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Abstract — The field of face recognition has significantly 

advanced as deep learning methods, such as those using 

CNNs, continuously show improvements. However, 

despite face recognition’s promising potential, there are 

still many concerns regarding privacy and safety. 

Moreover, the first 2D algorithms, besides having good 

performance, turned out to be influenced by several 

factors like the environment’s lighting conditions, pose, 

and facial expression of the subjects, compromising the 

model’s accuracy. This work describes the development 

of a computer vision system using Deep Learning 

methods to detect and recognise human faces in 3D in 

real-time. The RGB images and depth maps from several 

subjects were captured using an Intel RealSense D455, 

processed, and consequently provided into two 

independent CNNs, an Inception-Resnet V1 to deal with 

the RGB images and an Inception V3 to deal with depth 

maps. The final algorithm was implemented on the 

anthropomorphic domestic and healthcare service robot 

CHARMIE (Collaborative Home Assistant Robot by 

Minho Industrial Electronics) to perform its tasks 

according to the recognised user. 
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I. INTRODUCTION 

According to [1], computer vision and robot vision are 
distinct concepts. The first targets the understanding of a scene 
mostly from single images or from a fixed camera position. Its 
methods are designed for specific applications, and the 
research is focused on individual problems and algorithms. On 
the other hand, the second requires looking at the system level 
perspective, where computer vision is one of several sensory 
components that work together to fulfil specific tasks, such as 
in anthropomorphic robots. Regarding biometric analysis, 
face recognition is a natural biometric technique embedded in 
the everyday lives of human beings. Amongst all biometric 
technologies used so far, face recognition is one of the most 
widely outspread biometric technologies [2]. Concerning 3D 
face recognition, this is a very well-known technology that is 
broadly used by a continuously increasing large number of 
people since a significant part of the world’s population uses 
a smartphone equipped with some biometric recognition 

capability. Although the accuracy of previous 2D face 
recognition algorithms was considerably high, in [3], some 
factors such as the influence of lighting around the subject, 
orientation, and the subject’s expression compromised the 
model´s overall effectiveness. Another great disadvantage of 
2D methods concerns safety, where a photograph of a person 
yields the same outcome as the person in real life. To fill in 
these gaps, 3D face recognition introduces depth maps, a one-
channel image that contains information about the distance 
between the surfaces of objects from a given standpoint. The 
purpose of depth information and 3D recognition overall is to 
effectively minimize the influence of illumination, facial 
posture, and expression commonly associated with 2D face 
recognition. Besides depth maps, depth information can also 
be represented in the form of point clouds and face meshes. 
The main goal of this work is to apply the resulting trained 
models to the service robot CHARMIE [4]. Since this is a 
collaborative anthropomorphic robot, its purpose is to aid and 
collaborate with humans by helping them to perform tasks. By 
developing face recognition, it is possible to make the robot 
perform such tasks adjusted to the person it interacts with. 

II. RELATED WORK 

The performance of 2D face recognition systems has been 
substantially improved with the adoption of Convolutional 
Neural Networks (CNN). Using CNN feature extraction 
trained on massive datasets outperforms traditional methods, 
which use hand-crafted feature extraction methods. Deep 
learning methods demand large datasets to learn face 
representations, depending on multiple factors like postures 
and expressions. Large scale datasets of 2D face images are 
available throughout the internet. Facenet[5] uses roughly 200 
million face images from 8 million people, and the network is 
based on Inception modules. VGG Face[6] proposes a 
procedure to assemble a large dataset comprising 2.6 million 
face images from over 2700 individuals trained on VGG-16 
networks[7]. Szegedy[8] analyses CNN facial recognition 
performance of various Inception-Resnet and Inception 
network versions, and the results look promising. Inception 
Resnet combined with a Multi-task Cascaded Convolutional 
Networks (MTCNN) and an SVM classifier were used in the 
previous version implemented on CHARMIE [9], only 
detecting in 2D. Alongside the development of active 3D 
sensing techniques, it is now possible to acquire 3D face 
models without concerns regarding pose, expression, and 
others. There are two different types of 3D sensors. 3D 
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scanners such as Minolta produce high-quality results but 
lacks performance and is quite expensive. The second kind 
consists of depth cameras like the Microsoft Kinect [10], 
which, even though it is compact and affordable, has low 
resolution, and weak reliability. In contrast, the Intel 
RealSense depth cameras have a higher resolution and are 
more reliable and affordable. In [11], low-quality RGB-D data 
from an affordable 3D sensor is used to deal with face 
recognition problems under several poses. For similarity 
calculation, both texture images and face depth maps were 
transformed into frontal views. Besides this, symmetric filling 
on texture images may degrade the matching performance. As 
opposed to frontalization on the 2D face image, in [12], 
multiple face images were generated under some predefined 
poses from 3D face models in the gallery. Tests showed that 
the recognition rate was higher than the frontal method. The 
texture images were deformed according to rotation from 
depth maps to deal with pose variation achieved a 69.1% rank-
1 recognition rate on the Bosphorus database[10]. 

III. METHODOLOGIES 

The system’s prototype development was segmented into 
five sequential stages: image acquisition, image processing, 
dataset preparation, dual model training, and testing. These 
sequential phases are illustrated in Figure 1. Inside the 
execution cycle, two Haar Cascade classifiers are operated 
(despite being developed outside the five stages), one of them 
specifically designed to detect faces in RGB images, while the 
other was developed to detect faces in depth maps. 

 

Figure 1- Layout of the system’s stages 

A.  Hardware and Software 

The camera used was an Intel RealSense D455, which 
simultaneously provides regular RGB images and depth map 
information. This 3D sensor also enables the distance 
extraction to a given target. The image acquisition and 
processing took place in Pycharm IDE using Python language. 
The training of both CNNs took place using Google Colab 
Pro. The networks were also implemented in Google Colab 
Pro using Tensorflow and Keras frameworks. 

B. Image Acquisition 

Several sets of images of various subjects were acquired 
to build the dataset. Each set of images was captured with the 
subjects facing different directions: forwards, left, right, up, 
and down. This image capture process resulted in 551 RGB 
images (Figure 2) and 551 depth images (Figure 3) per subject 

from multiple poses. Both figures 2 and 3 contain the raw 
captured images. It is necessary to apply some image 
processing to remove some noise. 

 

Figure 2- Samples of RGB images from RGB dataset with the subject 

facing different directions 

 
Figure 3- Samples of depth images from depth dataset with the 

subject facing different directions 

C. Image Processing 

Initially, a Haar Cascade classifier extracted the faces from 
the captured images. The implemented algorithm detects a 
face on a given frame, draws a square surrounding it based on 
the coordinates of the face detected, and crops it, leaving 
behind the outside of the square area. Figure 4 illustrates this 
process. This is carried out for all RGB images per subject, 
overriding the raw images. Regarding depth images, these 
experienced more processing than RGB ones. To reduce noise 
in the images, a dilation operation, having an ellipse shape as 
a structuring element, was implemented using OpenCV. Also, 
the previously extracted coordinates in the respective RGB 
image were used to crop the depth images. The final result is 
portrayed in Figure 5. 

 
Figure 4- Processing of an RGB image 

 
Figure 5- Processing of a depth image 

D. Dataset Preparation 

After the image processing, it is essential to prepare the 
dataset before feeding the images to the CNNs. This type of 
data preparation is critical to ensure the data training process 
is carried out effectively, smoothly, and without impacting 
memory resources. The preparation is carried out by creating 
proper image generators for image directories. An image data 
generator is a class available in the Keras API that allows the 
loading of images according to stipulated batch size. Image 
augmentation is applied and fed directly to the neural 
networks during the withdrawal process to a specified 
directory. This technique saves a considerable amount of 
system memory since the images are loaded one by one into 
the networks rather than all at once. 

E. Training 

Both networks were implemented using transfer learning, 
ensuring both of them produce the best possible outcome in 
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fewer epochs. This method allows the reuse of a trained 
network, including its respective weights and features, and 
apply those to the desired problem. VGG-16, Inception-
Resnet V1 and Inception V3 were assessed to conclude which 
one had the best performance both on the RGB dataset and the 
depth dataset. Deep Learning models need lots of data to 
accurately learn and make predictions, and 551 images per 
model, all with similar poses, might likely be a reduced 
number to build a reliable and robust model. Image 
augmentation virtually creates new training images from 
existing training images by applying transformations to copies 
of some of the samples from the training data, creating new 
and different training examples, increasing the size of the 
datasets and their data diversity. Besides, this also allows the 
models to generalise better on new or unseen data, thus 
making them more robust. These transformations include a 
wide range of image manipulations, like shifts, horizontal and 
vertical flips, zooms, rotations, changes in brightness, and so 
on. Figure 6 portrays some of the transformations applied to 
the training set images using image augmentation. 

 

Figure 6- Random Rotation (left) and Zoom (right) Transformations 

F. Haar Cascade Classifiers 

Two Haar Cascade classifiers were integrated into this 
work. The RGB classifier was imported from OpenCV since 
it is integrated with the library. This example can be seen in 
Figure 4. The other classifier was entirely developed to 
recognise only depth faces. To do this, the classifier learns 
what to recognise with positive images while learning what 
not to recognise using negative images. Positive images 
correspond to depth faces, while negative images correspond 
to everything that is not a depth face but can appear in the 
same frame as a positive image. For example, the camera can 
capture the depth of a shoulder in the same frame as the depth 
face. Since the shoulder should not be detected as a face, it is 
considered a negative image. Other important negative images 
are noisy images since the depth sensor has some noise 
associated with the depth image. Figure 7 shows examples of 
positive and negative images. 

 

Figure 7- Positive (left) and Negative (right) Images 

After training the classifier, a .h5 file is generated and 
imported to the project’s directory. The result obtained from 
the created file is similar to Figure 8. 

 
Figure 8- Face depth map detection 

IV. TESTS 

In this section, multiple CNN architectures and different 
learning rates are assessed to compare how different CNNs 
perform when dealing with the same data. The CNNs 
evaluated are VGG-16, Inception V3, and Inception-Resnet 
V1, which are amongst the most used CNN architectures[13]. 
The optimiser selected is the Adam optimiser. Also, for all 
these tests, an Early Stopping function was used to halt the 
training once the model’s performance stopped evolving on 
the validation set, in this case, in a span of 20 epochs. If there 
was no improvement whatsoever on the validation set, the 
training stops. This technique is helpful to prevent overfitting. 
A static batch size of 32 has been set for all tests performed. 

A. RGB Dataset 

In Figure 9, it is possible to see the comparison between 
the results (training and validation) across different learning 
rates using the VGG-16 architecture trained using RGB 
images. It is noticeable that despite all the training having 
converged, the higher learning rate ones converged quicker. 
The lowest learning rate took 44 minutes and 49 seconds. The 
learning rate of 0.0004 took 19 minutes and 20 seconds, while 
the largest learning rate took 11 minutes and 35 seconds to 
train. On the other hand, only the lowest learning rate has a 
relatively smoother learning curve in the validation set. 

 
Figure 9- Training (left) and validation (right) results of VGG-16 

on RGB dataset 

The following architecture used is the Inception V3. 
Similar to the previous test, this one generated very similar 
results, at least when comparing the training record as shown 
in Figure 10. Again, all the models (with different learning 
rates) have converged, indicating that the models have learned 
from the dataset. 

Figure 11 shows the theoretical results of the test made 
with the Inception-Resnet V1 across the three different 
training, each with three different learning rates, the ones used 
previously. The results show great performance across all 
training, with all results converging rather quickly. 
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Figure 10- Training (left) and validation (right) results of Inception 

V3 on RGB dataset 

 
Figure 11- Training (left) and validation (right) results of Inception-

Resnet V1 on RGB dataset 

B. Depth Dataset 

The test methods are similar to the previous ones using the 
depth dataset. The architecture used here is the Inception V3. 
As said previously, the pre-loaded weights were extracted 
from ImageNet, since there was no weights file resulting from 
the training of depth faces. Judging by the results in Figure 12, 
it can be assumed that the model with a learning rate of 
0.00004 has a more stable learning process. Overall, the 
lowest learning rate has always the smoothest learning curve 
with all the tests performed. If the learning rate is lowered 
even more, it will end up with a longer training process since 
it takes more time to converge, and there could be a risk of the 
model getting “stuck” in the training process. 

 
Figure 12- Training (left) and validation (right) results of Inception 

V3 on depth dataset 

V. RESULTS 

A. RGB Model 

To test the models with novel and unseen data outside the 
training process, an additional function was developed to 
assess the results of the trained models. However, the 

following first tests were not performed in real-time. Instead, 
these were performed by fetching each new image from a 
given directory, making the required processing and 
normalisation for each image and then making a prediction 
and returning its result. Only the final tests further described 
portray a real-time model prediction. For reference, Figure 13 
(Top) shows the correct name (class) for each of the subjects 
present in the dataset. Figure 13 (Bottom) has three unknown 
subjects to the trained models. The unknown subjects were 
only used to analyse how the model reacted when predicting 
unknown people. 

 

Figure 13- Illustration of the six classes of the RGB dataset (Top). 

Three unknown subjects to the model (Bottom) 

By performing predictions with the VGG-16 model 
trained previously, Figure 14 shows that the model made the 
correct prediction in some images, while it got them wrong in 
others. This set of predictions used a learning rate of 0.00004. 
The worst-case scenario is observable here when the model 
“thinks” that an unknown person is a subject of the dataset. 
This occurred in three predictions, all of which had very high 
confidence scores. Besides that, the model also failed to make 
the correct prediction in several other images, which makes 
this model with a learning rate of 0.00004 unreliable and 
unusable in real-time image prediction. The results were very 
similar by changing the learning rate to either 0.00004 or 
0.004, the two other learning rates tested in the previous test 
set. It only some changed results in one image or another but, 
the model still made several mistakes. This led to the 
conclusion that this model is unsuitable for dealing with 
RealSense’s dataset. Therefore, another model architecture 
was tested to see if it uncovers more acceptable results. 

 
Figure 14- Prediction results of VGG-16 model with a learning rate 

of 0.00004 

The following architecture used was the Inception V3 
using 0.004, 0.0004 and 0.00004 learning rates. By looking at 
some of the predictions outputted by this architecture (Figure 
15), it is perceived that neither prediction had a perfect score 
on all images while using an Inception V3 architecture, 
regardless of the learning rate used. Likewise, the VGG-16 
can indicate that the dataset is unsuitable for this architecture 
or needs more time to learn. 
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Figure 15- Prediction results of the Inception V3 model using 

several learning rates 

Figure 16 shows the predictions made by the Inception-
Resnet V1 model, including the results on extreme conditions, 
like having the subjects far away from the camera and or 
wearing a mask. The model could still recognise Subject A 
and Subject F even though they were farther away and despite 
Subject F looking slightly to the side. The model also provides 
low confidence predictions for unknown subjects (around 
50%). Besides all of these, the model’s most remarkable feat 
is correctly predicting when the subject is wearing a mask, and 
with relatively high accuracy. Subject B’s confidence 
percentages wearing a mask are similar to their corresponding 
image without a mask. Considering that the model trained on 
an Inception-Resnet V1 having a learning rate of 0.00004 
correctly predicted all the tests performed, this is the model 
selected for the final real-time implementation of the system. 

 
Figure 16- Correctly predicted images from the Inception-Resnet V1 

model 

B. Depth Model 

The process used in previous models was repeated to test 
the depth model capability. Figure 17 shows the results of the 
predictions carried out with this model. The model correctly 
predicts most of the faces, while others mistake them either 
for another face or none at all. Inception V3 was the choice to 
be used in the final real-time implementation of the system 
since it was the architecture that obtained the best overall 
results. 

 
Figure 17- Prediction results of Inception V3 with depth dataset 

model with a learning rate of 0.00004 

C. Real-Time Results 

In this section, the final prototype is tested. It is the 
collection of all the previous results, from the image capturing 
and processing to the CNNs, that performed better. Both Haar 
Cascade classifiers (one for RGB images and the other for 
depth images) are also functioning to validate a person's 
presence in front of the camera. The program starts by loading 
both CNN models previously generated into the source code. 
The Haar Cascade classifier file created is also loaded into the 
project. Also, the Haar Cascade classifier for detecting regular 
non-depth faces is loaded, with the intent of detecting a face 
and highlighting it. The prediction result is made of the 
subject’s predicted name and the respective percentage of 
confidence. The values next to the subject’s name correspond 
to the confidence percentage of each model. The top 
prediction regards the one made by the RGB model, while the 
bottom one corresponds to the one made by the depth model. 
Figure 18 has the detection of a subject and its respective 
prediction. A decrease in confidence percentage in both 
models when the subject is wearing a mask can be noticed. 
This behaviour is expected since, with a mask on, there is a lot 
less information that the model can use to make predictions. It 
is important to note that, during training, all images were taken 
without a mask, meaning the model had never seen a subject 
with a mask on until these predictions. 

 
Figure 18- Detection and correct prediction with and without a 

mask 

Figure 19 shows Subject C in two irregular poses, looking 
slightly downwards wearing a mask and another one with the 
eyes almost closed in a dark environment. Even under 
challenging conditions, the RGB model does not struggle 
when predicting. In contrast, the depth model struggles a little 
more, resulting in a lower percentage of confidence compared 
to the RGB model. 

 
Figure 19- Detection and correct prediction of Subject C 

In an attempt to mislead the system, a subject from the 
dataset was shown, but in a mobile phone. As stated before, 
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one of the primary purposes of 3D face recognition was to 
implement additional security measures to prevent the system 
from being fooled, making it more reliable and robust. These 
security measures were implemented in this environment 
through the depth image Haar Cascade classifier. The 
classifier was trained to detect depth faces and discard noisy 
images or any other irrelevant object or surface present in the 
camera's line of sight at a short distance. If a depth face is 
detected, that means for the system that a “real” person is 
standing in front of the camera, allowing it to be possible to 
validate a legitimate person and not a printed image of a face. 

 
Figure 20- Attempt to fool the algorithm 

Hypothetically if someone gained access to a picture of a 
known person included in the dataset, should that stranger 
show that same picture to the camera, what would happen is 
similar to what is portrayed in Figure 20. Even though the 
subject on the image is present on the dataset, the CNN's do 
not predict since the depth classifier does not detect a face in 
the first place. Since the classifier is seeing noise rather than a 
face, it prevents the system to continue with the prediction. By 
removing the smartphone from the camera’s viewing angle, 
the algorithm immediately detects a depth face and an RGB 
face as before, automatically does the predictions, and outputs 
the prediction result on the screen. This proves the additional 
security in using depth information in a face recognition 
system making depth a complement to RGB images. 

VI. CONCLUSIONS AND FUTURE WORK 

Regarding RGB images, excellent results in prediction 
were obtained, thanks mainly to the Inception-Resnet V1 
architecture already pre-trained using face images from other 
people. As for depth images, the conclusion reached when 
training Deep Learning models with depth maps, particularly 
face depth maps, is that the results can easily differ since these 
images can be quite ambiguous. Even for humans, it is not 
obvious at first sight which depth face image belongs to which 
subject, therefore, one should not rely exclusively on depth 
face recognition especially if there are matters of security on 
the line, as these can be at risk. Bearing in mind the overall 
inferior confidence percentage in the depth model, the 
outcome is only shown when both models correctly predict the 
name of the person. As proven, the system developed is 
capable of precisely recognise subjects within the dataset, and 
classify, as unknown subjects, people that do not belong to the 
dataset. Besides this classification, the system has 
demonstrated the ability to detect when it is being fooled by a 
smartphone or a printed sheet of paper containing the face of 
a person, and thus, one can acknowledge this as a reliable 3D 
face recognition system. 

The future of this work aims to perfect the accuracy 
associated with depth face prediction, since, in comparison 
with RGB model prediction, one can see that the depth model 
always predicts with inferior accuracy values, having 

sometimes 30% inferior percentage of confidence. This may 
be solved by adding even more images to the dataset and by 
fine-tuning the network’s hyper parameters. 
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