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Abstract
With the advent of autonomous vehicles, detection of the occupants’ posture is crucial to tackle the needs of infotainment
interactionor passive safety systems.Generative approaches havebeen recently proposed for humanbodypose in-car detection,
but this type of approaches requires a large training dataset for a feasible accuracy. This requirement poses a difficulty, given
the substantial time required to annotate such large amount of data. In the in-car scenario, this requirement risk increases even
further, since a robust human body pose ground-truth system capable of working in it is needed but inexistent. Currently,
the gold standard for human body pose capture is based on optical systems, requiring up to 39 visible markers for a plug-in
gait model, which in this case are not feasible given the occlusions inside the car. Other solutions, such as inertial suits,
also have limitations linked to magnetic sensitivity and global positioning drift. In this paper, a system for the generation of
images for human body pose detection in an in-car environment is proposed. To this end, we propose to smartly combine
inertial and optical systems to suppress their individual limitations: By combining the global positioning of 3 visible head
markers provided by the optical system with the inertial suit’s relative human body pose, we obtain an occlusion-ready,
drift-free full-body global positioning system. This system is then spatially and temporally calibrated with a time-of-flight
sensor, automatically obtaining in-car image data with (multi-person) pose annotations. Besides quantifying the inertial suit
inherent sensitivity and accuracy, the feasibility of the overall system for human body pose capture in the in-car scenario
was demonstrated. Our results quantify the errors associated with the inertial suit, pinpoint some sources of the system’s
uncertainty and propose how to minimize some of them. Finally, we demonstrate the feasibility of using system generated
data (which was made publicly available), independently or mixed with two publicly available generic datasets (not in-car),
to train 2 machine learning algorithms, demonstrating the improvement in their algorithmic accuracy for the in-car scenario.
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1 Introduction

With current development and deployment of advanced
driver-assistance systems (ADAS), higher levels of car
automation will be available. With them, the human fac-
tor inside the car will also change. The need for occupants’
advanced detection systems becomes even more relevant,
opening the possibility to understand how passengers behave
or how they interact with the car itself. These new pos-
sibilities can interface with specific in-car use cases, such
as passive safety or comfort, and to tackle these needs, the
system must be able to monitor the occupant’s body pose.
Several approaches have been described in the literature,
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from layout mapping [37] to human body pose detection
[2,5,9–12,16,25,26,30,31,36,38], both in RGB and depth
images. From the different classes of methods, discrimi-
native ones (machine learning [ML]) present the best results
for an in-car contextualization, due to their generalization and
low computational cost. This method comes with an impor-
tant requirement—the need for a large and generic dataset
for training. Real datasets are the primary choice to be used
to train every detector. This decision comes from the fact that
a real dataset is recorded with real sensors data, which will
later be used to infer the pose. This datum not only gives the
required information for pose inferring, but also gives infor-
mation about the sensor’s inherent noise model, allowing to
generate a training dataset with similar characteristics to the
one where the human pose must be detected. Usually, cre-
ation of a real dataset consists in recording the body pose
with a motion capture system, while synchronously acquir-
ing an image using an image sensor (e.g., RGB or time of
flight [ToF]). The pose is then referenced from one system to
the other to be correctly projected into the visual frame. This
entire procedure is very time-consuming and requires a lot
of manual interaction, hampering the task of creating a large
and generic dataset. Despite some datasets related to human
body pose being publicly available (with RGB and depth sen-
sors), thesemotion capture datasets do not focus on the in-car
scenario, mostly due to the fact that standard vision-based
motion capture systems are not able to function properly in
this scenario. With this in mind, the main goal of this work
is to present a user-friendly system to generate human body
pose datasets in an in-car environment, with the ground-truth
system itself being also evaluated. These datasets may be
used to train human body pose detection algorithms for an
in-car scenario. This system combines a ToF sensor, inertial
suit and theVicon system (Vicon, Oxford, UK). The ToF sen-
sor provides image data; the inertial suit provides a relative
human body pose, and the Vicon system provides the global
positioning inside the vehicle using 3 head markers only.
Inertial-based limitations such as global positioning drift are
suppressed with the optical system head tracking, with this
joint being chosen given its high visibility and reduced tissue
displacement. Optical-based limitations, such as occlusions,
are suppressed with the inertial system relative human body
pose tracking. The output data are comprised of human body
poses given with respect to the camera’s coordinate system
in 2D and 3D for the ToF’s amplitude/depth image frame and
tridimensional point-cloud, respectively.

The rest of this paper is organized as follows. In Sect. 2,
the relatedwork on body pose datasets generation andmotion
capture systems is summarized. In Sect. 3, the overall system
methodology is presented. The system’s evaluation and its
potential interest are presented in Sect. 4 and discussed in
Sect. 5. The main conclusions are given in Sect. 6.

2 Related work

The generation of real data for ML algorithms is an impor-
tant task in a high variety of areas. The acquisition of motion
data in the in-car scenario is a difficult task given the lack of
motion capture systems that can reliably work in it. Although
there are accurate motion capture systems available, they
are not focused in heavily occluded scenarios. The alterna-
tive can involve electromagnetic or inertial-based systems,
solving the occlusion problem, but adding new limitations
(i.e., magnetic distortion sensitivity for electromagnetic, and
global drift for inertial).

2.1 Body pose datasets

To satisfy the development needs of human body pose detec-
tion algorithms, several datasets were generated and made
available to the research community. The CMU Graphics
Lab Motion Capture Database [8] is by far one of the most
extensive datasets of publicly available motion capture data
that focuses in human skeleton data and RGB image frames.
Unfortunately, the dataset was generated based on the Vicon
system, where the scenes are focused in non-car scenarios.
Human3.6M [13] is also based on Vicon motion capture,
with added depth and body scan image sensors. Temporal
synchronization is achieved through hardware and software
triggering. Another Vicon-based dataset is the HumanEva
[32], where the main difference is the fact that RGB image
frames were captured using an external video source, bring-
ing the need to apply a synchronization method during data
capture. Other non-car datasets, such as ITOP [12] and NTU
RGB+D [29], are based on depth image sensors and body
pose ground-truth data from Shotton et al. [30]. Manually
annotated datasets such as the HMDB [18] are based on
publicly available RGB images, where the labels are human
made and prone to error. The biggest advantage on such
dataset is its size and variability, giving the possibility of
increasing algorithmic performance on human action recog-
nition. Within the in-car scenario, Borghi et al. [4] used the
Pandora dataset for the POSEidon head and shoulder pose
estimator. The Pandora dataset is generated in a laboratory
environment with minimal occlusion; this is achieved with
different subjects performing similar driving behaviors while
seating on a chair. Head and shoulder orientation were cap-
tured through inertial sensors. Alternatively, hybrid datasets
offer an opportunity to utilize large synthetic datasets in con-
junction with real ones, aiding models’ generalization. Chen
et al. [7] created an automated toolchain to synthesize RGB
images from 3D poses. Regarding depth features, Martinez
et al. [21] combined multi-person synthetic depth data with
real sensor backgrounds.
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2.2 Motion capture systems

2.2.1 Electromagnetic

Systems such as Polhemus (Polhemus, Vermont, USA) are
electromagnetic based, and despite being highly accurate,
they suffer from electromagnetic disturbances from external
sources, such as metals or electronic devices. Mitobe et al.
[23] were able to track finger movement of pianists with a
spatial resolution of 3.8 µm, although it also showed the
complexity of the setup and the need for placing a single
wired sensor for each tracked joint. Other wireless solutions
are available through the Polhemus Liberty latus [19,22],
allowing full-body motion capture, but still suffering from
the same sources of uncertainty.

2.2.2 Optical

Optical-based motion capture systems are used across sev-
eral R&D fields [8,31,32] and can be separated in two types:
(1) marker-based with high accuracy, illumination immunity
and high setup time; (2) markerless with fast setup time but
with reduced accuracy and higher sensitivity to light con-
ditions. Although marker-based systems, such as the Vicon,
are the gold standard for motion capture, they suffer from
the fact that they need to have the markers in line of sight to
guarantee accurate tracking. Rahmatalla et al. [27] circum-
vented the occlusion problem by adding virtual (calculated)
markers while tracking a seated operator in-lab. However,
these researchers only focused on the lateral pelvis’ markers.
Considering a markerless approach, Joo et al. [14,15] imple-
mented amulti-view system, comprised by 480 synchronized
video streams and 5 Kinects, allowing for the extraction of
multi-person 3D anatomical landmarks. However, this sys-
tem still requires a confined and controlled space that does
not resemble the in-car scenario. Considering the technical
limitations of the most robust motion capture systems, it is
not feasible to use them alone for the in-car environment.

2.2.3 Inertial andmagnetic measurement units (IMMUs)

IMMUs-based systems are an alternative to optical systems
since they do not need the subject to be in line of sight.
Theoretically, they are able to infer body segment orienta-
tion as well as joints’ positions, although they are prone to
errors caused by drift or magnetic sensitivity. Another issue
for the estimation of full-body kinematics is related to the
need of a biomechanical model and its initial calibration.
Current biomechanical models are proposed by the Internal
Society of Biomechanics (ISB) [35]. For example, Xsens
(Xsens, Enschede, the Netherlands) uses a modified version
with 23 segments and 22 joints [28]. During calibration, the
subject needs to stand in a calibration posture, known as

the N-Pose or T-Pose, which assumes that all segments are
aligned and the coordinate systems of all joints are paral-
lel to one another. This initial assumption adds a systematic
error that offsets the segments’ orientations and joints’ posi-
tions. In its thesis, Orozco [24] compared MVN BIOMECH
Awinda from Xsens against Vicon Nexus through the study
of gait kinematics with calibration postures that deviate from
the standard N-Pose, showing that the error introduced could
be considered as a shift in joint angle values, while the shape
was not affected. It was also possible to understand that this
error could be correctedwith the information of the true body
posture captured during the calibration procedure. Two cor-
rection approacheswere proposed (orientation correction and
planar angle correction), giving the possibility to achieve an
initial calibration procedure for human subjects that are not
able to attain a N-Pose.

3 System overview

With the purpose of developing a system capable of gener-
ating ToF images with associated human body pose ground-
truth for the in-car scenario, several systems are required:

– a ToF sensor for image capture (C being the position of
the camera’s optical center);

– an inertial suit (namely a MVN BIOMECH Awinda) for
relative human body pose ground-truth (A being the head
joint, and J each one of the remaining body joints);

– a global object positioning system, such as the Vicon
system (W being the Vicon’s global coordinate system,
and O the subject’s head object tracked by it);

– a car testbed.

As Fig. 1 illustrates, there is a certain complexity with the
added systems. With it, there is a need to spatially and tem-
porally align the data, to correctly project the human body
pose information into the ToF camera’s perspective.

To satisfy these requirements, our system implements the
pipeline illustrated in Fig. 2.

3.1 Recording

Recording is done for all relevant systems: Image data are
recorded from a ToF sensor; relative body pose data are
recorded from the MVN Awinda inertial suit; and global
positioning data are recorded with Vicon Nexus through the
creation of a virtual head object for the human subject. Note
that this objectwas selected for twomain reasons: (1) low soft
tissue-related errors for both Vicon and inertial suit’s mark-
ers/sensors; (2) best joint visibility for the Vicon system in
an in-car environment, generating more valid data.
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Fig. 1 3D representation of coordinate systems when recording a real
dataset. W: Vicon global coordinate system; C: ToF optical center; O:
subject’s head object tracked by the Vicon system; A: inertial suit head
joint; J: inertial suit joints

3.2 Alignment

In order to achieve proper temporal synchronization, a tem-
poral alignment between systems is required (Sect. 3.2.3).
Considering the ToF camera as master to avoid image blur
from interpolations, the other two systems have to be syn-
chronized [34] and interpolated to each master timestamp
(Sects. 3.2.1 and 3.2.2).

Considering the goal of generating a human body pose
ground-truth projected into the ToF coordinate system, a spa-
tial calibration is required (Sect. 3.2.6). In this regard, there
is the need to align the Vicon system with the ToF camera
(Sect. 3.2.4), aswell as theAwinda suitwith theVicon system
(Sect. 3.2.5).

3.2.1 Vicon-to-ToF temporal alignment

To temporally align the ToF camera with the Vicon system, a
marker was used as a pendulum while being visible by both
systems. Two sets of points’ coordinates were thus obtained
in the camera’s perspective: (1) one in the amplitude frame
ampx,y , since each pixel information reflects the object’s

light intensity projected on the camera’s XY plane, the pen-
dulum position (a light emitter) in the image frame, pC , is
detected by finding the pixelwithmaximum intensity (Eq. 1);
(2) the projection of theVicon’smarker 3D coordinates, P̃W

vm ,
in the camera’s image frame, pCvm , through Eq. 2.

pC = argmax
x,y

(ampx,y) (1)

P̃C
vm = TC

W · P̃W
vm

∴ p̃Cvm = M̃ · P̃C
vm (2)

Equation 2 relies on the relationship between image and
space coordinates (Eq. 3) and two calibrations: (1) the cam-
era’s pre-calibrated intrinsic matrix M̃ (Eq. 4, using the
strategy in [39]), with fx , fy being the focal length in pixels,
cx , cy being the optical center in pixels, and s being the cam-
era axes skew angle; (2) the Vicon-to-ToF spatial calibration
TC
W (Sect. 3.2.4).

p̃ = M̃ · P̃
P̃ = [X ,Y , Z , 1]ᵀ, P = [X ,Y , Z ]ᵀ

p̃ = [U , V , S]ᵀ, p = (x, y), x = U

S
, y = V

S
(3)

M̃ =
⎡
⎣
fx s cx 0
0 fy cy 0
0 0 1 0

⎤
⎦ (4)

Both virtualmarkersmust exist for each timestamp, gener-
ating an oscillatingwave in the ToF x-axis, as shown in Fig. 3.
This projection allows to estimate the time delay t(0)ToFVicon
between both systems through the maximum of the cross-
correlation of the two discrete-time sequences, pC and pCvm .

3.2.2 Awinda-to-Vicon temporal alignment

To determine the temporal mismatch between the Vicon sys-
tem and the Awinda suit, both systems head joint quaternions

Fig. 2 Overview of the system pipeline. Recording: blue highlight
represents the Vicon system; orange highlight represents the MVN
BIOMECH Awinda system; red highlight represents the ToF camera.

Alignment: gray highlight corresponds to the developed algorithms,
with the other variables being determined by concatenation of the algo-
rithms’ outputs
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Fig. 3 Projection of the Vicon’s marker in the ToF x-axis (red) and the
marker’s x-axis coordinate in the image frame (blue), giving the delay
between systems t(0)ToFVicon
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Fig. 4 Axis-angle temporal representation of both Vicon and Awinda
head rotation, giving the delay between systems t(0)ViconAwinda

were converted and represented in axis-angle θt (Eq. 5),while
removing the offset rotation of the first frame through the
quaternion conjugate (qt(0))c. This provides the head ori-
entation as a relative rotation for each system, as shown in
Fig. 4. Through themaximumof the cross-correlation of both
signals, we get t(0)ViconAwinda, which allows to synchronize the
Awinda suit with the Vicon system [34].

qt = qt,r + qt,i i + qt, j j + qt,kk

qrt = qt · (qt(0))
c

θt = 2 × arccos(qrt,r) (5)

3.2.3 System temporal alignment

With each previous temporal calibration, all recorded sys-
tems are temporally aligned with each other (Eq. 6).

t(0)ToFAwinda = t(0)ToFVicon + t(0)ViconAwinda

tO = tO + t(0)ToFVicon

tA = tA + t(0)ToFAwinda

tC = tC (6)

Each calibrated temporal mismatch, t(0)ToFVicon and
t(0)ToFAwinda, serves as a time offset to the timestamp of each

Fig. 5 3D representation of the coordinate systems when calibrating
TC
W . W: Vicon global coordinate system; C: ToF optical center; B:

checkerboard object plane surface

system’s sample: tC being the ToF, tO the Vicon and tA the
Awinda.

3.2.4 Vicon-to-ToF spatial alignment

Vicon head to Vicon world (TW
O ) The TW

O transformation
is automatically recorded through the Vicon system and
requires the setup of a head object with a fixed pattern of
markers.

Vicon world to ToF camera (TC
W ) As Fig. 5 illustrates, for

the calibration of TC
W , a checkerboard pattern (B) was used

together with four Vicon markers placed in its surface. Since
the camera has been previously calibrated (Eq.4 [39]), we
are able to determine the checkerboard’s plane and there-
fore the position of the four markers in the camera’s world
coordinates (TC

B ). Together with their known position in the
Vicon system, TW

B , one is able to calculate the transformation
between systems through a least square minimization prob-
lem (see Algorithm S1 in Appendix and equation therein).

3.2.5 Awinda-to-Vicon spatial alignment

Awinda joints to Awinda head (T A
J ) The MVNAwinda body

pose is tracked inside the MVN global positioning system.
This is possible through specific proprietary algorithms that
estimate the body gait movement. To minimize sources of
error from theMVNAwinda system, we focused in using the
relative body pose, removing the global positioning informa-
tion and its associated errors. To convert the global body pose
into a relative one, a joint of reference (root joint) needs to
be defined; in this case, the head joint was chosen given its
direct relation with the Vicon’s head object. One is thus able
to obtain the relative position/orientation of each joint wrt.
the head, T A

J .

Awinda head to Vicon head (T O
A ) Considering the body

pose as being relative to the head (root joint), the alignment
between the MVN Awinda head and the Vicon head needs
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Fig. 6 Awinda head to Vicon head spatial alignment, T O
A . Axes repre-

sent mesh points PO , PA translation limits related to vector P

to be determined (orientation alignment only). To determine
the T O

A transformation, each recording procedure is initiated
by a small recording of head rotations in each axis (i.e., flex-
ion/extension, lateral flexion and rotation). This information
is then used to generate a mesh of points for the Vicon head
object, PO , and the Awinda head joint, PA. Each mesh point
PO , PA corresponds to a vector, P = [0, 0, 1]ᵀ, being rotated
in each timestamp tO , tAwith the head rotation RW

O , RA at the
specific timestamp. Through the finite iterative closest point
(FICP) algorithm [17], it is possible to find the transforma-
tion, T O

A , that best aligns both point-clouds that represent the
head joint from both systems, as shown in Fig. 6.

3.2.6 System spatial alignment

With each previous spatial calibration, the human body pose
wrt. the ToF camera’s perspective, TC

J , can be calculated
using Eq. 7.

TC
J = TC

W · TW
O · T O

A · T A
J (7)

TC
J is the combined transformation matrix (i.e., “·” being

matrix multiplication) that spatially aligns the inertial suit
with the camera world, with T A

J being the transformation

that maps each joints’ position/orientation wrt. to the head in
the inertial suit system, T O

A the transformation that maps the
head joint from the inertial suit system to the Vicon one, TW

O
the position/orientation of the head object within the Vicon’s
world coordinate system, TC

W the transformation that maps
the Vicon’s system to the ToF sensor coordinate system.

3.3 Rendering

After data alignment, the system starts rendering the dataset
information, illustrated in Fig. 7:

– features: (a) an amplitude frame, (b) a depth frame and
(c) a point-cloud (i.e., exported in BIN and PLY format);

– labels: 2D and 3D body pose of each human model (i.e.,
generated and exported in JSON format according to the
CMU format [8]).

3.3.1 Amplitude frame

The amplitude frame ampx,y , x = 1, . . . , X , y = 1, . . . ,Y ,
where X is the camera’s horizontal resolution and Y its verti-
cal resolution, is renderedwith the information recorded from
the ToF camera. Each pixel information reflects the intensity
from the object projected on the pixel in the camera’s XY
plane.

3.3.2 Depth frame

The depth frame depthx,y , x = 1, . . . , X , y = 1, . . . ,Y , is
renderedwith the information recorded from the ToF camera,
with each pixel representing the distance from the object to
the projected pixel in the camera’s XY plane.

3.3.3 Point-cloud

The point-cloud has the Cartesian coordinates [X ,Y , Z ] of
the voxel that was projected in each pixel, pcxi , pcyi , pczi ,
where i indexes all point-cloud voxels.

Fig. 7 Rendered frames: a amplitude, b depth, and c point-cloud. Images a, b, c are represented in color for better visualization. Ground-truth:
(black dots) 2D pose, (white dots) 3D pose
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3.3.4 Ground-truth

The ground-truth information consists in exporting the 2D
and 3D pose information for the human (Eq.3). Both types
of ground-truth consist in the same pose information for the
human, that is, a structure comprised of all joints’ pixel, pCJ
(2D), or voxel, PC

J (3D), positions.

4 Experiments and results

4.1 System

4.1.1 Dataset generation

To evaluate the generation of real datasets, two experiments
were established: (1) tightly controlled evaluation for the
same sequence of driving actions, i.e., touching steering
wheel, middle and passenger compartments, back seat and
waving, for both outside and inside the car (TE1 and TE2,
respectively), while avoiding any type of collision between
sensors/straps and externalmaterials (example videos of both
TE1 and TE2 are provided in supplementary material); (2)
free movement evaluation for three in-car seated positions
(FE1, FE2 and FE3 corresponding to front passenger, driver
and back passenger, respectively), while allowing the subject
to interact freely with the scenery. For both evaluation pro-
cedures, we extracted the head quaternion behavior for both

systems (Figs. 8 and 9), associated with a full output from
specific timestamps, as shown in Figs. 10 and 11.

For the 1st evaluation procedure, the timestamps represent
the same actions for inside and outside the car (Fig. 10).

In Fig. 10, it is possible to see that extreme head rotations
increase the body pose error due to the head alignment. It
is also possible to observe that magnetic distortions are not
significant, where the same actions inside the car can project
a body pose similar or better than outside of it.

For the 2nd evaluation procedure, the dataset timestamps
represent the best and worst alignments (Fig. 11). From the
analysis, it is possible to pinpoint the main sources of error
that contribute to a sub-optimal body pose joint projection:

– Sources of error identified in the inertial suit evaluation
(see Appendix B);

– Absence of projection, due to occlusion of the Vicon’s
head object;

– High projection error for joints further away from the
head joint, due to bad alignment between head objects
(indicated with red highlight in Fig. 9);

– High projection error for the lower body part, due to sen-
sors and straps’ movement as a result of collisions with
seat, car door or steering wheel.

Fig. 8 Axis-angle
representation between Vicon’s
head object and Awinda’s head
segment: a TE1; b TE2. Gray
regions highlight the 1st, 2nd
and 3rd head maximum
rotations for each simulated
action
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Fig. 9 Axis-angle representation between Vicon’s head object and Awinda’s head segment: a FE1; b FE2; c FE3. Blue region highlights the best
alignment between both objects, while red region highlights worst alignment
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Evaluation Amplitude Depth Point-Cloud
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Fig. 10 Real dataset frames with associated body pose ground-truth. Representation is done considering the head maximum rotations for each
simulated action in each evaluation (Fig. 8)

4.2 Application to pose estimation problems

To understand the validity of the data being generated with
our system, as well as its ability to increase ML algorithmic
accuracy, we defined three distinct experimental scenarios:

2D pose estimation from depth images; 2D pose estimation
from point-cloud; and 3D pose estimation from 2D pose.
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Fig. 11 Real dataset frames with associated body pose ground-truth. Representation is done considering the best and worst head alignment in each
evaluation (Fig. 9)

4.2.1 Evaluation data

Since we aim to evaluate the potential advantage of using an
in-car focused dataset over a generic one, we require sam-
ples from our system and from publicly available datasets.

In this sense, we used two publically available datasets: The
first was ITOP [12], containing 17,991 real images and cor-
responding ground-truth from a single subject (S1), and the
second was the NTU RGB+D [29], where the first subject
(Z1) and all of its planes (P), cameras (C), rotations (R)
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Table 1 Evaluations related to system and public data quantities. (M1)
system dataset; (M2) NTURGB+Ddataset; (M3–M4) system andNTU
RGB+D datasets; (M5) ITOP; and (M6–M7) system and ITOP datasets

Evaluation MoLa R8.7k InCar ITOP NTU RGB+D

M1a 6322 0 0

M2a 0 0 94,321

M3b 6322 0 94,321

M4a 6322 0 94,321

M5a 0 17,991 0

M6b 6322 17,991 0

M7a 6322 17,991 0

a200 epochs for the full dataset.
b180 epochs for the public dataset plus 20 for fine-tuning with our
system dataset

and 49 actions (A1:49) were used, resulting in 94,321 real
images and corresponding ground-truth. Our system gener-
ated dataset consists in five recorded subjects (H1:5), two
actions (B1:2) each, totaling 8754 samples. All datasets are
identical in terms of sample data types for depth frame and
3D/2D body pose, giving us the opportunity to evaluate the
first and third experimental scenarios comparatively to each
other. However, the second experimental scenario is able to
also evaluate our proposed dataset to estimation problems
based on point-clouds. The available samples were divided
into 3 groups: (1) a training set, with all public datasets plus
6322 systemsamples (fromsubjects H1:4); (2) a validation set
with 702 system samples (from subjects H1:4); and (3) a test
set with 1730 system samples (from subject H5 performing
distinct actions). To assess the influence of mixing pub-
lic datasets with the system generated ones, we established

seven sub-evaluations (M) for the first and third experiment,
as shown in Table 1. For the second experiment, we usedM1
sub-evaluation only. The proposed system generated dataset,
plus the tools needed to reproduce all experiments, wasmade
publically available [3].

2D Pose estimation from depth images (EV1) To evaluate
the system generated depth frames and corresponding 2D
ground-truth, the Part Affinity Fields [6] method was used.
From it, a custom CNN was implemented consisting only
on the first stage of the original PAF CNN [33], following
the same training procedures. In each sub-evaluation, M#,
the method used the depth frame as input features and the
2D body pose as output labels (Fig. 12). For all samples, the
depth frame was normalized into a grayscale frame ([0; 1.8]
m ≡ [0; 255]), while each 2D joint position was converted
into a 2D heatmap. For metric evaluation, the joint position
is estimated through non-maximum suppression applied to
the inferred heatmap. In this experiment, the PCKh measure
(in pixels, using a matching threshold given by 50% of the
head segment length) and the area under curve (AUC) were
used as metrics [1]. Table 2 summarizes the average results
for the full body, with the results for individual joints being
presented in Table S1. Figure 13a presents the PCKh@0.5
values for the full body for each sub-evaluation.

2D Pose estimation from point-cloud (EV2) To evaluate the
system generated point-cloud and corresponding 2D ground-
truth, the Part Affinity Fields [33] method was used. In this
experiment, the point-cloud was used as input features. To
this end, each point-cloud was normalized (pcx and pcy
with [−1.5; 1.5] m ≡ [0; 255], and pcz with [0; 1.8] m ≡
[0; 255]) and converted into a 3-channel matrix. As for EV1,
the network’s output was the 2D heatmaps generated from
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Fig. 12 Visual representation of input features and output used for each
experimental scenario EV #: (EV1) 2D pose estimation from depth
images using normalized depth frame as input and 2D body pose as
output; (EV2) 2D pose estimation from point-cloud using normalized

point-cloud as input and 2D body pose as output; and (EV3) 3D pose
estimation from 2D pose using 2D body pose as input and 3D body
pose as output
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Table 2 PCKh measure and AUC values averaged over all 14 joints,
for the 3 experimental scenarios and all 7 sub-evaluations

M1 M2 M3 M4 M5 M6 M7

EV1

PCKha 95.97 0.01 69.54 94.88 12.64 94.57 95.48

AUC 56.14 0.01 33.36 59.39 5.26 58.04 55.33

EV2

PCKha 96.47

AUC 64.43

EV3

PCKhb 95.53 0.00 95.12 97.25 0.00 95.80 97.73

AUC 59.87 0.00 56.81 57.68 0.00 62.07 65.63

aEV1 and EV2 do matching threshold to 26 pixels.
bEV3 does matching threshold to 200mm

each joint’s position, with the inferred joint position being
computed by non-maximum suppression. The same metrics
from EV1 were employed. Results are shown in Tables2, S1
and Fig. 13b.

3D pose estimation from 2D pose (EV3) To evaluate the sys-
tem generated 3D ground-truth, a 3D pose estimationmethod
[20] was used, following the same training procedures. The
method uses a 2D body pose as input features (provided
as joint pixel coordinates) and the 3D body pose as output
(Fig. 12). Once again, similar metrics were employed, but
in this case, PCKh matching threshold was normalized to a
fixed head size of 200mm. Results are shown in Tables 2, s1
and Fig. 13c.

5 Discussion

In this paper, we presented a system capable of generating
human body pose and time-of-flight data for in-car scenario.

We evaluated a specific inertial suit (see Appendix B),
highlighting its limitations through an extensive evaluation
procedure that separates itself fromothermore specificmeth-
ods [24] (where the evaluation is focused mainly in the
calibration procedure and the full-body kinematics output).
We believe that this evaluation of the inertial suit brings a
better understanding on its behavior and limitations.

In terms of the system’s output for humanbodypose detec-
tion, it falls behind other methods [8,32] when used in an
open space. The big novelty and advantage are for the in-car
scenario. Here, our system improves considerably on others
that share the same in-car focus [4]. As previously men-
tioned, we fuse two state-of-the-art motion capture systems
(optical and inertial). By doing it, we suppress their stand-
alone limitations (marker occlusion, global positioning drift)
and increase their added benefits by creating a motion cap-
ture system for highly occluded scenarios. We were able to
record and project a human motion capture system into an
image sensor in an heavily occluded scenario. The projection
is possible through specific calibration procedures that allow
for a temporal and spatial alignment of all recorded systems.
Due to this complex pipeline, several sources of error exist,
with the major ones being associated with the inertial motion
capture suit (Figure S14) and the Awinda-to-Vicon head spa-
tial alignment (Fig. 9). Despite this calibration sensitivity, we
were able to record in-car datasets with proper human body
pose motion capture (Fig. 11). Our system shows robustness
to magnetic distortion scenarios, namely inside the vehi-
cle, where it was possible to observe a performance similar
to movements performed outside the vehicle (Fig. 10). We
believe that our system can also be applied in other scenar-
ios where ambient occlusion is a limitation factor for motion
capture.

In terms of data validation, Fig. 13 and Table2 demon-
strate the interest in using system generated data in ML
training for the in-car scenario, showing PCKh improve-
ments in all experiments when adding system generated data.
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Fig. 13 PCKh total for all sub-evaluations, M#, and the three first
experimental scenarios, EV #: a 2D pose estimation from depth images
(EV1); b 2D pose estimation from point-cloud (EV2); and c 3D pose
estimation from 2D pose (EV3). Color gradient represents different

combinations of datasets. Continuous lines represent one dataset trained
for 200 epochs, dotted lines represent two datasets trained in sequence
(1st →180 epochs, 2nd →20 epochs), and dashed lines represent two
mixed datasets trained for 200 epochs
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EV 1:M1 and EV 2:M1 proved that training with specific
use-case datasets can achieve best accuracy (in-car scenario).
For evaluations M5 and M2, lack of domain representa-
tion hinders the performance. Factors such as scenery layout,
human body behavior and sensor metrological characteris-
tics can lead to considerable overfit. On the other end, mixed
dataset combinations (i.e., ITOP orNTURGB+DplusMoLa
8.7k InCar) also performed better then single generic dataset
training (e.g., M2 < M4 and M5 < M7), demonstrat-
ing again the interest of using specific use-case datasets for
training. Evaluations that rely on fine-tuning also presented
similar results (e.g., M2 < M3 and M5 < M6), meaning
that pre-trained models can be fine-tuned with our system’s
dataset to achieve good results. The influence of fine-tuning is
also proportional to the ratio between added samples (from
our dataset) and the public one. In this case, we see that
for M3 (ratio of 1:15) specifically, we could use more in-car
samples to achieve better performance (or a larger number of
fine-tuning epochs). Interestingly, besides demonstrating the
interest of system generated data for increased algorithmic
accuracy, the present results also seem to suggest that the use
of a 3D point-cloud as input may lead to a better pose infer-
ence when compared to networks using depth images (see,
for example, the higher AUC values for EV 2:M1 compared
with EV 1:M1). In the end, for the in-car 2D body pose esti-
mation problem, we achieved higher PCKh@.5 total score in
EV 2:M1 (i.e., MoLa 8.7k InCar point-cloud-based training)
of 96.47% and corresponding AUC of 64.43%. For the in-car
3D body pose estimation problem, the same conclusions can
be made with regard to using specific use-case datasets vs.
generic ones. However, we also achieved better results when
mixing datasets instead of training with the system gener-
ated dataset alone (i.e., EV 3:M1 < M6 < M7). In this
case, considering both metrics (PCKh@0.5 total and AUC),
we achieved 97.73%and 65.63%, respectively, for EV 3:M7.
Finally, Table S1 summarizes the results for individual joints,
being possible to conclude that joints frequently present at the
image’s limits (wrists and elbows) are the most problematic.
This may be related to the lower number of training samples
with these joints visible (as they are more frequently outside
of the camera’s field of view or in the camera’s deadzone).
Hip joints also show similar problematic results, but in this
case, it is related to two types of errors (i.e., Awinda-to-Vicon
spatial alignment (Sect. 3.2.5) and forward kinematics error
propagation from head the joint [Appendix B, Section C]),
creating less stable ground-truth data for these specific joints.

6 Conclusions

In this work, a novel system for the generation of in-car
human body pose datasets is presented. The system demon-
strated to be able to generate datasets through a specific setup

consisting in an inertial suit, a global positioning system and
a ToF camera, coupled with a set of calibration procedures.
Themotion capture systemwas thoroughly evaluated, and the
sources of error were presented. A system generated dataset
is also made publicly available.
In terms of future work, and regarding the calibration pro-
cedure, an extra step could be added for the correction of
the initial suit calibration, as previously presented in [24].
This would allow a reduced systematic error for the pro-
jected body pose.Notwithstanding, this stepwould have to be
non-intrusive for the recording procedure. In terms of dataset
quality, there are currently several limitations, mostly com-
ing from the inertial suit (namely related to sensor fixation
and soft tissue movement). This could be solved with future
inertial suits or better initial calibration procedures from the
supplier.
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