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Resumo

Atualmente, as lesdes musculosqueléticas relacionadas com o trabalho (LMERTs) afetam
aproximadamente 60% dos trabalhadores europeus (1). Permanecer de pé durante longos periodos e
carregar e levantar objetos pesados sao atividades que introduzem uma carga significativa nas pernas
dos trabalhadores (I). Nem todos os processos industriais podem ser completamente automatizados e,
portanto, é ainda necessario que os trabalhadores executem tarefas repetitivas (2). Os exoesqueletos
podem ser utilizados para aumentar a capacidade fisica e diminuir a tensao fisica nos musculos dos
utilizadores, contudo, os exoesqueletos atuais ainda nao sincronizam 0s seus movimentos com a
intencdo do humano nem assistem cada trabalhador de forma individualizada (2).

O principal objetivo desta dissertacao foi o desenvolvimento e validacdo de um controlo human-in-the-
loop (HITL) para um exoesqueleto de membros inferiores. O proposito do controlo foi a otimizacao, em
tempo-real, do perfil de torque do exoesqueleto, para um perfil que minimizasse o esforco do utilizador,
avaliado pelo seu custo metabdlico (CM) e torque de interacao.

Primeiramente, um modelo regressor capaz de estimar o CM de uma pessoa, em tempo-real, com
base em dados de quatro sensores inerciais foi desenvolvido e integrado no exoesqueleto. O modelo
foi treinado com dados de trés atividades: (i) estar de pé; (ii) andar; e (iii) estar sentado. Durante uma
validacdo experimental, o modelo alcancou um erro quadratico médio de 0.66 W/kg.

De seguida, foi desenvolvido um controlo de torque que permitiu a manipulacao dos atuadores do
dispositivo para seguirem um perfil de torque gerado por interpolacao polinomial. Este foi formado por um
controlador de nivel médio que estima a fase da marcha e obtém a referéncia de torque, e um controlador
de nivel baixo usado para movimentar o atuador de acordo com a referéncia e fase da marcha. Uma
validacao conceptual do controlo mostrou que este foi capaz de assistir o utilizador com sucesso.

Por fim, um controlo HITL foi desenvolvido, pela integracdo do modelo regressor e o controlo de torque
com um algoritmo otimizador. O otimizador adaptou o perfil de torque, em tempo-real, para minimizar o
esforco do utilizador. Uma validacao conceptual do otimizador demonstrou que a assisténcia otimizada
resultou numa reducéo de 8.7% e 54.6% do CM e torque de interacdo do utilizador, respetivamente,
comparativamente com a utilizacao do dispositivo em modo transparente.

O controlo HITL foi desenvolvido e integrado no exoesqueleto com sucesso. Os resultados de uma
prova de conceito revelaram que este foi eficaz na reducao do esforco do utilizador.

Palavras-chave: controlo human-in-the-loop, estimacao do custo metabolico, exoesqueletos, lesdes

musculosqueléticas relacionadas com o trabalho, trabalho assistido



Abstract

Work-related musculoskeletal disorders (WMSDs) affect roughly 60% of the European working
population (I). Standing for long periods and carrying and lifting loads are all industrial activities that
introduce significant loads on the workers’ legs (I). Not every industry process can yet be fully
automated, and, therefore, humans are still required to perform repetitive tasks in their workplaces (2).
Exoskeletons can be employed for power augmentation of healthy workers by reducing the physical
stress and strain on the user’s muscles, however, today’s exoskeletons can not yet perfectly synchronize
to the human'’s intentions nor provide ideal and individualized assistance to each worker (2).

The main goal of this dissertation was to develop and validate a human-in-the-loop (HITL) control for
a lower limb exoskeleton (LLE). This control aim was to optimize, in realtime, the torque profile of the
exoskeleton, to a profile that minimizes the user’s exertion, evaluated by the person’s metabolic cost (MC)
and interaction torque.

Firstly, a regression model capable of estimating, in real-time, a person’s MC based on data from four
inertial sensors was developed and integrated into the exoskeleton’s system. The model was trained with
data from three different activities: (i) standing; (i) walking; and (iii) sitting. During a real-time experimental
validation, the model achieved a root-mean-square error of 0.66 W/kg.

Then, a torque tracking control was developed for the LLE. This control ensured that the device's
actuators track a pre-determined torque profile, generated by a natural cubic spline interpolator. It was
composed of a mid-level controller that estimated the gait phase and generated a torque reference, and a
low-level controller, used to drive the actuator according to the reference torque. A conceptual validation
of the control showed that it was able to successfully assist the user by producing a comfortable gait.

Finally, the HITL control was developed, by integrating the MC estimating model and the torque
tracking control with an optimization algorithm. This optimizer adapted the torque profile, namely the
knee flexion and extension peak torque magnitudes, to minimize the user’s exertion. A conceptual
validation of the HITL strategy showed that the optimized assistance resulted in a reduction of 8.7% and
54.6% of one participant’s MC and interaction torque, respectively, compared to using the device in a
zero-torque mode.

The HITL control was successfully developed and integrated into an LLE. The proof-of-concept results
revealed that this strategy was effective in reducing the user’s exertion.

Keywords: assisted working, exoskeletons, human-in-the-loop control, metabolic cost estimation,

work-related musculoskeletal disorder

Vi
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1 Introduction

This manuscript presents the work developed for this dissertation, entitled "Human-in-the-loop
control for lower limb assistance driven by exoskeleton”, in the scope of the fifth year of the Integrated
Master's in Biomedical Engineering during the academic year of 2022/23, in the field of Medical
Electronics, at the University of Minho. The work presented in this dissertation was developed at the
Biomedical Robotic Devices Laboratory (BiRD Lab), of the Centre of MicroElectroMechanical Systems
(CMEMS) Research Centre established at the University of Minho. This work is immersed in a research
project that resulted from the collaboration of the University of Minho and 'Bosch Car Service’ (Braga,
Portugal) named "Connected Manufacturing — Digital Transformation”.

During this period, it was developed a machine learning model capable of estimating a person’s
metabolic cost (MC) in realtime. This model was then integrated into a human-in-the-loop (HITL) control,
of a lower limb exoskeleton (LLE), capable of optimizing a torque controller to minimize the user’s exertion
in realtime. The followed methods during the dissertation, its results, and the conclusions taken are

presented in this manuscript.

1.1 Motivation

An ongoing cause of concern in the industry are work-related musculoskeletal disorders (WMSDs), the
most common work-related health problem in developed countries, affecting millions of European workers
across all sectors and occupations (I). In total, it is estimated that 1.71 billion people worldwide have a
musculoskeletal disorder (3). Musculoskeletal disorders are injuries that limit human motion by affecting
muscles, nerves, tendons, ligaments, and so on. Some examples of such disorders are carpal tunnel
syndrome, tendonitis, tendon strains, and ligament sprains. A report commissioned by the European
Agency for Safety and Health at Work, in 2019, disclosed that three out of five workers in the European
Union have musculoskeletal complaints, and more than half of the workers with musculoskeletal disorders
reported being absent from work, at least once, due to the illness (1).

The prevalence of WMSDs in industry workers is around 29%, 11%, 33%, and 17% for the leg, hip,
knee, and ankle/feet, respectively (4). In 2020, body movements under/with physical stress accounted for
18.4% of the causes of non-fatal work accidents (5). The industry activities that are more critical for WMSDs
in the lower limbs are standing for long periods and carrying/lifting heavy loads since the three primary risk
factors comprise task repetitions, forceful exertions, and awkward postures (6). Pain in the lower limbs

was a usual (49.5%) complaint among hairdressers (7), workers required to stand for long times, and 63%



of workers that frequently carry and/or move heavy loads reported having musculoskeletal disorders (I).
The industry sectors with a higher prevalence of lower limb WMSDs, in 2015, were agriculture, forestry,
and fishing (46%), construction (40%), and water supply (40%) (1).

Over the past years, various ergonomic studies have proposed strategies to reduce the physical load
of workers in their workplace, such as resting periods, task rotations, and the autonomation of industry
tasks. However, not every process can be fully automated, and humans are still required to deal with
significant loads, repetitive tasks, and non-ideal postures, e.g., in transporting materials on rough terrains
(2.

LLEs can be employed for power augmentation of healthy workers by reducing the physical stress and
strain on the users’ muscles as they perform motions like walking, squatting, stand-to-sit, and sit-to-stand,

or while they are in stationary positions (either sitting or standing) (2).

1.2 Problem statement

Despite the advantages of using LLEs for human assistance and power augmentation, various
limitations to these devices can still be identified. These limitations are the reason for the lack of
exoskeletons being developed, commercialized, and used in industrial applications. One major challenge
of exoskeletons is the need for compliant, compatible, and safe human-robot interactions. However,
today’s exoskeletons can not yet provide ideal and individualized assistance to each user (2, 8).

The synchronization between the human’s and robot's motions is still a complex problem, as
movement patterns can diverge significantly between different people. Typically, exoskeletons’ control
parameters (joint positions, torque profiles, etc.) are chosen based on the biomechanics of the average
population (9, 10) and are generally good enough to assist their users, but they do not take any
physiological parameter into account, like pain, effort, or metabolic consumption, nor coordinate the
device according to the human'’s intentions (11).

This raises the need for more intelligent control schemes, that can adapt the exoskeleton assistance
to the human’s needs by monitoring the synergy between the user and the device. Several controllers
have recently been proposed by taking inspiration from the human’s gait, which is smooth, comfortable,
and naturally optimized for each specific person (8).

One possible strategy is the real-time optimization of the control parameters based on physiological
signals obtained from the user — HITL control (12). This way, by monitoring data acquired by wearable
sensors, it is possible to continuously adapt the assistance provided by the device to each user, and

humans are actively involved in the exoskeleton control. This strategy shows a huge potential for industrial



applications, as it could be used to minimize the MC of workers performing heavy tasks. However, it has
yet to be implemented for industrial exoskeletons assisting workers in realtime (13).

The physiological parameter most optimized in these approaches is the MC. However, the standard
method for the estimation of this signal is through indirect calorimetry, which requires expensive and not
portable equipment, is time-consuming, its estimation is noisy, and is not feasible for real-world
applications (14). To overcome this drawback, various machine and/or deep learning models have been

proposed to estimate the MC based on data obtained from portable sensors (15, 16).

1.3 Dissertation goals

The main goal of this dissertation is the development and preliminary validation of an adaptive torque
control for an LLE towards the power augmentation of workers during physically demanding tasks for the
lower limbs, such as standing for long periods and carrying/lifting heavy loads. This control will implement
a HITL algorithm to optimize the interaction between humans and an LLE, with a focus on the knee joint.
The HITL algorithm aims for the real-time optimization of an exoskeleton’s knee joint torque by minimizing
the user’s exertion, evaluated by two parameters: (i) the user’'s MC, estimated in real-time by a regression
algorithm based on non-intrusive wearable sensor data, and (ii) the interaction torque between the user
and the device.

To reach the proposed main goal, four smaller objectives were identified:

Objective 1: Perform a literature review of LLEs, HITL control strategies, and regression
algorithms for MC estimation. More precisely, survey the literature on LLEs developed for assisting
industry workers, on the existing HITL controls, and on MC estimation models proposed for clinical or daily
assistance. The key performance indicator (KPI) for this objective is the production of the review. This
objective is presented in Chapter 2.

Objective 2: Develop a regression model for MC estimation based on data obtained from
wearable and non-intrusive sensors, in realtime. This objective includes: (i) the search for a dataset
with relevant sensor data collected during motor tasks similar to standing, walking for long periods, and
carrying/lifting; (ii) the selection of minimal sensor inputs toward maximum usability in the industry; (iii) the
development and benchmark of several regression models for MC estimation; and (iv) the implementation
of the regression model into the LLE's architecture. As a KPI, the regression model should obtain a root-
mean-square error (RMSE) below 0.8 W/kg and a coefficient of determination larger than 80% (17, 18).
This objective is addressed in Chapter 4.

Objective 3: Develop a torque tracking control that manipulates an LLE's knee joint to follow



a desired torque trajectory. This objective includes the development of: (i) a natural cubic interpolator
for generating the torque profile; (i) a mid-level controller capable of estimating the gait cycle phase and
generating the reference torque from the torque profile; and (iii) a low-level controller that minimizes the
difference between the reference and the actuator’s torque. Guaranteeing the user’'s comfort level when
walking with the controller is the KPI for this objective. This objective is presented in Chapter 5.

Objective 4: Develop a HITL adaptive torque control capable of adjusting the LLE's knee joint
torgue to minimize the exertion level of the users, estimated by the regressor model. This adaptive torque
control should be able to find a customized torque profile for each user according to his/her exertion level,
measured by the weighted sum of the MC and the human-exoskeleton interaction torque. The KPI is the
development of a control that requires less than 30 minutes of optimization (8, 19). This objective is
presented in Chapter 6.

Objective 5: Validate the regression model and the proposed controls during human tests
walking under the assistance of the LLE. The validation comprises the development of the experimental
protocols, the data acquisition, and the evaluation of the regression model’s and controllers’ performance.
The HITL control should grant a reduction of the MC and the interaction torque of the exoskeleton’s users
by at least 10% (8, 19), compared to performing the same activities with the device in zero-torque mode.

This objective is presented in Chapters 4 and 6.

1.4 Research questions

This proposed dissertation was developed in order to find the answer to the following research
questions (RQs):

RQ1: What are the current effects of HITL controls implemented on LLEs? This RQ is related to
Objective 1 and is answered in Chapter 2.

RQ2: How accurate can a regression model be in estimating the MC based on a small number of
wearable and non-intrusive sensors? This RQ is related to Objective 2 and is answered in Chapter 4.

RQ3: How much can LLE users’ exertion be reduced by a realtime HITL optimization? This RQ is

related to Objective 5 and is answered in Chapter 6.

1.5 Contributions to knowledge

The main contributions to knowledge achieved by this dissertation are:



¢ A review of the LLEs for power augmentation and the "chair-like” exoskeletons developed for

industrial applications (workers’ assistance).

¢ A review of HITL control strategies used to optimize the assistance of an LLE regarding the users’

needs.

¢ A review of machine and deep learning models used to estimate the MC, in real-time, based on

wearable sensors.

¢ A novel regression model used to estimate the MC based on a minimal number of acceleration
sensors during various activities (walking, standing, and sitting), possible to be worn simultaneously

with an LLE, and feasible for HITL applications in assisted working.

¢ Atorque tracking control that enabled the manipulation of an exoskeleton’s knee joint according to

a pre-determined torque profile, which was tuned to guarantee the user's comfort when walking.

¢ A novel HITL control capable of finding customized optimal assistance that minimizes the MC and
interaction torque of an LLE user, and differentiates itself from the literature’s studies by minimizing

an MC estimated in real-time with a regression model.

The work developed in this dissertation also resulted in the publication of the following conference

paper:

¢ Monteiro, S., Figueiredo, J., Santos, C. "Towards a more efficient human-exoskeleton assistance”,
IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Tomar,

2023.

1.6 Manuscript outline

This document is organized into six additional chapters. Chapter 2 comprises the reviews of industrial
LLEs, HITL controls for exoskeletons, and MC estimation models. Chapter 3 presents the description
of the systems used in this dissertation and the requirements set for using LLEs for assisted working.
In Chapter 4, the development of the regression model used to estimate the MC is described, and its
validation during human tests is presented. Chapter 5 presents the development of the torque-tracking
control and its validation as a proof-of-concept during human experiments. Chapter 6 presents the HITL
control developed in a knee exoskeleton, based on the achievements made in Chapters 4 and 5, and its
validation in preliminary human tests. Chapter 7 presents the conclusions made in the dissertation and

future work.



2 Review on exoskeletons for assisting workers and human-

in-the-loop controls

In this chapter, the literature review on the dissertation topics is presented. Firstly, the LLEs used for
industrial applications were surveyed. Then, this chapter presents the analysis of LLEs’ HITL controllers
capable of real-time optimization of the users’ MC. Finally, the review on regression models used for
MC estimation based on data acquired by wearable sensors is also presented. Each literature review is
complemented by a critical analysis of the state of the art. This chapter ends with a synthesis of the

conclusions taken from these reviews.

2.1 State of the art on industrial lower limb exoskeletons

2.1.1 Introduction

Despite the increase in automatization and mechanization that the industry is currently experiencing,
a lot of workers are still daily exposed to physical workloads and WMSDs are still a significant issue that
employees must face (20). Unfortunately, strategies to avoid physically demanding occupational tasks, like
material handling, repetitive movements, and awkward postures can not always be implemented because
of economic reasons or certain workplace characteristics. An alternate direction must be followed to parry
this complication, one that can free workers from the burden of tough manual work, lessen the likelihood
of injury, and improve work efficiency: the use of exoskeletons (2, 21).

An exoskeleton is a wearable mechanical structure that fits closely to the user’s body and is operated
to assist the wearer according to their needs thanks to actuators that reduce the loads on the human
joints. These devices should not be confused with orthosis, which are robotic accessories that enable a
disabled person to move more naturally, whereas an exoskeleton is better described as a structure that
augments the performance of its wearer (22).

Exoskeletons can be classified according to: (i) the body parts they support as lower-body, upper-
body, or full-body; (i) the actuation they provide to the human joints as active, passive, or quasi-passive;
and (iii) the level of resemblance they have to a human as anthropomorphic, non-anthropomorphic or
quasi-anthropomorphic (20).

Exoskeletons’ effects on assisted working are still not deeply known due to a lack of studies. The few

studies that can be found seem to back up the idea that the use of such devices leads to a decrease in



workers’ physical stress (joint loads) and strain (muscle activity, discomfort, and fatigue), but the general
perceived strain felt by the users seem to increase, probably because of the discomfort associated with
the operation of an exoskeleton (21). So, it seems that, by providing an external torque to the joints of the
user, an exoskeleton can reduce the wearer’s muscle activity and support the addressed musculoskeletal
structures. This leads to an increase in human strength and endurance and allows workers to perform
certain tasks that otherwise could not be independently achievable (2, 21). The objective of this section is
to provide an overview of industrial LLEs that are already being used to increase the strength of workers

in occupational tasks and devices that are currently under development.

2.1.2 Methods

Search methodology

The literature search was conducted in the online database Scopus with the following combination of
keywords: exoskeleton AND ((“lower limb” AND industry) OR (bleex) OR ("Hanyang Exoskeleton Assistive
Robot” OR "HEXAR”) OR “legx” OR (load AND lifting AND assistance AND "lower limb” ). Additionally, the
search was extended to the websites of the commercialized exoskeletons whose descriptions could not
be found in any of the papers. The search was executed between the 21st of September of 2022 and the

30th of August of 2023, and no restriction related to the papers’ release date was taken into account.

Selection strategy

The papers were selected based on the following criteria: (i) presented an LLE used for industrial
applications; (ii) presented a detailed description of the device's hardware and control architecture.
Passive devices were not excluded from the search. Additionally, only one paper was selected for each

exoskeleton, namely the paper with a higher level of detail regarding the technical features of the device.

Data extraction

The selected papers were analyzed in order to obtain the following information: (i) the device
presented; (ii) the motor and industrial tasks assisted by the device; (iii) the weight of the exoskeleton
and its maximum payloads; (iv) the number of joints and degrees of freedom (DOFs); (v) the torque
provided to the users; (vi) the range of motion (ROM) of each joint; (vii) the locomotion speeds allowed;
(viii) the sensors implemented in the device; (ix) the controller architecture, and (x) and the device’s
limitation. The extracted information served as the benchmark for the discussion of the current state of

industrial LLEs.



2.1.3 Results

The search methodology resulted in 94 papers, that were filtered, following the mentioned selection
strategy, and reduced to 12 articles. The literature available revealed that the function and areas supported
can vary a lot across the LLEs commercially available, but two main types were identified: some assist the
human joints in movements like walking, squatting, or kneeling, while the wearer carries significant loads
- exoskeletons for power augmentation; others provide support for prolonged standing or sitting positions,
while the worker performs repetitive and stationary assembly tasks, with their upper limbs — “chair-like”
exoskeletons (21). Figure 1 presents some of the LLEs developed for and used in industrial applications,
were Figures 1a and 1b depict two devices used for power augmentation, while Figures 1c and 1d depict

two chair-like exoskeletons.

(a) BLEEX. Taken (b) Hercules. Taken (c) Chairless Chair. (d) legX. Taken from:
from: (23) from: (24) Taken from: (25) (26)

Figure 1: LLEs for assisting industry workers.

Exoskeletons for power augmentation

Many work environments do not allow the transportation of heavy objects by wheeled vehicles, like
rough slopes and staircases, making legged locomotion the desired method of transportation. LLEs can
help an able-bodied person carry heavy loads, in those harsh locations, and even assist them in performing
the weight-lifting movement itself (2, 27).

An overview of power-augmentation LLEs can be found in Table 1. There, it is possible to analyze
the assessed technology readiness level (TRL), the motor and industrial tasks assisted, the weight and
load capacity, the joints, the actuated DOFs in the sagittal plane and the type of actuator used, the torque
applied to the joints, the ROM of each joint and the sensors implemented in each LLE. The BLEEX and

Hercules devices are presented in Figure 1a and 1b, respectively.
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The TRL was used to analyze the state of development of each exoskeleton, useful for comparison
purposes. Since no information on this matter could be found in the literature, the values provided were

self-accessed according to the descriptions of the levels presented in Figure 2.

TECHNOLOGY READINESS LEVEL (TRL)

ACTUAL SYSTEM PROVEN IN OPERATIONAL ENVIRONMENT

SYSTEM COMPLETE AND QUALIFIED

SYSTEM PROTOTYPE DEMONSTRATION IN OPERATIONAL
ENVIRONMENT

TECHNOLOGY DEMONSTRATED IN RELEVANT ENVIRONMENT

TECHNOLOGY VALIDATED IN RELEVANT ENVIRONMENT

A0 O N o)W

TECHNOLOGY VALIDATED IN LAB

w

EXPERIMENTAL PROOF OF CONCEPT

TECHNOLOGY CONCEPT FORMULATED

RESEARCH DEVELOPMENT DEPLOYMENT

BASIC PRINCIPLES OBSERVED

Figure 2: Description of each TRL. Taken from: (36).

”Chair-like” exoskeletons

“Chair-like” exoskeletons are wearable lightweight passive devices that support their users’ weight
when they want to stand or sit for long periods, anytime and anywhere, by “locking” the knee joint. These
ergonomic exoskeletons do not constrain any type of primary movement and allow the worker to freely
walk when performing other tasks, while still wearing the devices.

An overview of the "chair-like” exoskeletons can be found in Table 2, where the TRL, the motor and
industrial tasks assisted, the weight, the joints per leg, the sensors, and the special features of each device

were summarized. The Chairless Chair and legX devices are presented in Figure 1c and 1d, respectively.
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Control strategies of LLEs used in industrial applications

Control loops can be essentially divided into three layers: high-, mid-, and low-level. The high-level
block receives information from the environment and/or the user to detect changes in the surroundings
and/or the user’s intentions. The mid-level controller is used to continuously compute the joint’s desired
torque or position and is typically divided into two sub-layers: The detection/synchronization block that
outputs the gait phase (0-100%) or the gait state (swing, stance, etc.); The action block that outputs a
motor command that controls the kinematics (angle/speed) or the kinetics (forces/torques) of the LLE.
The final layer is the low-level controller used to manipulate the position or the torque of the actuators
(44).

Baud et al. (44) studied the control strategies of 291 LLEs, identifying the most common blocks
used in the device's control loops and describing the different possible implementations. Based on the

nomenclature used by Baud et al., the control strategies of the LLEs presented in the previous sections

are shown in Table 3, where the high-, mid-, and low-level blocks are presented.

Table 3: Control strategies of the analyzed LLEs. Based on: (44). Legend: N/A - "Not available/applicable”

Mid-level control
Exoskeleton | High-level control Low-level control
Detection Action
Roboknee N/A Gait phase detection Function of joint instant state Closed-loop torque controller
NTU’s N/A Gait phase detection Position profile Position controller
) ) Joint torque estimation Position controller (stance)
BLEEX N/A Gait phase detection
(Method unknown) Closed-loop torque controller (swing)
HULC N/A N/A N/A N/A
) . Joint torque estimation
HEXAR N/A Gait phase detection Closed-loop torque controller
(Torque sensor)
Hercules N/A N/A N/A N/A
Joint torque estimation Gait-cycle dependent
SADQO’s Movement recognition State-machine function
(Dual extended Kalman filter) torque controller
Gait-cycle dependent
MIT’s N/A State-machine function Position profile
damper controller
Capitani's N/A N/A N/A N/A
cC Manual user input N/A Body weight support Fully Passive
Archelis N/A N/A Body weight support Fully Passive
legX Manual user input Event trigger Body weight support Fully Passive
) Movement recognition Position profile
ChairX State-machine function Event trigger Position controller
Manual user input Body weight support
E-LEG N/A State-machine function Body weight support Fully Passive
KARE-1 Manual user input N/A Body weight support Position controller
CEX N/A N/A Body weight support Fully Passive
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2.1.4 Discussion

From the literature review provided in Table 1, it was possible to conclude that exoskeletons for power
augmentation are mainly used for assisting users in load carrying. It also showed that most of the devices
were actively actuated in, at least, one joint and that most of these LLEs were constituted by electric
motors (29, 31, 32). Regarding the torque provided by the active actuators, barely any information could
be found, except on two papers that provided 34 Nm/38 Nm (31, 35) and 17 Nm (35) of continuous
torque in the hip and knee joint, respectively. The joint that was more commonly actively actuated was
the knee, followed by the hip, both for walking and lifting assistance, with an emphasis on motions on the
sagittal plane. In terms of the joints’ ROM, the devices analyzed differed significantly from each other but
in general, the hip, knee, and ankle joints’ ROM ranged between -40° to 150°, 0° to 127°, and -30° to
121°, respectively (9, 29, 31, 35).

Additionally, it was found that "chair-like” exoskeletons are ideal for the assistance of workers
performing tasks in stationary positions, that do not move for long periods of time, like the ones
presented in Table 2. Most of these devices focus on knee assistance by locking this joint and allowing
the person to sit or stand anywhere, making those tasks less strenuous on the leg muscles, representing,
therefore, passive devices without active actuation (37-39, 41, 43). Additionally, two of the "chair-like”
exoskeletons presented were semi-active devices, as one was composed of an active leg support unit
(40), and the other of an active rotary actuator (42). The ROM of the knee joint of such devices varied
depending on the allowed sitting height, but little information was found regarding this requirement.

The weight of the devices varied significantly depending on the number of actuated joints and the type
of actuation. Fully passive exoskeletons with one-joint assistance (the "chair-like” exoskeletons) weighted
between 1.6 kg to 6 kg (37-39, 41, 43) while passive exoskeletons with three-joint assistance weighted
from 6 kg to 11,7 kg (10, 27). Actively actuated LLEs with three-joint assistance weighted significantly
more, from 23 kg to 34,6 kg (9, 29-32). This showed that a trade-off has to be made between the
weight of the device and the torque provided by the joints (level of assistance). Additionally, the maximum
payload of the devices was also limited, varying from 20 kg (29) to 91 kg (30), and was generally directly
correlated with the LLE weight.

In terms of the type of sensors normally used in the LLEs, the most common were
encoders/potentiometers used to measure joint angles (9, 10, 28, 29, 35, 40, 41) and ground reaction
force (GRF) sensors used to measure the force between each foot and the floor (10, 28, 29, 31, 35, 39,

42). Other sensors were also used, depending on the type and features of each LLE controller, such as
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accelerometers (9) to measure the joints’ acceleration, human-robot force sensors (9) and strain gauges
(10) to measure the interaction force between the human and the robot, load distribution sensors (9) to
measure the center of pressure of the user, inclinometers (9) to measure the orientation relative to
gravity, torque sensors (31) to measure the torque applied by an active actuator, and absolute
enconders (42) to measure the angular velocity of the joints.

Regarding the control strategies followed by the analyzed devices, presented in Table 3, there was a
significant difference between the devices used for power augmentation (mainly active) and the "chair-
like” exoskeletons (mainly passive) since the passive devices required no torque nor damping control.
Table 3 also showed that most of the exoskeletons used for power augmentation did not have any high-
level control, except the exoskeleton that was used for both carrying and walking loads (35), that used
movement recognition to detect the humans’ intentions. In fact, recognizing human intentions is essential
for industrial exoskeletons that need to be employed in spaces with multiple terrain types (e.g. stairs and
ramps) and are worn by workers who are in constant movement and need to perform various tasks.

Additionally, there is a lack of controllers that enable smooth and imperceptible transitions between
assistance modes. Furthermore, the exoskeletons’ controllers were designed to assist the average person

and did not take any physiological parameter into account, such as their effort or MC.

Limitations of industrial exoskeletons

Some concerning limitations were found across the literature, which varied depending on the industrial
task being performed and the type of actuators incorporated in the devices (21). In Table 4, the most
relevant limitations to the implementation of LLEs by companies are presented, for each of the industry
applications discussed and actuation type (2, 20, 21, 45).

Additionally, some general limitations, independent of the exoskeleton type and application, were also
identified in the literature. Namely, the lack of universal safety standards for industrial applications of
exoskeletons imposes an important barrier to their adoption by companies. Secondly, the impossibility of
an exoskeleton to be worn by everyone (due to weight and anatomic limitations) and the general increase
in MC and discomfort associated with wearing LLEs are restraining their acceptance by the workers (2,
20). Furthermore, the exoskeletons’ controllers focus on either fixed trajectories or trajectories adapted

to the gait phase, and not on adapting their assistance to the workers’ exertion.
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Table 4: Current major limitations of industrial exoskeletons (2, 20, 21, 45)

Industrial task | Actuator type Limitations
- Heavy, big, and noisy devices; - The design of exoskeletons is a complex
- Short battery span; process due to the kinematic complexity
- User’s movements are limited to walking in a and variability of the muscle-skeletal system;
rigid gait; - Lack of studies that analyze the efficacy
Lifting and Active - More expensive; and effects of wearing exoskeletons;
carrying - Mechanisms that automatically recognize human - Assistance limited to specific motor tasks;
heavy loads intentions to move are still limited; - Donning and doffing takes too long and
- The limited technology state of actuators requires assistance;
and power supply sources; - User’s speed is very limited;
Passive - Can't fully assist the joints with the necessary torque;
- Sitting height is normally non-adaptive;
Stationary - Movements such as ascending and descending stairs can be more difficult to perform, and some
assembly Passive others can even be completely restricted, like kneeling;
tasks - Can lead to discomfort during long-term sitting;
- Needs for repetitive donning and doffing are time-consuming;

Risks of LLEs

Despite all the benefits that LLEs provide to their users, they are also exposed to certain risks that
subject their health to danger. These risks are often ignored by the literature, and rarely candidly discussed,
hindering the evaluation of risk-to-benefit ratios of exoskeletons.

In 2013, on an evaluation review of the ReWalk - a rehabilitation exoskeleton - written by the U.S.A.
Food and Drug Administration (FDA), several risks were identified (46). Despite being associated with that
specific device, the exposed dangers could also be extended to other LLEs because of the shared design
principles between devices. The possible adverse events that could occur when using an LLE identified
by the FDA were: (i) instability, falls, and associated injuries; (ii) Bruising, skin abrasion, pressure sores,
and soft tissue injuries; (iii) hypertension, and changes in blood pressure and heart rate (HR); (iv) adverse
tissue reactions; (v) electrical interference with other devices; (vi) burns and electrical shocks; (vii) device
malfunctions; and (viii) use errors (46).

In 2017, He et al. (47) accessed the reports of adverse events involving several rehabilitation
exoskeletons. In this study, two other risks of wearing LLEs were identified: Bone fractures not caused
by falls and long-term secondary effects. More recently, Rodriguez-Fernandez et al. (48) studied the
adverse events experienced by patients with muscular impairments while wearing an LLE. Out of the 87
studies reviewed, of a list of 25 different devices, 36 studies reported the existence of adverse events.

Besides the risks recognized by the FDA, other secondary effects were reported: fatigue of the upper
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limbs, low back pain, urinary infections, and dizziness (48).

In general, it was possible to conclude that LLEs are still barely used in industry and commercialized
devices focus on "chair-like” assistance, instead of power augmentation, due to the limitations and risks
of the heavier, but powered, devices. HITL controllers that focus on the optimization of the assistance
to each user, in an individualized approach, could diminish the challenges of the LLEs and increase the

users’ acceptance of the devices.

2.2 State of the art on human-in-the-loop controls

2.2.1 Introduction

Various studies have shown that the energy expended by humans during various tasks can be reduced
by wearing LLEs. However, the reduction verified could, potentially, be maximized by implementing user-
oriented assistive strategies.

Typical assistance strategies can only evaluate the performance of exoskeletons and change their
design if needed after they are effectively used and physiological data is obtained - offline optimization.
Additionally, natural differences between users often result in inter-subject variability in their responses to
the same device with the same control strategy (11, 13).

HITL algorithms can be implemented in LLEs for the automatic tuning of desired controller parameters
(like the assistive torque) depending on real-time physiological measurements (like energy consumption).
These reinforcement learning methods operate on “trial-and-error” approaches until finding the optimal
assistance profile for each user - online optimization (13). Recently, various studies showed that this
alternative control method allowed for improved responses to powered devices due to the individualized
approach of the assistance, which is automatically tailored for each specific user. Figure 3 depicts the
general control loop of a HITL strategy.

HITL control strategies for LLEs normally focus on the minimization of a cost function based on the
MC of the user. In order to estimate the MC, indirect calorimetry methods are normally applied, by using
respiratory measurements. This method utilizes the Brockway equation in order to convert carbon dioxide
(C'O,) and oxygen (O-) rates [mL/sec] into energy consumption [W]. Paired with the Brockway equation,
a first-order dynamic model is usually used in HITL applications to obtain the instantaneous energetic
consumption for faster estimation, since the indirect calorimetry method can only provide an accurate
measurement after the MC steady-state is achieved (roughly two to three minutes after starting a new

activity).
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Figure 3: General control strategy of HITL algorithms. Taken from: (13).

This section will provide an overview of HITL algorithms currently being used on LLEs controllers.

Additionally, it will be presented a discussion sub-section about the results found.

2.2.2 Methods

Search methodology

The literature search was conducted in the online database Scopus with the following combination of
keywords: ("human-in-the-loop” OR "body-in-the-loop”) AND (("lower limb exoskeleton” OR "ankle
exoskeleton” OR "knee exoskeleton” OR "hip exoskeleton” OR "exosuit”) OR ("exoskeleton” AND
"energy cost” AND "metabolic cost”) OR "exoskeleton” OR ("exoskeleton” AND "metabolic”)). The
search was executed between the 10th of October of 2022 and the 30th of August of 2023, and no

restriction related to the papers’ release date was taken into account.

Selection strategy

The papers were selected based on the following criteria: (i) presented a HITL algorithm
implemented in an LLE; (ii) the HITL strategy fitted in the definition followed by this dissertation - online
optimization of control parameters based on a physiological signal measured in real-time; (iii) presented
an intelligible description of the control loop and optimization algorithm; (iv) performed human

experiences and presented clear results. Additionally, a preference was given to papers: (i) published in

17



the last five years; (ii) with more citations; (iii) and published in journals with high impact factors.

Data extraction

The selected papers were analyzed in order to obtain the following information: (i) the type of
exoskeleton controlled; (ii) the assisted motor task; (iii) the optimization algorithm and time required; (iv)
the control parameters updated in realtime; (v) the physiological signal that controlled the optimization
function (vi) the algorithms for MC estimation, sensors used for that matter, estimation time, and
estimation error; (vii) the experimental protocol; (viii) the obtained results; (ix) and the limitations of HITL

controllers.

2.2.3 Results

The search methodology resulted in 115 papers, that were filtered, following the mentioned selection
strategy, and reduced to 17 articles. Tables 5 and 6 present the studies that developed a HITL strategy
on an LLE based on the MC or based on another physiological signal, respectively. Tables 5 and 6
present the exoskeletons used by each study, the optimization algorithm and its optimization time, the
control parameters, the MC estimation method and the sensors used for that purpose, the summarized
experimental protocol, and the results obtained by each study.

The analyzed strategies differed significantly from each other, namely, regarding the optimization
algorithm that was implemented and the cost function’s signal. In the following text, these divergences

will be presented.

HITL optimization algorithms

In 2016, Koller et al. (13) implemented a 1D gradient descent method that was able to find an optimal
threshold for controlling the torque that was applied to an ankle exoskeleton. This study confirmed the
feasibility of HITL strategies.

Only one year later, Zhang et al. (11) proposed another method for HITL optimization of the assistance
of a tethered ankle exoskeleton to minimize the MC during walking, with a 4D covariance matrix adaptation
evolution strategy (CMA-ES) optimization algorithm. CMA-ES optimizers have also been implemented in
the control of a tethered ankle exoskeleton optimized for running (49), walking at self-selected speeds
(12) and at different inclines (50), a tethered hip-knee-ankle exoskeleton for walking with heavy loads (51),
walking at different speeds (52), and walking at different inclines (53), a tethered hip exosuit for optimized

flexion torque while walking (54), and a portable hip exoskeleton (55).
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In 2017, Kim et al. (11) evaluated the use of a Bayesian optimization (BO) algorithm for efficiently
identifying control parameters that minimized the MC, estimated using respiratory data. Ding et al. (19)
managed to use the BO method to optimize two hip torque parameters of a tethered soft exosuit, with a
HITL control strategy, that allowed 17.4% of MC reduction (compared to not wearing the suit), taking only
21.4 minutes of optimization time. Other BO approaches have been developed, namely in the optimization
of an active pelvis orthosis during normal walking (58), of a tethered unilateral ankle exoskeleton for
squatting assistance (56), a tethered soft hip and ankle exoskeleton (57), and a portable hip exoskeleton
during walking (55). More recently, in 2020, Tucker et al. (61) coupled a BO algorithm with a Gaussian
process preference model to optimize the assistance of a powered LLE.

In 2019, Jackson and Collins (59) took a different approach to the HITL optimization problem and
developed a heuristic co-adaptive controller, that used muscle activity measures of the soleus and tibialis
anterior muscles and the ankle joint angle to control the magnitude of the ankle torque applied to a tethered
bilateral ankle exoskeleton (59). Yan et al. (60), in 2019, used a Particle Swarm Optimization algorithm to
optimize the assistance of another tethered ankle exoskeleton, with the objective of minimizing the muscle
activity of the soleus muscles.

A recent study from Xu et al. (55) compared the results achieved by both CMA-ES and BO algorithms,
with similar characteristics, in the optimization of four hip torque profile parameters to minimize the muscle
activity of four participants. In the end, the optimization algorithms achieved similar optimal torque profiles
but the CMA-ES resulted in a bigger reduction in muscle activity on average - a difference of almost 3%.
However, the optimization times of the algorithms were not the same, as the CMA-ES lasted for one and
a half hours (80 iterations) and the BO for an hour (61 iterations), taking 1.12 min./iteration and 0.98

min./iteration, respectively.

HITL cost function

The cost function implemented in the HITL algorithm is employed to allow the minimization of a
kinematic or physiological signal related to the human perceived strain. The cost function’s signal differed
from study to study, but two main types of HITL algorithms could be distinguished: (i) studies that used
the MC; and (i) studies that used other signals, e.g. the users’ muscle activity.

The majority of the analyzed studies used the indirect calorimetry method for the estimation of the MC,
followed by: (i) a first-order dynamic model (8, 19, 49, 51-53, 57); (ii) a discrete linear system (13); or
(iii) a phase-plane-based metabolic estimator, combined with a double deep-Q network for early stopping
(56). Additionally, Kim et al. added an unscented Kalman filter to the first-order filter in order to obtain

an optimal stopping point and, therefore, decrease the optimization duration. Alternately, Gordon et al.
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(58) presented another methodology for estimating the MC of a user wearing an active pelvis orthosis by
implementing a simulated human-device biomechanical model, in OpenSim, that was used to compute
the MC based on the user trajectories and external forces. Table 5 presents the studies that developed
HITL controllers with cost functions that minimized the estimated MC.

Alternatively, in 2019, Jackson and Collins (59) proposed a HITL ankle torque assistance based on the
optimization of muscle activity and the ankle angle. In 2021, Han et al. (50) created a method based on
a cost function of muscle activity, with weights optimized with a Swarm optimization algorithm, and Song
et al. (12) used HITL optimization to control a tethered ankle exoskeleton and maximize the self-selected
speed of users walking on a self-paced treadmill. Other approaches that did not optimize the MC of the
participants were the studies of Yan et al. (60), which minimized the muscle activity of the soleus muscle,
Tucker et al. (61), which optimized the gait according to the users’ preference measured by a subjective
feedback system, and Xu et al. (55) which minimized the muscle activity of the rectus femoris muscles.

A data-driven model was used by Slade et al. (62) to optimize the assistance of an untethered ankle
exoskeleton in an outdoor environment, being the first HITL-controlled device used outside a laboratory.
This team combined a data-driven model, that ranked different control laws after receiving the ankle angle,
velocity, and torque parameters of each law, with a CMA-ES algorithm, that found optimal parameters and
generated a new set of control laws to be tested. Despite not measuring the MC during the optimization
in the real world, the data-driven was first trained with MC data obtained by indirect calorimetry, in a

laboratory, using a respiratory device (Quark CPET, COSMED).

2.2.4 Discussion

This section presents a synthesis of the main conclusions taken from the literature review, as well as
a presentation of the limitations of the current HITL controller. The first optimization algorithm used for
HITL applications was the 1D gradient descent method. Because of its inefficiency and high sensitivity
(13), other methods appeared. The CMA-ES algorithm allows for high-dimensional optimization problems,
essential for the real-time control of complex exoskeleton joints (11). Despite the broad use of CMA-ES as
the optimization algorithm in HITL strategies, this method is often time-consuming, due to the considerable
number of iterations executed for parameter evaluations (11). Compared to the other strategies, the BO
method allows for quicker optimization, even when metabolic measurements present high noise. However,
this method assumes that the relationship between the assistance and the MC is not time-varying and is
significantly more complex than the previous methods (11). Heuristic algorithms are simpler approaches,

but the use of electromyography (EMG) sensors proved to be cumbersome to the user and limited the
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use of this method to hip joint assistance (59). Additionally, the heuristic control strategy forces the
users to walk with sub-optimal torque profiles for long periods, requires a rigorous characterization of the
control parameters, and is probably ineffective for users with muscle impairments (59). A Particle Swarm
Optimization algorithm has also been used for HITL assistance (60), however, the choice of this algorithm
was not justified, and, at first sight, had no advantage over the other algorithms.

In terms of the signal being optimized, the vast majority of the papers used the users’ MC, estimated by
indirect calorimetry, as the cost function. However, these approaches are limited by the lengthy evaluation
periods that are necessary to obtain the MC estimation, the low signal-to-noise ratio of the respiratory
data, the difficulty of using respiratory masks in real-world applications, and the long delay between the
instantaneous energetic demand and the physical respiratory measurements due to slow mitochondria
response (8, 19, 56). Alternately, the use of biomechanical simulations to estimate the MC allowed
for significantly quicker optimization times, but a comparison with the ground-truth MC, measured with
respiratory data, showed significant differences between the two estimations (58). Besides, biomechanical
simulations like the one presented at (58) often require precise joint kinematics and musculoskeletal
knowledge about each specific user and significant computational power (14). Additionally, there were
seven studies that did not use the MC cost as the cost function, using instead one alternative signal for the
optimizations such as the muscle activity (EMG) (50, 55, 59, 60). These approaches, however, generally
resulted in less MC reduction and focused on other results (12, 62).

Regarding the control parameters optimized in realtime, the papers generally focused on the
optimization of the torque profile being applied to the controlled joint(s), with the exception of two studies
that optimized: (i) two stage-dependant parameters (56) and (ii) six gait parameters (61). The studies
that focused on the torque profile tried to simplify its curve by optimizing the minimum necessary
parameters, namely the peak torque, peak timing, rise and fall times, and inflection points. Several of
these papers noticed that the optimal values of some of the parameters, like the peak and fall times,
varied little across participants, showing that some control parameters can actually be fixed without
altering significantly the algorithm’s performance (8, 12, 14, 51). One trend that could also be noticed in
the analyzed studies was the implementation of HITL control on single-joint exoskeletons (mostly the
ankle joint). Only three studies, performed by the same team, optimized the assistance of three joints
(hip, knee, and ankle) at the same time (51-53).

As to the optimization time of the algorithms, it was possible to conclude that, as expected, increasing
the number of control parameters also leads to an increment in the optimization period. The optimization

time was roughly 10 to 15 minutes/parameter, which emphasizes the importance of the simplification
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of the control parameters. However, this is not a linear relationship since the optimization time also
depends on the type of parameters being optimized and the way the algorithm is initialized. Regarding
the experimental protocol, most of the studies included 9 to 11 healthy participants and were performed
in two to three days.

In regard to the results achieved by the analyzed studies, it was observed that all of the controllers
were able to achieve a significant reduction of the minimized physiological signal, demonstrating the
viability of HITL strategies. With respect to the studies that optimized the users’ MC, reductions from
7% (57) up to 48% (53) of this signal were obtained, when comparing the optimized assistance to not
wearing the exoskeleton. Regarding the controllers that did not optimize the MC, Xu et al. (55) achieved
reductions of the users’ muscle activity of 21%, while Slade et al. (62) obtained MC reductions of 23%, both
when comparing the optimized controller to walking without the device. Additionally, better results were
obtained when comparing the optimized assistance to a zero-torque condition, a strategy that increases

human effort.

Limitations of current HITL control strategies

From the performed survey, several limitations and challenges associated with different HITL
algorithms were observed, as follows. The optimization of multiple parameters per joint poses a
significant limitation to the application of HITL strategies in fully actuated LLEs, as higher-dimensional
problems require longer optimization times and greater computational power (8). Besides that, most of
the used devices were tethered to the electric motors that supplied the power to their actuators, which
shows the difficulty of implementing HITL controllers in portable systems (8, 13, 19). Additionally, HITL
control strategies require a well-thought-out choice of the control parameters and their ranged values
(12). Some studies also reported that the optimization is dependent on users’ level of experience in
using the devices and that adaptation effects are possible (19, 52, 53, 56).

In general, it was possible to conclude that optimization algorithms are already broadly used in HITL
controllers and applied in LLEs in realtime, however, the analyzed approaches still heavily rely on the
MC estimated by indirect calorimetry, which has several limitations and were only applied in tethered
exoskeletons not designed for independent use in the real world. One approach to the MC estimation,
without using respiratory sensors, is the implementation of regression models that use data obtained from
portable and wearable sensors to establish a relationship between that data and the energy expended
by the user. Despite not yet being implemented for real-time HITL optimization, these models will be

presented in Chapter 2.3.
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2.3 State of the art on metabolic cost estimation models

2.3.1 Introduction

To implement a HITL control strategy in exoskeletons it is essential to obtain the MC of the user in real-
time. The gold standard method used to assess the MC during any activity is direct calorimetry, however,
it is also the most expensive strategy, and it is impossible to implement on an exoskeleton being worn in
the real world.

Two well-established estimation methods are used in the literature, as they obtain the closest results
to the ground truth: indirect calorimetry and doubly labeled water. The former uses a respirometer device
to measure the consumption of oxygen and the production of carbon dioxide, which can be used to obtain
an approximated value of the MC. The latter uses labeled water, ingested by the human, that is traced
until leaving the organism and used to evaluate how much carbon dioxide was used by the metabolism
and estimate the MC of the participant (63).

Despite obtaining astonishing results, these methods require expensive equipment and materials, take
too long to obtain the MC estimation, and most importantly are infeasible for everyday use by exoskeleton
users. Therefore, a need for fast estimation methods based on data acquired in realtime by wearable,
practical, and light sensors has arisen. lIdeally, for HITL-controlled exoskeletons used in the real world
(both for industry and/or daily living activities) these sensors should even be integrated into the device or
built into a wearable electronic gadget, that is practical to carry around.

Several regression models have been created to estimate the MC, by establishing a relationship
between sensor data and MC. Alvarez-Garcia (63) organized the possible strategies for MC estimation
into three groups: single methods, activity-specific methods, and context-specific methods. The general
proceeding followed by the estimation methods comprises the data acquisition and processing, features
extraction and selection, and the computation of the MC estimate by the regression model(s) (63). The

objective of this section is to provide an overview of current methods for the estimation of MC.

2.3.2 Methods

Search methodology
The literature search was conducted in the online database Scopus with the following combination of
keywords: (("metabolic cost” OR "metabolic energy cost”) AND "regression model”) OR ("energy

expenditure estimation”) OR ("energy expenditure measurement” AND "machine learning”). The search
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was executed between the 19th of October 2022 and the 10th of August 2023, and no restriction related

to the papers’ release date was taken into account.

Selection strategy

The papers were selected based on the following criteria: (i) presented a regression model capable of
estimating the energy expended by a person based on wearable sensors; (ii) presented a clear description
of the regression model; (iii) presented a concise description of the data used as input and the sensors
used for its acquisition; (iv) presented at least one performance metric; (v) the experimental protocol
studied at least one gait condition. Additionally, a preference was given to papers: (i) recently published;

(i) with more citations; (iii) and published in journals with bigger impact factors.

Data extraction

The selected papers were analyzed in order to obtain the following information: (i) the model's
algorithm; (ii) the activities performed during the data acquisition; (iii) the model’s input(s); (iv) the type
and location of the sensors used for the data acquisition; (v) the estimation error and other performance

metrics.

2.3.3 Results

The search methodology resulted in 202 papers, that were filtered, following the mentioned selection
strategy, and reduced to 15 articles. Distinct models have been found in the literature, differing a lot
from each other, as shown in Table 7. The studies varied in the activities performed, the algorithms
implemented, the type of data collected for regression, and the number, type, and location of the sensors
used. Early approaches focused on simpler models, like linear one-variable or multivariate regression
models, based on one single data type. The algorithms constructed by Silder et al. (64) and Strath et al.
(65) were based only on EMG signals and acceleration data, respectively.

Although simpler approaches, single-parameter methods present lower estimation accuracy, as one
single parameter is unable to explain changes in the MC of participants performing a variety of tasks.
Ingraham et al. (66) showed that even a simple multivariate linear regressor (LR) can achieve great results
when a significant number of signals, obtained by six different sensors, are sent to the model. The team
concluded that the more significant variables were the minute ventilation, EMG sum, waist acceleration,
electrodermal activity, breath frequency, and HR; the signal that was least correlated with ground truth

MC was skin temperature.
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In 2021, Lucena et al. (72), proposed a hierarchical regression method, a type of multivariate
regression model, that started with fifteen different variables and was able to reduce them to only seven
significant signals. The most significant variables were: the HR, wrist acceleration counts per minute,
ankle acceleration counts per minute, participants’ weight, physical activity level, and participants’
gender.

More complex approaches have been implemented with machine learning algorithms such as bagged
regression trees and support vector machine (SVYM) models, like the ones implemented by Pande et al.
(67) and Sazonov et al. (68), respectively. In 2015, Gjoreski et al. (17) went a step further and compared
a novel multiple contexts approach with five other models: (i) a multilayer perceptron feedforward artificial
neural network (NN), (i) an SVM, (iii) a multiple LR, (iv) a gaussian process regressor (GPR), and (v) a
model tree. Additionally, the authors compared two different aggregation techniques: average and median.
The multiple contexts algorithm consisted of a congregation of eight regression models, each trained for
a different feature, and obtained better results than any other method when the median aggregation
approach was implemented.

Three years later, Catal et al. (69) used the dataset published by Gjoreski (17) and studied the
performance of several regression-based machine learning models: a Bayesian LR, a boosted decision
tree (BDTR), a decision forest, an LR, an NN, and a Poisson regressor. The BDTR model outperformed all
algorithms, including Gjoreski’s multiple context algorithm.

Deep learning algorithms have recently also been used for MC estimation. This approach, despite
being more complex, ends up reducing the computational load by enabling automatic feature selection.
Zhu et al. (18) used a convolutional neural network (CNN) and, despite using just two simple sensors, it
was able to outperform an activity-specific LR and a backpropagation multilayer perceptron artificial NN. In
2020, Sevil et al. (71) used a long short-term memory model to estimate the MC, which achieved a better
performance than six other machine learning models. More recently, in 2022, Ni et al. (73) implemented
a CNN, followed by a two-stage regression layer, and were able to obtain even better results by using
electrocardiogram (ECG) sensors. Additionally, Lopes et al. (16) concluded that CNNs also outperform
long short-term memory networks.

Regarding the type of signals more commonly used by regressors, acceleration measurements stand
out, since thirteen of the fifteen papers analyzed used at least one acceleration or inertial sensor (15-18,
65-73). However, the articles differentiated themselves by the number of acceleration sensors used and
their location. Six of the papers only used one sensor, five used two or three sensors, and three studies

used four to five different sensor locations. The locations more common for the acceleration measurement
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were the wrist and ankle (six papers), followed by the waist, thigh, and chest (three papers). Additionally,
the hip, foot, shank, leg, pelvis, and torso were also used for the location of the accelerometers, but less
frequently. Besides the acceleration, the HR (16-18, 69, 71, 72) and activity levels (17, 18, 69-72)
were also commonly measured, followed by the EMG (16, 64, 66), the breath rate (17, 18, 66), skin
temperature (17, 18, 71), galvanic skin response (GSR) (17, 18, 71), ambient temperature (17, 18),
breath volume (66), electrodermal activity (66), oxygen saturation (66), ECG (73), foot center of pressure
(74), foot position (74), blood volume pulse (71), and gyroscope data (70).

Using more signals to estimate the MC can be useful to improve the regression models’ performance,
however, it generally results in a need for a larger network of sensors. Some studies have successfully
managed to obtain various signals with only one sensor. Pande et al. (67) used only one smartphone
to measure the waist acceleration and air pressure. Aziz et al. (70) used a smartwatch, placed on the
right wrist, and measured the 3D acceleration and the 3D rotational data. Ramadurai et al. (74) used a
pressure-sensing insole to measure the foot center of pressure and its position, and managed to obtain
various features from that data, like the mean magnitude and its standard deviation, the minimum and

maximum pressure, and others.

2.3.4 Discussion

Several different regression models were implemented across the analyzed papers, however, none
of the studies were performed exactly with the same conditions. From the papers that studied multiple
regression models, it was possible to conclude that the BDTR from (69) outperformed a multiple context
algorithm, a multilayer perceptron feedforward artificial NN, an SVM, a multiple LR, a GPR model, a model
tree, a Bayesian LR, a decision forest regression, an LR, a NN regression, and a Poisson regression (17,
69). Additionally, a long short-term memory network achieved better results than an ensemble learning
model of decision trees, a k-nearest neighbors model, a linear discrimination model, an SVM, and a
decision tree model (71). Finally, CNNs were able to outperform a long short-term memory network (16),
an activity-specific LR (73), and a backpropagation multilayer perceptron artificial NN (73).

Studies that compared different input signals in order to analyze which ones were the significant
variables with a higher correlation to the ground truth were also scarce in the literature. From the two
studies that performed this analysis - (66) and (72) - it was possible to see that the acceleration signals
measured at the waist, wrist, and ankle were more significant than the acceleration of the chest and hip
(66, 72). Additionally, the minute ventilation data, EMG composite sum, electrodermal activity, breath

frequency, and HR were more significative than the breath volume, skin temperature, and oxygen
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saturation (66), and the HR and physical activity level were more significative than the anxiety level (72).
Regarding the anthropometric features given as an input to the regression models, the subjects’ body
mass, and gender were also deemed as more significative than the ethnicity, height, age, and body
composition (72).

As seen in Table 7, all of the analyzed studies produced low RMSEs on average (all were below 1.12
kcal/min (18)), however, the errors obtained varied significantly depending on the activity level, as seen by
the range of values presented (17, 18, 65, 67, 68). The results obtained from the studies are difficult to
compare since they differed a lot from each other regarding the tasks analyzed, the algorithm, the number
of regressor signals, and the sensors type and location, but, in general, the error range increased when
activities with greater MC consumption, such as running and cycling, were introduced to the participants
(17, 68).

In general, it was possible to conclude that the results from models that estimate the MC can be
improved by using algorithms like BDTRs or CNNs and using the most significative variables (like the
waist, wrist, and ankle acceleration, HR, physical activity level, and EMG). Despite the significant advances
made in MC estimation algorithms, none of the studies discussed so far were orientated specifically for
HITL optimization, and most of them were even unfeasible for that application because of the impractical
nature and bulkiness of the sensors used. To the authors’ best knowledge, only one study performed MC
estimation of participants wearing an exoskeleton (Lopes et al. (16)). This article represents the starting

point of this dissertation.

2.4 General conclusions

This sub-chapter presents a synopsis of the conclusions that were taken by the literature review,
namely the limitations of the current industrial LLEs and HITL controllers.

Firstly, the state of the art demonstrated that several conditions still hinder the application of LLEs
in industrial contexts, despite their potential for minimizing workers’ physical stress and strain. Those
limitations include the lack of human intention recognition algorithms, the lack of studies that analyze
the efficacy of wearing the exoskeletons on industrial sites, and the lack of exoskeletons using adaptive
controllers to tailor, in real-time, the exoskeleton assistance according to worker’s real physical needs and
effort.

Despite the advantages of adaptive controllers like HITL strategies, these also implicate some major
problems. This dissertation aims to address the lack of applications of HITL controllers for exoskeleton-

driven assisted work.
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The major limitation of HITL controllers that use the MC as the optimization function is that this
physiological signal needs to be estimated in real-time, and as fast as possible. The standard method for
this procedure is indirect calorimetry, however, this requires expensive and not practical sensors
(respiratory masks), generates signals with a low signal-to-noise ratio, and takes too long to obtain the
MC estimation. One alternative for calorimetry estimation is the use of regression models, such as LRs
and CNNs. However, these methods have still not yet been incorporated into HITL controllers. This
dissertation aims to tackle this challenge. Another major limitation is the required time for the
optimization of the exoskeleton assistance, which hinders the use of this strategy in real-world
applications. To overcome this issue, this dissertation aims to only optimize the parameters that mostly
vary across subjects to limit the optimization time. Additionally, no HITL controller has been developed
solely for knee assistance, and all of the controlled devices were tethered to the actuator. This

dissertation aims to implement the HITL controller for an untethered knee exoskeleton.
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3 System requirements and overview for assisted working

This chapter begins by introducing the requirements for industrial LLE devices that assist workers
during the relevant occupational tasks, as previously discussed: (i) carrying loads; (ii) lifting loads; and
(iii) stationary assembly tasks. The analysis of these tasks regarding the workers’ joints’ ROM and torque
ranges is presented. Then, the lower-limb powered exoskeleton used in this work - SmartOs - is presented.
This chapter follows with the presentation of the proposed controller for this dissertation, which aims to

tackle the major challenges identified in Chapter 2.

3.1 Industrial assistance requirements

As mentioned in Chapter 1, the industrial tasks that are more often associated with WMSDs on the
lower limbs are carrying and lifting heavy loads (Figures 4a and 4b) and tasks that require stationary
positions for long periods of time (Figures 4c and 4d). Table 8 associates a motor task (human

motion/position) to each of these industrial tasks and presents examples of industrial sectors where

each task is more prevalent.

(a) Carrying loads. (75) (b) Lifting loads. (76) (c) Sitting. (77) (d) Standing. (78)

Figure 4: Industrial tasks more often associated with WMSDs.

These industrial tasks will be the focus of this work which was developed using an LLE designated by
SmartOs. As a preliminary step, it was conducted a survey of the humans' needs during the corresponding
motor tasks, both in terms of the natural joints’ ROM and required joint torques. Table 9 presents the
average ROM for each lower limb joint during unloaded walking (79), loaded walking (79), squatting (80),

sit-to-stand (81), and stand-to-sit (81) motions and the SmartOs’ features.
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Table 8: Industrial tasks more often associated with WMSDs and their corresponding motor tasks, and the

industrial sectors with a significant prevalence of those tasks.

Industrial task Human motor task | Examples of industrial sectors

Stationary assembly Assembly lines, production lines,

Standing and sitting

tasks and textile
Load carrying Walking Logistics, construction, mining,
Load lifting Squatting transportation

Table 9: Natural ROM of each joint during each of the relevant motor tasks, and the correspondent exoskeleton

limits (79-81)

Motor task Hip ROM (°) | Knee ROM (°) | Ankle ROM (°)
Walking (unloaded) [-20,25] [10,70] [-15,15]
Walking (20kg loads) [-10,30] [10,70] [-10,15]
Squatting [-20,80] [0,125] [5,40]
Sit-to-stand/Stand-to-sit [10,90] [0,90] [5,25]
[-20,90] [0,125] [-15,40]
N/A [-3,100] [-20,20]

Table 9 reveals that the SmartOs’ ROM is high enough for the motor tasks analyzed, with the exception
of the squatting motion, which is limited due to a constraint in the knee and ankle joints during the flexion
movement. This restriction however is not expected to limit humans’ dexterity and the users will still be
able to lift loads.

Table 10 presents the average normalized torque range for each lower limb joint during unloaded
walking (79), loaded walking (79), squatting (80), sit-to-stand (82), and stand-to-sit (82) motions, along
with the total torque range required for a 100 kg person.

Table 10 shows that the LLE used in this work (SmartOs) provides a 100 kg person with all the
necessary torque during all the discussed activities since it can achieve up to 180 Nm of peak torque.
Additionally, Tables 9 and 10 established that the hip and knee joints are of critical importance, as they
generally perform wider ROMs and require larger torques (especially in the extension motions). Having
this in mind, going forward, this dissertation will focus on the assistance of the knee joint because of its

crucial importance during all the mentioned industrial tasks.

36



Table 10: Natural torque of each joint during each of the relevant motor task (79, 80, 82)

Motor task Hip Torque (Nm/kg) | Knee Torque (Nm/kg) | Ankle Torque (Nm/kg)
Walking (unloaded) [-1,1.2] [-0.2,0.8] [-0.1,1.4]
Walking (20 kg loads) [-0.8,1.8] [-0.3,1.4] [-0.1,2.0]
Squatting (15 kg loads) [0,1.8] [-1.5,-0.2] [0.2,1]
Sit-to-stand/Stand-to-sit [0,0.4] [0,0.5] [0.2,0]
Total ‘ [-1,1.8] [-1.5,1.4] [-0.1,2.0]
Total (100 kg person) [-100,180] (Nm) [-150,140] (Nm) [-10,200] (Nm)

3.2 SmartOs system

SmartOs is a wearable, modular, lower-limb powered exoskeleton developed to assist users according
to their needs and intentions. The system is composed of two active joints on the right leg - an ankle and
knee module - with one DOF per joint in the sagittal plane. The system follows a modular architecture,
enabling the inclusion of further active joints. Each joint is coupled with a potentiometer, four strain gauges
(that measure the human-robot interaction torque), and a Hall effect sensor (that measures the actuators’
torque). The SmartOs device also accommodates two force-sensitive resistors in the heel and toe of each
foot and three inertial measurement units (IMUs) (83).

The actuators consist of DC motors (EC60-100W, Maxon) coupled to gearboxes (CSD20-160-2A,
Harmonic Drive), from the company 'Technaid’, and provide average torques of 35 Nm and peak
torques of 180 Nm. The system is powered by a lithium iron phosphate battery with an autonomy of 8
hours. The system weighs approximately 5.5 kg (considering both ankle and knee joints) and can assist
users with heights ranging from 150 to 190 cm and weights ranging from 45 to 100 kg. Its assistance is
limited to gait speeds from 0.5 to 1.6 km/h (83). Figure 5 presents the knee module of the SmartOs
system and its sensors and components.

The SmartOs is controlled by a non-centralized team-developed architecture that is structured in three
control levels (high-, mid-, and low-level). The frequency of the low-level and mid/high-level controllers is 1
kHz and 100 Hz, respectively (83). The architecture includes: (i) a central controller unit (CCU) responsible
for running the system’s high-level control, gait analysis algorithms, and external communications; (ii) a
low-level orthotic system (LLOS) responsible for running the low- and mid-level control of the actuators;
(i) a wearable motion system (WMSS) responsible for the communication with external wearable and

non-intrusive sensors systems; and (iv) a mobile application (APP) that works as the user-device interface
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and allows the system configuration and initiation (83). Figure 6 presents a diagram of the architecture.

Figure 5: Knee module of SmartOs and respective components.

Mobile APP ; @ ccu
o System High-level control
configuration

External communications

Q
o Gait analysis tools
o
o Data logging

o System start

@ LLos

o Mid-level control
o Low-level control

o WMSS

o Communications with
wearable sensors

o Sensors' calibration

o Data treatment

€) uarT (UsE) BLUETOOTH

Figure 6: Diagram of SmartOs architecture.

The CCU is a UDDO X86 board, with a quad-core central processing unit (64 bits) and 8GB of RAM.
This board interfaces with both LLOS and WMSS boards by a UART protocol using USB cables and with
the mobile APP through Bluetooth. The high-level code is executed in the CCU, in an Ubuntu operating
system, in C++. The code flow is organized using threads with different priority levels running in parallel
to each other (83). The CCU code is developed using the QT Creator integrated development environment
(IDE).

Both LLOS and WMSS boards are STM32F4-discovery boards (STMicroelectronics, Switzerland), with
STM32F407VGT microcontrollers (32 bits). These boards are coupled with USB converters (FT232RL
FTDI), allowing direct communication with the CCU by USB. The software of these boards is executed in

C. These boards’ code is developed using the freeRTOS operating system, which allows easy management
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of the different threads and tasks, in the Keil uvision 5.0 IDE. The LLOS board is also able to send command
controls to the active actuator through a CAN protocol, at a frequency of 1 kHz. (83).

The WMSS can connect several different sensor systems to the CCU. This work used a wearable
inertial sensor system, composed of IMUs, called InertiaLab. Each IMU is comprised of an MPU-6050, a
small and light module capable of measuring the 3D acceleration and the 3D rotational rate. The WMSS
board communicates with these IMUs by an I2C (Inter-Integrated Circuit) protocol. Figure 7a presents the
InertiaLab's architecture, and Figures 7b and 7c present a single IMU, displaying the mini USB port and
the MPU-6050 module (the blue board) (84).

© STM32F407VGT & USB flash drive & Power-bank & MPU-6050
) Multi-Channel Board 0O 12C

(a) (c)

Figure 7: Inertialab system, where (a) presents the full InertiaLab’s architecture (84), and (b) and (c) present a

single IMU with the lid closed and opened, respectively.

3.3 Proposed solution

This section presents a proposed solution to the problems identified in the state of the art, that was
conceptualized envisioning the SmartOs’ knee module. Chapter 2.1 presented the various limitations of
current industrial exoskeletons. It was seen that adaptive controllers according to the human physical
effort have not been implemented yet in industrial exoskeletons. This work aims to develop an adaptive
control strategy capable of automatically optimizing the exoskeleton’s control parameters in real-time by
minimizing the user's effort - a HITL controller.  The HITL controllers require realtime MC

measurements, which, as seen in Chapter 2.2, is commonly estimated by indirect calorimetry. However,
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the indirect calorimetry method faces major issues, namely with the materials cost, the impracticality of
the respirometer device, the noisy nature of the estimation, and the time requirements for estimation.
Chapter 2.3 presented various machine and deep learning models capable of estimating the MC based
on wearable and non-intrusive sensors’ data. However, most of these strategies are not feasible for HITL
assistance of industrial workers.

The proposed solution consists of the implementation of a HITL controller on the knee actuator of
SmartOs, that adapts the knee torque according to the users’ MC and interaction torque. The MC is
estimated by a regression model based on wearable and non-intrusive sensors’ data. Figure 8 shows the
general diagram of the proposed HITL control strategy for the SmartOs device, that aims to tackle these

current challenges.

MC estimation :' HITL optimization Torque profile’s integral

Torque E
Control parameters _l Cubic | profile
)

e —————————

Regression e HITL N
Model : (CMA-ES) | spline I _/\/

Data acquisition

PID torque Gait cycle
controller function

Sensors’ data

e e e i T

Figure 8: Diagram of the proposed controller for optimizing the assistance of an active knee exoskeleton and

minimizing the MC of a person in realtime.

The HITL controller uses a regression model to estimate the MC (MC estimation, blue block of Figure
8) based on real-time wearable and non-intrusive sensors’ data measured while the human is performing
the motor task (Data acquisition, green block of Figure 8). The development and validation of this MC
estimation model are presented in Chapter 4. The controller then tries to minimize the user’s effort by
adapting two control parameters: the magnitude of the peak flexion and extension torques of the knee
joint. This optimization is performed by the evolutionary algorithm CMA-ES in real-time (HITL optimization,
red block of Figure 8). This optimizer changes the peak torques, in realtime, and analyzes the effect of
the new control parameters on the MC of the person. Additionally, the CMA-ES algorithm also analyses
the reference torque’s integral and the cumulative sum of the interaction torque (torque resultant from the

interaction between the user and the device) at each iteration. The algorithm ends when the optimal torque
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is found, i.e., the peak torque magnitudes that lead to a minimal MC, interaction torque, and reference
torque’s integral, or when any termination condition is verified.

Regarding the HITL controller, a natural cubic spline interpolator is used to generate a different torque
profile for every set of control parameters from CMA-ES (HITL optimization, red block of Figure 8). This
interpolator receives a set of torque values at various gait cycle percentages, two of which are variable:
the peak flexion and the peak extension torque magnitudes. Each generated torque profile is then sent
to a proportional-integral-derivative (PID) torque controller. The development and validation of the HITL
controller are demonstrated in Chapter 6.

For implementing the HITL into the SmartOs’ architecture, it was also necessary to develop and
implement a novel PID torque controller (Mid- and low-level control, grey block of Figure 8). The controller
receives a reference knee torque profile and drives the active actuator to follow the desired pattern. The
mid-level stage of the controller estimates the gait cycle phase and obtains the reference torque for the
respective phase. Then, a PID controller ensures that the system’s knee joint torque reaches the desired
torque, at the low-level block of the controller. The development and validation of this torque controller

are demonstrated in Chapter 5.
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4 Metabolic cost estimation

This chapter describes the development of the regression model used to estimate the MC in realtime
based on the data from wearable and non-invasive sensors. The work presented in this section started with
the analysis of publicly available datasets constituted by data from a variety of wearable sensors and the
MC of the participants estimated through indirect calorimetry, by measuring the oxygen consumption and
carbon dioxide production with a respirometer device. To choose the best dataset different requirements
were established and the dataset used to train and benchmark the models for MC estimation was chosen
based on those conditions.

One focus of this study was the preprocessing of the data. The various phases during the data
preparation were studied and optimized to obtain the best possible model performance. This was followed
by the selection of the best estimators, i.e., the input signals that had a higher correlation to the MC and
could be used to estimate it accurately. Additionally, activity-specific models, i.e., models that were trained
using data from only one motor task, were compared to general models that were trained with all the data
from different activities.

Various machine and deep-learning models were explored and compared. The regression models
included: (i) linear models; (ii) decision trees; (i) SVMs; (iv) Gaussian support vector machines (GSVMs);
(v) GPRs; (vi) kernel approximations; (vii) tree ensembles; (viii) simple NNs; and (ix) CNNs. The models
were evaluated regarding the RMSE and the coefficient of determination (R?) during the validation phase,
which followed the leave-one-out cross-validation (LLOCV) method. The best model was then used to
estimate the MC of a test participant whose data was not used during the training and validation processes.

Afterward, the best regression model was integrated into SmartOs’ architecture to enable the MC
estimation in real-time based on data acquired by the system. This implementation was then validated
with a real-time protocol where the MC estimation made by the regression model was compared to the

estimation made by a respirometer, through indirect calorimetry.

4.1 Introduction

Indirect calorimetry is the most common method used to estimate the MC of a person during a
certain activity. This method computes an MC estimation by applying an equation that linearly relates the
consumption of oxygen and carbon dioxide production to the user's MC. The gold standard equation used
for this purpose is Brockway's equation, first published in 1987 (85).

Theoretically, indirect calorimetry is very simple to apply due to the simplicity of the equation and the
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reduced number of variables it requires, however, in practice, measuring the oxygen and carbon dioxide
flow in the human body is not elementary. The rate of production and consumption of these gases can

be measured using a respirometer device, like the one presented in Figure 9 (63).

Figure 9: Woman wearing a respirometer device (K5, Cosmed, Italy). Taken from: (86)

Despite facilitating the MC estimation with high accuracy, these devices, as seen in Figure 9 are
not practical to wear, as breathing through a mask can be uncomfortable for long periods of time, and
the person is required to also wear a heavy system, on their back, that measures the gas exchanges.
Additionally, these devices are also quite expensive and have a limited autonomy of only a few hours,
depending on the device.

Furthermore, the limitations associated with the indirect calorimetry method are not just related to
the respirometers. Another significant drawback of this method is the time it requires to estimate the first
value of the MC for a certain activity - roughly 3 minutes (87). This can be explained by the fact that the
human body takes some time to adapt to a change in activity, resulting in a time period during which the
MC is not yet stable (i.e., the MC is not yet in a steady-state).

An alternative to indirect calorimetry is the use of regression models that estimate the MC of a person
based on data acquired by wearable and non-intrusive sensors placed on the person. Regression models
work in a similar way to indirect calorimetry, in the sense that they find an equation, or equation system,

between the MC and a set of variables measured in real-time. Regression models replace the need for
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respirometers since they can form a correlation between the MC and signals like acceleration, HR, and the
GSR, which are much more practical to measure (17, 65, 67). Furthermore, this method can substantially
decrease the time required to obtain an MC estimation.

Despite the expanding studies developing regression models for MC estimation (analyzed in Table
7), these models have not been developed for HITL control strategies in exoskeletons and much less for
assisting industrial workers and measuring the MC while they perform their tasks. When developing a
system meant to be worn by workers, it is important to use the smaller number of sensors as possible,
that these sensors are light and small, do not affect the natural movement of the workers, and are easy to
don and doff. Therefore, it is critical that the regression model achieves high accuracy based on a limited
number of practical wearable and non-intrusive sensors. The regression model presented in this chapter

aims to tackle these challenges.

4.2 Methods

4.2.1 Dataset selection

Several datasets for estimating the MC are available online, however, they all differ significantly from
each other either in terms of the number of participants, the tasks performed during the experimental
protocol, or the signals measured. Therefore, the datasets were compared with each other according
to a set of desired requirements. The requirements for the dataset were: (i) participants must have
performed, at least, the sitting and walking activities, as they are activities similar to the motor tasks
identified in Chapter 3.1; (ii) the model’s inputs contained acceleration and HR signals, as they can be
measured by practical sensors for industrial applications. Additionally, a preference was given to datasets
with the most activities analyzed and with the greater number of participants (and age variability). Table
11 presents the publicly available datasets and their characteristics.

From Table 11, it was possible to observe that Cvetkovi¢ et al. (88) and Ingraham et al. (66)
datasets (colored in orange) were the only ones whose participants performed both the walking and
sitting activities. Another strong suit of these datasets is the fact that participants also performed the
standing activity. Additionally, both the acceleration and HR were provided, and the acceleration was
measured in four different on-body locations. However, a negative aspect of both datasets was the low

number of participants in each study and the low diversity of the participants’ ages.
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Therefore, both these datasets were first selected for a preliminary analysis. During this study, it
was noticed a significant disparity between the 3D acceleration signals of the two datasets. A further
investigation demonstrated that Cvetkovi¢’s acceleration data did not match the expected values, therefore,
that dataset was set aside and Ingraham’s dataset was chosen to train, validate, and test the regression

model.

Ingraham’s dataset

Ingraham’s dataset was obtained at the University of Michigan, in Ann Arbor, U.S.A. The data, obtained
from ten participants, is publicly available in figshare (90). The participants (8 male and 2 female) had
ages between 24 and 37 years old (27,4 +4,5 yr), with body masses between 58.05 kg and 95.24 kg
(69.1 £9.9 kg), and body heights between 1.63 m and 1.85 m (1.76 £0.09 m). Figure 10 presents the

location and the signals measured by each sensor worn by the participants.
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Figure 10: Representation of on-body location of the sensors of Ingraham’s dataset. Legend: BF - "Biceps
femoris”; EDA - "Electrodermal activity”; GMAX - "Gluteus maximus”; MGAS - "Medial gastrocnemius”; RF -

"Rectus femoris”; SOL - "Soleus”; SpO2 - Oxygen saturation; ST - "Semitendinosis”; TA - "Tibialis anterior”;

Ve Os - Rate of carbon dioxide consumption; VOz - Rate of oxygen consumption; VL - "Vastus lateralis” (66).

Each person wore 25 different sensors: (i) four 3-axis accelerometers on the chest, waist, and the right

and left ankles (Opal, APDM, U.S.A.); (ii) two wristbands on the right and left wrists (E4, Empatica, Italy);
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(iii) sixteen surface electrodes placed on eight different muscles on each leg; (iv) a pulse oximeter (Oxycon
Mobile, Carefusion, U.S.A.); (v) an HR monitor (Polar Electro, Finland); and (vi) a portable respirometer
(Oxycon Mobile, Carefusion, U.S.A.).

The participants performed six activities: (i) leveled walking at 2.16, 3,24, and 4,32 m/s; (ii) inclined
walking at 2.16, 3,24, and 4,32 km/h; (iii) backward walking at 0.4 and 0.7 km/h; (iv) running at 6,48,
7.92, and 9.72 km/h; (v) cycling at 70 and 100 rpm, with 3 different levels of resistance; and (vi) stair
climbing at 60, 75, and 90 Watts. Additionally, for each activity, the participants also stood and sat down

for 6 minutes, before and after the activity, respectively.

4.2.2 Data preprocessing

The first step was the data preprocessing, a fundamental procedure in training machine and deep
learning models. Firstly, the ground-truth MC of Ingraham’s dataset was computed by indirect calorimetry
using Brockway's equation (Equation 1), where VOQ and V002 are the rates of consumption of oxygen

and production of carbon dioxide, respectively.

MC (W) =16.58V O, (mL/s) + 4.51VCO, (mL/s) (1)

Then, it was analyzed if normalizing the HR and MC by the weight of the participants improved the
MC estimation’s accuracy (16, 17). This was done by dividing the two signals by the corresponding
participant’s weight and comparing the model’s performance.

Following this, the acceleration was filtered with a real-time 4th-order Butterworth filter. Both a low-
pass filter and a band-pass filter were used and compared, with cut-off frequencies of 20 Hz and 0.1/20
Hz, respectively (16, 91).

Afterward, the variables of interest were selected from the dataset, namely the 3D acceleration, HR,
GSR, and ground-truth MC. Furthermore, two other variables were computed from the 3D acceleration: its
derivative and its vector norm/magnitude (Equation 2). These additional features were used to train the
regression models both instead and in addition to the 3D acceleration, and their results were compared
to the results achieved by using only the 3D acceleration. Along with the acceleration, HR, and GSR, the
body mass index (BMI) and body mass of each participant were also given as features to the model. All

these input variables were tested to verify their impact on the models’ performance.

lv|= /2? + y? + 22 (2)
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Along with the removal of the variables unused in this work, some activities were also withdrawn
from the datasets, and only the following were maintained: (i) standing; (i) sitting; and (iii) walking.
These activities were selected due to their resemblance to the industrial activities with a higher risk of
WMSDs, presented in Chapter 3. This was followed by the creation of three separate sub-datasets.
These sub-datasets were used to train three different regression models (activity-specific models) and
their performances were compared to the complete dataset’s performances.

Subsequently, and repeating the strategy followed by Gjoreski et al. (17), the datasets were segmented
in 10-second windows. For each window, to obtain the final feature vectors used to train the regression
models, it was computed the average and the mean absolute deviation (MAD) of each variable, and both
these methods were compared. The ground-truth MC of each window (i.e., the label) was obtained by
computing its mean during that period of time. Additionally, the windows were tested with and without
overlaps of 5 seconds (17), used to enable faster updates of the MC estimation in realtime. Figure 11
presents a diagram that better explains the process implemented to obtain the data that was used to train

the regression models without (up) and with (down) 5-second overlaps.

Dataset Segmentation of the data Acquisition of the feature
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Figure 11: Diagram of the process of segmentation of the dataset into 10-second windows, with and without the

5-second overlaps (bottom and top diagrams, respectively).

After obtaining the features and labels for each participant the datasets were balanced to provide the
same amount of data from each participant to the regression models. This was done by analyzing which
participant had the least data, and then removing the excess data from the other participants to match
the size of the smaller table.

Then, given the different sampling rates of each sensor, an interpolation method was applied
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(piecewise cubic interpolation) to the HR and EE signals (18, 73). Additionally, the dataset was analyzed
to verify the existence of outliers. By studying the average MC, and its standard deviation, for the
walking, sitting, and standing sub-datasets, it was noticed that no participant had an average MC
superior to the average of all participants by 2 times the standard deviation, and, therefore, no
participant was removed from the dataset (14).

The final step was the normalization of every variable across all participants. Three different
normalization methods were compared: median normalization, min-max normalization, and z-score
normalization. Table 12 presents a synthesis of the various preprocessing steps tested, where ACC
represents the 3D acceleration, ACC’ and |ACC]| its derivative and vector norm, respectively, and BW

represents the body weight.

Table 12: Conditions tested during the data preprocessing. Legend: ACC - "Acceleration”; BW - "Body weight”

Order Preprocessing Step Conditions tested

1 HR and MC normalization by the participants’ body mass | Yes/No

Low-pass (20 Hz)
Band-pass (0.1/20 Hz)
ACC + HR + GSR + BMI
ACC + HR + BW + BMI
ACC + HR + BMI

2 Acceleration filtering with 4th order Butterworth filter

3 Input variables selection ACC + ACC' + HR + BMI
ACC’ + HR + BMI

ACC + |ACC| + HR + BMI
|ACC| + HR + BMI

4 Segmentation of data into the 10-second windows 5-second overlaps (Yes/No)

Obtention of the input features by computing a certain . .
5 Studied metric: Mean/MAD

metric of the input variables for each 10-second window

6 Data normalization Median/Max-Min/Z-score

4.2.3 Regression Models

Following the data preprocessing, several regression models (machine learning models and CNNs)

were trained, validated, and tested. Before the models’ training, the dataset and each sub-dataset were
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divided into training/validation data and test data by randomly selecting a participant for testing the model.
Then, the training data was shuffled. The validation method enforced was the LOOCV, a form of kfold
cross-validation where k (the number of folds) is equal to the number of subjects used for training. During
kfold cross-validation, the training dataset is divided into k sets, where k1 subjects’ data is used to train
the model, and the other subject’s data is used to validate it. This process is repeated k times, meaning

that each subject was used for validation once.

CNNs with a regression layer

The CNNs were implemented using a team-owned deep-learning regression tool implemented in
MATLAB (2022b, The Mathworks, Natick, MA, USA). Several models were trained, with different
architectures and hyperparameters.

Each CNN was composed of one to three convolutional layers, each followed by a rectified linear
activation function (ReLU) layer and an average pooling layer with a pool size and stride of 2. After the
convolutional layer(s), a global average pooling layer was implemented, followed by two fully connected
(FC) layers and, at last, a regression layer. The model’s hyperparameters optimized for MC estimation
were: (i) the number and size of the filters on each convolutional layer, (ii) the number of hidden neurons
on the first FC layer, (iii) the learning rate, and (iv) the batch size. Table 13 summarizes the
hyperparameters studied for the CNN, presenting the tested values for each parameter. Some
hyperparameters’ are represented by a range of values. In these cases, various values in the range were

verified, but not all.

Table 13: Tested hyperparameters for the CNN

Hyperparameter Values

Number of convolutional layers | 1, 2, or 3

Number of filters 8 to 360

Filter size 5to 30

Hidden neurons 0 to 1000

Learning rate 0.01, 0.005, or 0.001
Batch size 8 to 360
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Regression Learner APP

The machine learning models were implemented using the Regression Learner APP, a MATLAB
(2022b, The Mathworks, Natick, MA, USA) tool that allows a simple and straightforward training,
validation, testing, and optimization of various regression models. The regression models used varied
from: (i) LRs; (ii) decision trees; (iii) SVMs; (iv) GSVMs; (v) GPRs; (vi) kernel approximations; (vii) tree
ensembles; and (viij NNs. Initially, the hyperparameters used for each model were the ones
predetermined by the Regression Learner APP, then, the best model’s hyperparameters were optimized

using three different techniques: (i) BO; (ii) grid search; and (iii) random search. Table 14 presents an

overall view of all the implemented machine learning models in the Regression Learner APP.

Table 14: Machine learning models implemented in the Regression Learner App

Model family Type Hyperparameters | Model family Type Hyperparameters
Simple Matern 5/2
LR Max steps: 1000 GPR Sigma: automatic
Stepwise Exponential
Fine Min. leaf size: 4 Kernel SVM Kernel scale:
Decision tree | Medium Min. leaf size: 12 appoximation | Least squares | automatic
Coarse Min. leaf size: 36 Boosted Min. leaf size: 8
Tree ensemble
Linear Bagged Min. leaf size: 30
Kernel scale:
SVM Quadratic Narrow Neurons: 10
automatic
Cubic Medium Neurons: 25
Fine Kernel scale: 0.9 NN Wide Neurons: 100
GSVM Medium Kernel scale: 3.6 Bilayered Neurons: 10/10
Cubic Kernel scale: 14 Trilayered Neurons: 10/10/10
Rational Quadratic
GPR Sigma: automatic
Squared Exponential

In terms of the LRs, two different strategies were studied. The first model was a simple LR and the
second regression model was a stepwise LR, with a maximum number of steps of 1000. Regarding the
decision trees, three types of models were tested: a fine tree, a medium tree, and a coarse tree, with a
minimum leaf size of 4, 12, and 36, respectively.

As to the SVM models, three regressors were analyzed, varying from each other on the kernel functions
implemented (linear, quadratic, and cubic kernels). Additionally, three types of GSVMs were also studied,
namely a fine, medium, and coarse model, with manual kernel scales of 0.9, 3.6, and 14, respectively.

Regarding the GPRs, four different models, with different kernel modes, were studied: a rational

quadratic GPR, a squared exponential GPR, a matern 5/2 GPR, and an exponential Gaussian process
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regressor (EGPR). As to the kernel approximation models, two learners were analyzed, an SVM kernel and
a least squares kernel. Furthermore, two types of ensembles of decision trees were trained, a BDTR and
a bagged decision tree, both with a minimum leaf size of 8 and 30 learners.

Lastly, five NNs were also analyzed. Three of those NNs had one single layer, each one with a different
number of neurons. The narrow NN had 10 neurons, the medium NN had 25, and the wide NN had 100

neurons. A bilayered and trilayered NN, with 10 neurons on each layer, were also tested.

4.2.4 Model integration in SmartOs’ architecture

The best-performing model, which was first developed, trained, validated, and tested using MATLAB,
was then implemented in the high-level control system of the exoskeleton, on the UDOO board. This
conversion was performed using MATLAB Coder APP/Codegen, a program used to generate C/C++ code
from the MATLAB code.

To generate the C++ code, firstly, a function that used the regression model to predict the MC from one
feature vector was created in MATLAB, this was the Coder APP’s entry-point function. Then, an example
code that used the entry-point function was created for the Coder APP to determine the type of variables
used by the function. Finally, the Coder APP generated a standalone C++ code that replicated the entry-
point function. The code generated by the Coder APP was then integrated into the exoskeleton’s control
architecture.

Then, following the general structure of SmartOs’ gait analysis algorithms, the code generated was
adapted and condensed to fit the existing architecture. Figure 12 presents the algorithm of the high-level
controller.

The algorithm presented was integrated into the CCU of the system, which communicates with the
WMSS board (acquisition of 3D acceleration data from InertiaLab’s sensors), the LLOS board (mid-and low-
level control of the exoskeleton), and the mobile APP that configures the system and begins the assistance.
The regression model requires the accelerometers’ data from the ankle, waist, chest, and wrist, obtained
by the WMSS system (InertiaLab), and the persons’ anthropometric data, namely their height and weight
used to compute the BMI, which are provided to the mobile APP and transmitted to the CCU.

Regarding the code developed in the WMSS board, presented in the top block of Figure 12, its purpose
was to send the 3D acceleration data, measured by the four IMUs (InertiaLab’s sensors), to SmartOs’ CCU.
Every 10 milliseconds, the board reads the acceleration along each axis, processes this data according to
the initial sensors’ calibration, and sends it to the CCU.

In regards to the code developed in the CCU board, presented in the bottom block of Figure 12, its
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Figure 12: Fluxogram depicting the code developed in SmartOs’ architecture that allowed for the MC estimation

in real-time based on the data from 4 accelerometers.

purpose was to read the 3D acceleration data provided by the WMSS board and use this data to estimate
the person’s MC in real-time. The code was divided into two main blocks - data processing (blue block in
Figure 12) and the MC estimation (pink block in Figure 12). The data processing block was established
to make the CCU read, process, and save the 3D acceleration data after a message from the WMSS data
was received. The MC estimation block was executed every 10 seconds, something made possible by a
timer, and was composed of the necessary algorithms to estimate the MC based on the 3D acceleration
of the chest, left waist, right wrist, and right ankle measured in the past 10 seconds and the person’s BMI.

The IMUs orientation of Ingraham’s dataset was studied to use the same axis orientations when
using InertiaLab’s IMUs. This was done by conducting a walking test, on a treadmill, during which the
InertiaLab’s IMUs were used to obtain the 3D acceleration of the chest, right wrist, left waist, and right
ankle, at a speed of 3 km/h, and comparing the acquired data to Ingraham'’s acceleration data respective
to walking at the speed of 3.2 km/h. The comparison was done by studying the cross-correlation of
the different signals for the four pairs of IMUs (Ingraham’s and InertialLab’s) using MATLAB's tools. The
cross-correlation results are presented in Appendix A. Afterward, it was performed a visual inspection of
the achieved results where the similarity between the signals with higher correlation was analyzed and
the axis correspondence was verified. For this purpose, it was analyzed if the rotation of the axis from
Ingraham’s configuration to the InertiaLab’s configuration would be possible by following the right-hand

rule. Figure 13 presents the axis correspondence between the two IMUs sets.
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Figure 13: Representation of InertiaLab’s axis orientation in relation to Ingraham’s axis orientation.

Lastly, the SmartOs’ mobile APP was adjusted. To enable the activation of the MC estimation
through the APP an additional setting was added to the system’s configuration interface. This step was
performed using Android Studio’s IDE. The regression model needs the data obtained by the InertiaLab’s
sensors (IMUs), therefore, when the “MC Estimation” option is toggled, the communication between the
InertiaLab’s sensors and the CCU, through the WMSS board, is turned on by forcefully toggling the
“Inertial Lab” checkmark. Figure 14 shows the changes performed to the APP.
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Figure 14: Interface options added to SmartOs’ APP that enabled the start of MC estimation.
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4.3 Validation

This section presents the validation of the developed regression model used for MC estimation. The
validation phase was branched into three stages: (i) offline phase, used to optimize the preprocessing
method, find the best model’s inputs, and study the best-performing model; (i) bench tests, performed to
access the correct functioning of the best-performing regression model; and (iii) human experiments, to

validate the regressor in real-time, when compared to the ground-truth.

4.3.1 Offline

The offline validation was performed to obtain the best possible performance when estimating the
MC, by using Ingraham’s dataset (66) to train and validate different regression models through the LLOCV
method. Various aspects of the regression model training were analyzed and optimized, namely: (i) the
data preprocessing method; (ii) the model’s inputs; (iii) the use of activity-specific models; (iv) the best
models’ hyperparameters; and (v) the best regression algorithm.

The various studied models were evaluated regarding the metric obtained during the validation
process, namely the RMSE, which measures the difference between the predicted values and the target
values (ground-truth of the MC, measured through indirect calorimetry), and the coefficient of
determination (R2), which assesses the fit quality of the regression models. The performance of each
regression model was obtained for each of the validation iterations of the LOOCV method, and, in the
end, the average and standard deviation of each metric were computed. The RMSE was computed using
Equation 3, where IV is the number of predictions, y(4) is the i** ground-truth MC, and (i) the i MC
estimated by the EGPR model.

- \/ =Y w00 — §(0))° 5

4.3.2 Bench tests

The following bench tests were performed to validate the performance of the regression model for real-
time MC estimation. Firstly, the regression model implemented in C++ was compared with the original
model developed in MATLAB. This was done by testing the regression model with the input data from the
test participant. The MC prediction made by the C++ model was then compared to the ground-truth MC
and the MATLAB prediction.
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Then, the computational load of the regression model was analyzed. This validation process was done
by analyzing the time taken to execute each function of the MC estimation algorithm. To do this, an output
pin of the CCU board was activated every time each function was called and deactivated when it ended.
The timings of the algorithm were then obtained by inspecting this pin in an oscilloscope. The results were

organized in a time diagram to verify any time constraints in the code.

4.3.3 Human experiments

The experimental validation of the regression model model was performed to verify the accuracy of its
MC estimation. In this phase, the ground truth of the MC was obtained through indirect calorimetry, by
equipping participants with a respirometer device (K5, COSMED, Italy). The participants also wore the four
IMUs necessary for estimating the MC and performed the three motor activities studied: standing, walking,
and sitting. The prediction made by the regression model was then compared to the MC estimated through
indirect calorimetry.

Additionally, participants were also equipped with motion track markers (Qualysis, Sweden) in their
lower limbs, a chest HR monitor (HRM Dual, Garmin, U.S.A), and three additional InertiaLab IMUs placed
on the right knee, left waist, and back side of the waist. The motion track system was used to study
the kinematics and kinetics of the lower limbs during walking. The participants walked on a force plate-
instrumented treadmill (AMTI, U.S.A) that measured the bilateral forces during the gait. The protocol was

performed in two days, at Porto Biomechanics Laboratory (LABIOMEP), University of Porto.

Participants

Five volunteers (3 males and 2 females) participated in this study after giving their informed consent.
The participants were healthy individuals with no history or evidence of locomotor or balance impairments
and did not suffer any musculoskeletal injury six months prior to this experiment. The participants, whose
demographic information is presented in Table 15, had ages between 22 and 29 years old (25 + 2.9
yr), body masses between 65 kg and 99 kg (77.8 &+ 13.4 kg), and BMIs between 24.0 kg/m?2 and 29.2
kg/m2 (26.8 + 2.0 kg/m?). This protocol was conducted under the ethical procedures of the Ethics
Committee in Life and Health Sciences (CEICVS 006/2020), following the Helsinki Declaration and the
Oviedo Convention.

In contrast to Ingraham’s protocol (66), this study was more balanced regarding its participants’
gender, with 40% of the participants being females, against the 20% in Ingraham’s dataset. Additionally,
two participants’ BMIs were out of the Ingraham dataset’s BMI range (18.6 to 27.8 m /kg?), Participant
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Table 15: Validation participants’ demographics

Participant | Age (years) | Gender | Weight (kg) | Height (m) | BMI (kg/m?)
1 29 M 76 1.78 24.0
2 24 M 99 1.84 29.2
3 23 F 68 1.60 26.6
4 27 M 81 1.70 28.0
5 22 F 65 1.58 26.0

2 was heavier than the heaviest Ingraham’s participant (95.2 kg), and Participants 3 and 5 were smaller
than the smallest Ingraham’s participant (1.63 m). Furthermore, two of the participants (3 and 5) were
younger than the youngest Ingraham’s participant (24 yr).

Experimental protocol

The participants were first equipped with seven InertiaLab IMUs in the right ankle, right knee, right
wrist, right waist, left waist, back waist, and chest. These sensors were connected to the WMSS board,
which was linked to the CCU of the SmartOs’ system. The WMSS board, the CCU, the system’s battery,
and the power supply interface were all placed on a backpack worn by the participants. Afterward, the
participants were equipped with a chest HR monitor.

Then, the motion track markers were placed on the participants’ lower bodies. Figure 15 presents
each marker’s location. A total of 44 markers were placed, 8 of which were placed on the hip area, 8 on

the upper legs, 8 on the knees, 8 on the lower legs, and 12 on the feet.
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Figure 15: Locations of the lower body motion track markers.
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Afterward, the participants were equipped with the respirometer. The face mask was tightened
enough to prevent air from escaping the system but not too tight to make its use too uncomfortable. The
respirometer backpack was also placed on the participants’ backs, above SmartOs' backpack. Figure 16

presents the sensors’ placements when worn by a participant.

(a) Front view (b) Side view (c) Back view

Figure 16: Participant instrumented with the wearable sensors, namely, the InertiaLab’s IMUS, motion track

markers, HR chest monitor, and the respirometer device.

The data acquisition was then started. Firstly, the participants stood completely still for 5 seconds
to calibrate the IMUs. Afterward, a static trial was performed to calibrate the motion track software, with
the participants also standing still. After the calibration was concluded, the MC estimation was turned on
simultaneously with the respirometry acquisition.

The participants performed 5 motor tasks: (i) standing; (ii) walking at 1.5 km/h; (iii) walking at 2
km/h; (iv) walking at 3 km/h; and (v) sitting. Each motor task lasted 10 minutes and the participants
standing and walking activities were performed on the instrumented treadmill, and the sitting activity was
performed on a chair right next to the treadmill, meaning that the participants had to move between the
last walking task and the sitting task. Figure 17 presents the three types of activities performed by the
participants. In Figure 17, it is also possible to observe the instrumented treadmill and the chair used
during the experiment.

It was asked to the participants to be as still as possible during the standing and sitting tasks and to
not rest their right arm on the treadmill. The motion capture system was only turned on for one minute at
the end of each walking task. The treadmill was composed of two force-sensing plates with a front-to-back

split configuration, and, during the motion capture period, the participants were asked to only place one
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(a) Standing (b) Walking (c) Sitting

Figure 17: Activities performed by the participants.

foot on the front plate at a time, after the other foot was entirely on the back plate.

Due to a sudden stop in SmartOs’ system halfway through Participant 2 acquisition, the participant
was asked to repeat the protocol on the second day, resulting in the execution of two different trials by the
participant. Additionally, the SmartOs’ system also failed midway through the protocols of Participants 2

(during their second trial) and 5.

Data collection and analysis

The data acquired during the protocol comprised: (i) the 3D acceleration of the right ankle, right knee,
right waist, back waist, left waist, chest, and right wrist, measured by InertiaLab’s sensors and stored by
the SmartOs system; (ii) the HR, measured by a chest monitor; (iii) the rate of oxygen consumption and
carbon dioxide production, measured by a respirometer device; (iv) the gait kinetics and kinematics of the
lower body, measured by motion capture markers and a force-instrumented treadmill; (v) the estimation
of the MC made by the SmartOs system. The data acquired with the optical markers and the force plate-
instrumented treadmill did not concern the work presented in this dissertation and thus are not analyzed
in this manuscript.

Figure 18 is composed of four graphics depicting the 3D acceleration of Participant 4, measured by
the IMUs placed on the chest, right wrist, left waist, and right ankle, which were the signals used by the
regression model to estimate the MC. The 3D acceleration of the remainder participants is presented in

Appendix B.

59



X-axis X-axis

0 10 20 30 40 0 10 20 30 40

Acceleration (g)
&b o
SN (X Qe N
Acceleration (g
& o
= m o
}
- A
1

0 10 20 30 40 ] 10 20 30 40
Z-axis Z-axis
0 v 1
05 0.5 fme "L'“w_ﬁ
0
-1
0 10 20 30 40 ] 10 20 30 40
Time (min) Time (min)
(a) Chest (b) Right wrist
X-axis X-axis
2
1
0
0 10 20 30 40

C E
§ 09 §2
= 0 0
Q-5 @2
8 4 g+
g 0 10 20 30 40 £ 0 10 20 30 40
Z-axis
04 “ “' of
0.2
0 -1
-2
0 10 20 30 40 0 10 20 30 40
Time (min) Time (min)
(c) Left waist (d) Right ankle

Figure 18: Raw 3D acceleration signals measured by the InertiaLab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 4.

Figure 19 presents the HR of the five participants (including both trials of Participant 2) during their
respective protocols. Each participant’s plot is labeled according to the activities being performed at each
time. Additionally, the average HR of each participant is presented at the top of each plot.

For validating the realtime performance of the regression model, the SmartOs data and the
respirometer data were processed and compared in MATLAB (2022b, The Mathworks, Natick, MA,
U.S.A). Firstly the relevant data was selected from the files, i.e., the acceleration and MC estimation,
from the SmartOs’ files, and the rate of oxygen consumption (VOQ), carbon dioxide production
(VC’O2), and HR from the respirometer data. Two separate data structures were created - one for each

system. The structures were processed to present the acquisition time in minutes and an activity label to
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Figure 19: Heart rate of each participant during the experiment, and respective average.
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identify the performed task at any time period. Afterward, the first three minutes of respirometer data
were removed from the structures, since the respirometry data only achieves a steady-state after that
time period.

The ground-truth from the respirometer data structure was obtained following three different
approaches: (i) the per-breath respirometry; (ii) the steady-state respirometry; and (iii) the fast-estimated
respirometry. This was based on the approach followed by Slade et al. (15), which compared a model
for MC estimation with the results achieved by these three indirect calorimetry methods. The per-breath
respirometry was obtained by applying Brockway's equation (Equation 1) to the respirometer data
measured at every breath. This MC was normalized by the weight of each participant and averaged into
10-second periods to match the estimation frequency of the regression model. The steady-state
respirometry was obtained by averaging the MC, also estimated by Brockways' equation, during the
steady-state period. The fast-estimated respirometry was computed by fitting a first-order dynamical
model to the per-breath MC data (obtained with Brockway’s equation as well) acquired during the
steady-state phase. A First-order dynamical model was chosen for comparison since it is the most
common method to estimate the MC in HITL controllers, as shown in Chapter 2.2. The dynamical model

used was presented and described by Zhang et al. (8).

4.4 Results and discussion

This section presents the results obtained during the three validation phases (offline, bench tests, and
human experiments), as well as the results obtained by an offline test to the best-performing regression
model, concluded after the offline validation. The offline validation results address the various optimization
steps executed to obtain the ideal MC estimator. The bench test’s results concern the model’s performance
in C++ and its computational load to the system. The human experiments’ results refer to the realtime

validation of the regression model, i.e., its comparison to the MC estimated by indirect calorimetry.

4.4.1 Offline validation

Preprocessing methods

Regarding the data preprocessing steps, the following aspects were studied: (i) the filtering of the
acceleration signals, comparing the effects of low-pass and band-pass Butterworth filters; (ii) the effect
of normalizing the HR and MC to the user's body mass; (iii) the effect of segmenting the 10-second

windows in 5-second overlaps; (iv) the metric used to compute the final features on each window; and
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(v) the final normalization method. These tests were conducted by using the same regression model
for each experiment, and only changing the test conditions. Figure 20 presents an overview of the best

preprocessing steps.

Original data

v
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v v v v
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Butterworth Weight
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overlaps

v
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v
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v

‘ Interpolation and z-score normalization ‘

L4
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Figure 20: Diagram of the preprocessing steps that resulted in the best regression model performance.

The results showed that the preprocessing methods used to prepare the data can affect the efficacy of
a regression model. Better results were achieved by using a low-pass filter, as performed by Su et al. (91),
to remove high-frequency noise from the acceleration since the bandpass filter ended up erasing small
variations in these signals that were related to changes in activities. The model also performed better
when the HR and MC were normalized by the users’ body mass, compared to using the body mass as an
input estimator, demonstrating that a person’s body mass impacts their MC. This normalization was also
performed by two literature studies (16, 66).

Overlapping the 10-second feature windows every 5 seconds like Gjoreski et al. (17) also resulted inan
increase in the model’s performance due to an increment in the data given to the regression model. Giving
the MAD of each signal (3D acceleration, GSR, and HR), instead of the mean of each signal, as performed
by Bazuelo-Ruiz (92), also improved the MC estimation, since this metric was useful for identifying the

distance of the measurements to the signals’ means (i.e. the signals’ variability). Therefore, the variability
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of the signals proved to be more related to the MC measured. Additionally, the best normalization method
turned out to be the z-score method, where the data is normalized based on its mean and standard

deviation, which could possibly be explained by the effectiveness of this method in handling outlier data.

Model’s inputs

Several signals were given to the regression models during the training process, namely the 3D
acceleration of the chest, right wrist, left waist, and right ankle, the derivative and vector norm of each
acceleration signal, the HR, and the GSR. Furthermore, two anthropometric features were also tested as
inputs: the body mass and BMI. Best validation results were achieved when using the following features
to train the regression models: (i) the 3D acceleration on the four locations, (ii) the HR, and {iii) the BMI.

These results resonate with the results achieved in the literature that proved the 3D acceleration and
HR to be highly related to the MC (66, 72). Additionally, it was possible to conclude that providing more
inputs to the models did not always improve their performance, since some estimator signals, namely the
acceleration vector norm, acceleration derivative, and GSR did not correlate as much to changes in the
participants’ MC. Using these signals, therefore, resulted in biased models, i.e., models less capable of
generalization. Using the body mass as an input signal did not improve the performance likely due to the
weight normalization previously performed during the preprocessing phase.

However, for the HITL application, it is desired to reduce the number of sensors as much as possible.
Therefore, the effect of using only the 3D acceleration and BMI data to train the EGPR model was studied.
Table 16 presents the performance of the compared models: (i) a model that used the HR, 3D acceleration,

and BMI; and (ii) a model that used the 3D acceleration and the BMI.

Table 16: Performance comparison between the model that was trained with the HR, acceleration, and BMI,

and the model that was trained with the acceleration and BM|

Model trained with the HR, | Model trained with the
acceleration, and BMI acceleration and BMI
Validation RMSE (W/kg) 0.304 +0.014 0.308 £+0.026
Test RMSE (W/kg) 0.412 0.45

Despite the validation error increasing by 0.004 W/kg, the test error increased by 0.038 W/kg when
the HR signal was removed from the training data. However, this increase was not considered to be
significant, as the regression model was still capable of accurately estimating the MC based only on the

four 3D acceleration signals. The regression model presented here was, therefore, more feasible for
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HITL applications than most models used in the literature and could lead to less obtrusive exoskeleton
assistance for workers during occupational tasks. Consequently, the input estimators more adequate for
HITL applications are: the 3D acceleration of the chest, left waist, right wrist, and right ankle, and the

BMI.

General vs activity-specific models

Table 17 presents the comparison of the results when using activity-specific regression models
(different regression models trained for different activities with the sub-datasets) to the performance of a
global regression model (trained with the full dataset), when using a CNN with the same architecture.
The results showed that using the activity-specific regression models led to a slightly better RMSE during
validation, but worse R? compared to the general regression model. However, when predicting the MC
of the test subject, the activity-specific models significantly decreased their performance in both RMSE

and R? metrics.

Table 17: Validation and test performance of the three activity-specific models (walking, sitting, and standing)

and the general model

Walking | Sitting | Standing | All activities
RMSE (Val) 0.42 0.39 0.26 0.5
R? (Val) 0.49 0.46 0.33 0.73
RMSE (Test) 0.57 1.13 0.4 0.41
R? (Test) 0.08 -4.69 -1.73 0.84

The results showed that the activity-specific models suffered from overfitting. This was believed to be
due to the smaller datasets used to train the activity-specific models, which resulted in an inaccuracy of
the models when predicting the MC based on unseen data. Therefore, a general model was used in this

work to estimate the MC of humans performing different motor tasks.

Best CNN

The CNN that achieved the best results during validation was a network with two convolutional layers,
with 32 filters with a size of 10. Each convolutional layer was followed by a ReLU layer as the activation
function, which was followed by an average pooling layer with a pool size of 2, stride of 1, and padding
equal to the input vector’s size. Then, the data went through a global average pooling layer, two fully

connected layers with an output size of 50 and 1, in that order, and a final regression layer.
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The batch size, number of epochs, and learning rate that led to the best performance were 32, 100,
and 0.01, respectively. Additionally, it was used an L2 regularization method to reduce overfitting. The
regularization term that resulted in the best validation results was 1e-4. Figure 21 presents a diagram of

the CNN'’s layers.

| ’ | Leaming rate: 0.01 |
Batch size: 32 |

¥ —¢ _____
Convolution Layer Convolution Layer ¢
number of filters: 32 number of filters: 32 Global Average
filter size: 10 filter size: 10 Pooling Layer
Y Y L
RelU Layer RelU Layer Fully Connected Layer
hidden neurons: 50
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Average Pooling Layer Average Pooling Layer Y
pool size: 2 pool size: 2 Fully Connected Layer
stride: 1 stride: 1 hidden neurons: 1
v

Figure 21: Layer diagram of the best performing CNN model.

These results showed that highly complex models are not necessarily more accurate in predicting the
MC, since the best-performing CNN was a relatively simple NN, with only two convolution layers purely
composed of 32 small filters, and only 50 hidden layers in the first fully connected layer. This revealed

that there was no necessity for many layers to find patterns in the data.

Models’ comparison

Table 18 presents the performance of the various machine and deep-learning models trained,
including the validation results obtained by the best CNN. In total, 25 regression models were trained
and validated.

These results showed that the model with the best performance (lowest RMSE and higher R?) was the
EGPR. The EGPR model’s results were very similar to the rational quadratic GPR’s. The third and fourth
best models were also GPR models: the matern 5/2 and the squared exponential GPRs, respectively.
This demonstrated the superiority of the GPR models in predicting the MC.

Additionally, despite being the most complex model in the study, the CNN was only the 10" best
regression model during validation. This could be explained by the small size of the dataset used to train

the models, as simple machine-learning models are generally superior when trained with less data. The
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Table 18: Validation RMSE and R? of each regression model trained

Model RMSE | R? Model RMSE | R?
LR 0.432 | 0.80 Matern 5/2 GPR 0.319 | 0.89

Stepwise LR 0.379 | 0.85 EGPR 0.306 | 0.91

Fine tree 0.400 | 0.83 SVM Kernel 0.422 | 0.81
Medium tree 0.371 | 0.85 | Least squares Kernel | 0.414 | 0.82
Coarse tree 0.360 | 0.86 BDTR 0.372 | 0.85
Linear SVM 0.435 | 0.80 | Bagged decision tree | 0.326 | 0.89
Quadratic SVM 0.379 | 0.85 Narrow NN 0.377 | 0.85
Cubic SVM 4234 | -18.3 Medium NN 0.397 | 0.83
Fine GSVM 0.342 | 0.87 Wide NN 0.396 | 0.83
Medium GSVM 0.358 | 0.86 Bilayered NN 0.347 | 0.87
Coarse GSVM 0.414 | 0.82 Trilayered NN 0.366 | 0.86
Rational quadratic GPR | 0.306 | 0.90 CNN 0.366 | 0.82

Squared exponential GPR | 0.331 | 0.88

data previously presented in Figure 18 of Chapter 4.3.3 showed that the acceleration variation, along the
three axes, was linearly related to the walking speed and that the transitions between the speeds could
be noticed just by looking at the plots. This could explain why a simple machine-learning model achieves
better results when estimating the MC based only on these signals.

The performance achieved by the EGPR model (RMSE of 0.31 W/kg) was better than the results
achieved by the study performed on the same dataset (RMSE of 1,03 W/kg) despite using significantly
fewer sensor data (66). It is important to note that Ingraham et al. used the model to predict the MC
during heavier activities, namely running, cycling, and stair climbing, that are generally associated with

lower MC estimation accuracy (66).

Optimization of EGPR’s parameters

After observing that the model with the best performance was the EGPR, the Sigma parameter of
the model was optimized by using three distinct methods: BO, grid search, and random search. The
acquisition function used, i.e., the technique used to determine which hyperparameters are evaluated at
each iteration, was the probability of improvement method. The results obtained by each optimization

method are presented in Table 19, as well as the performance previously obtained when comparing all
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the models by using MATLAB's Regressor Learner APP standard value for the Sigma parameter (0.1650).

Table 19: Validation RMSE of an EGPR model with a Sigma parameter optimized by different methods (BO, grid

search, and random search) in comparison to no optimization process

Optimal Sigma | RMSE (Val)
No optimization 0.1650 0.306 £ 0.018
BO 0.1492 0.304 +0.014
Grid search 0.2101 0.310 £0.164
Random search 0.1088 0.306 £+ 0.017

Therefore, it was observed that the method that achieved the best results was the BO, however, there
was not a significant difference in the validation RMSE obtained by the different techniques. Nonetheless,

this optimization allowed for a reduction in the validation RMSE average of 0.002 W/kg.

4.4.2 Offline testing

The offline validation previously described resulted in the development of the best possible regression
model for MC estimation. The optimized EGPR model was then used to predict the MC of the test subject
based on the data acquired by the accelerometers and the participant’s BMI. As previously mentioned,
the test participant was chosen randomly. The RMSE and 12 of the test prediction were 0.45 W/kg and
0.84, respectively. Figure 22 presents the prediction of the EGPR, in blue, in comparison to the target MC

(ground-truth), in orange.
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Figure 22: Comparison between the test subject’s true MC (orange) and the estimated MC (blue).
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The results revealed a slightly higher RMSE and smaller R? when compared to the performance
during validation, with the RMSE increasing by 0.142 W/kg and the R? decreasing by 0.07. However,
these results were satisfactory as the EGPR model achieved similar performance to the best model in the

literature (0.36 W/kg (16)) despite using fewer input signals and being a much simpler regression model.

4.4.3 Bench tests

Accuracy of the MC prediction in SmartOs system

The EGPR model was implemented in the SmartOs system and its performance was compared with
the one obtained in Matlab for the same data. It was observed that when given the same feature vector,
the output (i.e., the MC estimation) was the same for both EGPR models (RMSE of 6.94¢~°). Figure

23 shows the differences between the models’ predictions, revealing the resemblance between the two

curves.
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Figure 23: Comparison between the test subject’s true MC (yellow), the estimated MC in MATLAB (blue), and

the estimated MC in C++ (orange).

These results are ideal since they showed that the model developed in C++ was able to predict the
MC with the same accuracy as the original model. Therefore, the code generated by the Coder APP was

viable to be integrated into SmartOs’ architecture.

Code timing analysis

Figure 24 presents the time diagram of the MC estimation algorithm, integrated into the SmartOs’
CCU. The duration of each main function of the algorithm is presented in the diagram, namely the time
needed to read and save the acceleration data into 10-second windows, to preprocess that data, and to

estimate the MC.
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Figure 24: Time diagram depicting the time it takes to execute the different MC estimation algorithm’s functions.

The diagram showed that saving the acceleration data happened, as expected, every 10 milliseconds
since that was the frequency at which the WMSS board was programmed to send the data to the CCU. This
process took, on average, 0.23 milliseconds. Therefore, this function did not disturb the communication
between the two boards, which happens every 10 milliseconds.

The additional functions of the MC estimation algorithm were programmed to execute every 10
seconds. The results showed that this was successfully achieved. Additionally, the time diagram
revealed that the data preprocessing took, on average, 2.6 milliseconds, and, the MC estimation took
7.3 milliseconds. The all process lasted, therefore, for 9.9 milliseconds.

Together, the three main functions took an average of 10.13 milliseconds, more than the 10
milliseconds necessary to undisturbingly read the data from the WMSS board. However, since the
processes were developed into different threads (depicted using the colors blue and red) they were able

to be executed simultaneously with no delays.

4.4.4 Human experiments

Figure 25 depicts the MC estimated, in realtime, by the EGPR model in comparison to the MC
calculated by the three methods of indirect calorimetry, for the five participants, including the two trials
performed by Participant 2. Furthermore, the activity transitions are also marked and labeled.

The prediction results presented in Figure 25 show that the accuracy of the prediction varied across
the different trials. Additionally, it was possible to observe that the per-breath respirometry estimation was
very noisy. The fast-estimated respirometry estimation was very close to the average of the MC for each
activity (the steady-state respirometry estimation). In general, it was possible to see that the EGPR model
underestimated the MC when compared to the ground truth in every trial, and this underestimation was

higher for the participants who spent more energy during the protocol.
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Figure 25: Comparison between the MC estimated by the three methods of respirometry (per-breath,

fast-estimated, and steady-state, in orange, black, and red, respectively) and the MC estimated by the EGPR model

(in blue), for each participant.
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As seen in Figure 25, the difference between the regression model estimation and the respirometry
estimations was significantly higher for Participant 3. The MC estimated by the model for this participant
was similar to the MC estimated for the other participants, since the 3D acceleration was similar for all of
them, however, the third participant had an abnormally high MC during the walking activities. Participant
3 presented a normal HR during the trial, close to the average HR for all participants, as seen in Figure
19, and had similar characteristics to Participant 5, regarding their age, gender, body mass, and height.
Additionally, Participants 3 and 5 performed their respective trials at a similar time of the day, with similar
room temperatures, and it is possible to observe that both participants had similar steady-state MC during
the standing activity. Therefore, Participant 3’s high MC could not be explained by any of the mentioned
factors.

Additionally, it was possible to observe that the Participant 2 MC was higher during the first trial. One
factor that varied between the two trials was the time of day: the first trial was performed after lunch, and
the second trial before lunch. This could explain this difference since the basal MC naturally increases
after a meal. This difference could also be related to the HR disparity noticed in Figure 19.

The closest prediction to the ground truth was obtained by Participants 2 (second trial) and 5, despite
the participants presenting very different demographics. Additionally, both participants had different HR
averages (63.3 bpm and 113.4 bpm for Participants 2 and 5, respectively), and the trials were performed
at different times of the day. The remainder of this chapter presents some performance metrics of the
EGPR estimation in real-time, namely: (i) the RMSE; (ii) the mean absolute percentage error (MAPE); {iii)
the agreement between the model’s prediction and the ground-truth (Bland-Altman plots); and (iv) the

estimation delay.

Model evaluation: RMSE

Table 20 presents the RMSE (Equation 3) of the MC estimated by the EGPR model when compared
to the ground truth (the three methods of indirect calorimetry), for all participants (P1 to P5), including
the two trials of Participant 2 (T1 and T2), and all the activities (standing, walking at 1.5 km/h, 2.0 km/h,
and 3.0 km/h, and sitting). Additionally, the last row presents the RMSE average and standard deviation
for each activity.

From the results presented in Table 20, it was possible to conclude that the RMSE was higher when
the MC estimated by the regression model was compared to the per-breath respirometry calculation,
due to the noisy nature of this method. Additionally, due to the similarity between the steady-state and
fast-estimated respirometry calculations, the RMSEs between the regression model estimation and these

calculations were very similar across the different activities.
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Table 20: RMSE between the MC estimated by the EGPR model and the MC estimated by each respirometry
method (in W/kg), for each activity (standing, walking at 1.5 km/h, 2km/h, and 3 km/h, and sitting), and for each

participant (P1-P5). The average RMSE for each activity is presented in the last row

Per-Breath Respirometry Steady-State Respirometry Fast-estimated Respirometry
i A & KA & ¢ KK £ K K K R
P1 0.68 0.74 1.07 0.84 0.62 0.32 0.56 0.88 0.58 0.06 0.30 0.60 0.88 0.55 0.07
P2(T1) | 0.28 1.08 - 1.08 - 0.08 1.08 - 1.05 - 0.08 1.20 - 1.10
P2(T2) | 0.30 - 0.33 0.38 - 0.22 - 0.21 0.22 - 0.22 - 0.20 0.05
P3 0.33 1.35 1.81 ’ 1.67 0.20 0.33 1.35 1.81 ’ 1.64 0.25 0.34 1.32 1.86 ’ 1.64 0.24
P4 0.37 0.51 0.60 0.59 0.26 0.14 0.40 0.49 0.52 0.23 0.14 0.42 0.50 0.49 0.24
P5 0.40 0.38 0.31 - - 0.27 0.31 0.27 - - 0.28 0.34 0.26
039+ | 081+ |08+ 091+ |036+|023+|074+|073+ 080+ |0.18+|023+|078+|074+ 077+ |0.18+
0.15 0.40 0.64 0.50 0.23 0.10 0.45 0.66 0.55 0.10 0.10 0.45 0.68 0.61 0.10

RMSE

Regarding the results of the comparison to the per-breath respirometry, the average overall RMSE, for
every participant and activity was 0.66 W/kg. Furthermore, the average coefficient of determination (122)
was 0.75. Compared to the metrics obtained during the offline testing, the RMSE increased by 31.8%
and the R? by 12%. This could be explained by the fact that the model was dealing with new data, from
different subjects and different sensors. These results were analogous to another literature study that
achieved a 40.4% increase in the estimation error during real-time validation, in comparison to the offline

results (15).

Model evaluation: MAPE

Figure 26 presents five sets of box plots (one for each task studied) depicting the MAPEs between
the MC estimated by the regression model and the estimation computed by indirect calorimetry using the
per-breath respirometry method, for each participant (P1 to P5). The MAPE was calculated using Equation
4.

y(i) — (i)
y(i)

Each box plot displays five metrics of the MAPEs for a particular activity and participant: the median

1 N
MAPE = — Z

N < “
=1

MAPE (the horizontal line roughly at the center of the box), the first and third quartiles (represented by
the bottom and top limits of the box, respectively) and the minimum and maximum MAPEs, excluding the
outliers (represented by the limits of the whiskers, i.e. the dotted lines outside the boxes that show the
range of MAPEs outside the middle 50% of data). The outliers are represented by the points outside the
box plots.
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Figure 26: Boxplots presenting the MAPEs between the MC estimated by the EGPR model and the per-breath

respirometry method. Each boxplot presents the results of the five participants (P1-P5) for a single activity.

From Figure 26, it was observed that the MAPE was minimal during the static activities, i.e., the
standing and sitting activities. The MAPEs for the walking activities were similar, despite them being
performed at different speeds, however, walking at 3 km/h was the walking task with the lower average
MAPE, for all participants except Participant 2 (second trial). This could be explained by the fact that
this speed was an intermediate value between the speeds performed during Ingraham’s protocol, and,
therefore, the regression model was much more used to data from similar speeds.

Additionally, it was noticed that the MAPEs during the standing activity had many more outlier points.
This could be explained by undesirably spontaneous movements performed by the participants during this
activity that could have influenced the MC estimations. This could also explain the existence of various
outliers in the MAPEs of Participant 1 during the sitting activity.

Regarding the literature studies analyzed in Table 7, only Slade et al. (15) validated the model in
real-time, in a protocol with 24 participants who performed four types of activities: (i) walking; (ii) running;
(iii) climbing stairs; and (iv) cycling. The overall average MAPE achieved by Slade et al. was 23%. This
value is in the range of the MAPEs obtained in this work for Participants 1, 2 (second trial), 4, and 5, while

Participants 2 (first trial) and 3 had an average MAPE higher than 23%.

Model evaluation: Bland-Altman plots
Figure 27 presents the Bland-Altman plot comparing the MC estimations of the EGPR model and
the per-breath respirometry, for every participant. Each Bland-Altman plot shown depicts the agreement

between the regression model estimation and the ground truth (the target).
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Figure 27: Bland-Altman plots depicting the agreement between the MC estimated by the EGPR model and the
per-breath respirometry for each participant, where the black line represents the mean difference and the red and

blue lines represent the 95% limits of agreement.
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The plots of Figure 27 show the relationship between the difference between the two signals (y-axis)
and the average of the two estimation methods (x-axis), for each participant. This allows the identification
of estimation biases, given by the mean difference between the two signals (black line). Additionally, the
upper and lower limits of agreement are also represented in the plot (red and blue lines, respectively),
which are computed by the mean difference plus/minus 1.96 times its standard deviation.

Regarding the results presented by the Bland-Altman plots, they showed that the model’s prediction
and the ground truth had a higher agreement for Participants 2 (second trial), 4, and 5, perceived by the
smaller bias between the two signals for these participants (-0.038 W/kg, 0.219 W/kg, and 0.171 W/kg,
respectively), and the smaller limits of agreement (1.27 W/kg, 1.70 W/kg, and 1.28 W/kg, respectively).
With the exception of the second trial of Participant 2, whose bias was negative but close to zero, all the

biases were positive, demonstrating the general underestimation made by the regression model.

Model evaluation: Estimation delay

Table 21 presents the mean delay of the EGPR model estimation and the RMSE of the time agreement
between the regression model and the respirometer, for each participant (P1 to P5) and each trial of
Participant 2 (T1 and T2). The delay was given by the difference between the time of each estimation
made by the EGPR and the time of the previous estimation made by the respirometer (the previous breath).
The time agreement RMSE was computed by comparing the estimation delay to an ideal model’s time

response (no delay).

Table 21: Average delay between the estimation made by the regression model and the respirometer, and

RMSE of the time agreement between the two methods, for each participant (P1-P5)

P1 P2 (T1) | P2 (T2) P3 P4 P5
Average estimation | 248+ | 1614+ | 191+ | 164+ | 2024|177+
delay (s) 2.30 1.28 1.88 1.60 1.86 1.68

Time agreement

RMSE (s)

3.28 2.05 2.68 2.29 2.74 2.45

The results presented in Table 21 show that the regression model estimated the MC, on average, 1.61
to 2.48 seconds later than the respirometer, and the RMSE of the time agreement was between 2.05 and
3.28 seconds. Since the average breath frequency of an adult is between 12 and 18 breaths per minute,
this means that the interval between breaths is between 5 and 3.3 seconds. Therefore, the average time

delay was still below the time it takes to estimate a new MC by indirect calorimetry.
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Additionally, the developed model was able to estimate the MC every 10 seconds, without any delays
from the SmartOs system. This is a significant upgrade when compared to a respirometer device, which
takes 3 minutes of estimations before reaching a steady-state value. Therefore, the time taken by the

regression model to estimate a new steady-state MC was 18 times lower than a respirometer device.

4.4.5 Conclusions

In this chapter, a regression model was developed to estimate the MC from only four IMUs, wearable
and non-intrusive sensors, practical for industrial applications. The model was capable of achieving low
estimation errors in realtime, similar to the metrics achieved by the best-performing models in the
literature. The model was successfully integrated into the SmartOs system, with low computational cost
and without affecting the system’s performance. Additionally, this work allowed the reduction of the
steady-state MC estimation time from 3 minutes to 10 seconds. In conclusion, the regression model was

considered fit to be integrated into a HITL controller (Chapter 6).
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5 Torque tracking control

The proposed HITL control presented in Chapter 3.3 is based on the premise that optimizing an
exoskeleton torque profile improves the human-robot interaction and reduces the users’ physical exertion.
So, before implementing this HITL strategy into SmartOs’ architecture, a torque tracking control was
developed to manipulate the active actuator based on a reference torque profile. This chapter describes
the development of this control strategy and its integration into the knee exoskeleton of SmartOs system.

Firstly, the algorithm for generating a torque profile is explained. A natural cubic spline interpolator
was used for this purpose since it enabled the representation of any desired torque profile shape through
the combination of multiple sinusoidal curves. The spline generates a torque profile, which is used as the
reference torque trajectory for the torque tracking control.

Then, the torque control is presented, which starts with the generation of a desired torque profile and
is composed of two hierarchic stages - the mid- and low-level controllers - that continuously compute the
knee joint’s torque. The mid-level controller was based on the continuous estimation of the gait phase
based on the gait speed, and posterior calculation of the torque for that gait point. The low-level controller
was a PID torque controller, a loop mechanism with the objective of minimizing the difference between
the desired/reference and the real actuator’s torque.

Lastly, the validation of the controller is presented. Initially, bench tests were performed to identify the
best PID controller parameters (i.e., the proportional, integral, and differential gains), and the ideal knee
torque profile for gait assistance. Then, a human experimental validation enabled the assessment of the

HITL strategy’s effectiveness.

5.1 Introduction

Most of the torque tracking controllers in the literature are developed for pneumatic actuators or
tethered exoskeletons (8, 49, 51), not for LLEs with electric motors. Pneumatic or cable-driven actuators’
controllers are implemented to follow the torque trajectory of healthy humans. However, this strategy is
not the most adequate for electric actuators as DC motors, due to their different mechanical system.

Some studies in the literature that developed torque tracking controllers for ankle exoskeletons with
electric motors created time-adaptive control algorithms that generate torque profiles with adjustable
torque timings and magnitudes, based on the device’s movement (93) (94). The torque profile
implemented by these studies had to be different from the natural human torque profile, in order for the

electric motor to perform the desired movement.
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Therefore, when developing a torque tracking controller for an electric actuator, the torque profile that
will be used as a reference trajectory must be manually adapted for the required application. Figure 28
presents the differences between the ankle torque profile of a tethered actuator (8) and a DC motor (93),

as well as the natural torque profile for the ankle joint from a healthy person (95).
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Figure 28: Ankle torque profiles used on torque tracking controllers for a tethered exoskeleton (8) and an

exoskeleton with electric actuators (93), and the natural ankle torque profile (95)

Figure 28 shows that the torque profile used by the tethered device (Figure 28a) tries to replicate the
natural ankle torque (Figure 28c) by simplifying the curve to one single positive curve. However, that is
not the case for the torque profile used by the electric exoskeleton (Figure 28b), which was composed of
two torque curves, one positive and one negative, with similar torque magnitudes. This profile was set
in order to ensure the movement of the actuator in both dorsiflexion and plantarflexion directions, so the
device performs a similar ankle trajectory to the natural ankle trajectory of a human. Therefore, in order
to perform the desired ankle movement, the torque profile of the electric actuator ended up differing from
the natural human torque profile. This was the approach followed during the development of the torque

tracking control developed in this chapter.
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5.2 Methods

5.2.1 Torque profile generation

The knee torque profile is the variation of the torque magnitude in time, during one gait cycle. Figure
29 presents the natural human torque, of the knee joint, when walking at speeds from 0.5 m/s (1.8 km/h)
to 2.6 m/s (9.4 km/h) (95). Figure 29 shows that the natural knee torque is mainly composed of two
positive curves, that generate the joint's flexion movement, and one negative curve, responsible for the

extension movement.
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Figure 29: Human knee torque profile when walking at different speeds (95).

The knee torque profile can be simplified by a combination of multiple positive and negative sinusoidal
curves, that represent the flexion and extension movements of the knee joint, respectively. Therefore, it is
possible to use mathematical algorithms to generate this curve, such as a natural cubic interpolator.

The development of the torque profile described in this chapter started, therefore, with the creation
of an algorithm capable of generating the knee torque profile in C by natural cubic interpolation, and its
implementation in the LLOS controller, following the guidelines in the literature (96). The Algorithm 1
is the pseudocode that computes the torque profile’s parameters, where n is the number of points that
define the spline, x is an array with those points’ gait cycle percentages, and «a is the torque magnitude
in those points (a; = T'(x;)).

After the torque profile’s parameters are obtained, it is possible to determine any point in the torque
profile by knowing its gait cycle percentage. Equation 5 shows how the torque magnitude - 7°(.X) - for

the point X is determined, knowing that X' value ranges between z; and x(;;1).

T(X)=a; +bi(X — 2;) + (X — 2)* +di(X — 1;)° (5)
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Algorithm 1 Natural cubic spline algorithm

SET n,x = [xg, 21, ..., Tp),a = [ag, ay, ..., ay
SET /= 1,up =0, 2 = 0
fori=1ton —1do

SET h; = x(ip1) — 75

SET a; = 31 — 3l

SET ll = 2($(1+1) — .T(ifl)) - h(ifl)u(ifl)
SETu; =
SET z; = iy

end for
SET/, =1
forj=n—1t 0do
SETc; = z; — U5C(5+1)
SET b; = et

G+ TG
SET d; = ~4)

end for

Figure 30 presents one possible knee torque profile, as an example, with two flexion torque peaks (8
N.m and 18 N.m) and one extension torque peak (-16 N.m). This profile replicates the general shape of
the natural knee torque profile (Figure 29) for slow walking speeds (1.8 km/h).

20 T

15

101

Knee torque (N.m)
‘ o
T

0 10 20 30 40 50 60 70 80 90 100
Gait cycle percentage (%)

Figure 30: Curve shape of a torque profile with two flexion movements, with torque magnitude peaks at 20%

and 60% of the gait cycle, and one extension movement with a torque magnitude peak at 87.5% of the gait cycle.
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5.2.2 Torque controller implementation

Figure 31 presents the overall diagram of the torque tracking controller integrated into SmartOs’
architecture. The code was fully developed in the LLOS board, however, the SmartOs’ CCU is needed to

start the device, and the mobile APP to configure its assistance.
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Output command PID torque
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Torque error

Figure 31: Diagram of the torque controller integrated into SmartOs’ architecture.

The controller starts by generating the torque profile that will be replicated by the SmartOs’ knee
actuator. Then, every 10 milliseconds, in the mid-level stage of the controller, the gait cycle percentage
is estimated and the reference torque is obtained, i.e., the instant torque of the torque profile for the
estimated gait cycle percentage (Equation 5). The low-level controller is executed every millisecond and it
runs a PID controller that repeatedly measures the torque error (i.e., the difference between the reference
and the real motor torque) and feeds the active actuator with the torque command required to reduce this

error. The following paragraphs will better explain each block of the torque controller.

Cubic spline interpolator
The code of the cubic spline interpolator is composed of two simple steps that are executed when

starting the SmartOs’ device before the knee actuation is activated. Firstly, the cubic spline is initialized
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and the arrays that define the torque profile (x and a) are established. Then, the torque profile is generated

by following Algorithm 1.

Mid-level control

In the mid-level controller, an algorithm to compute the reference torque for the PID low-level controller
was implemented. This algorithm is executed every 10 milliseconds, something made possible by a timer.
The mid-level controller can be divided into two phases: the detection and action phases.

In the detection phase, the algorithm estimates the gait cycle phase, given by a percentual point (0%
refers to the start of a gait cycle, while 100% refers to its end). This estimation is done by using an
equation used to obtain the duration of one gait cycle in milliseconds (gcd) - Equation 6 - based on the
walking velocity in km/h (v). The algorithm then increments the gait cycle percentage every 10 ms by
following Equation 7, where gcp; is the new gait cycle percentage and gcp;_1 is the percentage previous
to that one. The fmod() function is used to calculate the floating-point remainder of gcp; /100, setting
the maximum ceiling of the gait cycle percentage to 100%.

ged = (—34,620 + 107.31) x (6)

1000

100 x 10 ms
ged

The action phase is based on a force profile control strategy, where the torque is computed for each

gcp; = fmod(gepi—1 + 100) (7)

gait cycle percentage and transmitted to the low-level controller. This step uses Equation 5 to calculate

the torque magnitude of the torque profile for each gait cycle point.

Low-level control

A PID controller was implemented at the low-level stage of the LLOS controller, which was executed
every millisecond due to the implementation of a timer. Algorithm 2 presents the PID controller’s algorithm.

The PID controller’s objective is the minimization of the difference between the reference torque and
the real torque, i.e., the controller error, where the real torque is the knee actuator’s torque measured
by a Hall sensor installed in the DC motor. The algorithm starts by setting the proportional, integral, and
derivative gains (kp, ki, and kd, respectively), and initializing the error integral (et). Every millisecond,
the torque error is computed, its time integral is updated, and the output torque is obtained. The error’s

integral was saturated at 40 N.m.s. This output torque is then sent to the knee actuator motor.
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Algorithm 2 PID controller algorithm
SET kp, ki, kd

SET error; = ref_torque — real_torque
UPDATE ¢t = et + error;
if et > 40 then
SET et = 40
else if et < —40 then
SET et = —40
end if

SET ouput_torque = error; X kp + et x ki + (error; — error;_y) x kd

Furthermore, the PID output was limited to values between —2500 and 2500. Additionally, to
guarantee the users’ safety, the knee angle was limited to values between 15° and 80°. This was

ensured by assessing the PID output and the knee angle after the execution of Algorithm 2.

SmartOs mobile APP

The SmartOs’ mobile APP was altered to allow the activation of the developed torque controller. For
this purpose, an additional option was added to the assistance settings page of the APP called 'Therapy
Torque'. Figure 32 depicts the assistance settings page when the torque controller is selected for the right

knee exoskeleton and walking speeds of 1.5 km/h.

5.3 Validation

5.3.1 Bench tests

The validation started with the tuning of the PID controller, i.e., with the adjustment of the proportional,
integral, and differential gains to ensure a quick and adequate response from the low-level controller’s
stage. This was achieved by following the Ziegler-Nichols method (97).

Additionally, the knee torque profile was also continuously adjusted to identify the ideal torque
assistance, in a manual process. During this process, it was ensured a correct and comfortable gait

pattern by the SmartOs’ user.
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Figure 32: Interface option added to the SmartOs’ APP that enabled the start of torque control.

5.3.2 Human experiments

Following the bench tests used to assess the operationality of the torque controller and tune the
controller's parameters, an experimental validation was conducted to assess the human biomechanics
and physiological state when assisted by the knee module of SmartOs’ controlled by the developed
torque strategy. Additionally, the device behavior was also evaluated, namely regarding its motor’s
torque conformity to the reference torque and the PID command output.

In this phase, one volunteer was equipped with the SmartOs’ knee exoskeleton on the right leg.
Furthermore, the participant wore the four InertiaLab’s IMUs required by the regression model, previously

described in Chapter 4, to estimate the MC of the participant in realtime.

Participants
One healthy volunteer participated in this validation phase after giving her informed consent. The
participant had no history of locomotor or balance impairment nor did she suffer any musculoskeletal

injury six months prior to this experiment. The participant was a 23-year-old female, with a body mass

85



of 65 kg and a height of 1.62 m. The participant had no previous experience in wearing the SmartOs’
device. This protocol was conducted under the ethical procedures of the Ethics Committee in Life and

Health Sciences (CEICVS 006/2020), following the Helsinki Declaration and the Oviedo Convention.

Experimental protocol

The participant was first equipped with four InertiaLab’s IMUs in the right ankle, right wrist, left waist,
and chest. Then, the knee module of SmartOs’ was tightly secured to the participant’s right leg, with three
straps - one at the upper leg, and two at the lower leg - and one belt at the waist. The IMUs were then
connected to the WMSS board through USB cables and the knee actuator was connected to the LLOS
board through a CAN Bus cable. Afterward, both the WMSS and LLOS boards were connected to the
SmartOs’ CCU, and the system was plugged into the SmartOs’ battery. Figure 33 presents an overview

of the equipment worn by the participant during the protocol.

Knee exoskeleton =
(SmartOs)

Figure 33: Equipment worn by the participant during the torque controller’s validation.

Before the participant was subjected to the torque controller, she went through a familiarization period
to get comfortable and experienced in wearing the SmartOs’ knee device. Firstly, the participant walked

with the device in zero-torque mode, a control strategy that makes the active actuator mimic the functioning

86



of a passive actuator (i.e., it is the person who controls the device). Then, the participant walked with the
device in position tracking control, a reference-tracking controller where the reference signal is the knee
trajectory during a gait cycle. This familiarization process lasted until the participant felt comfortable
wearing and walking with the device.

Then, the participant was finally prepared to test the developed torque controller. Firstly, the
participant stood still for 5 seconds to calibrate the IMUs. After the calibration, the participant walked on
a treadmill at 1.5 km/h with the SmartOs in torque tracking control. This procedure lasted for a total of

5 minutes.

Data collection and analysis

The protocol was concluded in one day, and performed at the Biomedical Robotic Devices Laboratory
(BirdLab) facility, at the University of Minho. The data acquired during this protocol comprised of (i) the
3D acceleration of the right ankle, right wrist, left waist, and chest; (ii) the estimated MC; (iii) the right
knee angle; (iv) the human-robot interaction torque; (v) the real actuator’s torque; and (vi) the PID output
commands. The data collected was saved during the acquisition into text files, in real-time, at a frequency
of 100 Hz.

The data was then processed and analyzed in MATLAB (2022b, The Mathworks, Natick, MA, U.S.A).
The processing procedure consisted of organizing the collected data in a single table. Then, there were

created graphs to analyze the controller’'s performance.

5.4 Results and discussion

5.4.1 Bench tests

Regarding the tuning of the proportional, integral, and differential gains (kp, ki, and kd, respectively),
the optimal found values are presented in Table 22. The PID tuning was conducted by following the Ziegler-
Nichols method (97). Firstly, the integral and differential gains were set to zero and the proportional gain
increased until a stable output was achieved. Then, the integral and differential gains were found based

on the optimal proportional gain.

Table 22: Best PID gains values

Gain | kp | kv | kd
Value | 135 | 1.5 | 1.5
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The proportional gain ended up being significantly higher than the other gains, resulting in larger
command outputs for smaller torque errors. Regarding the integral and differential gains, the rather small
values in comparison to the kp were sufficient to diminish overshoot and oscillations and fix any offset.

In regards to the optimal torque profile for gait assistance, various shapes, with various torque
magnitudes at the flexion and extension peaks, were generated and tested until a good pattern was
established, i.e., a profile that ensured a correct and comfortable gait pattern. Figure 34 presents the
various torque profiles that were tested and their order (from the first to the sixth profile), depicting,
therefore, the torque profile's evolution during this procedure. The peak torque magnitudes for each
profile differed, and various profiles were tested for each shape presented, by changing the x and «
vectors of Algorithm 1. To simplify, only the torque magnitudes for flexion and extension peaks of 15

N.m and -15 N.m, respectively, are presented.
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Figure 34: Tested torque profiles, for flexion and extension peak torques of 15 N.m and -15 N.m, respectively.

Figure 35 presents the torque profile that achieved the best results, both in terms of the capability
of the PID controller to achieve the desired pattern and on the generated gait's quality, evaluated by one
user's perceived comfort level. The profile is composed of a positive curve (flexion movement) with a peak
of 20 N.m of magnitude at 55% of the gait cycle, and a negative curve (extension movement) with a peak
at 86% of the gait cycle and a magnitude of -20 N.m.

Regarding the best torque profile, it was observed that a curve with only one positive and a negative
peak felt more natural to the user and could be better replicated by the PID low-level controller. Despite not

perfectly reproducing the natural knee torque pattern of a healthy person, the profile presented in Figure
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Figure 35: Best performing knee torque profile.

35 allowed for a full flexion movement and a subsequent extension movement that restored the leg to the
original position. Furthermore, the timings of each movement enabled the user to walk comfortably at
any gait speed between 0.5 km/h and 1.5 km/h (i.e. the SmartOs’ speed range). This work followed the
approach of other studies that developed torque controllers for DC motors, that found a torque reference

that drove the device to follow a desired trajectory (93, 94).

5.4.2 Human experiments

The following section presents the results achieved during the experimental protocol performed to
validate the torque controller. The results’ analysis focused on the PID’s performance and the physiological

and biomechanical signals of the user.

PID’s performance

Figure 36 shows the performance of the PID low-level controller. The figure depicts the reference
torque profile (blue, dotted), the real motor torque (blue, solid), and the PID command (orange, solid)
during the first 30 seconds of data.

From this analysis, it was possible to conclude that the SmartOs’ system was capable of following the
torque trajectory without delay. Additionally, the participant was able to walk at 1.5 km/h in a comfortable
gait pattern, fully synchronized with the knee exoskeleton. Therefore, the main requirements of the torque
tracking controller were verified.

These results indicate that the motor torque was incapable of achieving the 20 N.m torque magnitude.
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Figure 36: Actuator and reference torques during 30 seconds of torque control (colored blue, solid and dotted,

respectively) and the PID command output (colored orange).

Despite the device's torque curve shape being mostly identical to the torque pattern, the maximum torque
magnitudes were roughly around 7 N.m and -7 N.m for the flexion and extension movements. This was
due to limitations regarding the SmartOs’ DC motor and was impossible to correct. Despite this limitation,
the motor torque was still sufficient to assist the device's user during a normal gait.

Figure 36 also shows that around some zero-torque zones (i.e., the stance phase) the PID command
suffered some oscillations. This was due to a safety feature that conditions the PID command to increase
when the knee angle goes below 15 degrees, to force the motor to move in the opposite direction and
increase the knee angle. Therefore, this was not prejudicial to the system and even proved that the safety
feature was operational.

Furthermore, it was observed that some of the reference torque’s positive curves’ shapes were not
perfectly replicated by the motor, namely in the 6th and 8th gait cycles presented in Figure 36. In these
two cycles, the motor torque 'blanked’ for some milliseconds, at the start of the extension movement,
causing the device to interrupt the movement momentarily. This could be explained by the mechanical
limitations of the system caused by the actuator’s latency. Still, the controller was able to respond fast
to match the intended torque reference. These anomalies were quick and almost imperceptible, and the
participant was still perfectly capable of walking at 1.5 km/h by increasing the interaction with the device

to move to the desired position when these motor failures occurred.
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Physiological and biomechanical signals

Figure 37 presents the physiological and biomechanical analysis of the user when walking with the
device in torque control mode, at 1.5 km/h. Figure 37a depicts the variation of the estimated MC during
the 5-minute protocol, as well as a horizontal red line representing the MC average. Figure 37b presents
the human-robot interaction torque, with two red lines referent to the maximum and minimum interaction
torque during the gait. Figure 37¢ shows the knee angle during the experiment.

Figure 38 presents the interaction torque and knee angle measured during a smaller period of 30
seconds (between minutes 3.5 and 4 of the 5-minute walking trial), corresponding to 12 gait cycles.
Figure 38a depicts the participant’s interaction torque, while Figure 38b the knee angle.

Regarding the person’s MC, Figure 37a shows that the participant’s MC varied significantly at the
start of the experiment (first 2 minutes), and was more stable towards the final 3 minutes. This initial
instability could be explained by the fact that the participant was still getting used to wearing the device
with the torque controller and performed some abrupt movements when trying to gain balance since the
movement was still quite unstable. Nonetheless, even after the 2-minute mark, the person’s MC was still
fluctuating, however, this fluctuation was not abnormal to the MC estimating regression model and was
generally below 0.05 W/kg, therefore, it was considered insignificant. The average MC was 1.92 W/kg,
which is a high value for walking speeds of 1.5 km/h when compared to walking without the exoskeleton
(as seen in Figure 25). The high MC could be explained by the high torque of the system, which resulted
in fast leg movements, increasing the ankle acceleration and, thus, the MC.

In regards to the participant’s interaction torque (Figures 37b and 38a), it was observed that, in
general, this metric was rather small - between 7 N.m and -4 N.m. However substantial outlier positive
values were measured at some points during the gait, setting the maximum interaction torque to be
15.5 N.m. These abnormalities could be explained by the motor torque’s glitches identified in Figure
36. As mentioned before, when these motor failures occurred, the participant was forced to increase the
interaction torque to push the device in the correct trajectory. However, ignoring these rare mishaps, the
participant’s torque was significantly lower than the natural torque of a 65 kg person when free-walking,
without an exoskeleton (52 N.m during flexion and -13 N.m during extension, as presented in Table 10).

Regarding the knee angle, presented in Figures 37c and 38b, it was verified that the torque controller
enabled a continuous and regular knee's trajectory. Additionally, it was observed that the knee angle
was successfully maintained above 15 degrees, which was a safety and operational requirement of the
DC motor. Despite the natural knee's ROM during walking activities being 60 degrees (Table 9), it was
concluded that the participant could still comfortably walk at 1.5 km/h with a ROM of 50 degrees.
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Figure 37: Physiological and biomechanical variables measured during the human experimental protocol.
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minutes).

5.5 Conclusions

This chapter presented the development of a torque tracking control for a knee exoskeleton, which
was successfully integrated into the SmartOs’ architecture. Firstly the ideal torque profile was found to
guarantee a comfortable gait by the exoskeleton’s user. The controller was capable of following the desired
torque profile, by estimating the gait phase, computing the reference torque, and driving the actuator to
minimize the difference between its torque and the reference. The user was able to accurately perform the

desired knee movement during a gait at 1.5 km/h. In conclusion, this controller was considered adequate

to be integrated into the HITL controller.

93



6 Human-in-the-loop control

This chapter describes the development of a HITL control capable of adapting the reference torque
control to minimize the effort of a person wearing the SmartOs system. The effort will be measured by
the user's MC and the user’s interaction torque with the device. The work presented here followed the
development of a regression model used to estimate the MC in real-time, presented in Chapter 4, and
the implementation of a torque control strategy in SmartOs’ architecture, presented in Chapter 5. The
regression model was capable of obtaining an estimation of the MC based on the 3D acceleration measured
by four IMUs on the right ankle, left waist, right wrist, and chest. The torque control was developed to
make the knee DC motor follow a desired torque profile.

The HITL controller adapted two parameters from the knee torque profile: the torque magnitudes of
the flexion and extension peaks. This work started with the establishment of the knee torque profile shape,
which was based on a natural cubic spline with two peaks on predefined fixed points of the gait cycle and
fixed durations.

Then, the optimizer used to find the knee torque profile that leads to the minimal value of the objective
function is described. The optimizer used in this work was a CMA-ES optimizer, an evolutionary algorithm
that mimics the process of natural selection, and adapts the reference torque over various generations
to find the fittest solution. The objective function optimized by the algorithm was a weighted sum of the
users’ MC, the torque profile’s integral, and the user’s interaction torque with the device. The CMA-ES
was integrated into the SmartOs’ architecture, more specifically into the LLOS board, and combined with
the torque controller previously presented.

Finally, the validation of the HITL controller is also presented here. Firstly, a bench test was performed
to analyze possible time constraints between the optimizer and the mid- and low-level controllers and
optimize the CMA-ES objective function’s weights. Then, the effectiveness of the controller was studied,
i.e., its capability of minimizing the MC of a person, the torque profile’s integral, and the interaction torque,

in realtime.

6.1 Introduction

Several literature studies have proved that wearing an LLE can result in a reduction of the MC of their
users when the right assistance strategies are employed, such as HITL controllers (8). One possible HITL
strategy is the adaptation of the exoskeleton joints’ torque profiles, in realtime, to minimize the MC of a

person (52).
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This automatic and individualized optimization approach has been successful in various published
studies. However, most of the studies that developed a HITL controller used a respirometer device to
estimate the MC in real-time by indirect calorimetry. This approach is not practical to implement in real-
world applications due to the discomfort that comes with wearing these masks, the cost of the materials,
and the time restrictions associated with this slower MC estimation method (15, 16).

The most common alternative to indirect calorimetry is the use of machine or deep learning models to
estimate the MC based on signals acquired by one or more wearable sensors (98), however, to the authors’
best knowledge, no study so far has integrated this approach into a HITL control strategy. Additionally,
the HITL controllers developed for portable exoskeletons are scarce in the literature, and most of the
optimization algorithms take too long to compute the optimal control parameters (8, 13, 19).

The HITL controller presented here aims to tackle the limitations found in the existing strategies present
in the literature. Firstly, the controller was developed for the SmartOs device, which is an LLE with an
8-hour autonomy. The controller minimizes an MC estimated by a regression model fed by data from
only four wearable, non-intrusive and light IMUs, replacing the need for a respirometer device. The use of
the regression model developed in Chapter 4 also enabled the reduction in the time needed to estimate
the MC from 3 minutes to 10 seconds, therefore, significantly decreasing the time required to reach the
optimal control parameters.

Furthermore, when designing a controller that aims to minimize users’ physical effort it is also
important to reduce the burden placed on their joints. So, in addition to the MC, the controller should
minimize the interaction torque and the reference torque profile’s integral final value (i.e., the total
system’s torque during a gait cycle). When the reference torque’s integral after one gait cycle is zero, the
knee joint’s final position will be the same as its initial position, meaning that the user's movement is
fully assisted by the exoskeleton. The interaction torque is another metric that measures the user’s effort
when wearing the exoskeleton. When the exoskeleton is capable of achieving the desired trajectory
without the users’ help, the person’s exertion will be reduced, and the user-exoskeleton interaction

torque will be minimal.

6.1.1 Covariance Matrix Adaptation — Evolutionary Strategy

In this section, the optimizer implemented in the HITL controller is described. The CMA-ES is a
derivative-free randomized search algorithm that can be used for black-box scenarios where a certain
objective function needs to be optimized by adapting the covariance matrix of a multivariate normal

distribution (99, 100). CMA-ES is an evolutionary strategy as it stochastically samples a fixed number of
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individuals (also known as candidates) in every generation, based on the results of the individuals of the
previous generation, and evaluates their fitness (the value of the objective function), to have superior
individuals every generation (12, 55).

The multivariate normal distribution that is updated every generation (g) is represented by a mean and
covariance matrix that depends on the objective function values measured by that generation’s individuals
(N (m, C'), where m is the mean, and C' the covariance matrix). Every generation, a new set of individuals
is chosen when sampling this distribution, by following Equation 8 (12, 99), where x,(fﬂ) is the Kk
individual from generation g+1, m9 is the search distribution’s mean value for generation g, o9 is the
standard deviation/step-size at generation g, C'\9) is the covariance matrix for generation g, and \ is the

number of individuals per generation.

29 ) 4 cWN(0,C9) fork =1,...,\ (8)

For the optimization algorithm to have information on all previous generations, an evolution path (p.)
that saves the relation between consecutive steps (generations) is implemented in CMA-ES. Additionally,
the scale of the normal distribution - its step-size - is also increased or decreased every generation. The
step-size is also controlled by an additional evolution path (p,) (99).

Overall, after the fitness value of every candidate in a generation g is obtained, the distribution is
updated by updating the five state variables of the optimizer: (i) the mean of the search distribution,

mtD | obtained using Equation 9; (i) the step-size evolution path, p((,gﬂ), by using Equation 10; (iii)

the evolution path of the covariance matrix, p£g+1), which is calculated by using Equation 11; (iv) the
covariance matrix, C9*t1, by using Equation 12; and (v) the step-size itself o9+ by using Equation 13

(99).
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Various variables are used from Equations 9 to 13, namely the recombination weights (w;), the learning
rate for the cumulation step size control (c,), the variance effective selection mass (u.s¢), the learning
rate for the cumulation for the rank-one update of the covariance matrix (c.), the learning rate for the
matrix update (c...), the weighting parameter between rank-one and rank-i, update (tico.), the damping
parameter for step-size update (d,,), the expectation value (), and the normal distribution with zero mean
and unity covariance matrix (N (0, I)) (99).

The first step when optimizing a certain function with CMA-ES is the initialization of the optimizer
variables. Hansen (99) published a default strategy to set these variables, which used Equations 14 to

22, where n denotes the search space dimension:

A=4+3|3Inn] (14)

p=1[A/2] (15)
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The algorithm ends when a termination criterion is met. Various termination conditions can be set,
such as limiting the number of generations or limiting the fitness function values that can be measured.

These conditions are normally application-dependent and are chosen according to the user’s needs.

6.2 Methods

6.2.1 Knee torque profile

As previously explained, only the peak torque magnitudes of the knee torque profile are adapted in
real-time by the CMA-ES algorithm to minimize the exoskeleton user’s effort, meaning that the shape of
the profile stays consistent. This was done following the results achieved by several studies that proved
that when optimizing a torque profile to minimize the MC of several distinct individuals, the peak torque
magnitudes of the optimized profile observed more fluctuations than the time parameters across the
different participants (8, 12, 14, 51).

Figure 39 presents the knee torque profile that will be optimized by the HITL control. This profile was
based on the results previously obtained in Chapter 5.4.1. The points adapted by the CMA-ES algorithm,
in real-time, are represented by a red dot. The points of the profile that intersect the x-axis (the zero-torque
points from 0-30% and at 70%) were fixed. Figure 39 shows that the positive and negative peaks are
executed at 55% and 86% of the gait cycle, respectively, and the flexion and extension torques have a

duration of 40% and 30% of the gait cycle, respectively.
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Figure 39: Curve shape of the knee torque profile that was optimized by the HITL controller.
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6.2.2 CMA-ES optimizer

For the torque profile to be adjusted in realtime and for the controller to learn the effect of each
change on the user’s exertion, a CMA-ES optimizer was then implemented in the LLOS board. The code
was based on a publicly available repository (101), adapted and condensed to be integrated into the LLOS
controller and fit the existing code, using the Keil uVision 5.0 IDE. Algorithm 3 presents the pseudocode

of a generic CMA-ES optimizer.

Algorithm 3 CMA-ES optimizer algorithm
INITIALIZE optimizer's parameters

while ! termination() do
COMPUTE ) new candidate solutions
SET: =0
repeat
GET (i + 1)th candidate
GET (7 + 1)th fitness function value
INCREMENT i
until 7 = \
UPDATE function value history
UPDATE m, p,, p., C, o

end while

Table 23 presents the optimizer's initial parameters. These parameters were chosen following the
recommended strategy identified in the literature (99). Furthermore, Table 23 presents the initial torque
peaks studied by the optimizer: 17.5and-17.5 N.m, for the peak flexion magnitude and the peak extension
magnitude, respectively (start; to starty). Additionally, it also presents the range of possible torque
magnitudes for each peak. The parameters maxz; and max, are the maximum possible magnitudes
for the flexion and the extension peak torques, respectively. The min; and miny are the minimum
magnitudes for the flexion and the extension peak torques, respectively. The initial step-size (o) was

chosen based on the literature (55).
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Table 23: Initial parameters’ values for the CMA-ES optimizer. Based on: (99)

n 2 7 3
A 6 Co 0.51
d, 1.51 Ce 0.7

Coow | 012 | fteon 2.24

o1 1.4 maxy 20 N.m

9 1.4 maxy | -15N.m

o 1.4 ming 15 N.m
Identity

C ming | -20 N.m
matrix

w1 0.59 | start; | 17.5 N.m

Wo 0.29 | starty | -17.5 N.m
w3 0.12 Heff 2.24

Seven termination conditions were set on the algorithm. The optimization process stopped when:

[

. The fitness function value reached a smaller value than the StopFitness parameter.

2. The fitness function value difference between two consecutive steps was smaller than the TolFun

parameter.

3. The fitness function value of the best values in two consecutive generations was smaller than the

StopTolFunHist parameter.
4. The step-size, in the x-space, was smaller than the TolX parameter.
5. The step-size, in the x-space, increased by more than the TolUpXFactor parameter.
6. The maximum number of generations (StopMaxlter) is reached.

7. The maximum number of function evaluations (StopMaxFunEvals) is reached.

The termination parameters were all set to the code default values, apart from the maximum number
of iterations which was set to 20, and the maximum number of function evaluations, which was set to

900(n + 3)(n + 3). Table 24 presents the values used for the termination conditions’ parameters.
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Table 24: Values of the parameters used for the termination conditions of the CMA-ES optimizer.

StopFitness 0 TolUpXFactor le3

StopTolFun le-12 StopMaxlter 20

StopTolFunHist | 1e-13 | StopMaxFunEvals | 22500
TolX le-11

6.2.3 HITL control implementation

Figure 40 presents the overall diagram of the HITL control integrated into SmartOs’ system. This
figure presents the general data flow between the different elements of SmartOs’ architecture: (i) the
InertiaLab’s sensors, (ii) the WMSS board, (iii) the CCU, (iv) the LLOS board, (v) the mobile APP, and

finally (vi) the powered knee actuator.
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Figure 40: Diagram depicting the different blocks of the HITL control strategy developed in SmartOs’

architecture.

The code developed for the HITL controller unified the codes previously described in Chapters 4.2.4

101



(regression model developed for MC estimation) and 5.2.2 (general torque controller for a fixed torque
profile) and combined them with a CMA-ES optimizer. The regression model algorithm was consistent with
the fluxogram presented in Figure 12 with the exception of one crucial addition: the transmission of the
estimated MC to the LLOS board where the HITL controller is executed after each estimation is completed
(every 10 seconds).

As seen in Figure 40, the code developed in the LLOS board was divided into three blocks: (i) the
CMA-ES optimizer in orange; (ii) the mid-level controller in green; and (iii) the low-level controller in blue.
This strategy is a version of the torque controller presented in Chapter 5.2.2, where the torque profile is
continuously adjusted by the CMA-ES algorithm. Therefore, the mid- and low-level stages of this controller
are identical to the torque controller previously integrated into SmartOs’ architecture. The following section

further explains the CMA-ES optimization stage of the controller.

CMA-ES optimizer
Figure 41 presents the code fluxogram of the CMA-ES optimizer, where IT and Tl represent the
interaction torque and reference torque integral, respectively. This algorithm was based on the Algorithm

3 presented in Chapter 6.2.2.

CMA-ES optimization

il El[2 1200 e Get the initial New Yes | Update cost
and torque profile » ' » . |
torque profile MC? function
parameters
No
No
l_deate . Yes lteration Generate new peak
covariance matrix - \? torques and update |«
distribution ' torque profile
A
Termination? Yes 13 !:i'?iSh. - Eelaziil
optimization torque profile
No

Figure 41: Code fluxogram of the CMA-ES optimizer developed in the LLOS board.

However, some adjustments had to be made in order to combine the optimization process with the
MC estimation happening on the system’s CCU. The purpose of this code block was to generate multiple
combinations of peak torque magnitudes and study each torque profile’s effect on the person’s exertion.
The person’s exertion was evaluated through an objective function computed through the weighted sum

of three parameters: (i) the estimated MC; (ii) the generated torque profile's integral (17°1); and (iii) the
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user’s interaction torque (I717). The objective function (OF) value at each CMA-ES iteration is computed

using Equation 23, where w{*', w*', and w$* are the objective function weights for each parameter.

OF = w9 x MC + w§" x TI 4+ w§* x IT (23)

The code starts with the initialization of the CMA-ES algorithm and the parameters of the natural cubic
spline that was developed to compute the knee torque profile in Chapter 5.2.1. This initialization is done
prior to the start of the system actuation and is followed by the acquirement of the initial torque profile
(profile presented in Figure 39 with peak torque magnitudes of 17.5 N.m and -17.5 N.m), allowing for the
control kickoff.

Every time a new MC estimation is received, the optimizer's cost function is updated and a new
torque profile is generated and applied to the DC motor. This is repeated for A iterations, and, when
each generation is over (each set of A repetitions) the covariance matrix distribution is updated and the
optimizer parameters are updated by using Equations 9 to 13.

When a termination condition is met, the optimization is finalized and the optimal magnitudes of
the peak torques are calculated. Afterward, these values can be saved and the optimal torque profile is
continuously applied to assist the person. Therefore, this optimization process is individual-specific and

only needs to be performed once per individual.

SmartOs mobile APP

Afterward, the mobile APP that serves as an interface with the SmartOs’ system was also modified to
allow the activation of the HITL control strategy, by adding a "Human-In-The-Loop” option in the
assistance strategy settings of the APP. Since the HITL assistance is dependent on the MC estimated by
the regression model, when the “Human-In-The-Loop” option is chosen in the APP, the “MC Estimation”
button is also toggled automatically, which, according to the changes presented in the Chapter 4.2.4,
also forces the communication with the InertiaLab’s sensors through the WMSS board. Figure 42
presents the modification made to the APP, as well as the additional settings that are activated when the

HITL control is chosen.
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Figure 42: Interface option added to SmartOs’ APP that enabled the start of HITL control and its relation to the

previous adjustments.

6.3 Validation

6.3.1 Bench tests

To ensure the correct execution of the HITL controller some preliminary tests were performed and
the algorithm’s timings were analyzed. This validation process was done by analyzing the time taken to
execute each function of the CMA-ES optimizer. To do this, an output pin of the LLOS board was activated
every time each function was called and deactivated when it ended. The timings of the algorithm were
then obtained by inspecting this pin in an oscilloscope. The results were organized in a time diagram to
verify any time constraints in the code.

Furthermore, an additional bench test was performed to tune the CMA-ES objective function’s
weights, the parameters w, wPF, and W of Equation 23. This was done by conducting various
HITL optimizations, with different sets of weights (from 0.5 to 2.0 each), and evaluating the optimal

torque profile generated and the variation of the objective function and the three optimized variables over

the optimization time.
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6.3.2 Human experiments

After verifying the viability of the HITL controller and tuning the CMA-ES objective function to match its
application needs, a human experimental validation was performed to assess the effectiveness of the HITL
strategy. For this purpose, a torque profile was first optimized in real-time using the CMA-ES algorithm,
for one participant. The next day, the participant walked with the optimized torque controller, with a zero-
torque controller already existent in the SmartOs’ architecture (that mimics the functioning of a passive
actuator), and walked without wearing the knee exoskeleton. The efficacy of the optimized solution was
evaluated by measuring the estimated MC and the interaction torque of the participant during these three

conditions.

Participants

This experimental validation was performed by one volunteer who gave its informed consent to the
protocol. This participant was healthy, had no history of locomotion or balance impairments, and did not
suffer from any recent musculoskeletal injury. The participant was a 23-year-old female, with a body mass
and height of 65 kg and 1.62 m, respectively, and was moderately experienced in wearing the SmartOs’
knee module. This protocol was conducted under the ethical procedures of the Ethics Committee in Life

and Health Sciences (CEICVS 006/2020), following the Helsinki Declaration and the Oviedo Convention.

Experimental protocol

This protocol was split into two days. On the first day, the participant went through the HITL
optimization process, used to assess the optimal torque profile of a torque controller, specific to that
individual.  On the next day, three conditions were tested and compared: (i) no-exoskeleton; (ii)
zero-torque mode; and (iii) optimized torque control.

On the first day, the participant was first equipped with four InertiaLab’s IMUs in the right ankle, right
wrist, left waist, and chest. Afterward, the participant equipped the knee module of SmartOs, which was
well secured to their right leg with three straps at the upper and lower leg and one belt at the participant’s
waist. Then, the SmartOs architecture’s subsystems were all connected, namely the IMUs, the WMSS
board, the LLOS board, the CCU, and the active-actuated knee module. The system was then plugged
into the SmartOs’ battery. Figure 43 depicts the participant wearing the described equipment.

Then, the HITL controller's optimization started. The participant first stood still for 5 seconds to
calibrate the IMUs and then started walking at 1.5 km/h on a treadmill. This process lasted until a CMA-

ES termination condition was verified. The optimizer ended up undergoing the 20 maximum generations,
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Figure 43: Equipment worn by the participant during the HITL controller’s validation.

on a total of 120 iterations (20 x 6), and lasted, therefore, 20 minutes since each iteration took 10 seconds
to complete.

On the second day, the participant was first equipped with the InertiaLab’s sensors. Then, she walked
on the treadmill for 5 minutes at 1.5 km/h, after concluding the required 5 seconds for IMUs calibration.
In this first phase, the participant was not assisted by the SmartOs’ knee module, thus only her MC was
evaluated.

After walking without the exoskeleton, the participant was finally equipped with the SmartOs’ device,
and the whole system was connected and turned on as previously described. The participant walked
again on the treadmill for 5 minutes, at 1.5 km/h, with the SmartOs’ assistance in the zero-torque mode.
This control strategy was already implemented in the architecture to make the active actuator mimic the
functioning of a passive actuator (i.e., it is the person who controls the device). To conclude the protocol,
the participant then walked at 1.5 km/h, for a total of 5 minutes, with the device controlled by the optimized
assistance profile that was identified on the previous day. Both these experiments were preceded by the

5-second IMUs calibration.
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Data collection and analysis

The experimental validation was fully performed at the Biomedical Robotic Devices Laboratory
(BirdLab) facility, at the University of Minho. The data acquired during the two days was composed of: (i)
the MC estimated by a regression model; (ii) the 3D acceleration of the right ankle, right wrist, left waist,
and chest; (iii) the SmartOs’ right knee angle; (iv) the human-robot interaction torque; (v) the SmartOs’
motor torque; and (vi) the CMA-ES algorithm objective function. The data was collected and saved into
text files in real-time, during the protocol, at a frequency of 10 milliseconds.

The data processing and analysis were performed in MATLAB (2022b, The Mathworks, Natick, MA,
U.S.A). Regarding the first day's data, i.e. the CMA-ES optimizer data, the torque magnitudes of the torque
profile's peaks were first collected and organized per iteration. Then the estimated MCs, the interaction
torques cumulative sums, the integrals of the reference torques, and the objective function values were
also organized per each CMA-ES iteration, and associated with the correspondent torque’s magnitudes
on a table. The processing of the second day’s data consisted of organizing the collected data in a single

table and transforming it to present the time in minutes.

6.4 Results and discussion

6.4.1 Bench tests

Figure 44 presents the time diagram of the CMA-ES optimizer’s code implemented in the LLOS board.
The diagram depicts how much time each CMA-ES function takes to be completely executed, and shows
the timings analysis from the time a new MC estimation is received at the LLOS board (every 10 seconds),
to the time that a new CMA-ES generation is started. As explained before, in Chapter 6.2.3, the algorithm
only checks for termination after the ) iterations of a single generation are completed, and, if no termination
condition is verified the algorithm establishes a new generation by computing new X iterations. Therefore,
the diagram depicts the worst-case scenario of the algorithm, regarding its execution time, since it shows
the condition where a generation has finished and a new one is computed.

The results show that each execution of the algorithm, which is induced by a new MC, takes a
maximum of 3.546 milliseconds. This is a positive result since it is a value well below the 10-second
requirement, ensuring that each CMA-ES iteration is fully completed before a new MC is received.
Furthermore, despite the maximum running time of the algorithm being above 1 millisecond, the
frequency of the low-level controller, the CMA-ES algorithm does not interfere with this controller’s stage

on account of both codes being executed on different threads, therefore, running in parallel.
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Figure 44: Time diagram depicting the time taken by the SmartOs system to execute the different HITL control

algorithm’s functions.

Table 25 presents the optimal CMA-ES objective function’s weights. The selected weight for the
estimated MC (wlOF) and the interaction torque’s cumulative sum (w?F) was 1 and the weight for the
reference torque’s integral (w2OF) was 0.5. These values were manually obtained by performing various
HITL optimizations, during treadmill walking at 1.5 km/h with the SmartOs’ powered knee module and

evaluating the CMA-ES behavior during the optimization.

Table 25: Best objective function weights

; OF | , OF | , OF
Weight | w] Ws W3

Value 1 0.5 1

The results show that the same importance was given to the estimated MC and interaction torque,
regarding their impact on the CMA-ES objective function. The minimization of these two physiological
parameters in an equal manner was imperative for good CMA-ES performance since both signals have an
analogous impact on the user’s exertion.

On the other hand, the torque profile’s integral was given a smaller influence on the objective function’s
calculation. Despite its secondary role in the optimization, the presence of this variable in the optimization
was imperative in guaranteeing a symmetric knee trajectory during the flexion and extension movements.
However, a larger value of the w20F weight resulted in a failure to optimize the more critical physiological

values that better relate to the users’ exertion: the MC and interaction torque.
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6.4.2 Human experiments

In this section, the results regarding the human experimental validation of the HITL controller are
presented. Firstly, the results regarding the HITL optimization (first day of the experiment) are introduced.
Later, are presented the results respecting the comparison of the optimized torque controller with the

exoskeleton's zero-torque mode and walking without the SmartOs’ device (second day of the experiment).

Human-in-the-loop optimization

Figure 45 presents the peak torque magnitudes for the various torque profiles generated in realtime
during the HITL optimization process, which took a total of 20 minutes (120 CMA-ES iterations). Figure
45a presents all positive and negative peak combinations. On the other hand, Figure 45b shows the

variation of both peaks’ magnitude over the optimization time represented by the CMA-ES 120 iterations.
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Figure 45: Flexion (positive) and Extension (negative) torque magnitude values for the peaks of the various

torque profiles tested during optimization.

From Figure 45a, it was observed that no torque magnitude peak reached the selected maximum or
minimum value: 20 N.m and 15 N.m, for the positive peak, and -15 N.m and -20 N.m for the negative
peak. Additionally, most of the peak values were between the |17 N.m| and |18 N.m|. Furthermore,
Figure 45 shows that the variation of the peak values was larger at the start of the optimization, and at this
period both higher and lower peak values were tested. As the optimizer was running, both positive and
negative peaks were getting closer and closer to the final solution and started fluctuating less and less.

This was expected since as time passes the optimizer gets 'smarter’ and nearer to the optimal solution.
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Figure 46 depicts the variation of the objective function and its three parameters (MC, interaction
torque, and reference torque’s integral) over the optimization time represented by the optimizer's
iterations. The objective function was calculated by Equation 23, using the weights obtained during the

bench tests.
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Figure 46: Evolution of the CMA-ES objective function and respective variables.

Figure 46 shows that both the interaction torque’s cumulative sum and the reference torque’s integral
generally decrease with time. As previously explained, these two variables are related to some extent, as
decreasing the reference’s torque integral guarantees that the flexion and extension movement performed
by the DC motor will be symmetric, and, therefore, the user will not need to 'add’ extra torque to the
system. However, the two curves were not perfectly proportional, and at some points, a small torque’s
integral generated a significant interaction torque. This can be explained by the motor failures identified
in Chapter 5.4.2 that result in outlier interaction torque values.

Additionally, it was observed that the MC varies significantly at the start of the optimization process
and gets more stable and constant during the second optimization half. This could be explained by the
high torque variability at the start of the experiment, which resulted in abrupt movements performed by the
participant. However, the MC does not significantly decrease during the second half of the optimization
like the other two variables. This could be explained by the fact that the MC estimator solely focused on
the acceleration data of the ankle, wrist, waist, and chest, which did not change significantly during the

optimization second half, as the torque profile was getting closer to the optimal solution and its variability
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was smaller. This caused the objective function to focus on the minimization of the interaction torque’s
cumulative sum, as seen by the similarity between these two curves, during the optimization’s second
half.

Figure 47 presents the optimal torque profile obtained by the CMA-ES optimizer after the 120
iterations. The torque magnitude of the positive curve's peak (flexion movement) was 18 N.m, while the

magnitude of the negative peak (extension movement) was -17.9 N.m.
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Figure 47: Optimized torque profile.

Figure 47 shows that the positive and negative curves of the optimal torque profile were quite
balanced as the flexion and extension peaks were almost symmetrical. This was considered satisfactory
as it guaranteed a small value for its integral (0.3 N.m.s). A narrow integral value, as previously
explained, ensures that the SmartOs’ motor fully performs both the flexion and extension movements.
This leads to a much more comfortable gait pattern for the user.

Furthermore, the absolute value of the optimal peaks was roughly 18 N.m, an intermediate value
between the defined maximum (20 N.m) and minimum (15 N.m). This agrees with the objective function
definition, which tries to minimize both MC and interaction torque. Higher torques result in higher ankle
acceleration values, and, therefore, higher estimated MC, and lower torques result in higher interaction
torque since the user is forced to 'add’ the extra torque necessary to perform the flexion and extension
knee movements. Therefore, the objective function had to compromise and find a torque magnitude that

was not too high nor too low.

Assistance comparison
Figure 48 presents a box plot of the participant’s MC during the 5-minute protocol for each of the

tested conditions. The red line at the center of each box plot represents the MC median. The first and
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third quartiles are depicted by the bottom and top lines of the blue box, respectively, and the minimum

and maximum MC by the limits of the whiskers (the black dotted lines outside each box).
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Figure 48: Boxplots depicting the MC of the participant during five minutes of walking at 1.5 km/h without the

exoskeleton, and with the exoskeleton in zero-torque mode and with the optimized torque controller.

From the results depicted in Figure 48, it was possible to observe that, on average, the condition
with lower MC was the optimized torque controller (the HITL strategy), demonstrating the efficacy of this
controller. Additionally, it was observed that the condition with higher MC was the zero-torque control,
which achieved MC values up to 2.2 W/kg. The higher MC during the zero-torque condition, compared
to the no-exoskeleton condition, could be explained by the additional weight added to the user’s right
leg, which increased the user’s effort, detected by the regression model due to an increase in the user’s
acceleration. These results are analogous to the conclusions in the literature studies, which obtained
higher MC during the zero-torque conditions, and lower MC during the optimized control (8, 49).

Additionally, the average MC for the no-exoskeleton, the zero-torque, and the optimized torque
conditions were 1.89 W/kg, 1.96 W/kg, and 1.79 W/kg, respectively. Therefore, the HITL-optimized
controller achieved an average MC reduction of 5.3% and 8.7% when compared to the no-exoskeleton
and zero-torque conditions, respectively. This reduction is lower than the results obtained in the
literature (7% (57) up to 48% (53)), which could be explained by the fact that this work focused on the
minimization of two physiological signals in simultaneous, the MC and interaction torque, in opposition
to the literature studies, that only minimized the MC.

Furthermore, compared to the torque tracking controller presented in Chapter 5, which achieved an
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average MC of 1.92 W/kg, the optimized controller accomplished an MC reduction of 6.8%. This
corroborates with the discussion of the previous section, as it explains why the optimized torque
magnitudes for the flexion and extension peaks were not set to the maximum allowed values (20 N.m
and -20 N.m). Higher torque magnitudes result in faster movements of the lower limbs, which result in a
higher estimated MC.

Figure 49 depicts the human-robot interaction torque during the experiment for each of the conditions
where the participant wore the SmartOs (zero-torque mode and optimized torque controllers). Two red
lines were used to represent the maximum and minimum values of the interaction torque measured. The
interaction torque measured between minutes 2 and 2.5 (30-second period) is also presented to depict

the signal during 12 gait cycles.
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Figure 49: Interaction torque during five minutes (left) and 30 seconds (right) of walking at 1.5 km/h with a
zero-torque controller (top) and the optimized torque controller (bottom). The red lines represent the maximum

and minimum values of the interaction torque.

Figure 49 shows that the user’s interaction torque was, generally, much superior during the experiment
with the SmartOs' in zero-torque mode. This could be explained by the fact that, in the zero-torque mode,

the person was in full command of the device and was forced to apply the necessary torque to drive it
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in the desired motion. During the optimized torque strategy, the interaction torque was generally much
lower since the exoskeleton was capable of performing most of the required torque to perform the desired
knee movement. However, during the optimized torque control experiment, significant torque spikes were
measured at random periods of the experiment. These outliers can be explained by the motor failures,
already described in Chapter 5.4.2, that caused the participant to undergo high positive knee interaction
torques to drive the motor to the desired position.

Additionally, the average of the absolute interaction torque was 5.27 N.m and 2.39 N.m for the
zero-torque and the optimized torque conditions, respectively. Therefore, the optimized HITL controller
achieved an interaction torque reduction of 54.6% on average, when compared to the zero-torque control.

Figure 50 presents the knee angle measured by SmartOs during the experiment, for the two controllers
tested (the zero-torque controller and the optimized torque controller). The knee angle measured between

minutes 2 and 2.5 (30-second period) is also presented to depict the signal during 12 gait cycles.
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Figure 50: Knee angle during five minutes (left) and 30 seconds (right) of walking at 1.5 km/h with a

zero-torque controller (top) and the optimized torque controller (bottom).

The results presented in Figure 50 depict that the participant had a more constant gait when using

the zero-torque controller since the movement was entirely controlled by the person. The ROM when
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walking with the zero-torque controller was roughly 55 degrees, while the ROM when walking with the
optimized torque controller was roughly 45 degrees, 10 degrees lower than the first experiment. This
smaller ROM could be explained by the relatively low torque magnitudes of the optimized torque profile
(maximum of 18 N.m and minimum of -17.9 N.m) that resulted in a smaller variation of the knee’s angle.
However, this difference was not prejudicial to the participant’s gait, who could still comfortably walk at
the desired speed. The irregular knee movement at some points of the gait could also be explained by the
DC motor failures since they caused sudden hiatuses to the knee's trajectory, suspending the movement

momentarily.

6.5 Conclusions

This chapter presented the development of the HITL controller that was presented as the proposed
solution to the problems identified in the state of the art. The controller successfully integrated the
regression model for MC estimation presented in Chapter 4 and the torque tracking controller presented
in Chapter 5 with a CMA-ES optimizer to minimize the exoskeleton user's MC and interaction torque in
real-time. In conclusion, the HITL controller was successfully implemented into the SmartOs’
architecture and proved to be effective in reducing both the user's MC and the interaction torque

between the person and the exoskeleton and in guaranteeing a comfortable gait.
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7 Conclusions

WMSDs are currently a major cause of concern among developed countries, affecting millions of
European workers. It is estimated that three out of five workers suffer from these disorders, which have
a higher prevalence in the hip and knee joints of the workers (29% and 33%, respectively). The industrial
activities with a higher risk for WMSDs in the lower limbs are standing for long periods, and carrying and
lifting heavy loads, as these activities comprise task repetitions, forceful exertions, and awkward postures.
Despite the growing automation of industrial processes, humans are still needed to move heavy objects
and perform repetitive tasks in harmful postures. Exoskeletons are portable devices worn by healthy
workers to reduce the physical stress on the user’'s muscles and joints. These devices can, therefore,
alleviate workers while they perform tasks that put them at risk for WMSDs, reducing the prevalence of
these disorders.

LLEs have proven to be capable of reducing the user’s physical exertion, however, various limitations to
the employment of these devices can still be detected. One drawback of the current industrial exoskeletons
is the lack of assistance strategies that adapt the device's movement to the user’s demands in realtime
(online optimization). One possible strategy is the optimization of LLE's control parameters based on users’
physiological signals, usually the MC, denominated by HITL control. This approach has already proven to
be effective in reducing the user's MC in laboratory settings, however, it has not yet been implemented in
industrial applications. Additionally, measuring the MC of the user is not trivial, as the standard method for
estimating this signal is through indirect calorimetry, which has countless limitations and is not feasible for
HITL applications in real-world industrial backgrounds. A possible solution is the use of machine or deep
learning models used to estimate the MC of a person based on data obtained from wearable sensors.

In this dissertation, an adaptive torque control was proposed for a knee exoskeleton (SmartQOs),
towards the power augmentation of workers during high-exertion tasks. The control employed a HITL
strategy to optimize, in realtime, the torque profile of the LLE with the objective of reducing the user’s
exertion, measured by the MC and the human-robot interaction torque. Instead of estimating the MC
through indirect calorimetry, this dissertation proposed the integration of a regression algorithm in the
HITL control, capable of estimating this physiological signal based on a minimal number of wearable and
non-intrusive sensors.

The first objective of this work was to conduct a literature review of LLEs, HITL controls, and regression
algorithms for MC estimation. These reviews were presented in Chapter 2. The state of the art on industrial

exoskeletons revealed the existence of two main LLE types: (i) devices for power augmentation in load-
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carrying activities; and (ii) chair-like exoskeletons. Regarding the first type, most of the devices were actively
actuated in at least one joint, more commonly the knee. In regards to the control strategies implemented in
the analyzed exoskeletons, the devices were not designed to assist the users in an individualized approach
nor considered the users’ condition when wearing the device. The review of the HITL controllers showed
that various optimization algorithms can be employed, with the most common method being a CMA-ES
optimizer. Additionally, most of the literature studies optimized the users’ MC, estimated by a respirometer
device through indirect calorimetry, and took over 30 minutes of optimization time. The state of the art
on regression models for MC estimation revealed that the studies varied significantly from each other
regarding the activities performed, the model used, and the number, type, and location of the sensors.
From this analysis, it was concluded that some of the best signals to estimate the MC were: (i) the HR; (ii)
the waist, wrist, and ankle acceleration; and (iii) the user's weight and gender. The KPI for this objective
was the production of the review, and was, therefore, considered concluded.

In Chapter 4, a regression model for MC estimation was developed and integrated into SmartOs’
architecture. The model was able to estimate the MC of a person, in real-time and in 10-second intervals,
based on data acquired from four wearable and non-intrusive inertial sensors (3D acceleration) located at
the chest, left waist, right wrist, and right ankle. This procedure covered various steps: (i) the selection of
a public dataset with relevant data; (ii) the optimization of the data preprocessing method; (iii) the sensors
selection for the MC estimation, without disregarding their feasibility for HITL applications in industrial
contexts; (iv) the development and comparison of various regression models, using the LOOCV technique;
(v) the implementation of the model into the SmartOs’ architecture; and (vi) the validation of the model in a
real-time human experimental. The model was successfully developed and integrated into the exoskeleton
system, with low computational cost and without latency. An offline test showed that the model achieved
an RMSE of 0.45 W/kg and a coefficient of determination (R?) of 0.84, better values than the metrics
established as the KPI of the model (0.8 W/kg and 0.8, respectively). The validation in real-time obtained
an RMSE 46.7% higher than the offline test (0.66 W/kg), however, these results were still lower than
the KPI, and the model was considered effective. Additionally, this work allowed a reduction in the time
required to estimate the steady-state MC from 3 minutes to 10 seconds, when compared to the indirect
calorimetry method. Therefore, considering these results, and the fact that the model only required the
data from four wearable and non-intrusive sensors, the algorithm was considered suitable to be integrated
into a HITL control.

In Chapter 5, a torque tracking control for the knee exoskeleton was developed. This control was able

to drive the LLE's motor by following a desired knee torque profile, and was composed of three main blocks:
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(i) a natural cubic interpolator used to generate any desired torque profile; (ii) a mid-level controller used to
estimate the gait cycle phase and generate the reference torque from the torque profile and the estimated
gait cycle phase; and (iii) a low-level controller used to drive the motor in the desired torque trajectory, by
minimizing the difference between the reference torque and the actuator’s real torque. This was followed
by the identification of the ideal torque profile shape for an electric motor, which was composed of one
flexion and one extension curve, with peaks at 55% and 86% of the gait cycle. A conceptual experimental
validation of the torque tracking control showed that the control was able to follow the desired torque profile
and that this torque profile enabled the user to walk comfortably, without constraints. The user’s movement
was considered continuous and regular, and the control allowed a low human-device interaction torque
during the experiment (-4 N.m to 7 N.m). Therefore, the control achieved its established KPI, which was
ensuring a comfortable gait, and was considered adequate to be integrated into the HITL control proposed
in this dissertation.

In Chapter 6, a HITL adaptive torque control was developed, by integrating the regression model for
MC estimation and the torque tracking control with a CMA-ES optimizer. The HITL control was capable of
adapting the torque profile provided to the torque tracking control, in realtime, by minimizing the user’s
exertion. The exertion was measured by the user’s estimated MC (through the regression model) and the
user's interaction torque. Two control parameters were optimized: the torque magnitude of the flexion
and extension peaks of the knee torque profile. The CMA-ES optimizer was capable of finding an optimal
solution in 20 generations, a total of 20 minutes of optimization time, a value lower than the established
KPI for this control (30 minutes). Finally, a conceptual experimental validation of the HITL control was
performed. The optimized torque control achieved an 8.7% reduction of the user’'s MC when compared
to a zero-torque condition, a value slightly lower than the KPI (10%). Furthermore, the control achieved a
54.6% reduction of the user’s interaction torque, which in this case was a value significantly higher than
the KPI (10%). The control was successfully integrated into SmartOs’ architecture, running smoothly and
without any latency, and was considered effective in minimizing the exoskeleton user’s exertion.

The goals proposed for this dissertation (presented in Chapter 1.3) were therefore considered fulfilled.
Furthermore, the work here presented was able to answer the research questions established in Chapter

1.4:

¢ RQ1: What are the current effects of HITL controls implemented on LLEs?

The answer to this question can be found in Chapter 2. From the state of the art analysis on
HITL controls, it was possible to observe that all controls were effective in optimizing their desired

physiological signal (the optimized signal varied from study to study). Most of the controls adapted
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the control parameters of an exoskeleton based on the user's MC. These studies achieved MC
reductions from 7% to 48%, obtaining, therefore, almost half of the MC when using optimized
assistance to each user. Studies that minimized the user’s muscle activity achieved reductions of
this signal of 21%. Furthermore, studies that optimized the user’s gait speed were able to reduce
this parameter by 42%. All these results were obtained when comparing the optimized control with

a no-exoskeleton condition, in an experimental protocol.

¢ RQ2: How accurate can a regression model be in estimating the MC based on a small number of

wearable and non-intrusive sensors?

The answer to this question can be found in Chapter 4. The MC estimating regression model
developed in this dissertation passed through two main validation stages: the offline validation/test,
using the LOOCV method where one random subject was chosen for testing the model; and the real-
time validation, where various participants performed an experimental protocol and the estimation
made by the model was compared to the estimation made through indirect calorimetry. During the
offline validation, the regression model achieved an RMSE and a coefficient of determination (R?)
of 0.31 W/kg and 0.91, respectively. Regarding the offline test, the regression model achieved an
average RMSE of 0.45 W/kg and an R? of 0.84. As to the real-time experimental validation, the

average RMSE between all participants was 0.66 W/kg, while the average R? was 0.75.

¢ RQ3: How much can LLE users’ exertion be reduced by a real-time HITL optimization?

The answer to this question can be found in Chapter 6. The HITL control presented in this
dissertation was used to optimize a torque profile of a knee exoskeleton, in realtime, by
minimizing the user’'s exertion, evaluated by a weighted sum of the user's MC and interaction
torque. The effectiveness of the control was assessed by comparing the user’s exertion when
walking without the exoskeleton, and when walking with the device in a zero-torque mode and
with the optimized torque control. The optimized assistance achieved an MC reduction of 5.3 %
and 8.7% compared to the no-exoskeleton and zero-torque conditions, respectively. Additionally,
the HITL control enabled interaction torque reductions of 54.6% compared to walking with the

exoskeleton in the zero-torque mode.

7.1 Future work

Future work to extend the work developed in this dissertation comprises of: (i) the integration of an HR

monitor sensor into the SmartOs system, to allow the MC estimation by a regression model based not only
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on the 3D acceleration data but also on the HR signal measured in real-time; (ii) the development of a new
regression model capable of estimating the MC during a large set of activities, especially activities with
higher industrial relevance, such as lifting and carrying heavy loads; and (iii) the experimental validation

of the HITL control with more participants.
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A Appendix:

Cross-correlation between Ingraham’s and

InertiaLab’s 3D acceleration axes

Tables 26, 27, 28, and 29 present the results of the cross-correlation study performed for

Ingraham’s and InertiaLab’s 3D acceleration axes, for the right wrist, chest, left waist, and right ankle

IMUs, respectively. The best correspondence between the two systems is marked in red.

Table 26: Wrist axis cross-correlation between Ingraham’s and InertiaLab'’s data. Legend: IL - "InertiaLab”

Inverted Inverted | Inverted
IL’s x-axis | IL’s y-axis | IL’s z-axis
IL’s x-axis | IL's y-axis | IL’s z-axis
Ingraham’s x-axis 0.2 140.9 0 399.5 0 86.3
Ingraham’s y-axis 0.6 394 0.1 1109.6 0.2 240.6
Ingraham’s z-axis 145.8 0 32.4 0 52.4 0

Table 27: Chest axis cross-correlation between Ingraham’s and Inertialab’s data

. Legend: IL - "InertialLab”

Inverted Inverted Inverted
IL’s x-axis | IL's y-axis | IL’s z-axis
IL’s x-axis | IL's y-axis | IL’s z-axis
Ingraham’s x-axis 0 0 564.7 4960.3 283.6 0
Ingraham’s y-axis 0 0 119.6 1033.3 60.9 0
Ingraham’s z-axis 802.4 46.6 0 0.1 0 91.4

Table 28: Waist axis cross-correlation between Ingraham’s and InertialLab’s data

. Legend: IL - "InertiaLab”

Inverted Inverted | Inverted
IL’s x-axis | IL’s y-axis | IL’s z-axis
IL’s x-axis | IL’s y-axis | IL’s z-axis
Ingraham’s x-axis 0 262.8 690.2 5224 2.5 0
Ingraham’s y-axis 0 442 107.8 797 0.6 0
Ingraham’s z-axis 0 41.8 101.7 753.3 0.6 0
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Table 29: Ankle axis cross-correlation between Ingraham’s and InertialLab’s data. Legend: IL - "InertialLab”

Inverted Inverted | Inverted
IL’s x-axis | IL’s y-axis | IL’s z-axis
IL’s x-axis | IL's y-axis | IL’s z-axis
Ingraham’s x-axis 0 698.7 1734.8 6475.4 47.1 0
Ingraham’s y-axis 10.7 126.8 168.5 503.4 93.7 20.7
Ingraham’s z-axis 0 180.9 369.4 1317 22 0.5
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B Appendix: 3D acceleration acquired during the MC
estimation validation

Figures 51, 52, 54, 56, 58, and 60 present the acceleration values, along each axis, of Participants
1, 2 (1%t and 2™ trials), 3, 4, and 5, respectively, respective to the signals that were used to estimate
the MC (acceleration of the chest, right wrist, left waist, and right ankle). Figures 53, 55, 57, 59, and 61
present the acceleration of the other locations (right waist, back waist, and right knee), along each axis,

of Participants 2 (1% and 2" trials), 3, 4, and 5, respectively.
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Figure 51: Raw 3D acceleration signals measured by the Inertialab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 1.
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Figure 52: Raw 3D acceleration signals measured by the Inertialab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 2 (Trial 1).

Acceleration (g
& o
= o om

Acceleration (g)
[SI=

0.5
ofFr—
-0.5
0

10 15 20
Time (min)

(a) Right waist

Lmom

(=]

o 5 10 15 20
Y-axis

5 10 15 20
Z-axis

X-axis

o —

0 5 10 15 20

Time (min)

(b) Back waist

Acceleration (g)

4
o -
0
0 5 10 15 20
Y-axis
2
ob .
-2
4
0 5 10 15 20
Z-axis
El
-2
0 5 10 15 20
Time (min)

(c) Right knee

Figure 53: 3D Acceleration signals measured by the InertiaLab’s IMUs that were not used to predict the MC

(right waist, back waist, and right knee), for Participant 2 (Trial 1).
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Figure 54: Raw 3D acceleration signals measured by the Inertialab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 2 (Trial 2).
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Figure 55: 3D Acceleration signals measured by the InertiaLab’s IMUs that were not used to predict the MC
(right waist, back waist, and right knee), for Participant 2 (Trial 2).
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Figure 56: Raw 3D acceleration signals measured by the Inertialab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 3.
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Figure 57: 3D Acceleration signals measured by the InertiaLab’s IMUs that were not used to predict the MC

(right waist, back waist, and right knee), for Participant 3.
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Figure 58: Raw 3D acceleration signals measured by the Inertialab'’s IMUs that were used to predict the MC
(chest, right wrist, left waist, and right ankle), for Participant 4.
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Figure 59: 3D Acceleration signals measured by the InertiaLab’s IMUs that were not used to predict the MC
(right waist, back waist, and right knee), for Participant 4.
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Figure 60: Raw 3D acceleration signals measured by the Inertialab’s IMUs that were used to predict the
MC(chest, right wrist, left waist, and right ankle), for Participant 5.
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Figure 61: 3D Acceleration signals measured by the InertiaLab’s IMUs that were not used to predict the MC
(right waist, back waist, and right knee), for Participant 5.
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