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Abstract. The process of migrating from a monolithic to a microser-
vices based architecture is currently described as a form of modernizing
applications. The core principles of microservices, which mostly reside in
achieving loose coupling between the services, highly depend on the im-
plementation approaches used. Being microservices a complete change of
paradigm that contrasts with the traditional way of developing software,
the current lack of established principles often results in implementations
that conflict with its alleged benefits. Given its distributed nature, per-
formance is affected, but specific implementation patterns can further
impact it. This paper aims to address the impact that microservices-
based solutions, featuring different implementation patterns, have on
performance and how it compares with monolithic applications. To do
so, benchmarks are conducted over one application developed following a
traditional monolithic approach, and two equivalent microservices-based
implementations featuring distinct inter-service communication mecha-
nisms and data management methodologies.
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1 Introduction

Due to the monolithic applications’ tightly coupled nature keeping up with the
high demand and request for new functionalities constitutes a challenge [1]. Em-
phasized by the current demand for continuous delivery, as applications grow
more complex, traditional architectural styles start to exhibit limitations. This
has resulted in different architectural styles being considered [2].

Microservices [3] allegedly solve the inconveniences presented by monolithic
applications by introducing modularity. Contrasting with the existence of a sin-
gular codebase that runs in a single process, microservices are composed of
multiple small services that collaborate and run on its isolated process. These
characteristics promote a wide range of quality attributes often required by mod-
ern applications, namely, maintainability, reusability, scalability, availability, and
more [4]. Despite that, it also comes with their set of overheads, which extend to
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the overall complexity of the system and even performance [7], which is affected
by the added communication latency of a distributed system.

Given that microservices are not the traditional way of developing applica-
tions, there is still a degree of unfamiliarity [5] which often results in implementa-
tions that fail to reach their potentialities [6]. To achieve the promised benefits
there are a set of principles to follow, mostly related to maintaining the ser-
vices decoupled. To assure that, the introduction of specific patterns is required,
from the communication approach used to the data management methodologies
applied. The multiple existent microservices patterns can impact performance
differently, something not particularly sustained in the existent research work.

The present paper conducts performance benchmarks to microservices so-
lutions featuring different implementation patterns in order to evaluate what is
their impact on performance and how it compares with a monolithic counterpart.

1.1 Related Work

There are multiple studies that analyze the performance impact of microservices.
Some experiments are conducted over applications that feature a synchronous
inter-service communication approach [8, 9] and inappropriate data management
patterns, which inevitably introduces coupling between the services. This con-
stitutes an obstacle in achieving microservices’ alleged benefits, which requires
the introduction of specific patterns that can have an impact on performance.

As an example, Flygare and Holmqvist [10] conducted an experiment in or-
der to compare performance between monoliths and microservices. However,
similarly to most empirical studies, it features a synchronous collaboration style
between the services, resulting in tight coupling and lack of fault isolation. More-
over, the setting was not ideal as it featured only two hosts, lacking the amount
of communication that would take place in a realistic scenario.

The experiments conducted by Akbulut and Perros [11] analyze 3 different
microservices implementation patterns, including asynchronous messaging. How-
ever, it features different types of applications for each pattern, which provides
inconclusive data to compare results across the implementations.

In general, most of the studies point towards worse performance results for
microservices architectures. However, comparative studies which analyze the
same monolithic and microservices applications that follow the best practices
and patterns are remarkably scarce. This means that the available research on
the impact on performance of the different existent implementation patterns is
very limited and can be somewhat misleading.

2 Methodology

In order to evaluate the impact on performance of a microservices-based archi-
tecture in a concrete and empirical way, one same e-commerce platform was
developed from scratch following a monolithic architectural style and two ar-
chitectural patterns based on microservices. The microservices solutions feature
distinct inter-service communication mechanisms and ways of dealing with data.
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To analyze the performance and capacity of the developed applications bench-
mark experiments using a load testing approach were conducted, which simulates
user load in a realistic scenario. The approach used was to apply a workload of
multiple requests, at a specific rate per time unit and assess how the system be-
haves under the load. Several test scenarios are conducted and for each iteration,
the number of requests per minute (the ramp-up period selected) is progressively
increased and metrics, such as response time and throughput, are analyzed. To-
gether with the different implementation patterns used, the number of requests
per unit of time constitutes the independent variables of the experiments.

The analysis of the response time, the time taken to fully complete the re-
quests, may indicate what is the saturation point of an application. This point
corresponds to the stage in which the load is so high that the application cannot
respond in a timely fashion, drastically increasing the response time.

Another relevant metric is the throughput, which is the measure of the num-
ber of successful requests per time unit. This metric helps to determine the
performance capacity of a system and indicates how much load it can handle.
Along with the hardware metrics collected, throughput and response times are
part of the dependent variables of the experiments.

The used workload for the experiments consists of the creation of an order,
one of the most intensive operations of the system, which requires the inter-
action of multiple services and database accesses. Regarding the asynchronous
microservices version, this specific operation spans over five different services and
requires the publication of four events. All the performance tests were conducted
using Apache Jmeter4, which simulates traffic of requests that would take place
in a real scenario. It also provides the hardware and performance-related metrics
necessary to evaluate the performance of the systems, including the dependent
variables specified above. JMeter was installed on a local laptop connected to the
applications’ network in which the test plans and thread groups were created.

3 Experiments setting

The experiments are conducted over different solutions that feature distinct im-
plementation patterns, whose impact is evaluated. The technical details of the
experiments and the used settings are described in the following sections.

3.1 Monolith

The monolithic version of the reference application was developed using Java
combined with the Spring framework (version 2.4.4), Hibernate as the ORM,
and the database used in production is MySQL. This version aims to portrait
a traditional legacy application scenario with high availability assured. With
the conduction of the performance benchmarks and subsequent comparison of
results, it is targeted to evaluate how traditional applications perform in compar-
ison to modern distributed solutions. The infrastructure used for the monolithic
4 https://jmeter.apache.org/
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version consists of two physical machines that host a virtual machine (VM) for
each component. Although it was possible, containers were not used for the de-
ployment of the monolithic version. Targeting a more traditional environment
for a legacy application, VMs were used instead. Each of the VMs used, repre-
sented in Figure 1, consists of a machine with 2Gb of memory and a CPU with 2
cores. The MySQL database used across all experiments is hosted on a dedicated
Linux server. Targeting a production-ready infrastructure, high availability was
promoted by eliminating single points of failure. Through the introduction of
redundancy on the applicational server, the use of Linux Virtual Servers as load
balancers, and a virtual IP address, the architecture became more resilient and
fault-tolerant.

Fig. 1. Test case - Monolith

3.2 Microservices

The developed microservices solutions are built on the same domain model and
use the same technological stack. The domain is split across multiple independent
services that are responsible for a portion of the capabilities. Nonetheless, all the
functionalities are identical and exposed via the same endpoints specification as
the monolithic version, being the internal implementation the only distinction.

Assuring high availability in microservices requires different approaches com-
paring with monolithic applications. The selected orchestration tool to assist
the management of the cluster, Docker Swarm, offers self-sufficient mechanisms
which guarantee that if a host from the cluster fails then all the services running
on that machine will be restarted in another. These mechanisms take action
without human interaction, keeping the cluster constantly at a designated state.
Furthermore, Docker Swarm offers easy access to scalability, making it possible
to scale the number of instances of a service. Regarding internal communication,
all services are reachable by hostname thanks to the internal DNS server existent
within the Swarm cluster, which nullifies the need for a discovery service.

For the experiments, Raspberry Pi 45 boards compose a four-node Swarm
cluster (represented in Figure 2), a low cost and energy-efficient solution. The
several services are grouped in stacks, a concept maintained by Docker Swarm,
in which the services are initiated together and distributed across the nodes.

5 https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
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Fig. 2. Raspberry Pi cluster used in the experiments

Synchronous request/response microservices This microservices version
developed is the one often featured in performance benchmarks research, which
makes use of a request/response communication methodology, in this case, HTTP.
This type of inter-service communication ultimately adds dependencies between
the services, requiring them to be simultaneously healthy at a given time [3],
which highly contrasts with the microservices principles of having decoupled
and isolated services. Using this communication approach, a failure in a service
may propagate to others and potentially cause a chain of failures.

Fig. 3. Test case - Synchronous request/response microservices
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By comparing this version’s benchmark results with the monolithic version it
is possible to directly evaluate the impact on the latency that comes from a dis-
tributed system. Given that this version does not feature data synchronization
mechanisms, the only distinction between the monolithic version is the use of
Saga Transactions6 and different database schemas for each service. Containers
were used for this version, being deployed on a Docker Swarm cluster composed
of four Raspberry Pi 4 SBCs as the cluster nodes. For the database, an external
Linux server is used, the same featured in the monolithic test case. All microser-
vices versions deployed for the benchmarks use the same orchestration tool and
physical hosts.

Asynchronous event-driven microservices The asynchronous version of the
microservices solution consists of the same business services as the synchronous
version, but with the addition of a message broker and two additional services,
the read models.

The introduction of a message broker as the middleware responsible for all
communication enables the existence of producer and consumer services that are
completely unaware of each other, promoting loose coupling and fault isolation.
Messaging was implemented using RabbitMQ7 and messages are published to a
topic that one or more services may subscribe to. Those events when consumed
by the subscriber services will trigger a set of defined actions. The described
behavior represents the flow of Saga Transactions, the approach used to perform
operations that span multiple services, since each one has its own database.

The read models introduced in this version are the result of implementing the
CQRS pattern8. By applying this pattern, views of frequently joined data are
maintained and queried whenever a client application needs data, segregating
the write and read operations. This pattern solves the complex querying-related
issues by having replicas of the data that otherwise would have to be distribu-
tively joined. In order to maintain the replicated data, the services responsible
for the read operations have to subscribe to all events that affect the main-
tained data. Although synchronizing replicas of data makes the services more
independent from each other, there is an overhead associated with the data syn-
chronization for the maintenance of replicas. Hence, it was predicted beforehand
that this overhead may affect the benchmarks, as well as the eventual consistency
outcome of using an event-driven approach along with Saga Transactions.

The conduction of benchmarks to this version aims to contribute to the lack
of performance analysis of microservices that complies with the best practices,
with no coupling between the services. The comparison with the other versions
enables the evaluation of the impact of several factors, such as the use of a
message broker and the overhead of having replicated data being synchronized.

For all the described experiments, the databases were kept outside of the
cluster, since it is not recommended to keep such sensitive data inside a volatile

6 https://microservices.io/patterns/data/saga.html
7 https://www.rabbitmq.com/
8 https://microservices.io/patterns/data/cqrs.html
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cluster of containers. Regardless, there are scenarios that demand the synchro-
nization of the data from the stateful services. These components when initialized
in any of the nodes of the cluster should have access to a previously maintained
state in order to continue operating. To assure the state is available across all
nodes, a distributed file system (DFS) is normally used.

Fig. 4. Test case - Asynchronous event-driven microservices with a DFS

Thus, to evaluate the impact of using a DFS, the asynchronous microservices
version was further split into two test cases, one with the databases hosted on
a dedicated server, and one featuring database data synchronization directly
across the nodes of the cluster (Figure 4). Given that the databases are stateful
components, a DFS keeps the service’s data available across all nodes and the
one selected was GlusterFS9, installed on each node that composes the cluster.

Both used databases offer cluster capabilities that could have been used in-
stead, which deals with the data synchronization at an application level. How-
ever, the use of a DFS is something commonly necessary in a microservices
system, so evaluating the impact of its introduction provides valuable data.
GlusterFS was used to synchronize the MySQL and MongoDB data, making
it available across all nodes and allowing its initialization in any physical in-
stance. Although it was predicted beforehand that there would be a lot of I/O

9 https://www.gluster.org/
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load due to the intensive data synchronization mechanisms, how it impacts per-
formance composes one of the endorsed test cases. The comparison between the
results from the two asynchronous versions provides information on how the in-
troduction of a DFS for state synchronization within a cluster affects the overall
performance of a system.

4 Results and discussion

Fig. 5. Response times obtained from the benchmarks

The performance tests (Figure 5) revealed that the monolithic version exhibited
the best performance results and the asynchronous versions the worst. That is
partially explained by the fact that within a monolithic application all opera-
tions take place locally at method-level calls. In contrast, event-based microser-
vices communicate with multiple services to perform the same operations, asyn-
chronously. Regardless, simply by being a distributed system, there is latency in
the communication between the services which may reside in different physical
hosts. The existence of latency also explains why the synchronous microservices
version has performed worse than the monolithic solution. Furthermore, in the
monolith, database operations are executed using local ACID transactions, while
in the microservices versions they proceed through Saga Transactions. This ap-
proach often requires multiple database accesses, which is the case of this work-
load, further contributing to higher response times in the asynchronous versions.

The steps of an operation within the asynchronous versions take place even-
tually, in which notifications are placed in queues to be eventually processed.
This methodology, as stated, provides a great degree of resilience since services
do not directly depend on each other. Additionally, the asynchronous versions
maintain replicated data that is constantly being synchronized, adding load that
is not present in the synchronous version nor the monolith. The differences in
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performance between the asynchronous and synchronous microservices versions
are also justified by the fact that the first one communicates through a message
broker, adding even more latency to the communication process. The cost of not
having a sequential flow of events and the overhead of synchronizing replicated
data, as expected, had a negative impact on the performance benchmarks. There
is a clear trade-off between having loosely coupled services and performance.

For these reasons, the worst performance values came from the asynchronous
versions, which reaches the saturation point earlier comparing with the syn-
chronous version and monolith. Although it was expected, the collected hardware
metrics were analyzed to identify possible bottlenecks and potentially mitigate
them.

Fig. 6. Hardware metrics collected during the load tests

As an attempt of improving the results and delay the saturation point of
the asynchronous versions, the main participant services were scaled. However,
replicating the number of running instances of some containers did not consid-
erably improve the response time results nor delay the saturation point. This is
explained by the fact that the resource capacity of the services had not reached
its limits, which is showcased by the acceptable CPU usage percentage during
the entirety of the load tests (see Figure 6). The effect of scaling the services
only resulted in the CPU utilization being more uniformly distributed across
the nodes, which did not even reach its full capacity after hitting the saturation
point. Furthermore, inside the configuration file of a Docker Swarm stack, it is
possible to set resource constraints. Several combinations of CPU and memory
limits were tested but failed to improve the results.

Hence, the performance bottleneck did not reside in the CPU nor memory
usage, but in the database systems. The asynchronous versions perform up to
five times more database operations than the other versions since it maintains
replicated data that needs to be synchronized. Essentially, at the cost of having
more isolated services with all the data needed to fulfill its operations, databases
are more often accessed. Therefore, since the database systems can be described
as being the bottleneck and given that the asynchronous version features more
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database operations, it means its performance is the most affected by this bot-
tleneck, which explains its eager saturation point.

However, when the database is still capable of handling the load, while the
cadence of requests is still low, the response times were better when replicated
instances were introduced due to the possibility of parallel processing. If the bot-
tleneck was due to capacity limitation from the containers, showcased by a high
CPU usage, having replicated instances would not only improve the response
times but also delay the saturation point. Nonetheless, in order to delay the
saturation point across all versions whose bottleneck is the database systems, a
more performant database infrastructure would have to be introduced, for in-
stance, a dedicated cluster with sharding mechanisms and parallel processing.
Regardless, with the exact same database system, the benchmark results highly
differ across the different implementations.

Fig. 7. Throughput values obtained from the benchmarks

By comparing the benchmarks from the monolithic and synchronous mi-
croservices version it is possible to inspect what is the direct impact of having a
legacy application made distributed. The synchronous microservices version does
not maintain replicas of data. Thus, the only difference between the monolithic
version is that operations are executed through Saga Transactions, in which
the different services spawn each other in a request/response manner. Although
the monolith featured better response times and a later saturation point, the
benchmarks results between the two are similar.

In terms of throughput values, they were also analyzed as they provide in-
sights of what is the performance capacity of the system (Figure 7). Regarding
the asynchronous versions, since the inter-service communication does not oc-
cur through a synchronous request/response style, the timeout periods that are
associated with it do not apply, making the error rate zero due to its eventual
consistency nature. The throughput values of this approach are affected by that
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factor, while in the synchronous versions, requests that take too long, or are
discarded, simply provoke an increase in the error rate.

The monolithic version was capable of successfully complete up to 3000 re-
quests per minute before reaching the saturation point. This indicates that any
load bigger than that has a substantially higher response time or will increase
the error rate. The maximum capacity of the synchronous microservices ver-
sion was slightly lower, capable of completing up to 2500 requests per minute.
The throughput starts to decrease once the saturation point is reached in both
versions, which showcases what is the maximum capacity of the system.

Regarding the two asynchronous versions, it was evaluated how the intro-
duction of a DFS impacts the benchmark results. The database systems are the
bottleneck across all versions, except for the version that uses a DFS, whose
bottleneck resides in resource capacity limitations, highlighted by the high CPU
percentage across all nodes (Figure 6). This version requires the synchronization
of the database data every time a write operation takes place, which represents a
limitation with significant overheads in terms of resources utilization. The CPU
usage percentage when using a DFS has increased significantly which ends up
becoming the performance bottleneck in this case, reaching the saturation point
considerably earlier. Since GlusterFS is primarily a file-system storage, replica-
tion does not occur at a block level, which causes a great impact on the CPU
utilization, since during load tests there is constantly synchronization happening.

As previously mentioned, the asynchronous version is composed of services
that possess shared replicated entities, which demands the publication of events
whenever data changes so the consumer services can keep all the replicas con-
sistent. The maintenance of shared entities is already a considerable overhead,
increasing the number of database operations per request when comparing with
the synchronous versions. On top of that, having database data files being con-
stantly synchronized across multiple instances requires a substantial amount of
resources. The combination of all these mechanisms demands a very performant
infrastructure to have similar performance results as its synchronous counter-
parts. The results have clearly demonstrated that when data is synchronized
across the nodes of the cluster, the overall performance substantially decreases.

5 Conclusions

In this paper, performance benchmarks were conducted on monolithic and mi-
croservices applications. Furthering the comparison between the two architec-
tural styles, the effect on performance of multiple variations of microservices
scenarios was tested. The impact of having different inter-service communica-
tion mechanisms, data management methodologies, and even the utilization of
a distributed file system was evaluated.

The microservices version that features the best practices in terms of hav-
ing loosely coupled services, the event-based version, was the one with worse
response times. Besides the expected influence from the added latency due to its
distributed nature, the results demonstrated the impact on performance of hav-
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ing the necessary mechanisms to achieve service isolation. The use of a different
database for each service, the introduction of patterns such as Saga Transac-
tions and CQRS, which introduces eventual consistency and data synchroniza-
tion overhead, showcased a negative impact on the benchmark results.

The typical test case scenario for benchmark experiments involving microser-
vices features synchronous communication without data synchronization. This
version was tested and proved to be the one with the best performance results
among all microservices implementations. The other test cases exhibited worse
benchmark results, indicating that microservices implementations that follow
best practices will perform worse than what is presented in existent experiments.

Nonetheless, regardless of which implementation patterns are featured, the
performance results are in accordance with most of the existent related work, in
the sense that microservices will perform worse than a monolithic counterpart.
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