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ABSTRACT 

Process quality planning should establish the incoming quality inspection plan to achieve the 
desired quality level with minimum Cost of Quality (CoQ). Additionally, the selection of 
alternative suppliers must be defined, and, in a dynamic context, the best solution may vary. 
The purpose of this study is to, through a simulation approach, minimize the total CoQ of two 
related decisions: i) supplier selection and ii) incoming quality inspection selection. We will 
determine the CoQ of alternative suppliers and determine the CoQ of alternative incoming 
inspections that are associated with such decisions. The inputs to the model are components 
costs, inspection costs, proportion of defectives from incoming lots, Type I and Type II 
inspection errors, alternative control methods, and the cost of delivering defective 
components to the manufacturing system. The uncertainty of some inputs is modelled through 
probability distributions and the dynamic context is modelled through different scenarios. The 
results from simulations estimate the total CoQ of each alternative decision. This model allows 
to determine the CoQ of the alternative scenarios and to define a best supplier and incoming 
quality inspection plan. A numerical example based on a manufacturing process demonstrates 
the applicability of this model and the results indicate that the optimal solution may vary 
when the model parameters are updated.  
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1 INTRODUCTION 

Generally, manufacturing companies have one or more suppliers for each component/part 
they need. Companies may assess the quality of their suppliers by doing quality audits or using 
a set of criteria to evaluate supplier’s ability to provide the required parts. Criteria can include 
price, quality, distance, flexibility, delivery time, or performance assessment of previous 
deliveries. Usually, once a supplier is selected, a contract is made that describes not only 
price and part specifications but also the maximum proportion of defective parts per order 
and other information, such as, penalties due to defective parts or delays or 
maximum/minimum quantities per period. Before starting mass production, the company must 
have the necessary components at the right time. Thus, depending on the stock management 
policy, the company will place orders to the available suppliers. However, selecting a specific 
supplier may have a direct impact on quality, e.g., if recent deliveries suggest its proportion 
of defectives is smaller or higher than other alternative suppliers. This selection may not be 
trivial because the quality level can influence the cost during manufacturing and impact on 
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the decision about the type of incoming quality inspection should be done. These decisions 
can affect the costs and competitiveness of the manufacturer. 

Additionally, depending on the company policy, part criticality, expected proportion of 
defective parts, among other factors, it may be decided to do quality inspection at incoming 
components, such as, procedures based on sampling inspection to accept or reject a lot or by 
doing 100% inspection to remove defectives [1], or it can be decided to accept parts without 
quality inspection. Such inspection implies an additional cost and because the inspection 
system is not perfect, it is possible to accept defective components (Type II error) or rejecting 
compliant components (Type I error) [2]. 

These two decisions, to select a given supplier and to decide which incoming inspection should 
be done, can be made before the mass production phase, typically, during the process of 
quality planning. In this paper, we will propose an approach to support this double decision-
making process. The approach allows: (1) to store the knowledge of the people who makes 
these decisions, a relevant feature of knowledge management; and (2) to re-evaluate the 
decisions in other contexts, allowing the efficient repetition of the decisions. 

These decisions may be influenced by the evolution of a dynamic system, e.g., changes in 
component costs (for example, it can be influenced by an exchange rate or transportation 
cost), inspection costs, proportion of defectives, effectiveness of the inspection system, and 
cost of sending defectives to the manufacturing process.  

To determine the best decisions (which supplier and which inspection), a set of objectives 
may be defined, such as, minimizing production delays (due to problems with incoming 
components), maximizing component quality, or minimizing acquisition and holding costs, 
while fulfilling company policies, requirements, and contracts. Many authors have suggested 
different approaches, e.g. analytical models [3, 4] or simulation models [5, 6] as well as other 
ways of modelling the system under analysis and different variables/parameters [7].  

However, the practical application of theoretical models is poor [8]. The literature presents 
many barriers [9-11] for this application, such as high complexity of models, lack of 
knowledge/information on how to measure the high number of parameters/variables of the 
models, company culture that does not promote rigor and evaluation, and difficulty in 
collecting quality data. 

Given the difficulty of modeling and solving such a multi-objective problem, we will use the 
model of quality costs, particularly the Prevention, Appraisal, and Failure (PAF) costs model 
[12] to translate operational issues to quality costs and then minimizing the sum of the CoQ. 
In general, CoQ approaches can be divided into five groups: (i) PAF model; (ii) Crosby’s 
approach; (iii) Opportunity cost; (iv) Process cost; and (v) Activity-Based Costing (ABC) [13]. 
These approaches offer different ways to identify quality-related costs according to certain 
categories. The basic assumption of the PAF approach is that investment in prevention and 
appraisal activities will reduce failure costs and that further investment in prevention 
activities will reduce appraisal costs. Many quality inspection models are based on the PAF 
classification [14, 15].  

Revision of quality inspection is necessary to reduce appraisal costs and to reduce failure costs 
e.g., caused by ineffective or inefficient inspection activities [16]. Thus, CoQ assessment 
concerning quality inspections has potential to be further explored [17, 18]. Determining the 
total CoQ for the system comprising the two decisions described can motivate top management 
to reduce it. Thus, by adopting this model, we can support company determination of CoQ 
and translate a multi-objective problem into a minimization problem. 
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It is complicated to consider all the different user requirements and contextual variables 
needed in real manufacturing processes [19]. Some models ignore aspects of the real problem, 
which can result in the computation of unrealistic solutions that may not capture domain-
related characteristics [3]. It is challenging to obtain an optimization model of a problem that 
reflects all aspects of the real decision-making difficulty. Models may be considered as a 
simplification of reality, for example, by not considering machine breakdowns [20] or by not 
modelling inspection errors [21], resulting in inaccurate cost models [4]. To address this issue, 
in this work, the level of detail modelling or granularity can vary, depending on the available 
information/data, the experience of the decision-makers and the complexity of the factors 
involved. We will simplify some parts (e.g., modelling demand will be skipped and only the 
production of one order is modelled) and we will have more detail associated with the 
inspection system by modelling their classification errors. This model granularity may be 
revised because organizations and their contexts are dynamic, leading to rapid changes in 
models and/or model parameters. Consequently, the method used to determine CoQ must be 
robust and understandable so that decision makers can adjust it, because some of its 
parameters change, or because the model is no longer a good representation of reality [22].  

Due to the uncertainty and vagueness inherent in a real environment, some model parameters 
can be difficult to estimate [23]. There are many approaches to represent uncertain and 
vagueness in parameters [24, 25], such as using intervals, data sets, fuzzy numbers, probability 
distributions, etc. [26]. Each method requires different relevant information. In this work, we 
use different methods, depending on the availability and reliability of data. Besides the 
uncertainty in the cost model parameters, we may also have bigger changes in the system, 
such as changing the inspection equipment/method or a significant change in the proportion 
of defects. This uncertainty is addressed by assuming several plausible scenarios. 

The main objective of this study is to develop an approach to efficiently select alternative 
suppliers and alternative incoming quality inspections in dynamic contexts. To limit the size 
of the paper, only two alternative suppliers and two alternative inspections will be analyzed. 

The remainder of this paper is organized as follows. The next section presents the 
description/assumptions of the supply chain system under study. In Section 3, we present the 
cost elements associated with each decision, needed to determine the total CoQ. In section 
4, an application example is presented, including a discussion of the numerical results of four 
scenarios with four different decisions. The paper ends with some conclusions and directions 
for future research. 

2 PROBLEM DESCRIPTION AND ASSUMPTIONS 

This work focuses on the selection of one amongst two alternative suppliers (Decision 1 – D1) 
for a given part, Comp1, needed in a manufacturing company, and the selection of one 
amongst two incoming inspection alternatives (Decision 2 – D2) (Fig. 1). The assumptions used, 
which may correspond to a specific case for a manufacturer, are: 

 There are two approved suppliers, SA and SB, for Comp1. They both comply with 
quality requirements and other relevant requirements, and deliver lots as ordered with 
a proportion of nonconforming parts, PA and PB, below an accorded threshold P1. If P1 
is exceeded, according to the contracts, the supplier must compensate all the costs 
associated with such defective lot and may lose the customer; 

 The unitary purchasing cost of Comp1 is CA for SA and CB for SB. We will suppose that, 
according to the suppliers’ contracts, CA is more variable than CB because exchange 
rates and transport fees influence CA and may vary from order to order. 
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Figure 1: Problem description flowchart / Conceptual model of system  

The assumptions about the incoming inspection are as follows: 

 It is technically and economically viable to do 100% inspection of Comp1 critical 
variables; each part inspection costs on average Ci; 

 Fd is the proportion of compliant parts classified as defective and Fc is the proportion 
of defective parts classified as compliant (imperfect inspection); 

 Cd is the average cost of dealing with a defective part at incoming inspection after 
classifying the component as defective (including false defectives); 

 Cr is the average cost of dealing with a defective part at the manufacturing system; 

 Np is the number of parts to be ordered. 

This corresponds to what occurs in several manufacturing processes of the automotive sector, 
which receive a given part from more than one supplier and must decide what kind of incoming 
inspection should be made. As a result of 100% inspection (100% I), parts can be classified as 
compliant and sent to the manufacturing process or non-compliant and segregated. Two 
different types of errors can occur during the inspection of parts: sending defective parts to 
the manufacturing process and segregating conforming parts. To represent these situations, 
four combinations of alternative decisions, here called tactics, including selecting SA or SB 
and not doing inspection (0% I) or doing 100% I, were analyzed (Fig. 2).  

Tactic 1 
D1 = SA;  

D2 = 0% I 
Supplier A

Manufacturing 

System

Product 

Reception

No Inspection

 

Tactic 2 
D1 = SB;  

D2 = 0% I 
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Manufacturing 

System

Product 

Reception

No Inspection

 

Tactic 3 
D1 = AS;  

D2 = 100% I Supplier A
Manufacturing 

System

100% Inspection

Product 

Reception
 

Tactic 4 
D1 = SB;  

D2 = 100% I Supplier B
Manufacturing 

System
Product 

Reception

100% Inspection

 

Figure 2: Alternative suppliers and alternative incoming inspections 
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3 COST OF QUALITY MODEL 

Conceptually, this work employs the approach used by Sousa and Nunes [22] to develop a 
computational model concerned with selecting the best inspection strategy based on an 
expected CoQ, a non-value-added cost that should be minimized. However, it is developed for 
a different context, including alternative suppliers and incoming inspection.  

To determine the CoQ of each tactic, a computational model was implemented in Microsoft 
Excel. The uncertainty of some model parameters motivated the use of Monte Carlo 
simulation. 

3.1 Cost of Quality Elements  

A set of inputs (parameters) (Table 1) and one output (CoQ) were defined. Four scenarios were 
analyzed: the first one corresponds to the baseline, i.e., the current situation; the other 
scenarios correspond to potential changes in the system, which is dynamic, e.g. variable 
purchasing costs or variations in the inspection system. For each scenario, four analytical 
models were developed based on the description related to Fig. 2. 

The CoQ is obtained as the sum of cost of quality elements, which represent the additional 
costs added to the strictly necessary cost for manufacturing, such as acquisition, 
transportation, support/management activities and manufacturing costs. According to the PAF 
model, the CoQ elements are classified into three PAF categories. Within the supply chain 
system previously explained we will present the cost elements associated with each decision 
and then calculate the CoQ for each tactic to select the one with the smallest cost.  

3.1.1 Prevention costs 

In this context, prevention costs can be considered as the cost of paying an additional value 
for parts assuming that a given supplier has a lower proportion of defectives and will result in 
less failure costs. So, when ordering from SA (D1=SA), if CA>CB and PA<PB, then the prevention 
cost will be CA-CB (€/unit), otherwise it will be 0. Similarly, when ordering from SB (D1=SB), 
if CB>CA and PB<PA, the prevention cost will be CB-CA (€/unit), otherwise it will be 0. 

3.1.2 Appraisal costs 

Appraisal costs, in this context, are the incoming inspection costs. When ordering from SA or 
SB, if 100% incoming inspection is decided (D2=100% I), the appraisal cost is Nc×Ci (€). 

3.1.3 Failure costs 

Failure costs are the costs resulting from defective parts. If there is an incoming inspection, 
we can detect the defective components and deal with them at a given cost (Cd). If the 
defective parts are sent to the manufacturing system, dealing with defective parts will cost 
more (Cr>Cd). Additionally, assuming errors in the inspection system, some compliant parts 
will be classified as defective (type II error), resulting in a cost (Cd). Also, some defective 
parts may not be detected and pass through inspection to the manufacturing system, also 
resulting in a cost (Cr) per unit. If there is no incoming inspection (D2=0% I), the same 
proportion of defective components in the received lot will arrive at the manufacturing 
system, also resulting in a cost (Cr) per unit. 

4 NUMERICAL EXAMPLE AND DISCUSSION 

Based on the context described in section 2, scenario 1 corresponds to the current system’s 
reality. Some input parameters were uncertain and were defined as an uniform distribution 
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whose limits correspond to extreme values [a, b] (ranging from an optimistic value to a 
pessimistic value), considered possible for this parameter [27], while others, where a value 
was more likely than others values, were defined as a triangular distribution [a, b, c] (Table 
1). The values of Ci, Fd, Fc, and Cd are necessary to determine the CoQ when D2 is 100%I. If 
other alternatives were assessed, such as acceptance sampling, other parameters would be 
defined. 

Table 1: Control parameters/inputs used in each scenario (Sc) 

Sc Np CA CB PA PB Ci Fd Fc Cd Cr 

1 1000 9 10 [0.8%, 1%] [0.6%, 0.8%] 0.3 20% 10% 11 [150, 200, 250] 

2 1000 9 10 [0.8%, 1%] [0.6%, 0.8%] 0.3 10% 5% 11 [150, 200, 250] 

3 1000 10 10 [0.8%, 1%] [0.6%, 0.8%] 0.3 10% 5% 11 [150, 200, 250] 

4 1000 10 10 [0.8%, 1%] [0.6%, 0.8%] 0.3 10% 5% 11 [200, 250, 300] 

The values of scenario 1 can be frequently updated depending on changes in the described 
system and in changes in the availability of data. We may also want to analyze other scenarios, 
related with potential changes that may abruptly occur, such as an improvement in the 
measurement system (scenario 2), a price increase of comp1 from SA (scenario 3), and an 
increase in the costs associated with defective units (scenario 4). 

Table 2 shows the CoQ for each scenario for all combinations of decisions. Each combination 
of two decisions corresponds to a tactic (TA). The CoQ is the sum of relevant cost elements 
previously described and are discriminated by the type of cost (Prevention - P, Appraisal - A, 
or Failure - F). It can be noted that appraisal costs are zero in the two initial tactics, and the 
prevention costs are zero when the components’ cost is equal (scenarios 3 and 4).  

Table 2: CoQ per scenario of each set of decisions assuming deterministic parameters 

 
TA1: D1=SA; 

D2= 0% I 
TA2: D1= SB;  

D2= 0% I 
TA3: D1= SA;  
D2= 100% I 

TA4: D1= SB;  
D2= 100% I 

Sc CoQ P A F CoQ P A F CoQ P A F CoQ P A F 

1 1800 0 0 1800 2400 1000 0 1400 2660 0 300 2360 3625 1000 300 2325 

2 1800 0 0 1800 2400 1000 0 1400 1570 0 300 1270 2532 1000 300 1232 

3 1800 0 0 1800 1400 0 0 1400 1480 0 300 1180 1462 0 300 1162 

4 2250 0 0 2250 1750 0 0 1750 1503 0 300 1203 1480 0 300 1180 

As can be seen in Table 2, the minimum CoQ for scenario 1 is 1800, corresponding to the TA1, 
but for scenario 2, which corresponds to a reduction of type I and type II errors from 20% and 
10%, to 10% and 5%, respectively, the minimum CoQ is 1570, corresponding to the TA3. If the 
cost of Comp1 from SA increases from 9 to 10 (scenario 3), the minimum CoQ is 1400, 
corresponding to TA2. This result can be counterintuitive - an increase in price can lead to a 
smaller CoQ. In this scenario, there are no prevention costs, because both suppliers sell at the 
same price, despite the better quality of SB, so we do not need to pay an extra cost to have 
the supplier with a lower proportion of defectives. Finally, in scenario 4, which corresponds 
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to an increase of Cr from 200 to 250 (the modal value of the triangular distributions), the 
minimum CoQ is 1480, corresponding to the TA4.  

In a dynamic context, business conditions can change quickly (here modelled by different 
scenarios) and uncertainty regarding some parameters of the cost model must be included in 
the calculations. In this example, the uniform distribution was adopted to model the 
uncertainty of PA and PB and the triangular distribution to model the uncertainty of Cr. The 
propagation of the parameters uncertainty to the CoQ value was done using Monte Carlo 
simulation (MCS) implemented through the add-in tool for Microsoft Excel, @RISK 8.4 from 
Palisade (https://www.palisade.com/risk/). 

Figure 3 shows the results of the simulation for scenario 3, after 10,000 iterations. It shows 
CoQ values from different tactics TA2 and TA4 (the ones with lowest CoQ). This type of analysis 
can be performed for any other scenario. 

Disregarding the 5% best results and the 5% worst results from MCS, we get the interval [MCS5, 
MCS95], which includes 90% of the simulation results. For example, for TA2, the 90% confident 
interval for this tactic is [1108, 1713]. Regarding the TA4, 100% of the histogram corresponding 
to CoQ is contained in this interval but with smaller range. Although the average CoQ value of 
TA2 is lower than the average CoQ value of TA4, there is a considerable probability of the TA2 
has a higher cost than the cost of TA4 (this probability corresponds to the entire representation 
of the histogram of TA2 shown to the right of the cost histogram of TA4 (with a CoQ >1490). 
The greater or lesser risk aversion of the decision-maker will dictate, in this case, which of 
the two tactics to adopt. This situation does not arise when using the parameters of scenario 
3 without uncertainty, where the best tactic is TA2 with a CoQ=1400. 

Figure 3: Distribution comparison between TA2 (SB_0%I) and TA4 (SB_100%I) from 
scenario 3. 

5 CONCLUSION 

The main objective of this study was to develop a framework to efficiently select alternative 
suppliers and alternative incoming inspections in dynamic contexts. To that end, two decisions 

Cost 

Prob. 

https://www.palisade.com/risk/


  

CIE50 Proceedings, October 30 – November 2, 2023 

American University of Sharjah, UAE 

 

 

 

8 

 

were defined in a manufacturing company within a supply chain, and the CoQ associated with 
each decision is determined, using the PAF model. The approach adopted in this paper is 
similar to the work of Hlioui et al. [1], having the advantage of translating a multi-objective 
problem to the financial domain, being easy to model and solve.  

The simplicity of the model and the solution can change if other contextual factors are 
modelled, such as product demand or delivery times. In this paper, we detailed the process 
of 100% incoming inspection modeling the errors of that system, which some authors do not 
consider [1]. Thus, it mixes simplicity in modelling and detailing according to data availability 
and relevant issues that need to be considered in the decisions.  

The dynamic system can be delt with frequent reassessment of the best tactic, instead of 
maintaining the same tactic during mass production, independently of contextual changes. 
Also, the determination of CoQ of other scenarios provides a view of the solution robustness 
as in [6], but also deals with the uncertainty of data by using stochastic inputs. 

The numerical example shows that in different scenarios the best decisions are not the same, 
thus, by applying this framework to this type of problem, the company can improve its 
competitiveness. It also suggests that the decisions are interconnected, despite in many 
companies these are made by different persons/departments and may not be assessed 
frequently.  

To limit the size of the paper, only two alternative suppliers and two alternative incoming 
quality inspections were analyzed, but the work can be expanded to include more decisions 
and to model other aspects that may be relevant in other contexts. As future research 
direction, the simulation models could be relevant when designing digital twins of supply chain 
processes. 
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