
  

  

Abstract— Breast cancer is a global public health concern. For 
women with suspicious breast lesions, the current diagnosis 
requires a biopsy, which is usually guided by ultrasound (US). 
However, this process is challenging due to the low quality of the 
US image and the complexity of dealing with the US probe and 
the surgical needle simultaneously, making it largely reliant on 
the surgeon’s expertise. Some previous works employing 
collaborative robots emerged to improve the precision of biopsy 
interventions, providing an easier, safer, and more ergonomic 
procedure. However, for these equipment to be able to navigate 
around the breast autonomously, 3D breast reconstruction needs 
to be available. The accuracy of these systems still needs to 
improve, with the 3D reconstruction of the breast being one of 
the biggest focuses of errors. The main objective of this work is 
to develop a method to obtain a robust 3D reconstruction of the 
patient’s breast, based on RGB monocular images, which later 
can be used to compute the robot's trajectories for the biopsy.  
To this end, depth estimation techniques will be developed, based 
on a deep learning architecture constituted by a CNN, LSTM, 
and MLP, to generate depth maps capable of being converted 
into point clouds. After merging several from multiple points of 
view, it is possible to generate a real-time reconstruction of the 
breast as a mesh. The development and validation of our method 
was performed using a previously described synthetic dataset. 
Hence, this procedure takes RGB images and the cameras’ 
position and outputs the breasts’ meshes. It has a mean error of 
3.9 mm and a standard deviation of 1.2 mm. The final results 
attest to the ability of this methodology to predict the breast’s 
shape and size using monocular images. 

Clinical Relevance— This work proposes a method based on 
artificial intelligence and monocular RGB images to obtain the 
breast’s volume during robotic guided breast biopsies, 
improving their execution and safety. 

I. INTRODUCTION 

Breast cancer is one of the most prevalent cancers 
worldwide and one of the most dreadful diseases. In 2020, 2.3 
million new cases of female breast cancer were detected [1] 
[2]. Breast cancer cells can be situated in the milk ducts, 
lobules, lymph vessels, and/or breast tissue, which determines 
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the type of breast cancer [3]. Breast cancer can be detected 
when an abnormal lump is found or when some changes are 
identified on the nipple or breast skin, however, generally, it is 
diagnosed during routine screenings, where mammography is 
the most common procedure [4]. The mammogram is analyzed 
and the lesion is classified within one of the BIRADS 
categories [5]. If the result is 4 or 5, there is a suspicion that 
the tumor might be malign, which demands a breast biopsy to 
clarify it [5]. It can be performed under different guidance, but 
the US-guided breast biopsy is the preferred strategy because 
it is the cheapest method, allows real-time visualization of the 
needle, offers multi-directional sampling, and its US probe is 
facilely manipulable, making it easier to access every part of 
the breast and axilla. Additionally, it also avoids ionizing 
radiation exposure and intravenous contrast. However, the US-
guided breast biopsy presents some technical execution issues, 
such as challenging techniques to perform the needle insertion, 
especially if the lesion is located in a hard-to-reach region, or 
when the US images present poor quality and/or artifacts [6]. 
Therefore, this procedure is widely dependent on the surgeon’s 
expertise and capacity, requiring a lot of training for new 
professionals, which can take a lot of time and investment. 
Given the complexity of the procedure and the doctor’s 
exhaustion associated with it, some biopsies end up being very 
time-consuming, which can lead to longer surgeries, less 
capacity to see multiple patients, and more biopsy errors.  

These issues justified the emergence of new methods that 
integrate AI and Robotics to improve US-guided breast 
biopsy. One of the main challenges for these strategies is to 
obtain the breast’s volume in real-time in order to control the 
robot and perform the US scanning around the breast. This 
allows the creation of a 3D US scan of the breast interior, to 
localize the lesion, and then precisely insert the biopsy needle 
[7]. Still, current reconstruction techniques require better 
precision and technologies that do not involve occlusions, 
expensive equipment, or minimal distances [7][8].  

This work proposes an innovative Deep Learning (DL) 
architecture that fuses a CNN, LSTM, and MLP to obtain 
depth maps from monocular RGB images, which are then 
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converted to 3D meshes, in real-time. This methodology can 
benefit new robotic-guided breast biopsy approaches by 
improving their safety and execution and reducing their end-
effector’s cost.  

II. RELATED WORKS 

A. Robotic Guided Breast Biopsies 
As technology advanced, some robotic devices were 

created and employed in breast biopsies. Most of the recent 
works are focused on MRI-guided breast biopsy, where the 
robot is encapsulated in the closed-bore MRI scanner [9][10]. 
Recently, an MRI and Ultrasound Robotic Assisted Biopsy 
(MURAB) project [11] was able to combine robotics and AI 
with MRI and US images. This work employs a structured 
light strategy to project patterns into the breasts and obtain 
their volume, which requires expensive hardware, namely a 
projector and a detector. With this volume, the robot can start 
acquiring US information by scanning the breast surface with 
a US probe. Consequently, a 3D US volume of the breast’s 
interior is created and registered with the MRI data obtained 
before the biopsy. This is used to compute the robot 
coordinates for the needle insertion.  

B. 3D Reconstruction 
For the desired 3D reconstruction, several technologies can 

be considered. For instance, the Structure-from-Motion (SfM) 
technique can provide a 3D reconstruction of an object’s 
geometry by overlapping images of this object captured from 
different points of view [13]. However, this procedure tends to 
generate distortions and exaggerate the smoothing effect. 
Nevertheless, this methodology is interesting, especially 
because a collaborative robot can be used to navigate through 
an initial path around the patient’s breast to achieve this. 
Alternatively, there are also other works applying DL to 3D 
reconstruction, using 2D images as input [14]. Still, these 
approaches are complex and require a lot of pre-processing 
and time. The Ray-Onet[15] approach stands out because, 
besides RGB images, it also integrates the cameras’ position 
in their network’s input, which contributes to increasing the 
spatial information. The cameras’ position is generally treated 
as tabular data, that can be treated by an MLP segment, as 
demonstrated by Ahsan et al work [16]. The depth estimation 
methods, based on DL, are easier to achieve and the predicted 
depth maps can be converted to 3D formats. The architecture 
proposed by the DenseDepth [17] work, follows a standard 
encoder-decoder strategy, with an interesting loss function, 
which can be a starting point for this development. 

III. METHODOLOGY 

This work utilized a toolchain, previously developed by the 
authors[12] to create a synthetic dataset based on synthetic 
human breasts. Then, a multi-input DL architecture, 
constituted by a CNN, LSTM, and a MLP segment was 
incrementally built. The synthetic dataset was used to train and 
test the DL model. The predicted depth maps for each human 
were converted to point clouds and the 7 most suitable were 
fused to generate merged point clouds, with more spatial 
information than the individual ones. Finally, these were 
converted to meshes, generating the 3D reconstruction of the 
breast. This 3D breast reconstruction pipeline is shown in 
Figure 1. 

A. DL architecture for Depth Estimation 
The DL architecture for depth estimation, in Figure 1, 

starts by pre-processing the synthetic data and then 
implementing a CNN, inspired by DenseDepth [17]. To 
further improve the results, an LSTM was introduced, since it 
strengthens the temporal information. An MLP was then
added, enabling the feeding of the DL network with the 
camera’s position, which increases the spatial information 
available. Thus, the implemented DL model receives two types 
of inputs: RGB images and the cameras’ positions (x, y, z). 

During pre-processing, the LSTM sequences were created 
and each image and depth map was transformed by applying a 
random horizontal flip and a random channel swap with a 
probability of 50% for data augmentation. The RGB images 
and depth maps were resized to 640x480 and 320x240, 
respectively. Then, the RGB images were divided by 255 and 
the depth maps were multiplied by the maximum depth, 100, 
converting them from meters to centimeters. A final 
normalization was applied to the depth maps using (1), 
inspired by the DenseDepth algorithm. This was employed to 
make the network give higher loss on sections closer to the 
camera. 

 (1) 
The implemented loss function, L, is shown in (2) where 

pred and gt refer to the predicted and ground truth depth maps, 
respectively, and  refers to a weight parameter equal to 0.1. 
It is constituted by 3 loss functions: the SSIM loss, LSSIM, the 
point-wise L1 loss, LL1, and the L1 loss defined over the image 
gradient of the depth image, LGrad. This loss function aims to 
reduce the discrepancy between the depth values while 
simultaneously penalizing distortions of high-frequency 
details in the depth map’s image domain. 

Figure 1 - 3D breast reconstruction pipeline 
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( , ) =  ( , )  
+  ( , ) + 1 ( , ) (2) 

This work used the DenseNet-161 as the CNN encoder 
since it proved to be the best for depth estimation using this 
synthetic dataset [12]. The 4-dimensional input tensor 
aggregates the RGB images information. The output is a 
group of 13 feature maps. The last feature map, with a size of 
batch size×2208×15×20, is the LSTM’s input. This tensor 
passes through a maxpool layer, enters the LSTM module, 
and is upsampled. To include the cameras’ position, an MLP 
with 3 linear layers was added. Its input corresponds to the 
cameras’ position (x,y,z). The outputs from the LSTM and the 
MLP modules are then concatenated. The CNN’s decoder, 
which is constituted of 2 different convolutional layers and 4 
distinct up-sample functions, receives this merged tensor. All 
the up-sample functions share the same structure, however, 
their inputs and output differ from each other. The decoder 
output is a final tensor with size: batch size×1×240×320, 
which consists of a depth map with a single channel.  

B. From Depth Maps to 3D Reconstruction 
To convert each depth map to a point cloud, this 

implementation needed to determine the 3D coordinates for 
each pixel. The depth value, z, can be extracted from the depth 
map, however, since the depth map codifies the depth in 
relation to the camera plane and not the optical center axis, to 
determine the x and y, every pixel had to be converted to its 
equivalent angle in the lens. This work calculated the constant 
that allows the conversion between pixels to angles, , (3) 
using the horizontal field of view (HFOV). 

 (3) 

For each pixel belonging to the depth map, its value of x 
and y was converted to quadrants in relation to the center of 
the image, obtaining xq and yq. Then, by applying (4), the 
corresponding angle for xq and yq was determined, which 
corresponds to the angle of deviation between the 
correspondent pixel and the center axis. 

  = arctan(  × ) 
  = arctan(  × ) (4) 

To finally obtain the point cloud, the 3D coordinate x, pcx, 
and the 3D coordinate y, pcy, were determined with (5). The 
3D coordinate z, pcz, is already contained on the depth map. 

 = (  × tan(  ))  
 = (  × tan(  )) (5) 

To align the different point clouds, the Iterative Closest 
Point (ICP) algorithm was implemented. This determines the 
transformation to overlap two point clouds, allowing to merge 

them after. This procedure was applied to 7 individual point 
clouds to create a final merged one, for each synthetic human, 
as depicted in Figure 2. After this, each merged point cloud 
was imported to Cloud Compare software [18], where the 
Statistical Outlier Removal (SOR) filter was applied, the point 
cloud’s normal were estimated with Hough transform, and the 
PoissonRecon plugin was employed, to generate the meshes.  

IV. EXPERIMENTS AND RESULTS 

To study the benefits of the proposed strategy, several 
experiments were performed. The DL architectures were 
implemented using the Pytorch framework and the ADAM 
optimizer. It was run on an NVIDIA A100 40GB GPU. The 
Blender’s camera HFOV and the depth map width were set to 
0.691 radians and 320, respectively. The employed synthetic 
dataset has 20 and 10 humans for training and testing, 
respectively, and each human has 200 images captured at 20 
horizontal and 10 vertical positions. 

A. Depth Estimation Architectures 
 To study the DL segment additions, this work compared 3 

different DL architectures constituted by: the described CNN; 
the CNN and LSTM; the CNN, LSTM, and MLP. These 
architectures were trained for 80 epochs, using the synthetic 
dataset. Then, the best epoch for each one was determined as 
shown in Table I, where rel, rms, and log10, correspond to the 
average relative error, the root mean squared error, and the 
average error using logarithmic of base 10, respectively, and 

1, 2, and 3 correspond to the threshold accuracy of values 
1.25, 1.252 and 1.253, respectively.  

B. 3D Reconstruction 
The RGB images and depth maps that constitute the 

synthetic dataset, employed in this work, were acquired around 
synthetic humans. These humans are in the mesh format and 
can be used to obtain the entire procedure’s error. Therefore, 
this work generated the ground truth and predicted meshes but 
the final comparison is done between the predicted meshes and 
the 10 testing synthetic humans, as represented in Figure 3 and 
Figure 4, because this corresponds to the entire 
implementation error. This error is presented in Table II and 
was obtained using the Cloud Compare software. For that, the 
ICP tool was employed, which added intrinsic error.  

V. DISCUSSION 
Regarding the DL architecture, it is possible to observe that 

all the sequential additions generated better results as 
demonstrated in Table I. The best architecture includes the 
CNN, LSTM, and MLP, achieving a mean error of 2.9 mm, 
and the lowest maximum and minimum error. As shown in 

TABLE I. COMPARISON OF THE RESULTS OBTAINED FOR 3 ARCHITECTURES FOR EACH ONE’S BEST EPOCH, WHERE DM AND CP CORRESPONDS TO DEPTH 
MAP AND CAMERAS’ POSITION, RESPECTIVELY 

Architecture Dataset 1 2 3 rel rms   log10 Mean error 
(mm) 

Min error 
(mm) 

Max error 
(mm) 

CNN (epoch 60) RGB + DM 0.9905 0.9965 0.9999 0.0168 0.0150 0.0068 4.5 1.2 34.9 
CNN + LSTM 

(epoch 45) RGB + DM 0.9983 0.9998 1 0.0122 0.0149 0.0053 3.2 1.18 17.9 

CNN+LSTM+MLP 
(epoch 50) 

RGB + DM 
+ CP 0.9979 0.9998 1 0.0130 0.0146 0.0056 2.9 1.0 14.0 

TABLE II. MEAN DISTANCE IN MM BETWEEN THE PREDICTED AND SYNTHETIC HUMAN MESHES FOR THE TESTING DATA, USING  CLOUDCOMPARE. 
Humans Prototypes H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 All data Without H3 
Mean Distance(mm) 2.4 2.2 11.2 3.8 6.3 4.6 4.3 2.9 3.5 5.3 4.6 3.9 
Standard deviation 

(mm) 1.6 1.9 8.9 3.2 5.1 3.9 4.6 2.5 3.8 3.9 2.4 1.2 
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Table I, the addition of the LSTM reduces the high outliers 
and mean error present in the CNN architecture by promoting 
better temporal information. The introduction of an MLP 
segment allowed the addition of the cameras’ position, which 
improved the spatial information and the predictions. 

During the conversion stage, the merging process 
allowed increasing the information in some breast areas that 
were not well represented in the 7 individual point clouds, as 
depicted in Figure 2. In Figure 3, it is observable that the 
predicted and the ground truth meshes have difficulty in 
representing the nipple region. Since the ground truth mesh 
shows problems too, this must be caused during the creation 
of the merged point clouds. The predicted mesh is also 
affected by the depth map prediction which offers errors in 
the nipple area. Nevertheless, the predicted and synthetic 
human breasts are very similar in terms of size and shape. As 
represented in Table II, the mean error and standard deviation 
for the 10 humans correspond to 4.6 mm and 2.4 mm, 
respectively. But if the third human is excluded since that, in 

comparison with the others, it shows a very discrepant error, 
the mean error and the standard deviation are 3.9 mm and 1.2 
mm, respectively. The third human has a higher error because, 
as depicted in Figure 4, breasts that are too pointy, too big, 
and that extend beyond the thorax, are harder to reconstruct. 
Contrarily, the smaller breasts with reduced pointiness are the 
easiest ones. Therefore, it is possible to infer that breast 
physiognomy affects the amount of error in the predictions 
and that the distribution and type of error are directly related 
to the breast zone. This can happen because the dataset does 
not possess enough large breasts and the merging process of 
the point clouds requires more individual point clouds. Both 
issues will be mitigated in the future. 

VI. CONCLUSION 
This work proposes a pipeline to obtain a 3D breast 

reconstruction from monocular RGB images. This can be later 
used for trajectory planning to enable robotic-guided breast 
biopsy. This work validated the improvement that arises from 
combining a CNN, LSTM, and MLP, allowing the addition of 
the cameras’ position and the increase of the temporal and 
spatial information. Furthermore, it is demonstrated that it is 
possible to generate meshes from depth maps.  
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Figure 2 - Example of one merged point cloud, for one of the humans, 
created from 7 different point clouds, where PC stands for point cloud.

Figure 3 - Comparison between the predicted, ground truth and 
corresponding synthetic human meshes. 

 
Figure 4 - Comparison between the best and worst predicted mesh 
overlapped with the respective synthetic human meshes for the testing data. 
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