FABRICS MADE FROM NON-CONVENTIONAL BLENDS: WHAT CAN WE EXPECT FROM THEM RELATED TO HANDLE

MÁRIO LIMA

Department of Mechanical Engineering, University of Minho,
4800-058 Guimarães, Portugal, mlima@dem.uminho.pt

ROSA M. VASCONCELOS

Department of Textile Engineering, University of Minho,
4800-058 Guimarães, Portugal

LUÍS F. SILVA

Department of Mechanical Engineering, University of Minho,
4800-058 Guimarães, Portugal

JOANA CUNHA

Department of Textile Engineering, University of Minho,
4800-058 Guimarães, Portugal

The paper briefly describes a novel patented laboratory instrument, which was investigated, designed and manufactured at the University of Minho based on a new method of assessing friction coefficient of fabrics, as well as its fundamentals and working principle, followed by an experimental study, where a comparison between three different double-faced fabrics made from non-conventional fibre combinations was carried out. The results of the experimental work being analyzed using various tools, including SPSS 15.0® statistical package and commented on the light of the influence of the raw material in the friction properties of the fabrics.

Introduction

Interaction with the human senses is an essential performance property [1, 2] as most textile materials are used near the skin, namely clothing, home furnishings and automotive fabrics. Friction coefficient is one of the factors contributing for the so-called parameter fabric hand and its importance justifies the number of contributions given in the past to this problem [3-7]. More recently, novel laboratory equipment was proposed for a new method of friction coefficient assessment of fabrics, which is easy to use and very precise. The development and validation of FRICTORQ [8] justifies an experimental work with a set of fabrics made from non-conventional fibre combinations. These new materials reflect the main present fibre research where new mixtures are used to reduce environmental impact, improve material performance and diversify the use of raw materials.

PLA (Polyactic-acid) is one of the new fibres used in the evaluated mixtures. Its main advantages are as follows: cotton look appearance; environmental friendly, based on a natural polymer thus biodegradable; high resistance to UV [9]. When mixed with other fibres [10] PLA also shows a good performance, namely:
- Natural fibre hand;
- Wickability / breathability of natural fibres;
- Good performance qualities;
- Good flammability resistance;
- Excellent drapeability.

SPF (Soya Protein Fibre) is also another new fibre used in this work. It is made by a wet spinning process occurring after the extraction of spherical protein from soybean residue. One of the most attractive properties of SPF is the soft touch as well as a good
moisture absorption giving fabrics better comfort properties when mixed with other fibres [11].

The model of Frictorg

This model went through various development stages and some of the detected weaknesses suggested that a different approach could be explored [12, 13].

![Figure 1: FRICTORQ II model](image1)

Figure 1 is a schematic representation of the latest adopted model named FRICTORQ II. The laboratory prototype of the instrument is represented in Figure 2. For a more complete understanding, references [12, 14] present and discuss other models and design stage details for the development of the present prototype, including a fabric-to-fabric initial proposal that is still valid and can easily be an alternative in this instrument.

![Figure 2: FRICTORQ II laboratory prototype](image2)

The rotary action remains, but the contact is now restricted to 3 small special elements or feet, disposed at 120°. Providing a relative displacement of approximately 90°, it is assured that a new portion of fabric is always moved under the contact sensors. For this model, torque is given by:

\[T = 3 F_a r \]
Being, by definition, \(F_n = \mu N \) and from figure 1, \(N = P/3 \), where \(P \) is the vertical load, the coefficient of friction is then expressed by:

\[
\mu = \frac{T}{P \times r}
\]

Previous exploratory work led to the establishment of some design parameters, namely contact pressure and linear velocity in the geometric centre of each contact foot, the latter set to approximately 1.57 mm/s.

Figure 3 represents a graphic display of an experiment showing the most relevant parameters. The shape of the graph is stable and nearly horizontal for the duration of the test. For dynamic friction the data collected between 5 and 20 seconds of the test is used.

![Figure 3](image)

As well as other well known methods, such as KES, this one is not covered by any standards. The contact surface is made of standard and commercially available steel needles of 1 mm diameter joint side by side in a square shape as it is seen in figure 1. Therefore this surface is well characterized and easily reproducible.
Experimental Procedure

iii. Characterization of the Tested Materials

The tested materials were three double-faced fabrics made from non-conventional fibre combinations listed as follows:

1) Cotton – Corn fibre (CO-PLA);
2) Polyester/Cotton – Cotton (PES/CO-CO);

These double faced fabrics have the same construction weave in both sides, based in a 5- satin structure. The difference between the two faces lay on the weft material, e.g. in cotton- corn fibre the outer face (OF) in mainly composed by cotton while the inner face (IF) is mainly made by Corn fibre. The use of these double faced structures allowed us to test the influence of each fibre in friction properties.

jjj. Methodology

FRICTORQ II instrument was used to test the outer-face (OF) and inner-face (IF) surfaces of the mentioned materials. Samples were prepared and cut in circles of 130 mm diameter and tested under a conditioned atmosphere of 20 ± 2 °C and 65 ± 2 % RH.

Results and Discussion

After collecting the data obtained during the tests carried out using Fricctorq testing apparatus, a statistical package SPSS15.0® was used in order to analyse the influence of the different materials in the friction coefficient. Table 1 shows the results obtained in the descriptive statistics for friction coefficient of the tested materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>N</th>
<th>Mean</th>
<th>Std Deviation</th>
<th>Std Err</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-PLA IF</td>
<td>13</td>
<td>1.95785</td>
<td>0.035086</td>
<td>0.009712</td>
<td>1.90441 - 2.01129</td>
<td>1.941</td>
<td>2.073</td>
</tr>
<tr>
<td>CO-SPF IF</td>
<td>13</td>
<td>2.07466</td>
<td>0.038652</td>
<td>0.010913</td>
<td>2.00013 - 2.14919</td>
<td>2.007</td>
<td>2.133</td>
</tr>
<tr>
<td>CO-CO IF</td>
<td>15</td>
<td>2.04500</td>
<td>0.035078</td>
<td>0.009714</td>
<td>2.00153 - 2.08847</td>
<td>2.008</td>
<td>2.108</td>
</tr>
<tr>
<td>CO-PLA OF</td>
<td>13</td>
<td>1.97215</td>
<td>0.022633</td>
<td>0.006275</td>
<td>1.94008 - 2.00421</td>
<td>1.923</td>
<td>2.011</td>
</tr>
<tr>
<td>CO-SPF OF</td>
<td>13</td>
<td>2.06210</td>
<td>0.033341</td>
<td>0.009446</td>
<td>2.00370 - 2.12050</td>
<td>2.007</td>
<td>2.075</td>
</tr>
<tr>
<td>CO-CO OF</td>
<td>15</td>
<td>2.01378</td>
<td>0.040263</td>
<td>0.011698</td>
<td>1.94906 - 2.07841</td>
<td>1.943</td>
<td>2.184</td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>2.00736</td>
<td>0.040234</td>
<td>0.011698</td>
<td>1.94206 - 2.07268</td>
<td>1.911</td>
<td>2.184</td>
</tr>
</tbody>
</table>

As can be verified in table 1, the mean values range is between 0.195785 and 0.21638, with the minimum value obtained for CO-PLA IF and the maximum for CO-SPF OF. In figure 4 the results obtained from the test are presented in a box-plot chart.
The lowest amplitude value is achieved when the CO-PLA_OF sample was tested and the highest for the CO-SPF_OF. In order to compare the results obtained from the six tested materials a Scheffe analysis was carried out as to determine the existence of homogeneous subsets. Means for groups in homogeneous subsets are displayed in table 2.

Table 2. Scheffe analysis for μ_{k1}

<table>
<thead>
<tr>
<th>Samples</th>
<th>N</th>
<th>Subset for μ_{k1} = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-PLA_OF</td>
<td>15</td>
<td>1.05765</td>
</tr>
<tr>
<td>CO-PLA_OF</td>
<td>15</td>
<td>1.07215</td>
</tr>
<tr>
<td>CO-SPF_OF</td>
<td>15</td>
<td>1.04089</td>
</tr>
<tr>
<td>PES/CO-OF</td>
<td>15</td>
<td>1.05029</td>
</tr>
<tr>
<td>PES/CO-IF</td>
<td>15</td>
<td>1.07149</td>
</tr>
<tr>
<td>CO-SPF_OF</td>
<td>15</td>
<td>1.01159</td>
</tr>
<tr>
<td>Sig.</td>
<td>.940</td>
<td>.521</td>
</tr>
</tbody>
</table>

The analysis clearly determines the existence of three different subsets. In order to analyse with precision the results obtained in the Scheffe test, the multiple comparisons table 3 was carefully reviewed. This brought to our attention the significance obtained between CO-SPF_OF and PES/CO-OF which is 0.048, near the 0.05 level of significance in which the test is carried out.

Table 3. Multiple comparison analysis for μ_{k1}

<table>
<thead>
<tr>
<th>(0) Samples</th>
<th>(0) Samples</th>
<th>Mean Difference (1-0)</th>
<th>Std Error</th>
<th>Sig.</th>
<th>α=0.05 Confidence Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-PLA_OF</td>
<td>PES/CO-OF</td>
<td>-0.00480 (3)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
</tr>
<tr>
<td>CO-SPF_OF</td>
<td>-0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-OF</td>
<td>0.00140 (3)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-IF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-OF</td>
<td>PES/CO-IF</td>
<td>0.00900 (2)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
</tr>
<tr>
<td>CO-SPF_OF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-IF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>CO-SPF_OF</td>
<td>0.00900 (2)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-OF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-IF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>CO-PLA_OF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-OF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-IF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>CO-PLA_OF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-OF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-IF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>CO-PLA_OF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-OF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>PES/CO-IF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
<tr>
<td>CO-PLA_OF</td>
<td>0.00750 (4)</td>
<td>0.012902</td>
<td>0.960</td>
<td>-0.03580 - 0.02620</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

This study allows us to draw the following conclusions as to the friction behaviour of the non-conventional blends:

- PLA fibre has a strong influence on the friction, independently of being on the outer or in the inner face of the fabric, corresponding to a worst handle.
- PLA fibre blend with Cotton fibre as the contact material has also shown to be the one with lower amplitude value, meaning a more homogeneous surface.
- Cotton fibre as the contact material, regardless of the fabric blend, has shown to be always the highest friction coefficient, corresponding in each pair to the best handle. However, when combined with SPF fibre is when the values are higher thus corresponding to the best handle.
- The Scheffe analysis has demonstrated that there are three different subsets among the tested samples. A detailed study of the multiple comparison analysis table shows that the mean difference obtained between CO-SPF_OF and PES/CO-CO_IF is only 0.048, a value very close to the 0.05 level of significance in which the test in carried out, showing that probably this sample belongs to the last group of the CO-SPF_OF sample.

Acknowledgments

The authors express their gratitude to Carlos Alberto Guimarães and João Gonçalves, students of Clothing Engineering at the University of Minho, for carrying out the experimental work herein reported.

References

ALTEX’ 2007
Global Networking on Textile Innovation and Exchange

Roubaix, France
September 20 – 22, 2007
Altex' 2007: Global Networking on Textile Innovation and Exchange

Parallel session - Nonwoven development and characterization I

Parallel session - Computational textile and modelling I

Altex06: A Conduction-Radiation Model to Predict the Thermal Resistance of Fabrics, D. Bhattacharjee, V.K.Kothari...19
Altex21: Automatic Recognition of Fabric Structures Based on Digital Image Decomposition, L.Li, T.Jia and X.Chen...24

Parallel technical session - Nonwoven development and characterization II

Altex12: Study of the influence of fiber morphology on liquid diffusion within nonwoven structures: effect of fiber diameter, P.Vroman, Y.Zhang, X.Chen, M.Lewandowski, A.Perwuelz..32
Altex36: Liquid transport in non-homogeneous nonwoven fabrics, N.Mao.................................39

Parallel session - Dyeing and finishing technology

Altex03: Surface Properties of PET Fabrics: Hydrophilic Finishing & Plasma treatment, L.Guo, A.Perwuelz, C.Campagne..57
Altex14: Studies on atmospheric plasma treatment of Polyester Fabric and its adhesion properties with polyethylene glycol, V.Takke, A.Perwuelz, C.Campagne, M.Behary, B.L.Deopura, B.Gupta..63
ALTEX'2007
International Workshop on
Textile Innovation and Textile Exchange
Roubaix - France

Altex41: Research on Dyeing and Anti-ultraviolet Properties of Vegetable Dyes
Extracted from HH-CT on Silk Fabric, N.Wang, L.Wang, S.Jia, Q.Zhou.............77

Parallel session - Computational textile and modelling II

Altex16: Optimization of the operation settings space for developing new multi-functional textile materials using fuzzy technique, X.Deng, P.Vroman, X.Zeng, L.Koehl...85
Altex28: Detecting pills of fabric image based on multi-scale matched filtering, X.Chen, Z.Xu, L.Li...100

Parallel session - Liquid transportation in textiles

Altex07: Humidity Draining by Textiles , T.Sharabatyi, F.Biguenet, F.Viallier........106
Altex17: Simulation study of three dimensional flow field inside nozzle of jet-vortex spinning, Z.Zou, L.Che, W.Xue, Y.Ji, X.Yu...122
Altex30: Properties of Differential Capillary Effect of Knitted Sport-Wear Fabrics, R.Xu, L.Che, W.Yang...130

Parallel Session - Fabric development I

Altex38: Designing multifunctional underwear garment based on the patchwork technique, R.Fangueiro, F.Soutinho, M. de Araujo...140
Altex45: Functional engineering design of intelligent thermal protective clothing, SX.Wang, Y.Li, H.Y.Hu, Hiromi Tokura, Q.W.Song...155

Parallel Session: Fiber development

Altex24: Extraction of natural bamboo fiber through one-bath alkali-H2O2 de gumming, J.Fu, Z.Sun,C.Yu..164
Altex26: Preliminary Study of Laccase Degumming on Kenaf Fiber, T.Yan, C.Yu,........170
Altex31: Preparation of pure cellulose nanofiber via electrospinning, K.Okawara, J.Dureux, A.Nishida, S.Hayashi, H.Yamamoto..176
Altex46: Configuration of a genetic algorithm used to optimise fibre steering in composite laminates, J.Bardy, X.Legrando..184

Parallel session: Textile comfort and fabric hand

Altex10: Determination of compatibility of fabric sample for particular apparel by advance computing techniques, G.Aggarwal, L.Koehl, X.Zeng, V.K.Kothari.............190
Altex23: Fibrics made from non-conventional blends : what can we expect from them related to handle, M.Lima, M.Vasconcelos, L.F.Silva, J.Cunha.................................195
Altex35: Study of comfort of textile structure using UST instrument , F.Fayala, A.Glith, M.Hamdaoui, A.Kahouaji...202

Parallel Session: Fabric development II

Altex 29: The Utilization of Some Feathers in Chinese Ancient Textiles, Q.Cao, H.Tu, S.Zhu ... 214
Altex 32: The study on folk textiles Lu Brocade of Shangdong, X.Ren, H.Tu 217
Altex 18: Development of the Warp Knitted Spacer Fabrics for Cushion Application, X.Ye, H.Hu, X.Feng ... 223
Altex 39: Monaxial weft knitted structures for advanced FRP, M. de Araujo, R.Fangueiro and F.Soutinho ... 229