidis binding, although this is only 

true for worn CLs. In fact, the susceptibility for adhesion of unworn silicone and conventional 

hydrogels is the same (Figure4.1) or even higher for silicone-hydrogel, as reported in a previous 

study(15). However, it shall be considered that as soon as a CL is placed in the eye it becomes 

rapidly conditioned by the tear film molecules that greatly influence bacterial colonization.  

This study demonstrates that wear has a great impact on bacterial adhesion to CLs with special 

relevance for balafilcon A and etafilcon A adhesion susceptibilities. In fact, the extent of S. 

epidermidis adhesion to the silicone-hydrogel decreased when worn. This evidence corroborates 

the results of previous studies, in which P. aeruginosa adhered in a slightly lower degree (not 

statistically significant) to worn balafilcon A(9), and P. aeruginosa adhered in a lesser extent to 

worn lotrafilcon A and balafilcon A materials(10). The fact that worn conventional hydrogel is 

more prone to S. epidermidis adhesion than unworn is contradicted by a previous study in which 

worn etafilcon A lenses became less susceptible to P. aeruginosa adhesion(17). Some authors 

have suggested that CL wear increases susceptibility to bacterial adhesion while others show the 
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reverse(9-11). The use of different strains, methods, wear schedules, lens materials, 

maintenance solutions and subjects are certainly the underlying reasons for this disparity.  

The use of only one strain and one conventional hydrogel CL could be considered a limitation of 

this work since, and as mentioned before, the strain involved and the lens material can influence 

the adhesion extent. Therefore, the results obtained could not hold true for all bacteria and all 

conventional hydrogels. However, it has already been demonstrated that S. epidermidis is one of 

the most frequent pathogens colonising CLs(10,17) and, together with P. aeruginosa, is one of 

the most common bacteria involved in microbial keratitis(18). Also, etafilcon A is one of the most 

popular conventional hydrogel CL and thus it can be considered representative in order to 

establish a comparison with silicone-hydrogel materials.  

It is generally recognized that silicone-hydrogel CL are relatively more hydrophobic than 

conventional hydrogel lenses(18) (Figure 4.2) and therefore potentially bind more microbes(7). 

Previous reports also found that balafilcon A and galyfilcon A have the most hydrophobic 

surfaces(19;20). However, this study reveals that their hydrophobicity significantly decreases 

after wear, which may explain their lower adhesion capability. The adsorption of proteins and 

lipids from the tear film may have induced these changes, since these molecules are amphiphilic 

and are therefore capable of modifying the surface hydrophobicity. For silicone-hydrogels, the 

orientation of the hydrophilic regions of adsorbed molecules to the outer environment may render 

the lens surface less hydrophobic. Conversely, the conventional hydrogel etafilcon A, which is 

hydrophilic, must have adsorbed the proteins and lipids through their hydrophilic region thus 

orienting their hydrophobic region to the outer environment. As the surface becomes less 

hydrophilic, it attracts more lipids which in turn increase surface hydrophobicity(21). 

It is generally accepted that roughness may boost microbial adhesion, but that was not observed 

in this study. In fact, although surface roughness has increased in most of the worn lens, the 

adherence capability did not follow the same tendency. It is possible that the decrease of 

hydrophobicity might have neutralised the roughness impact. Additionally, surface topography 

may have played an important role in this process. For example, in the case of balafilcon, despite 

the increase in roughness of this worn lens, the surface crevices and macroporous disappeared 

after wear and this may have contributed to a decrease in adherence. Still, AFM analysis was a 

useful tool to study the impact of wear on lens roughness and topography. This aspect is 
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discussed elsewhere and related with lens clinical performances(22). Nonetheless, in this study 

we would like to stress the increase in roughness of galyfilcon A and balafilcon A after lens wear. 

Since these lenses possess polyvinyl pyrrolidone (PVP), a liposoluble monomer, it is possible that 

lipids from the tear film are responsible for such augmentation. However, an in vitro study 

assessing lipid deposition (data not shown) revealed that lipid deposition on galyfilcon A was not 

greater than that observed for other silicone-hydrogel lenses. The total quantity of adsorbed 

proteins onto this worn lens is similar to that observed in other silicone-hydrogel lenses(20), 

which also excludes the hypothesis of higher protein adsorption. Therefore, we address the 

possibility that PVP could have been lost during wear, resulting in such increment in roughness.  

To sum up, this study demonstrates that worn silicone-hydrogel galyfilcon A, balafilcon A, 

lotrafilcon A and lotrafilcon B are equally prone to microbial colonization and generally less 

susceptible than the conventional hydrogel, suggesting that wearing this type of material does not 

increase the risk of developing ocular events associated to S. epidermidis colonization. 
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5.1 Abstract 
 

Purpose: To verify if oxidation occurs on lipids adsorbed to contact lenses (CLs). To assess the 

influence of the lens chemical composition on the quantity of adsorbed oxidized lipids was 

another goal of this study. 

Methods: Experiments were carried out under “in vitro” conditions. CLs were incubated in an 

artificial tear solution during 28 days. The fluorescence intensity of the fluorophore tryptophan 

and conjugated Schiff-bases were measure in a weekly basis through fluorescence spectroscopy. 

Such measurements were able to provide an estimation of the quantity of oxidized lipids 

adsorbed onto the CL material. 

Results: The fluorescence intensity of tryptophan and conjugated Schiff bases suggests that the 

lipids oxidation occurred. The CLs containing N-vinyl pyrrolidone (NVP), vifilcon A and balafilcon 

A, appear to display a higher amount of oxidized lipids than the others do. This fact probably 

results from greater amounts of adsorbed lipids once NVP is a liposoluble monomer. Moreover, 

after 14 days of incubation, the fluorescence intensity of conjugated Schiff-bases dramatically 

increases up to the end of the incubation period. 

Conclusion: CLs incorporating NVP appears to be more susceptible to the presence of adsorbed 

oxidised lipids. Based on the kinetics of oxidized lipids adsorbed, it is strongly recommended to 

shorten the length of wear in order to prevent associated ocular complications. 
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5.2 Introduction 

CLs readily adsorb proteins and lipids from the tear film as soon as they are placed in the eye. 

Previous studies with conventional hydrogel CLs demonstrated that anionic lenses are more 

disposed to protein adsorption due to the electrostatic attraction established between their 

negatively charged surface and the positively charged lysozyme, while lipids adsorption tend to 

occur in greater extent in materials containing NVP since this monomer is lipid soluble (1-4). With 

respect to silicone hydrogel CLs, protein adsorption is generally smaller on these materials than 

in conventional hydrogel lenses(5;6). Lipids adsorption take place in greater extent in balafilcon A 

and lotrafilcon B materials than in the conventional hydrogel, etafilcon A(6). 

Lipids are molecules susceptible to oxidizing processes, which can be triggered by environmental 

factors, or by the presence of peroxides and free radicals present in the eye(7). The eye produce 

oxidizing agents(7), and for this reason it is believed that adsorbed lipids onto CLs might oxidize. 

The action of oxidized lipids has been associated with the occurrence of vascular calcification and 

osteoporosis(8) and with age related macular degeneration(9).  For this reason, it is believed that 

oxidized lipids may be harmful to the lens wearer. 

One of the methods employed to estimate the presence of oxidized lipids is the measurement of 

the intrinsic fluorescence of conjugated-Schiff-bases(10). These molecules result from the cross-

link between lipids metabolites and amino acid residues. Amino acid residues exhibit pro-

oxidative activity and might react with primary and secondary products of lipids oxidation such as 

peroxides or aldehydes. When they do, the amino acid residue cross-links with products of the 

oxidized specie producing conjugated Schiff-bases(11-14). It is assumed that when the 

fluorescence intensity of conjugated bases increases, lipids oxidation is in process.  

As previously addressed, some lenses are more prone to lipid adsorption; thus, it is suspected 

that might encompass higher levels of oxidation. The aim of this study is to verify if oxidation 

occurs on adsorbed lipids to CLs, and if it does happen, which materials are more susceptible. 

For that, the fluorescence intensity of conjugated Schiff-bases and tryptophan will be determined. 
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5.3 Materials and methods 

Contact lenses 

The CLs used in this study are detailed in Table 5.1. Five-silicone hydrogel and two conventional 

hydrogel CLs were tested. The recommended wearing period of etafilcon A is 1 day; galyfilcon A, 

senofilcon A and lotrafilcon B up to 2 weeks, and lotrafilcon A, balafilcon A and vifilcon A up to 30 

days. Protein analysis was not performed on galyfilcon A, senofilcon A and etafilcon A materials, 

since these lenses present UV blocking.  

Table 5.1 Contact lens properties 

Brand 
CL 

material Manufacturer FDA 
Group 

Water 
content 

(%) 
Main monomers 

1-Day Acuvue® Etafilcon A Johnson&Johnson 
Vision Care IV 58 HEMA +MA 

Focus® Monthly Vifilvon A CIBA Vision  IV 55 HEMA+MA+MMA 

Acuvue® 
Advance™ with 
Hydraclear™ 

Galyfilcon A Johnson&Johnson 
Vision Care I 47 mPDMS +DMA+HEMA+siloxane 

macromer+PVP+EGDMA 

Acuvue® Oasys™ 
with Hydraclear™ 

Plus 
Senofilcon A Johnson&Johnson 

Vision Care I 38 mPDMS +DMA+HEMA+siloxane 
macromer+PVP+TEGDMA 

Focus Night and 
Day® Lotrafilcon A CIBA Vision  I 24 DMA+TRIS+siloxane monomer 

O2Optix™ Lotrafilcon B CIBA Vision  I 38 DMA+TRIS+siloxane monomer 

Purevision® Balafilcon A Bausch&Lomb III 36 NVP+TPVC+NCVE+PBVC 

HEMA(2-hydroxyethyl methacrylate); MA (methacrylic acid); mPDMS (monofuncional polydimethylmethacrylate); NVP (N-vinyl pirrolidone); EGDMA 

(ethyleneglycol dimethacrylate); TEGDMA (tetra ethyleneglycol dimethacrylate); TPVC (tris(trimethylsiloxysilyl) propylvinyl carbamate); NCVE (N-

carboxyvinyl ester); PBVC (poly[dimethysiloxy] di [silylbutanol] bis[vinyl carbamate]); PVP (poly-vinyl pirrolidone); DMA (N,N-dimethylacrylamide) 
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Artificial tear solution preparation 

Lipids adsorption is highly patient depended(1;2). in order to avoid subject variability, an artificial 

tear solution was prepared to induce protein and lipid adsorption to CLs. This formulation was 

previously employed in another study(15), and their components are detailed in Table 5.2. 

To prepare the artificial tear solution, lipids were firstly dissolved in one volume of foetal calf 

serum (Sigma-Aldrich) and the solution gently mixed using a magnetic stirrer. After dissolving all 

the lipids, proteins were added and the solution stirred again. Two volumes of phosphate 

buffered saline (PBS, 0.01 M phosphate buffer, 0.0027 potassium chloride, 0.137 M sodium 

chloride, pH 7.4 at 25 º C) were transfer to the previous solution. The artificial tear solution was 

freeze into aliquots and kept at -20 ºC.  

Table 5.2 Components of the artificial tear solution 

Artificial tear solution  Product reference 

Lysozyme (0.002 g/ml) 

Lactoferrin (0.001 g/ml) 

Albumin (0.0002 g/ml) 

L6876, Sigma 

L4765, Sigma 

A1653, Sigma 

Triolein (0.000016 g/ml) 

Linalyl acetate ( 0.00002 ml/ml) 

Cholesterol (0.0000016 g/ml) 

Mucin (0.001 g/ml) 

Undecyclenic acid (0.00000316 ml/ml) 

Cholesteryl linoleate (0.000024 g/ml) 

44895-U, Supelco 

45980, Fluka 

C-8667, Sigma 

M3895, Sigma 

W324701, Aldrich 

C0289, Sigma 

 

Adsorption assays  

To induce protein and lipid adsorption, each lens was inserted into a well of a 24-tissue culture 

plate containing 1 ml of artificial tear solution. The plate was incubated at 140 rpm at room 

temperature for 28 days. The fluorescence intensity was measured after 4 hours of incubation 
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and then in a weekly basis. The solution was replaced according to this schedule as well. Four 

CLs from each material were assayed. 

 

Oxidised lipids onto contact lenses 

The presence and quantity of oxidised lipids adsorbed onto CLs was estimated through 

fluorescence spectroscopy (Hitachi F-4500, Japan) using conjugated Schiff-bases and tryptophan 

as probes. When excited at 360 nm, conjugated Schiff-bases exhibited a maximum of 

fluorescence intensity at 440 nm whereas tryptophan fluorescence intensity was the highest at 

340 nm when excited at 280 nm. For these measurements, each CL was removed from the well 

and rinsed with ultrapure water in order to eliminate non-bonded or loosely bond proteins or 

lipids. Afterwards, the lens was placed in the cuvette, also containing ultrapure water and 

inserted in the apparatus for the measurements. The fluorescence intensity from tryptophan and 

conjugated Schiff-bases were recorded subsequently for each lens. 

 

Statistical analysis 

Data obtain through the fluorescence measurements was statistically analysed. A comparison 

was established between the values obtained after 4 hours, 14 day and 28 day. The non-

parametric Mann-Whitney U test with 95% confidence level was used. 

 

5.4 Results 

Fluorescence intensity of conjugated Schiff bases  

Inspection of Figure 5.1 reveals that balafilcon A and vifilcon A exhibits the higher fluorescence 

intensity values, either after 4 hours, 2 or 4 weeks (p<0.05). A remarkable deflection was 

observed on day 14 for both balafilcon A and vifilcon A. 
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Figure 5.1 Fluorescence levels observed for lenses incubated with artificial tear solution 
(λex=360/λem=440) 

 

Fluorescence intensity of tryptophan 

Examination of Figure5.2 reveals that the fluorescence intensity on lotrafilcon A and vifilcon A is 

greater than measured in balafilcon A and lotrafilcon B (p<0.05).  

 

Figure5.2 Fluorescence levels observed for lenses incubated with the artificial tear solution 
(λex=280/λem=340) 
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5.5 Discussion 

In this study, the presence of oxidized lipids adsorbed onto CLs was estimated through 

fluorescence spectroscopy. To promote lipids oxidation, silicone hydrogel and conventional 

hydrogel CLs were soaked over 28 days in an artificial tear solution. The reaction was induced by 

photo and atmospheric oxidation. It is acknowledge that the ocular environment has other type of 

oxidizing agents, (free radicals) and antioxidants as well(7); however “in vitro” experiments allow 

to avoid the variability induced by the lens wearer.   

The fluorescence intensity of conjugated Schiff-bases was far superior on vifilcon A and balafilcon 

A lenses when compared with the other materials (Figure 5.1). Although these materials possess 

different chemical compositions, they both incorporate NVP, a monomer known by their 

liposolubility. As demonstrated in previous studies, the presence of this monomer increase the 

adsorption of lipids to CLs(1-4), and such propensity might have contributed for greater oxidation 

levels. On day 14, the fluorescence values suffered a deflection and dramatically increased up to 

the 28th day. The other lenses revealed very low values of fluorescence intensity suggesting that 

oxidation was little.  

On vifilcon A, tryptophan fluorescence intensity remained constant during the first three weeks 

increasing on the last week, whereas on balafilcon A it remained relatively low and constant 

during the 4 weeks (Figure5.2). Based on the results, it seems that tryptophan fluorescence have 

been quenched by the lipids metabolites. Otherwise, these materials would progressively emit 

higher values of fluorescence intensity overtime.  

Lotrafilcon A should adsorb little amounts of proteins since it has a non-ionic character and 

proteins are negatively charged. However, the results show (Figure5.2) that the fluorescence 

intensity significantly increases on the second week of incubation. Several hypotheses can be 

addressed in order to explain this result. The type, quantity, conformation and orientation of 

adsorbed proteins is modulated by the lens chemistry(16;17). This material might have adsorbed 

proteins preferentially containing tryptophan, or in alternative exposed tryptophan molecules to 

the surrounding environment more than the other materials. Other hypothesis is that tyrosine 

emission might have transferred energy to tryptophan augmenting the fluorescence intensity of 

this fluorophore. In this experiments ultrapure water was used as solvent (pH 7.0) and at this pH 

the proteins should be on normal conformation. On normal conformation, tyrosine and 
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tryptophan present an overlap between the emission spectra of tyrosine and the absorption 

spectra of tryptophan, which might triggered direct energy transfer from tyrosine to tryptophan.   

Summarizing, CLs incorporating NVP appears to be more susceptible to the presence of 

adsorbed oxidised lipids. The presence of such lipids on balafilcon A and vifilcon A dramatically 

increases after 14 days of incubation in an artificial tear solution. This result suggests that the 

length of wear should be shortened in order to prevent associated ocular complications. 
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6.1 Abstract 
 

Purpose: In this study the effect of the natural surfactants octylglucoside and sodium cholate in 

inhibiting Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion to conventional 

and silicone-hydrogel contact lenses (CLs) was assessed. Hydrophobicity was also evaluated on 

conditioned and non-conditioned CLs. 

Methods: The inhibiting effect of the tested surfactants was determined through “in vitro” 

adhesion studies to conditioned and non-conditioned CLs followed by image acquisition and cell 

enumeration. Hydrophobicity was evaluated through contact angle measurements using the 

advancing type technique on air. 

Results: Sodium cholate exhibits a very low capability to inhibit microbial adhesion. Conversely, 

octylglucoside effectively inhibited microbial adhesion in both types of lenses. This surfactant 

exhibited an even greater performance than a multipurpose lens care solution used as control. 

Octylglucoside was the only tested surfactant able to lower the hydrophobicity of all CLs, which 

can explain its high performance.  

Conclusions: The results obtained in this study point out the potential of octylglucoside as a 

conditioning agent to prevent microbial colonization. 
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6.2 Introduction 

Over the last few decades, the number of CL wearers has grown rapidly because of the esthetic, 

therapeutic, visual and comfort reasons. There are several kinds of lenses commercially 

available; however, soft CLs are the most common. These lenses are composed of hydrophilic 

monomers such as hydroxyethylmethacrylate (HEMA), N-vinyl pyrrolidone (NVP), methacrylic acid 

(MA) and polyvinyl alcohol (PVA)(1,2). Recently, the introduction of silicone-containing hydrogel 

CLs having the same comfort and significantly higher oxygen permeability than conventional-

hydrogel has resulted in a new generation of soft CLs. The high oxygen permeability, on account 

of the siloxane component, makes it possible to wear these lenses on a continuous basis for 30 

days(1-3). 

The occurrence of CL associated keratitis as well as other ocular complications has been a target 

of continuous research in several fields. When a CL is placed in the eye, the lachrymal tear 

components are adsorbed on its surface, building an organic substrate for subsequent microbial 

adhesion(4). In particular, when the corneal tissues are no longer intact due to hypoxic conditions 

or mechanical friction, microbes can invade the cornea and induce an ocular infection(4,5). So, 

the development of strategies such as the improvement of lens materials and lens care systems 

that avoid or decrease CL associated infections are very important aspects of soft CL research. 

The incorporation of surfactants in the lens care systems is useful not only to solubilise the 

organic tear film components adsorbed on lens surface, but also to disrupt microbial 

membranes(6). Nonetheless, surfactants are also able to modify the CL surface properties and 

thus may inhibit microbial adhesion(7,8). 

Octylglucoside is a non-ionic and non-toxic surfactant which belongs to the alkylglucoside 

class(9), being frequently used to solubilise membrane bound proteins in their native state. 

Sodium cholate is a negatively charged (anionic) and non-toxic surfactant that belongs to the bile 

salts class. The use of sodium cholate has already been tested and when used below 0.5 % (w/v) 

is harmless to the ocular tissues(10). The aim of this work is to compare the effect of two natural 

surfactants, octylglucoside and sodium cholate and one commercial multipurpose lens care 

solution which incorporates the surfactant poloxamine in inhibiting the adhesion of one strain of 

Staphylococcus epidermidis and one of Pseudomonas aeruginosa to conventional hydrogel and 

silicone hydrogel CLs. These bacterial species are two of the most frequent pathogens(4,5,11) 
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involved in the occurrence of microbial keratitis and thus considered representative for this study. 

The efficacy of the surfactants was tested on CLs belonging to each FDA group.  

 

6.3 Materials and methods 

Contact lenses  

CLs from each of the four FDA groups were used in this study. Group I materials are non-ionic 

and posses a water content lower than 50%. Group II materials have water content of 50% or 

greater and are non-ionic. Group III lenses are made of low-water content ionic materials and, 

finally, group IV lenses consist of high-water content ionic materials. The properties and 

commercial designations of the lenses used in this study are detailed inTable 6.1. 

Table 6.1 Contact lenses and their properties 

Category Material 
Commercial 

name 
Manufacturer FDA 

Group 
Charge 

Water 

content 

(%) 

Surface 

treatment 

Co
nv

en
tio

na
l h

yd
ro

ge
l 

Nelfilcon A Focus Dailies CIBA Vision II 
Non 

ionic 
69.0 No 

Etafilcon A Acuvue® 
Johnson and 

Johnson 
IV Ionic 58.0 No 

Si
lic

on
e 

hy
dr

og
el

 

Lotrafilcon B O2OptixTM CIBA Vision I 
Non 

ionic 
33.0 

25 nm plasma 

coating  

Balafilcon A Purevision™ Bausch&Lomb III Ionic 36.0 
Plasma 

oxidation  

 

Surfactants and multipurpose solutions 

The tested surfactants were n-Octylglucoside [n-Octyl-B-D-glucopyranoside] (Sigma-Aldrich, 

Germany), a non-ionic surfactant, and sodium cholate (Sigma-Aldrich, Germany), an anionic 

surfactant. The physical-chemical properties of these surfactants are detailed in Table 6.2 and 
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their structures represented in Figure6.1 and Figure 6.2. The concentration used for both was 

half of their respective critical micelle concentration (CMC). Surfactant solutions were prepared 

with sterile deionised water and used immediately after preparation. The multipurpose lens care 

solution was Renu Multiplus with Hydranate® (Bausch & Lomb, USA). This solution is composed 

of 1% poloxamine (non-ionic surfactant), 0.0001 % Dymed® (cationic biocide), 0.03% 

Hydranate® (protein remover) and ethylene-diamine-tetra-acetic-acid (EDTA).  

Table 6.2 Properties of octylglucoside and sodium cholate 

Surfactant 
CMC 

(% w/v) 

Molecular weight 

(g/mol) 
Chemical formula 

Octylglucoside 0.60 292.38 C14H28O6 

Sodium cholate 0.73 430.53 C24H39O5Na 

CMC = Critical micelle concentration 

 

 

Figure6.1 Schematic representation of the sodium cholate molecule 

 

Figure 6.2 Schematic representation of the octylglucoside molecule 

 

Bacterial strains and growth conditions 

The strains used in this study were the clinical isolate S. epidermidis 9142, and P. aeruginosa 

ATCC 10145 (American Type Collection Culture). S. epidermidis 9142 is a well known producer 

of the major surface polysaccharide promoting coagulase negative staphylococci adherence and 
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biofilm formation, referred to as either polysaccharide intercellular adhesin (PIA) or by its 

chemical composition, poly-N-acetyl glucosamine (PNAG). This strain was kindly provided by 

Gerald B. Pier, Harvard Medical School, USA and its adhesion and biofilm formation capabilities 

were characterised in previous studies(12). P. aeruginosa ATCC 10145 was obtained from the 

ATCC and was isolated by F. Kavanagh (Merck Sharp and Dohme). 

A 4 °C culture stock was inoculated into an Erlenmeyer flask containing 10 ml of tryptic soy 

broth (TSB, Merck, Germany) and incubated for 24 h at 37 °C. After this period, 1 ml of the 

culture suspension was transferred to a second Erlenmeyer flask containing 30 ml of TSB and 

incubated for 18 h at 37 °C in order to obtain a mid-exponential growth culture. Cells were 

harvested by centrifugation (15 min, 4000 rpm) and washed twice with Millipore water. Finally, 

the cells were resuspended in phosphate buffered saline (PBS: 8g l -1 NaCl, 0.2 g l-1 KCl, 0.2 g l-1 

KH2PO4, 1.15 g l-1 Na2HPO4) and the concentration adjusted to 1×E10 CFU/ml.  

Before to the experiments, cell viability was evaluated through plating and CFU enumeration. The 

results showed that both strains maintain their viability after 18 h of incubation (data not shown). 

 

Contact angle measurements 

The CLs relative hydrophobicity was determined through contact angle measurement with 

Millipore water using the advancing contact angle as described by Bruinsma et al.(4). Contact 

angles were measured on non-conditioned and conditioned CL using the apparatus OCA 20 

(Dataphysics). The conditioning process was performed by simple immersion of the lenses in the 

surfactant solution, or in the multipurpose lens care solution for a 16-h period. For the 

measurements, lenses were cut into four pieces and placed on a microscope slide. The excess of 

moisture was removed by gentle blotting with absorbent paper. These measurements were 

repeated 15 times per CL material at room temperature (22 °C) and a humidity of50±3 %. 

 

Adhesion assays and image acquisition 

The method used to assess bacterial adhesion to CLs was the static adhesion assay. Each CL 

was immersed in a well of a 24-well microtiter plate containing 1 ml of a cell suspension (6x1E10 
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CFU/ml) prepared in PBS. The tissue microtiter plate was then incubated for 2 h at 37 °C and 

after this period, each CL was removed and washed three times by immersing the lens in clean 

sterile PBS solution for 10 s. This washing step was carefully performed in order to remove only 

the cells that were suspended in the liquid interface formed along the lens surface and to 

minimize adhered cells detachment as described by Cerca et al.(13). The adhesion assays were 

performed with non-conditioned (control) and conditioned CLs. The lenses were conditioned by 

simple immersion in the surfactant solutions, or in the multipurpose lens care solution for 16 h 

followed by the adhesion assay. The adhesion assays were made in triplicate and repeated twice 

for each CL type and each conditioning agent. 

After the adhesion assays, two opposite edges of each CL were cut to flatten the surface and the 

lens mounted on a microscope slide. Cell quantification was performed using a phase contrast 

microscope (Carl Zeiss, Germany) coupled to a 3 CCD video camera (Carl Zeiss) that acquires 

images at a magnification of 1622 with a resolution of 13001030 pixels and 20 images were 

randomly take from each CL. To eliminate image interferences, the background was captured 

and subtracted from the original image. Cells were enumerated using the Sigma Scan Pro 

program and for the magnification used 1 cm2 was equivalent to 3906.25 captured images. 

The % of adhesion inhibition by each solution was calculated as follows: 

 

( ) 100×=Inibition%
CL  dconditione-non to adhered cells#

CL  dconditione to adhered cells#CL  dconditione-non to adhered cells#   

 

Statistical analysis 

Data analysis was performed using the statistical program, SPSS (Statistical Package for the 

Social Sciences).  After the evaluation of data distribution by K-test, contact angles data were 

compared using the parametric test analysis of variance (ANOVA) with Tukey’s pairwise 

comparison whereas the extent of adhesion was compared by the non parametric Mann-Whitney 

U test. All tests were performed with a confidence level of 95%. 
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6.4 Results 

Contact angles 

Figure 6.3 presents the values of water contact angle measurements performed on the studied 

CLs. According to van Oss and Giese(14) a surface can be considered hydrophobic if the water 

contact angle exceeds 50° and hydrophilic if it is inferior to 50°. Thus, contact angles of non-

conditioned CLs showed that silicone hydrogel CLs are hydrophobic whereas the conventional 

hydrogel CL are hydrophilic, with nelfilcon A being the most hydrophilic one (etafilcon A p=0.023; 

balafilcon A; p=0.000; lotrafilcon B p=0.000). 

After conditioning the CLs with the surfactants or the multipurpose solution, the contact angles 

generally decreased except for balafilcon A (p=1.000) and etafilcon A conditioned with sodium 

cholate, which increased (p=0.000). This result indicates that sodium cholate is not such an 

effective surface agent as octylglucoside or the multipurpose solution.  

 

Figure 6.3 Water contact angles of uncoated and coated CL measured at room temperature 

*Statistically superior to the control (One-way ANOVA – Tukey’s with 95% confidence level);Error bars means standard deviations 

 

Bacterial adhesion to non-conditioned contact Lenses 

Static adhesion results can be observed in Figure 6.4 and Figure 6.5. For both tested strains it 

was observed that bacterial adhesion occurred in larger extent to silicone hydrogel CLs than to 
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conventional hydrogel CLs. Adhesion of S. epidermidis 9142 and P. aeruginosa ATCC 10145 to 

balafilcon A and lotrafilcon B was significantly greater than that observed in etafilcon A and 

nelfilcon A (p<0.05).  

 

Figure 6.4 Number of cells of Staphylococcus epidermidis adhered to uncoated and coated CL with 
octylglucoside, sodium cholate, and the multipurpose lens care solution. 

*Statistically superior to the control (Mann-Whitney U Test); Error bars means standard deviations 

 

 

 
Figure 6.5 Number of cells of Pseudomonas aeruginosa adhered to uncoated and coated CL with 

octylglucoside, sodium cholate, and the multipurpose lens care solution. 

*Statistically different to the control (Mann-Whitney U Test); Error bars means standard deviations 



136 Chapter 6 

 

 

M
ic

ro
b

ia
l 

c
o

lo
n

iz
a

ti
o

n
 o

f 
c

o
n

ta
c

t 
le

n
s

e
s

, 
te

a
r 

fi
lm

 d
e

p
o

s
it

io
n

, 
b

a
c

te
ri

a
l 

a
d

h
e

s
io

n
 a

n
d

 d
is

in
fe

c
ti

o
n

 

Adhesion to conditioned contact lenses and inhibition of adhesion 

Figure 6.4, Figure 6.5 and Table 6.3 present, respectively, the results of microbial adhesion to 

conditioned CLs and the % of inhibition promoted by the surfactant solutions and the 

multipurpose solution. Generally, octylglucoside exhibited the best performance for both strains 

and the tested CLs. Octylglucoside was very effective in inhibiting S. epidermidis adhesion, 

because all CLs conditioned with this surfactant showed a significant decrease in the number of 

adhered cells (etafilcon A p=0.021 nelfilcon A p=0.021 balafilcon A p=0.020 and lotrafilcon B 

p=0.009). This surfactant was also effective against P. aeruginosa in all lenses (etafilcon A 

p=0.008 balafilcon A p=0.020 and lotrafilcon B p=0.020) except for nelfilcon A, which may be 

explained through the low levels of bacterial adhesion. Concerning sodium cholate, this 

surfactant only inhibited the adhesion of the S. epidermidis strain to balafilcon A CL (p=0.021) 

and of P. aeruginosa to lotrafilcon B. The multipurpose solution, did not demonstrated a 

significant inhibition effect in S. epidermidis adhesion with the exception of lotrafilcon B, whereas 

for P. aeruginosa this effect was relevant in balafilcon A (p=0.006) and lotrafilcon B (p=0.014). 

 

Table 6.3 Inhibition of adhesion (average values) promoted by octylglucoside, sodium cholate and 
the multipurpose solution (% ± standard deviation) 

  Etafilcon A Nelfilcon A Balafilcon A Lotrafilcon B 

Staphylococcus 

epidermidis 9142 

Octylglucoside 65.5±24.4 68.0±8.6 68.2±23.7 55.3±3.0 

Sodium Cholate -45.6±3.2 42.8±11.7 64.7±21.8 14.5±3.0 

Multipurpose 

solution 
5.6±1.8 -2.8±0.5 42.2±10.2 35.7±1.5 

Pseudomonas 

aeruginosa ATCC 

10145 

Octylglucoside 37.6±4.7 -63.6±32.7 30±6.6 39.0±2.6 

Sodium Cholate 20.3±1.3 4.6±0.65 7.8±0.26 37.0±0.5 

Multipurpose 

solution 
-14.1±0.6 -96.6±33.7 47.0±2.8 51.5±0.08 
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6.5 Discussion 

In this work, the pre-conditioning effect of two surfactants and one multipurpose solution on 

bacterial adhesion to CLs was evaluated. The adhesion assays were performed on unworn CLs, 

however it must be considered that “in situ” the CLs become rapidly conditioned with adsorbed 

components of the tear film such as proteins and lipids(15,16,17), which may influence lens 

surface properties and thus microbial adhesion. Nevertheless, this fact does not invalidate the 

methodology used because the purpose of this work is to study the CL pre-conditioning as a way 

to promote the inhibition of adhesion and as a palliative strategy to avoid ocular complications. 

The modification in CL surface hydrophobicity due to surfactant conditioning was also evaluated. 

Contact angle measurements (Figure 6.3) revealed that the silicone hydrogel CLs, balafilcon A 

and lotrafilcon B are hydrophobic, whereas conventional hydrogel CLs are hydrophilic. Silicone-

hydrogel CL hydrophobicity was already demonstrated and explained by the presence of silicone 

in the lens matrix which is a hydrophobic monomer. Contact angles have also revealed that the 

surfactants and the multipurpose solutions are capable of modifying the CLs surface properties. 

Generally, conditioned CLs resulted in a decrease of the water contact angle with the exception of 

balafilcon A and etafilcon A with sodium cholate. It is commonly accepted that surfactant 

adsorption depends mainly on the surfactant structure and surfactants with longest alkyl chain 

usually adsorb the most(9). Sodium cholate exhibits a very different chemical structure from 

octylglucoside and poloxamine, which may explain its lower performance. In fact, this bile salt is 

a planar molecule, (Figure6.1) punctuated with hydrophilic groups conversely to octylglucoside or 

poloxamine, which exhibit well defined hydrophilic and hydrophobic domains. The adsorption of 

octylglucoside and poloxamine on the lens surface through the hydrophobic moieties, exposing 

the hydrophilic groups to the aqueous media certainly contributed to the decrease of the 

hydrophobicity of all CLs.  

Regarding bacterial adhesion to non-conditioned lenses, silicone-hydrogel CLs revealed to be 

more prone to S. epidermidis and P. aeruginosa adhesion than conventional hydrogel CLs. These 

results seem to be strongly related with the lens surface hydrophobicity. In a previous study we 

have demonstrated that silicone-hydrogel CLs are more prone to S. epidermidis and P. 

aeruginosa adhesion than conventional hydrogel(18), corroborating other “in vitro” studies using 

different microorganisms(19-21). 
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Concerning the conditioning effect of the surfactants or the multipurpose solution, this study 

showed that the modification of the surface properties, particularly the decrease of 

hydrophobicity not always leads to a decrease in bacterial adhesion. It is well established that 

surfactants are able to modify the surface properties of materials and thus influence 

adhesion(22-24), however in this study only CLs conditioned with octylglucoside, revealed a 

significant decrease of hydrophobicity as well as a reduction in the extent of microbial adhesion 

compared with the control (Figure 6.4, Figure 6.5 and Table 6.3). This result is most probably 

related with the amphiphilic properties of the surfactant molecules as well as their structure. 

Accordingly, well defined hydrophilic/hydrophobic regions of both octylglucoside and poloxamine 

enabled them to coat the lens in a uniform and consistent way, in opposite to sodium cholate. 

Sodium cholate only inhibited microbial adhesion in balafilcon A, although it did not reduce the 

lens hydrophobicity. This CL has a non-uniform surface, presenting “silicate islands” and 

probably sodium cholate molecules were adsorbed between these “islands” building a physical 

barrier against bacterial adhesion. The multipurpose solution was effective in inhibiting the 

adhesion of the S. epidermidis strain to lotrafilcon B and the P. aeruginosa strain to balafilcon A 

and lotrafilcon B. A better performance of this solution was expected since it incorporates the 

surfactant poloxamine which possesses antimicrobial properties(25,26) and in addition, has a 

higher surfactant concentration than the tested surfactant solutions. Nevertheless, the presence 

of other complex components in the multipurpose solution may have contributed for lowering its 

performance. 

This study provides evidence that octylglucoside can effectively inhibit bacterial adhesion either to 

conventional or to silicone-hydrogel CLs. This finding is most likely related to their amphiphilic 

properties as their molecular structure. Many other conditioning agents such as poly(ethylene 

glycol) (PEG)(27), salycilate(28) and heparin(29) have been tested on CLs with the aim of 

reducing microbial adhesion. Still, octylglucoside has the increased advantage of inhibiting 

adhesion and being non-toxic and inexpensive. Despite the good results obtained for 

octylglucoside more experiments must be performed in order to test if the inhibiting capability of 

octylglucoside is affected by other chemical components that may be present in multipurpose 

solution such as biocides and preservatives. 
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7.1 Abstract 
 

Purpose: The aim of this study was to evaluate the influence of lens material and lens wear on 

the removal capability of Staphylococcus epidermidis. Assessment of viability of remaining 

adhered bacteria was another goal of this work. Four silicone hydrogel materials (galyfilcon A, 

balafilcon A, lotrafilcon A, lotrafilcon B) and one conventional hydrogel material (etafilcon A) were 

assayed. 

Methods: Detachment studies on S. epidermidis were carried out in a parallel plate flow 

chamber. CLs were fitted to the bottom of the flow chamber and a bacterial suspension was 

perfused into the system, promoting bacterial adhesion. Afterwards, detachment was stimulated 

using a multipurpose solution (MPS, ReNu Multiplus®) and the percentage of removed bacteria 

estimated through microscopic observation and enumeration. Remaining adhered bacteria were 

stained with propidium-iodide (PI) and enumerated in order to assess their viability. Additionally, 

the worn lenses were observed by confocal laser scanning microscopy (CLSM) to visualize 

bacterial distribution along the lenses surfaces. 

Results: Bacterial removal was significant (p<0.05) for both unworn and worn galyfilcon A and 

etafilcon A. Galyfilcon A exhibited a detachment percentage of 59.1 and 63.5 while etafilcon A of 

62.6 and 69.3, both for unworn and worn lenses respectively. As far as bacterial viability is 

concerned, it was found that worn lenses exhibit a superior amount of non viable bacteria than 

unworn CLs. Images obtained by CLSM revealed an irregular bacterial distribution for all lens 

materials. 

Conclusions: It appears that surface and/or bulk structure of the lens material affects removal of 

S. epidermidis while CL wear influences their viability. 
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7.2 Introduction  

CL solutions were first produced in the late 40’s and have been developed ever since. These 

solutions should comprise several functions as to enhance CL wettability, prevent the build-up of 

deposits, and provide effective disinfection against pathogenic microorganisms(1). Currently, 

MPS are the most popular CL solutions since they permit in a single step to clean, rinse and 

disinfect(2). Disinfection is mainly promoted by the presence of biocides and it is essential to 

prevent ocular infections, which ultimately can lead to vision impairment. This process may be 

affected by numerous factors which includes the biocide, the challenging microbe, the material 

and the presence of organic matter(3-6). Due to the presence of surfactants, MPS may also 

promote bacterial removal; however and according to a previous study it was not significant(7). 

Polyhexamethylene biguanide (PHMB) is one of the most popular biocide agents and has been 

used since the mid 70’s in ophthalmic solutions. It is a polymeric cationic surfactant that belongs 

to the biguanide family and is currently used in several commercially available MPS. PHMB 

perform by enabling membrane disruption and lysis in bacteria, which results in their death(8,9). 

Several studies have investigated disinfection and bacterial detachment to CLs(7,10-17). 

However, since silicone hydrogel CLs were launched, very few works have been performed with 

this type of material. The present study aimed to evaluate the influence of lens material and lens 

wear on the detachment capability of S. epidermidis. Four silicone hydrogel materials (galyfilcon, 

balafilcon A, lotrafilcon A, lotrafilcon B) and one HEMA material (etafilcon A) were worn daily, for 

one month with nightly disinfection with a single multipurpose solution (ReNu Multiplus). In 

addition, viability and distribution of the remained adhered bacteria were analysed through 

epifluorescence microscopy and CLSM respectively. Matched unworn lenses served as the 

control. 

 

7.3 Materials and methods 

Contact Lenses  

The CLs used in this study are detailed in Table 7.1. 
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Table 7.1 Contact lens properties 

Commercial name Manufacturer Material 
FDA 

group 

Water 

content 

Surface 

treatment 

Acuvue® 
Johnson & Johnson Vision 

Care 
Etafilcon A IV 58% No 

Acuvue®Advance™ 
Johnson & Johnson Vision 

Care 
Galyfilcon I 47% No 

Purevision™ Bausch & Lomb, Inc. Balafilcon A III 36% Plasma oxidation 

Focus® Night & 

Day™ 
CIBA Vision Lotrafilcon A I 24% 

25 nm plasma 

coating  

O2Optix™ CIBA Vision Lotrafilcon B I 33% 
25 nm plasma 

coating  

 

Clinical Trial 

Thirty one subjects from both genders enrolled the present study, excluding any lost to follow up. 

The volunteers were predominantly from the north of Portugal and the average age was 23.6±5.5 

years. These were chosen according to the following parameters: they have never worn CLs 

before (neophytes), they were not taking any medications during the trial, they did not suffer from 

any kind of ocular allergy and they had no tendency for dry eye syndrome.  

Subjects were divided into 4 groups. Eight individuals were fitted with galyfilcon A, 8 with 

balafilcon A, 8 with lotrafilcon A and 7 with lotrafilcon B. Etafilcon A was used as contralateral 

pair into the four groups since a parallel study was ongoing in order to evaluate morphological 

changes between one eye fitted with a silicone hydrogel and the other fitted with a conventional 

hydrogel. According to the manufactures' recommendations, one of the silicone hydrogel lenses, 

galyfilcon A wear is recommended under a two week planned replacement modality. However, in 

this study, it was worn for 30 days in order to establish a comparison with the other silicone 

hydrogel lenses. None of the groups was aware of the CL material or brand they were using. 
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Silicone hydrogel CLs were used during 30 days and etafilcon A for 15 days (replaced at the end 

of 15 days), according to a daily wear schedule. The subjects were instructed to remove their 

lenses and place them directly into a solution (ReNu MultiPlus®, Bausch & Lomb, Inc. 

polyhexanide 0.0001%, hydranate 0.03% and poloxamine 1%) for overnight disinfection, between 

12 and 14 hours wear (no rub or rinse). At the end of the wearing period, each lens was 

aseptically removed from the eye and placed in a sterile vial containing a sterile saline solution 

(0.9% NaCl). Vials were labelled with a code and details of the lens material. The CLs were stored 

at 4 °C no longer than 5 days until analysis. Unworn CLs were stored at room temperature (20 

°C±2) and managed under sterile conditions until the beginning of experiments. 

Each subject signed an informed consent following an explanation related to the nature of the 

study and its possible risks to the participant. No significant adverse events occurred throughout 

the course of this study.  

 

Microorganisms and growth conditions 

The challenging microorganism was S. epidermidis 9142. This Gram-positive bacterium is a 

clinical isolate and was kindly provided by Dr. Gerald B. Pier, Harvard Medical School, Boston, 

USA. Its adhesion and biofilm formation capabilities were characterised in a previous study(18). 

A 4 ºC culture stock was inoculated into an Erlenmeyer flask containing 10 ml of tryptic soy broth 

(TSB, Merck, Germany) and incubated for 24 h at 37 ºC. After this period, 1 ml of the culture 

suspension was transferred to a second Erlenmeyer flask containing 30 ml of TSB and incubated 

for 18 h at 37 ºC in order to obtain a mid-exponential growth culture. Cells were harvested by 

centrifugation (15 min, 4000 rpm) and washed twice with ultrapure water. Finally, the cells were 

ressuspended in phosphate buffer saline (PBS, 8g l-1 NaCl 0.2 g l-1 KCl 0.2 g l-1 KH2PO4 1.15 g l-1 

Na2HPO4 pH 7.4) and the concentration adjusted to 6x1010CFU/ml. 

 

Detachment experiments  

Prior to detachment studies, bacterial adhesion was induced by perfusing a bacterial suspension 

throughout the system during 120 minutes. CLs were fitted to the bottom of the flow chamber 
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and all tubes filled with PBS, which circulated for 15 minutes. After this period, PBS was 

switched for the bacterial suspension previously prepared as described in the microorganisms 

and growth conditions section. The suspension flowed throughout the system for 120 minutes 

with a flow rate of 2E-4 ml/s, at room temperature. Fresh PBS was then recirculated throughout 

the system in order to remove the non-adhered or loosely adhered cells. Each CL was observed 

under phase contrast microscopy and twenty pictures (CCD video camera, Carl Zeiss, Germany) 

were taken with special care to cover both central and peripheric areas of the lens. Magnification 

of 1622 and a resolution of 13001030 pixels were used. The pixel area of each image was 

262144 pixels2 and corresponds to 1.96E-4 cm2. Detachment experiments were initiated after 

capturing images of initially adhered cells.  

In order to keep the same hydrodynamic conditions used in the adhesion step, detachment 

studies were also carried out in the parallel plate flow chamber. The authors are aware that 

dynamic systems do not reproduce the soaking process normally performed in CL disinfection; 

however, the goal of this study was mainly to assess cell removal.  

Bacterial detachment was stimulated by perfusing the system with the MPS (ReNu MultiPlus®, 

Bausch & Lomb, Inc.) for 120 minutes. Again, twenty pictures (CCD video camera, Carl Zeiss, 

Germany) were taken with special care to cover both central and peripheric areas of the lens. 

Magnification of 1622 and a resolution of 13001030 pixels were used. The pixel area of each 

image was 262144 pixels2 and corresponds to 1.96E-4 cm2. 

The percentage of bacterial removal was calculated as follows: 

 

100
cells adhered#

action MPS after cells adhered- #cells adhered #
movalRe % 








  

 

Bacterial viability 

Viability of adhered bacteria to worn lenses was investigated through propidium iodide (PI) 

(Sigma-Aldrich, Germany), staining (5 µg.ml.-1), followed by epifluorescence microscopy 

observation and cell enumeration.  
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This fluorochrome is capable of staining nucleic acids when the cellular membrane is disrupted 

and therefore was used to assess cell viability(19). It was expected that PHMB as well as lytic 

proteins (present in the tear film) would bind to the outermost surface of bacterial cells disrupting 

them. Membrane disruption followed by leakage of the inner cellular compounds should open a 

pathway for PI linkage to the nucleic acids.  

After bacterial detachment, each CL was covered with a few drops of the dye. They were 

incubated in the dark for 1 minute and then observed through an epifluorescence microscope 

(Carl Zeiss, Germany) coupled to a CCD video camera (Carl Zeiss, Germany). The excitation and 

emission wavelengths were 530 and 615 nm, respectively. Twenty pictures of the adhered 

bacteria were taken with special care to cover both central and peripheric areas of the lens. The 

magnification and resolution used were the same as for contrast phase microscopy. Afterwards, 

the non-viable cells were enumerated. 

The percentage of non-viable cells remaining adhered to the lens surface was calculated as 

follows: 

 

100
action MPS after cells adhered#

 cells  viablenon adhered #
cells viableNon% 








  

 

Non-viable bacteria were also observed by CLSM (FV 1000 Fluoview, Olympus Europa GMBH, 

Germany) through a 3 dimensional image of adhered bacteria and their distribution along the 

lens surface.  

 

Statistical analysis 

Bacterial removal was analysed through the non-parametric Mann-Whitney U Test. All tests were 

performed with 95% confidence level using the statistical program SPSS (Statistical Package for 

the Social Sciences).  
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7.4 Results 

Bacterial detachment  

The % of removed bacteria is detailed in Table 7.2. According to the statistical analysis, bacterial 

removal was significant for galyfilcon A and etafilcon A materials. Both unworn galyfilcon A and 

etafilcon A showed a p=0.029, while in worn galyfilcon A and etafilcon A exhibited p=0.006 and 

p<0.001, respectively.  

Table 7.2 Removal and viability of Staphylococcus epidermidis cells adhered to unworn and worn 

contact lenses (%) 

 Unworn lenses Worn lenses 

 % Cell removal % Non-viable cells % Cell removal % Non-viable cells 

Galyfilcon A 59.06* 12.28 63.46* 33.92 

Balafilcon A 57.78 6.61 44.22 60.55 

Lotrafilcon A 38.07 24.63 50.43 47.06 

Lotrafilcon B 39.10 27.49 14.13 72.74 

Etafilcon A 62.63* 0 69.29* 23.04 

*Statistically significant (Mann-Whitney U with 95% confidence level) 

 

Cell viability  

Table 7.2 also presents the percentage of non-viable cells that remained adhered after the 

passage of the MPS. This percentage was higher for worn CL, ranging from 23.0 % (3.50E5 

cells/cm2) to 72.3 % (1.86E6 cells/cm2) while unworn ones ranged from 12.3 % (1.19E5 

cells/cm2) to 27.5 % (4.33E5 cells/cm2). It was not possible to visualise stained bacteria adhered 

to unworn etafilcon A. 
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Images obtained by CLSM are present in Figure 7.1. These images show an irregular dispersion 

of bacteria along the CLs surfaces. Lotrafilcon B CL was not subjected to such analysis due to 

their surface treatment similarity with lotrafilcon A. 

 

 

Figure 7.1 Top and perspective images obtained through CLSM of S. epidermidis cells adhered to 
worn (a) galyfilcon A, (b) balafilcon A, (c) lotrafilcon A and (d)etafilcon A  

 

7.5. Discussion 

The present study investigated the influence of lens material and wear on the removal and 

viability of adhered S. epidermidis to silicone and conventional hydrogel CL. A single PHBM-based 

solution was used. S. epidermidis is a pathogen normally associated to device-related infections 

and thus it was considered an appropriate challenging microorganism(20-22). Bacterial 

disinfection and detachment are two different concepts, but both important from a clinical 

perspective. While disinfection typically involves cell lysis and death, bacterial detachment 

promotes cell removal from the lens surface. 

Detachment studies revealed that bacterial removal was significant from galyfilcon A and etafilcon 

A materials (Table 7.2). This result was obtained either for unworn as for worn lenses. Galyfilcon 

A and etafilcon A are made by the same manufacturer and are the only ones that do not have 

surface treatment. Although surface treatment was conceive to improve surface wettability, it also 

adds chemical active groups(23) and seems to enhance roughness(24). These factors might 

have increased the interaction between the CL and the bacteria making their removal more 
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difficult. This seems to be true, because in this work surface treated CLs did not show significant 

cell removal. We also address the hypothesis that PHMB could be operating on the lens surface 

rather than within the matrix, resulting in a large degree of bacterial removal for galyfilcon A and 

etafilcon A. PHMB contained in ReNu Multiplus is a large dimensional molecule and its size could 

limit its adsorption into the lens matrix(25). This seems especially consistent for etafilcon A, 

which possesses small pores(26). Although few data have been published about this material, it 

seems plausible that galyfilcon A structure and porosity could also have limited PHMB 

adsorption. This assumption is based on a study in which the ultra-structure of balafilcon A, 

lotrafilcon A and galyfilcon A was investigated using Cryo-SEM(27). The authors found that 

balafilcon A and lotrafilcon A materials exhibit what appears to be a loose network, while 

galyfilcon A shows a solid bulk. Even though unworn balafilcon A and worn lotrafilcon A exhibited 

levels of bacterial removal near to the observed for galyfilcon A or etafilcon A, they were not 

significant from a statistical perspective. Still, we believe that these results could be clinically 

relevant and thus they should not be disregard.  

The determination of the amount of non-viable bacteria remaining adhered is of great clinical 

importance. This study reveals that although these cells remained adhered after the detachment 

procedure, they were inactive and thus virtually not harmful. Bacterial viability was asses with the 

fluorescence dye PI. This assessment is usually made by the classic method of colony forming 

units (CFU). The CFU method involves total bacterial removal from the lens surface followed by 

agar platting and counting after 48 hours of incubation. The main disadvantage is that the 

removal process can kill bacterial cells through excessive vortexing or sonication, or not removing 

all adhered bacteria. PI staining not only allows “in situ” cell enumeration, but is also a faster 

and reliable method(13). The results (Table 7.2) show that worn lenses contain a greater 

percentage of non-viable bacteria than unworn ones. It is generally accepted that lens wear 

induce the adsorption of lysozyme and lactoferrin which are bacteriolytic 

proteins(28,29).Therefore, their presence on the lens surface may induce bacterial lysis resulting 

in this higher percentage of non viable cells. Indeed, a similar result was previously reported by 

Williams et al.(30), who suggested that lactoferrin killed the attached bacteria on worn lenses. To 

some extent, we agree that daily CL maintenance with ReNu Multiplus might have assisted this 

result.  
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CLSM is a valuable imaging method, which allows living and dead cells observation. Several 

scans above the lens surface permit a detailed tridimensional image of adhered bacteria. It is 

possible to observe (Figure 7.1) that S. epidermidis is irregularly distributed among all lenses 

surfaces, which seems related with the presence of deposited tear film as this assay was 

performed on worn lenses.  

Summarizing, the results obtained in this study suggest that the lens material affects removal of 

S. epidermidis since the MPS was capable of removing the adhered cells either from unworn as 

worn galyfilcon A and senofilcon A. The presence of bacteriolytic proteins of the tear film appears 

to contribute to the non-viability of adhered bacteria. 
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8.1 Abstract 
 

Purpose: The efficacy of contact lens (CL) disinfection might be influenced by several factors 

namely the lens material, microbial species and multipurpose solutions (MPS) formulation. The 

goal of this study consists in evaluating the influence of CL material on disinfection efficacy, by 

exposing adhered bacteria to dissimilar CLs and MPS. 

Methods: Microbiological assessment comprised tests with suspended and adhered cells to CLs. 

The influence of CL material on disinfection efficacy was assessed by exposing adhered bacteria 

to MPS of different formulations. The materials used in this study were etafilcon A (Acuvue 2), 

polymacon (Soflens 38), lotrafilcon A (Focus N&D) and balafilcon A (Purevision). The MPS 

comprised Opti-Free® Express®, ReNu Multiplus® and Complete®. Staphylococcus 

epidermidis, Staphylococcus aureus and Pseudomonas aeruginosa were the testing 

microorganisms.  

Results: Suspension tests indicated that all MPS were capable of inducing a minimum of 4-log 

reduction on bacterial concentration (p˂0.05).  Assays performed with adhered bacteria to CLs, 

demonstrated that polymacon was the CL more susceptible to disinfection (p˂0.05).  Scores of 

disinfection ranged from 4.30 to 6.44 of log-reduction.  Opti-Free Express was the MPS showing 

best disinfection efficacies. Log reduction in lenses treated with this solution ranged between 

4.23 and 5.03.  

Conclusions: Disinfection scores were dissimilar among several CL materials. This result should 

be related with different interactions generated in between the CL material and the multipurpose 

solutions.   
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8.2 Introduction 

It is acknowledged that microorganisms in planktonic state are more susceptible to antimicrobial 

activity than adhered ones(1-4). Nevertheless most studies regarding CL disinfection are carried 

out with suspended microorganisms excluding the lens material from the assessment(5-8). Such 

tendency arises from the standard ISO 14279:2001, which established that CL disinfection 

solutions should be primarily tested against suspended microorganisms (stand-alone test). The 

accomplishment of this criterion does not obligate the MPS’ manufacturers undergoing the 

secondary criterion, in which the disinfection efficacy is evaluated with bacteria deposited on the 

CLs (regimen test). Hence, suspension or stand-alone tests prevail over regimen tests and 

therefore studies addressing the influence of CL materials on disinfection are practically 

inexistent. In addition manufacturers have been reducing the rubbing and rising steps, a 

procedure that greatly contributes for the elimination of the remaining microorganisms(9). In view 

of that, it is possible that MPS presents marginal activity during CL disinfection and thus in the 

prevention of associated infections. 

The aim of this work is to assess the influence of CL compositions in the disinfection efficacy of 

MPS. This evaluation will be carried out on two sets of materials, silicone hydrogel and 

conventional hydrogel CLs. Staphylococcus epidermidis, Staphylococcus aureus and 

Pseudomonas aeruginosa will be the challenging microorganisms. 

 

8.3 Methods and materials 

8.3 Methods and materials 1 

Multipurpose solutions  

The MPS used in this study and their main components are detailed in Table 8.1. At least two 

lots from each MPS were tested in this work. Three MPS with different formulations were tested. 

Opti-Free Express contains two biocides, polyquartenarium-1 (PQ-1) and myristamidopropyl 

dimethylamine (MAPD) whilst ReNu Multiplus and Complete incorporate polyhexamethylene 

biguanide (PHMB). 
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Table 8.1 Multipurpose solutions and main components  

Product Manufacturer Biocide (%) Surfactant 
cleaner EDTA (%) 

Opti-Free® Express® Alcon 
PQ-1 0.001 

MAPD 0.0005 
Poloxamer 0.5 

ReNu Multiplus® Bausch & Lomb PHMB 0.0001  Poloxamine 0.1 

Complete Comfort Plus AMO PHMB 0.0001 Poloxamer 0.02 

PQ-1 (polyquartenarium-1); PHMB (polyhexamethylene biguanide); MAPD (myristamidopropyl dimethylamine); EDTA (ethylenediamine tetraacetic 

acid) 

 

Contact lenses 

The CLs used in this study are detail in Table 8.2. Two-silicone hydrogel CL and two conventional 

hydrogel CL were assayed. 

Table 8.2 Contact lens properties 

CL  
material 

Brand Manufacturer 
FDA 

Group 
Water 

content (%) 
Main monomers 

Etafilcon A Acuvue® Johnson&Johnson  IV 58 HEMA +MA 

Lotrafilcon A Focus® Night 
& Day™ CIBA Vision  I 24 DMA+TRIS+siloxane 

monomer 

Polymacon Soflens 38 Bausch & Lomb I 38 HEMA 

Balafilcon A Purevision™ Bausch & Lomb. III 36 NVP+TPVC+NCVE+PBVC 

HEMA(2-hydroxyethyl methacrylate); mPDMS (monofuncional polydimethylmethacrylate); NVP (N-vinyl pirrolidone); TPVC (tris(trimethylsiloxysilyl) 

propylvinyl carbamate); NCVE (N-carboxyvinyl ester); PBVC (poly[dimethysiloxy] di [silylbutanol] bis[vinyl carbamate]); DMA (N,N-

dimethylacrylamide); TRIS (trimethylsiloxane) 
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Test organisms and growth conditions 

Three bacterial species were used in this study. Staphylococcus aureus CECT 239 and 

Pseudomonas aeruginosa CECT 111 were purchased from the Spanish Type Culture Collection, 

University of Valencia and are respectively equivalent to S. aureus ATCC 6538 and P. aeruginosa 

ATCC 9027 from the American Type Collection Culture. Although not consider by the standard 

14729:2001 as a reference microorganism, Staphylococcus epidermidis 9142 was used. This 

bacterium is a clinical isolate and a well known producer of the major surface polysaccharide 

promoting coagulase negative staphylococci adherence and biofilm formation, referred to as 

either polysaccharide intercellular adhesin (PIA) or by its chemical composition, poly-N-acetyl 

glucosamine (PNAG) and its adhesion capability was caractherised in previous studies(10;11). 

This strain was kindly provided by Dr. Gerald B. Pier, Harvard Medical School, Boston USA.  

Growth conditions followed the standard ISO 14729:2001 recomendations.  Prior to the  

disinfection assays,  bacteria were grown on agar slopes between 18 and 24 hours at 35 ºC. The 

colonies were harvested with DPBST, the suspension vortexed for 1minute and transferred to a 

sterile polypropylene tube (Orange Scientific, Belgium). Due to the voluntary recall, Complete was 

not challenged against P. aeruginosa CECT 111. 

 

Disinfection assays 

The main goal of this study was to determine whether CLs materials influence the disinfection 

efficacy of MPS. Still, it was found important to perform disinfection tests against suspended 

bacteria; thus, suspension tests were also undertaken. 

 

Disinfection tests against suspended bacteria 

Disinfection protocols of suspended bacteria followed the standard ISO 14729:2001(12) 

recommendations and according to the respective guidelines, each MPS must be capable of 

reducing the bacterial viability in 3-log (99.9%). Briefly, 100-μl of the bacterial suspension 

prepared as previously described was poured onto a tube containing 10 ml of MPS. The 

suspension was homogenised in order to ensure the proper dispersion of bacteria. The final 
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concentration ranged between 1.0×105 and 1.0×106 colony forming units per millilitre (CFU/ml). 

Samples were taken after 1 hour, 2 hours, 3 hours and 4 hours of inoculation, and neutralised 

with DENB. Surviving bacteria grew in the agar plates and were enumerated after 48 hours of 

incubation at 35 °C.  At least 3 replicates and 2 independent assays were performed for each 

combination (MPS and bacteria). 

 

Disinfection tests against adhered bacteria to contact lenses 

Assessment of CL disinfection was carried out by exposing cells deposited on CLs to different 

MPS. The adopted protocol derived from the guidelines established by the standard ISO 

14729:2000 for regimen test, with minor modification. Briefly, the inoculum concentration was 

adjusted between 1.0×105 and 1.0×106 colony forming units per millilitre (CFU/ml) in DPBST. 

CLs were removed from the original blisters and placed in a Petri dish. A 100-μl aliquot of 

bacterial suspension was inserted in the concave side of the lens and another in the convex side. 

After 10 minutes of contact with the bacterial suspension, each CL was inserted into an 

individual well of a 24-well culture plate, which was previously filled with 1 ml of MPS. Lenses 

were soaked for 4 hours at room temperature and then transferred to a filtration apparatus 

together with the respective amount of soaking solution where neutralisation occurred in 50 ml of 

DENB, during 15 minutes. After neutralization, three filtrations with 50 ml aliquots of DENB using 

a nitrocellulose filtration membrane of 0.2 μm pore were made. Afterwards, the CL was placed in 

an eppendorf containing 1ml of neutralizing solution and vortexed during 1 minute to detach 

adhered bacteria. The cell suspension obtained was diluted and spread in TSA plates.  Following 

incubation (48 h at 35 °C), the number of CFU was enumerated. At least 3 replicates and 2 

independent assays were performed for each combination (CL, MPS and bacterial strain).  

 

Data analysis 

Differences in cell number before and after disinfection was compared through the non-

parametric Mann-Whitney U test using the statistical program SPSS (Statistical Package for the 

Social Sciences). A p value of less than 0.05 was considered statistically significant.  
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8.4 Results 

Stand-alone test 

Disinfection tests against suspended bacteria were performed according to the stand- alone test 

guidelines of the standard ISO 14729:2001. The amount of suspended cells that remained viable 

after several periods of disinfection is displayed in Figures 8.1, 8.2 and 8.3 for S. epidermidis, S. 

aureus and P. aeruginosa, respectively.  All MPS were capable of passing this test, since a 3-log 

reduction was achieved. Statistical analysis confirmed that this reduction was significant 

(p<0.05).  

 

Figure 8.1 Log reduction of S. epidermidis cells during 4 hours of disinfection (stand-alone test) 

 

 

Figure 8.2 Log reduction of S. aureus cells during 4 hours of disinfection (stand-alone test) 
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Figure 8.3 Log reduction of P. aeruginosa cells during 4 hours of disinfection (stand-alone test) 

 

Disinfection tests against bacteria deposited on contact lenses 

Prior to disinfection, bacteria were deposited on different CLs. As explained in the Material and 

Methods section, aliquots of 100-μl were deposited on the upper and bottom side of each CL. 

Before disinfection, each CL had about 1×107 Staphylococci cells and 1×108 Pseudomonas cells.  

Figure 8.4 present the average log–reductions of the amount of viable cells obtained in 

disinfection assays. Reduction was significant in all CL materials (p˂0.05). Nevertheless, the 

conventional hydrogel polymacon demonstrated greater disinfection scores than the other lenses 

ranging from 3.64 to 6.44 for S. epidermidis, 3.38 and 4.39 for S. aureus and 5.74 and 6.04 for 

P. aeruginosa. 

Concerning the efficiency of MPS, the PQ-based solution (Opti-Free Express) demonstrated a 

higher disinfection capacity than the PHMB-based ones, for every lens material.  
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Figure 8.4 Number of adhered S. epidermidis cells (control), and number of survivors after 

disinfection with Opti-Free, Complete and Renu (CFU/ml) 

 

Opti-Free was effective against S. aureus adhered to all lens types (Figure 8.5). Complete and 

ReNu were effective against S. aureus adhered to polymacon. Once more, all MPS meet this 

criterion when challenged against S. aureus adhered to polymacon. From a statistical point of 

view, disinfection was significant for all lens materials (p˂0.05), even those where a 4-log to 5-log 

reduction was not attained.  

 

Figure 8.5 Number of adhered cells (CFU/ml) of S. aureus with no disinfection (control), and number 
of survivors after disinfection with Opti-Free, Complete and Renu 

 

Figure 8.6 refers to P. aeruginosa and demonstrates that Opti-Free was effective against P. 

aeruginosa adhered to all lenses being lotrafilcon A the exception. ReNu was efficient against P. 

aeruginosa adhered to polymacon and balafilcon A. Complete was not tested against these 

bacteria because it was withdrawn from the market. Again, polymacon had satisfactory results 
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with the tested MPS. From a statistical point of view, disinfection was significant for all lens 

materials (p˂0.05), even those where a 4-log to 5-log reduction was not attained.  

 

Figure 8.6 Number of adhered P. aeruginosa cells (control), and number of survivors after 
disinfection with Opti-Free and Renu (CFU/ml) 

 

8.5 Discussion 

The outermost surface of bacterial cells are often stabilised by the presence of divalent cations 

such as Ca2+ and Mg2+. Cationic biocides such as PQ and PHMB are capable of displacing these 

cations, which destabilizes the bacterial membrane and cell wall. Eventually this will lead to the 

disruption of the lipid bilayer and cell lyses(13). PHBM exhibits one additional feature on this 

interaction. It tends to become concentrated around any point of maximum charge density within 

the membrane matching the spots where integral proteins are located. As a result, it changes  

the boundary phospholipidic(14) environment and causes loss of the protein function(13). It was 

previously demonstrated that when bacteria adhere to a surface, the antimicrobial activity of 

biocides immediately decreases(15). The acquisition of a different phenotype and the expression 

of certain genes seem to be the underlying reason. Other studies sustained that microbes are not 

the sole entities affecting disinfection efficacy but also the material by itself(16;17). On those 

studies, the adsorption and release pattern of biocide molecules onto CLs was estimated.  The 

main conclusion was that the retention of MPS within the lens matrix reduces the efficacy of 

disinfection.  Aiming to bring more insight about this issue, the present work investigated the 

influence of several CL materials including silicone hydrogel materials on the disinfection efficacy 

of several MPS. Two-silicone hydrogel CL and two conventional hydrogel were assayed. 
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The results obtained in this work revealed that polymacon was the CL more susceptible to 

disinfection being this true in almost every combinations bacteria/MPS (Figure 8.4 to 8.6).  The 

biocides PHMB and PQ are both cationic and bacterial cells are negatively charged. Since 

polymacon is a non-ionic material, the biocide molecules should bond to the bacterial cells rather 

than to a non-ionic surface. Such attraction towards bacteria will lead to highest scores of 

disinfection resulting in the overall increase of the MPS antimicrobial activity.  

Lotrafilcon A such as polymacon, is a non-ionic material however, their susceptibility to 

disinfection was not as satisfactory. This might be related with lotrafilcon A roughness since 

silicone hydrogel CLs tend to be rougher than conventional ones(18;19). In a recent study it was 

demonstrated that smoother surfaces display highest scores of bacterial detachment than 

rougher ones supporting the fact that on smoother surfaces the interaction between the biocide 

and the microbial cells is better(20). Smoother surfaces seems more beneficial, not only by 

preventing microorganisms from entering into pores or grooves, but also by allowing biocides to 

reach promptly to the bacterial cell wall or cell membrane.  

In the present investigation, Opti-Free was more efficient in terms of disinfection than the PHMB–

based ones. Some authors also reported this finding, corroborating the present results. As they 

explained, the better performance of Opti-Free is given to smaller levels of adsorption on CLs, 

thus enhancing their antimicrobial activity against microbial cells(16;17). Still, it is also important 

to stress that Opti-free have greater biocide concentrations than the other MPS, and in addition 

contains another biocide (MAPD). The biocide concentration is a key factor in disinfection(21).  

Opti-Free contains 0.001 % of PQ-1, while Renu and Complete have 0.0001 % of PHMB. Opti-

Free has 0.5% of EDTA while Renu and Complete have 0.1 and 0.02 %, respectively. It is also 

though that the presence of two biocides in Opti-Free (PQ-1 and MAPD) instead of one might 

have assisted their disinfection efficacies by providing a wider antibacterial spectrum(22).  

 In conclusion, the lens material affects the antimicrobial activity of MPS. CLs having 

simultaneously a non-ionic character and a smooth surface seem more susceptible to 

disinfection.  
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Chapter 9 General conclusions and 
suggestions for future work 

 

 

In this Chapter, the major conclusions of the present Thesis are addressed. Suggestions for 

future work are also proposed. 
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9.1 General conclusions  

The results presented in this Thesis confirmed that silicone hydrogel lenses are hydrophobic, 

while conventional hydrogel lenses are hydrophilic. However, the adsorption of proteins and lipids 

resulting from lens wear, as well as surfactants seems to decrease such hydrophobicity. As 

result, some materials either coated with tear film or with surfactants presented less adhered 

bacteria comparing with the respective controls. Deposition of tear film on CL also affected their 

roughness and topography. 

In the first study (described in chapter 3) a group of volunteers wore a silicone hydrogel CL in 

one eye and a conventional hydrogel CL as contralateral pair. After 30-days of daily wear, the 

lenses were collected and the number of colonizing microbes as well as the quantity and type of 

adsorbed proteins were estimated. As for protein adsorption is concerned, different lens 

materials exhibited different profiles thus suggesting that the lens chemical composition 

influences the adsorption of tear film molecules. In terms of quantity, silicone hydrogel CLs 

exhibited similar degrees of adsorbed proteins and considerably smaller than those found on the 

conventional hydrogel lens. The surface treated CL balafilcon A exhibited a greater number of 

colonizing microbes, which seems related with their higher hydrophobicity and electron-accepting 

capacity parameter. This study suggests that the presence of surface treatment in silicone 

hydrogel materials does not contribute to the decrease of protein adsorption or microbial 

colonization. 

In the second study (described in chapter 4), a group of volunteers wore another set of lenses. 

Hydrophobicity, roughness, topography and bacterial adhesion were assessed before and after 

wear. The adhesion of S. epidermidis cells was lower on worn silicone hydrogels CLs when 

compared to the worn conventional hydrogel material, which seems to result from the decrease 

of hydrophobicity on silicone hydrogel CLs and increase on conventional hydrogel materials. 

Bacterial adhesion to worn balafilcon A was significantly lesser when compared with the control 

(unworn balafilcon A). 

It is generally recognised that strains of the same species can act differently in terms of 

adhesion. One bacterium can exhibit more affinity for one surface than for another, and express 

its preference by adhering more or less. This is related not only with their virulence 
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characteristics, but also with the microbial cell surface properties. The “in vivo” microbial 

colonization study described in chapter 3 showed that balafilcon A had the highest propensity for 

microbial colonization whereas the subsequent work (chapter 4) revealed that worn balafilcon is 

equally prone to S. epidermidis adhesion as the other worn silicone-based materials studied. In 

fact, the strains and methods involved in these two studies were quite different, which explains 

the different results. In the first study (chapter 3) all colonizing microbes were enumerated after 

lens wear, and that may have included all sorts of Gram-positive and Gram-negative bacteria and 

at some extent yeast, whilst in the second one, adhesion of a single strain was performed. 

Therefore, it is reasonable to assume that a pool of microorganisms and S. epidermidis 9142 

adhesion to the same worn material can result in distinct results. Other factor to consider is the 

method used to quantify microorganisms. In the first work (chapter 3) the number of colonizing 

bacteria was quantified through colony forming units (CFU), whilst in the second study (chapter 

4) adhesion was assessed through a parallel plate flow chamber and the number of adhered 

cells determined through direct enumeration with the assistance of a phase contrast microscopy 

and a proper software.  

Chapter 5 addresses the propensity of CLs to emcopass oxidized lipids. According to the results, 

balafilcon A and vifilcon A exhibits significant amounts of oxidized lipids since the fluorescence 

intensity of conjugated Schiff-bases was greater on these materials. The fluorescence intensity 

dramatically increased after 14 days of contact with an artificial tear solution suggesting that the 

length of wear should be shorter in order to avoid excessive deposition of these molecules and 

compromise the wearers’ ocular health.  

The work described in Chapter 6 shows that the adsorption of surfactants and the multipurpose 

solution (MPS) ReNu Multiplus are capable of decreasing lens hydrophobicity. Nevertheless, only 

octylglucoside successfully inhibited adhesion of S. epidermidis and P. aeruginosa both to 

silicone hydrogel and to conventional hydrogel CLs (p˂0.05).  

The study described in Chapter 7 reveals that bacterial detachment seems to be influenced by 

the lens material. Both unworn and worn galyfilcon A and etafilcon A materials exhibited 

significant levels of removal of S. epidermidis cells. It was also hypothesised that the presence of 

adsorbed proteins on worn CLs might have played a bacteriolytic and/or bacterostatic role 

leading to the decrease of the viability of adhered bacteria. 
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In Chapter 8, CL disinfection was investigated. Three MPS were challenged against 3 bacterial 

strains, S. epidermidis, S. aureus and P. aeruginosa. All MPS passed stand-alone test. When 

these solutions were challenged against adhered bacteria, their disinfection efficacy varied upon 

the lens material. CLs having simultaneously a non-ionic character and a smooth surface seem 

more susceptible to disinfection.  

 

9.2. Suggestions for future work 

Bacterial adhesion to CLs is a process relatively well understood, however bacterial detachment 

and disinfection are not. In fact, the lack of studies regarding detachment and disinfection 

especially to silicone hydrogel CLs is remarkable. Accordingly, the investigation of cell 

detachment and disinfection on silicone hydrogel CLs it is strongly recommended.  

One of the issues currently debated concerns the resistance of microorganisms to common 

biocides. It has been suggested that microorganisms having resistance against biocides might 

also acquire resistance against antibiotics. This fact is extremely worrying, as during an episode 

of MK the patient may not respond to the antibiotic therapy as expected. The development of 

alternative disinfection methods involving the use of bacteriophages and enzymes it is proposed. 

Although lipid deposition contributes to the lack of comfort and/or visual acuity, the role of lipid 

oxidation in the pathogenesis of MK or in other ocular events was not established yet. In view of 

that, studies adressing the impact of oxidized lipids adsorbed to CLs on the wearers’ ocular 

health should be undertake. 




