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Resumo

Atualmente, as lesões musculosqueléticas relacionadas com o trabalho (LMERTs) afetam

aproximadamente 60% dos trabalhadores europeus (1). Permanecer de pé durante longos períodos e

carregar e levantar objetos pesados são atividades que introduzem uma carga significativa nas pernas

dos trabalhadores (1). Nem todos os processos industriais podem ser completamente automatizados e,

portanto, é ainda necessário que os trabalhadores executem tarefas repetitivas (2). Os exoesqueletos

podem ser utilizados para aumentar a capacidade física e diminuir a tensão física nos músculos dos

utilizadores, contudo, os exoesqueletos atuais ainda não sincronizam os seus movimentos com a

intenção do humano nem assistem cada trabalhador de forma individualizada (2).

O principal objetivo desta dissertação foi o desenvolvimento e validação de um controlo human-in-the-

loop (HITL) para um exoesqueleto de membros inferiores. O propósito do controlo foi a otimização, em

tempo-real, do perfil de torque do exoesqueleto, para um perfil que minimizasse o esforço do utilizador,

avaliado pelo seu custo metabólico (CM) e torque de interação.

Primeiramente, um modelo regressor capaz de estimar o CM de uma pessoa, em tempo-real, com

base em dados de quatro sensores inerciais foi desenvolvido e integrado no exoesqueleto. O modelo

foi treinado com dados de três atividades: (i) estar de pé; (ii) andar; e (iii) estar sentado. Durante uma

validação experimental, o modelo alcançou um erro quadrático médio de 0.66 W/kg.

De seguida, foi desenvolvido um controlo de torque que permitiu a manipulação dos atuadores do

dispositivo para seguirem um perfil de torque gerado por interpolação polinomial. Este foi formado por um

controlador de nível médio que estima a fase da marcha e obtém a referência de torque, e um controlador

de nível baixo usado para movimentar o atuador de acordo com a referência e fase da marcha. Uma

validação conceptual do controlo mostrou que este foi capaz de assistir o utilizador com sucesso.

Por fim, um controlo HITL foi desenvolvido, pela integração do modelo regressor e o controlo de torque

com um algoritmo otimizador. O otimizador adaptou o perfil de torque, em tempo-real, para minimizar o

esforço do utilizador. Uma validação conceptual do otimizador demonstrou que a assistência otimizada

resultou numa redução de 8.7% e 54.6% do CM e torque de interação do utilizador, respetivamente,

comparativamente com a utilização do dispositivo em modo transparente.

O controlo HITL foi desenvolvido e integrado no exoesqueleto com sucesso. Os resultados de uma

prova de conceito revelaram que este foi eficaz na redução do esforço do utilizador.

Palavras-chave: controlo human-in-the-loop, estimação do custo metabólico, exoesqueletos, lesões

musculosqueléticas relacionadas com o trabalho, trabalho assistido
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Abstract

Work-related musculoskeletal disorders (WMSDs) affect roughly 60% of the European working

population (1). Standing for long periods and carrying and lifting loads are all industrial activities that

introduce significant loads on the workers’ legs (1). Not every industry process can yet be fully

automated, and, therefore, humans are still required to perform repetitive tasks in their workplaces (2).

Exoskeletons can be employed for power augmentation of healthy workers by reducing the physical

stress and strain on the user’s muscles, however, today’s exoskeletons can not yet perfectly synchronize

to the human’s intentions nor provide ideal and individualized assistance to each worker (2).

The main goal of this dissertation was to develop and validate a human-in-the-loop (HITL) control for

a lower limb exoskeleton (LLE). This control aim was to optimize, in real-time, the torque profile of the

exoskeleton, to a profile that minimizes the user’s exertion, evaluated by the person’s metabolic cost (MC)

and interaction torque.

Firstly, a regression model capable of estimating, in real-time, a person’s MC based on data from four

inertial sensors was developed and integrated into the exoskeleton’s system. The model was trained with

data from three different activities: (i) standing; (ii) walking; and (iii) sitting. During a real-time experimental

validation, the model achieved a root-mean-square error of 0.66 W/kg.

Then, a torque tracking control was developed for the LLE. This control ensured that the device’s

actuators track a pre-determined torque profile, generated by a natural cubic spline interpolator. It was

composed of a mid-level controller that estimated the gait phase and generated a torque reference, and a

low-level controller, used to drive the actuator according to the reference torque. A conceptual validation

of the control showed that it was able to successfully assist the user by producing a comfortable gait.

Finally, the HITL control was developed, by integrating the MC estimating model and the torque

tracking control with an optimization algorithm. This optimizer adapted the torque profile, namely the

knee flexion and extension peak torque magnitudes, to minimize the user’s exertion. A conceptual

validation of the HITL strategy showed that the optimized assistance resulted in a reduction of 8.7% and

54.6% of one participant’s MC and interaction torque, respectively, compared to using the device in a

zero-torque mode.

The HITL control was successfully developed and integrated into an LLE. The proof-of-concept results

revealed that this strategy was effective in reducing the user’s exertion.

Keywords: assisted working, exoskeletons, human-in-the-loop control, metabolic cost estimation,

work-related musculoskeletal disorder
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1 Introduction

This manuscript presents the work developed for this dissertation, entitled ”Human-in-the-loop

control for lower limb assistance driven by exoskeleton”, in the scope of the fifth year of the Integrated

Master’s in Biomedical Engineering during the academic year of 2022/23, in the field of Medical

Electronics, at the University of Minho. The work presented in this dissertation was developed at the

Biomedical Robotic Devices Laboratory (BiRD Lab), of the Centre of MicroElectroMechanical Systems

(CMEMS) Research Centre established at the University of Minho. This work is immersed in a research

project that resulted from the collaboration of the University of Minho and ’Bosch Car Service’ (Braga,

Portugal) named ”Connected Manufacturing – Digital Transformation”.

During this period, it was developed a machine learning model capable of estimating a person’s

metabolic cost (MC) in real-time. This model was then integrated into a human-in-the-loop (HITL) control,

of a lower limb exoskeleton (LLE), capable of optimizing a torque controller to minimize the user’s exertion

in real-time. The followed methods during the dissertation, its results, and the conclusions taken are

presented in this manuscript.

1.1 Motivation

An ongoing cause of concern in the industry are work-related musculoskeletal disorders (WMSDs), the

most common work-related health problem in developed countries, affecting millions of European workers

across all sectors and occupations (1). In total, it is estimated that 1.71 billion people worldwide have a

musculoskeletal disorder (3). Musculoskeletal disorders are injuries that limit human motion by affecting

muscles, nerves, tendons, ligaments, and so on. Some examples of such disorders are carpal tunnel

syndrome, tendonitis, tendon strains, and ligament sprains. A report commissioned by the European

Agency for Safety and Health at Work, in 2019, disclosed that three out of five workers in the European

Union have musculoskeletal complaints, and more than half of the workers with musculoskeletal disorders

reported being absent from work, at least once, due to the illness (1).

The prevalence of WMSDs in industry workers is around 29%, 11%, 33%, and 17% for the leg, hip,

knee, and ankle/feet, respectively (4). In 2020, body movements under/with physical stress accounted for

18.4% of the causes of non-fatal work accidents (5). The industry activities that are more critical for WMSDs

in the lower limbs are standing for long periods and carrying/lifting heavy loads since the three primary risk

factors comprise task repetitions, forceful exertions, and awkward postures (6). Pain in the lower limbs

was a usual (49.5%) complaint among hairdressers (7), workers required to stand for long times, and 63%
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of workers that frequently carry and/or move heavy loads reported having musculoskeletal disorders (1).

The industry sectors with a higher prevalence of lower limb WMSDs, in 2015, were agriculture, forestry,

and fishing (46%), construction (40%), and water supply (40%) (1).

Over the past years, various ergonomic studies have proposed strategies to reduce the physical load

of workers in their workplace, such as resting periods, task rotations, and the autonomation of industry

tasks. However, not every process can be fully automated, and humans are still required to deal with

significant loads, repetitive tasks, and non-ideal postures, e.g., in transporting materials on rough terrains

(2).

LLEs can be employed for power augmentation of healthy workers by reducing the physical stress and

strain on the users’ muscles as they perform motions like walking, squatting, stand-to-sit, and sit-to-stand,

or while they are in stationary positions (either sitting or standing) (2).

1.2 Problem statement

Despite the advantages of using LLEs for human assistance and power augmentation, various

limitations to these devices can still be identified. These limitations are the reason for the lack of

exoskeletons being developed, commercialized, and used in industrial applications. One major challenge

of exoskeletons is the need for compliant, compatible, and safe human-robot interactions. However,

today’s exoskeletons can not yet provide ideal and individualized assistance to each user (2, 8).

The synchronization between the human’s and robot’s motions is still a complex problem, as

movement patterns can diverge significantly between different people. Typically, exoskeletons’ control

parameters (joint positions, torque profiles, etc.) are chosen based on the biomechanics of the average

population (9, 10) and are generally good enough to assist their users, but they do not take any

physiological parameter into account, like pain, effort, or metabolic consumption, nor coordinate the

device according to the human’s intentions (11).

This raises the need for more intelligent control schemes, that can adapt the exoskeleton assistance

to the human’s needs by monitoring the synergy between the user and the device. Several controllers

have recently been proposed by taking inspiration from the human’s gait, which is smooth, comfortable,

and naturally optimized for each specific person (8).

One possible strategy is the real-time optimization of the control parameters based on physiological

signals obtained from the user – HITL control (12). This way, by monitoring data acquired by wearable

sensors, it is possible to continuously adapt the assistance provided by the device to each user, and

humans are actively involved in the exoskeleton control. This strategy shows a huge potential for industrial
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applications, as it could be used to minimize the MC of workers performing heavy tasks. However, it has

yet to be implemented for industrial exoskeletons assisting workers in real-time (13).

The physiological parameter most optimized in these approaches is the MC. However, the standard

method for the estimation of this signal is through indirect calorimetry, which requires expensive and not

portable equipment, is time-consuming, its estimation is noisy, and is not feasible for real-world

applications (14). To overcome this drawback, various machine and/or deep learning models have been

proposed to estimate the MC based on data obtained from portable sensors (15, 16).

1.3 Dissertation goals

The main goal of this dissertation is the development and preliminary validation of an adaptive torque

control for an LLE towards the power augmentation of workers during physically demanding tasks for the

lower limbs, such as standing for long periods and carrying/lifting heavy loads. This control will implement

a HITL algorithm to optimize the interaction between humans and an LLE, with a focus on the knee joint.

The HITL algorithm aims for the real-time optimization of an exoskeleton’s knee joint torque by minimizing

the user’s exertion, evaluated by two parameters: (i) the user’s MC, estimated in real-time by a regression

algorithm based on non-intrusive wearable sensor data, and (ii) the interaction torque between the user

and the device.

To reach the proposed main goal, four smaller objectives were identified:

Objective 1: Perform a literature review of LLEs, HITL control strategies, and regression

algorithms for MC estimation. More precisely, survey the literature on LLEs developed for assisting

industry workers, on the existing HITL controls, and on MC estimation models proposed for clinical or daily

assistance. The key performance indicator (KPI) for this objective is the production of the review. This

objective is presented in Chapter 2.

Objective 2: Develop a regression model for MC estimation based on data obtained from

wearable and non-intrusive sensors, in real-time. This objective includes: (i) the search for a dataset

with relevant sensor data collected during motor tasks similar to standing, walking for long periods, and

carrying/lifting; (ii) the selection of minimal sensor inputs toward maximum usability in the industry; (iii) the

development and benchmark of several regression models for MC estimation; and (iv) the implementation

of the regression model into the LLE’s architecture. As a KPI, the regression model should obtain a root-

mean-square error (RMSE) below 0.8 W/kg and a coefficient of determination larger than 80% (17, 18).

This objective is addressed in Chapter 4.

Objective 3: Develop a torque tracking control that manipulates an LLE’s knee joint to follow
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a desired torque trajectory. This objective includes the development of: (i) a natural cubic interpolator

for generating the torque profile; (ii) a mid-level controller capable of estimating the gait cycle phase and

generating the reference torque from the torque profile; and (iii) a low-level controller that minimizes the

difference between the reference and the actuator’s torque. Guaranteeing the user’s comfort level when

walking with the controller is the KPI for this objective. This objective is presented in Chapter 5.

Objective 4: Develop a HITL adaptive torque control capable of adjusting the LLE’s knee joint

torque to minimize the exertion level of the users, estimated by the regressor model. This adaptive torque

control should be able to find a customized torque profile for each user according to his/her exertion level,

measured by the weighted sum of the MC and the human-exoskeleton interaction torque. The KPI is the

development of a control that requires less than 30 minutes of optimization (8, 19). This objective is

presented in Chapter 6.

Objective 5: Validate the regression model and the proposed controls during human tests

walking under the assistance of the LLE. The validation comprises the development of the experimental

protocols, the data acquisition, and the evaluation of the regression model’s and controllers’ performance.

The HITL control should grant a reduction of the MC and the interaction torque of the exoskeleton’s users

by at least 10% (8, 19), compared to performing the same activities with the device in zero-torque mode.

This objective is presented in Chapters 4 and 6.

1.4 Research questions

This proposed dissertation was developed in order to find the answer to the following research

questions (RQs):

RQ1: What are the current effects of HITL controls implemented on LLEs? This RQ is related to

Objective 1 and is answered in Chapter 2.

RQ2: How accurate can a regression model be in estimating the MC based on a small number of

wearable and non-intrusive sensors? This RQ is related to Objective 2 and is answered in Chapter 4.

RQ3: How much can LLE users’ exertion be reduced by a real-time HITL optimization? This RQ is

related to Objective 5 and is answered in Chapter 6.

1.5 Contributions to knowledge

The main contributions to knowledge achieved by this dissertation are:
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• A review of the LLEs for power augmentation and the ”chair-like” exoskeletons developed for

industrial applications (workers’ assistance).

• A review of HITL control strategies used to optimize the assistance of an LLE regarding the users’

needs.

• A review of machine and deep learning models used to estimate the MC, in real-time, based on

wearable sensors.

• A novel regression model used to estimate the MC based on a minimal number of acceleration

sensors during various activities (walking, standing, and sitting), possible to be worn simultaneously

with an LLE, and feasible for HITL applications in assisted working.

• A torque tracking control that enabled the manipulation of an exoskeleton’s knee joint according to

a pre-determined torque profile, which was tuned to guarantee the user’s comfort when walking.

• A novel HITL control capable of finding customized optimal assistance that minimizes the MC and

interaction torque of an LLE user, and differentiates itself from the literature’s studies by minimizing

an MC estimated in real-time with a regression model.

The work developed in this dissertation also resulted in the publication of the following conference

paper:

• Monteiro, S., Figueiredo, J., Santos, C. ”Towards a more efficient human-exoskeleton assistance”,

IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Tomar,

2023.

1.6 Manuscript outline

This document is organized into six additional chapters. Chapter 2 comprises the reviews of industrial

LLEs, HITL controls for exoskeletons, and MC estimation models. Chapter 3 presents the description

of the systems used in this dissertation and the requirements set for using LLEs for assisted working.

In Chapter 4, the development of the regression model used to estimate the MC is described, and its

validation during human tests is presented. Chapter 5 presents the development of the torque-tracking

control and its validation as a proof-of-concept during human experiments. Chapter 6 presents the HITL

control developed in a knee exoskeleton, based on the achievements made in Chapters 4 and 5, and its

validation in preliminary human tests. Chapter 7 presents the conclusions made in the dissertation and

future work.
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2 Review on exoskeletons for assisting workers and human-

in-the-loop controls

In this chapter, the literature review on the dissertation topics is presented. Firstly, the LLEs used for

industrial applications were surveyed. Then, this chapter presents the analysis of LLEs’ HITL controllers

capable of real-time optimization of the users’ MC. Finally, the review on regression models used for

MC estimation based on data acquired by wearable sensors is also presented. Each literature review is

complemented by a critical analysis of the state of the art. This chapter ends with a synthesis of the

conclusions taken from these reviews.

2.1 State of the art on industrial lower limb exoskeletons

2.1.1 Introduction

Despite the increase in automatization and mechanization that the industry is currently experiencing,

a lot of workers are still daily exposed to physical workloads and WMSDs are still a significant issue that

employees must face (20). Unfortunately, strategies to avoid physically demanding occupational tasks, like

material handling, repetitive movements, and awkward postures can not always be implemented because

of economic reasons or certain workplace characteristics. An alternate direction must be followed to parry

this complication, one that can free workers from the burden of tough manual work, lessen the likelihood

of injury, and improve work efficiency: the use of exoskeletons (2, 21).

An exoskeleton is a wearable mechanical structure that fits closely to the user’s body and is operated

to assist the wearer according to their needs thanks to actuators that reduce the loads on the human

joints. These devices should not be confused with orthosis, which are robotic accessories that enable a

disabled person to move more naturally, whereas an exoskeleton is better described as a structure that

augments the performance of its wearer (22).

Exoskeletons can be classified according to: (i) the body parts they support as lower-body, upper-

body, or full-body; (ii) the actuation they provide to the human joints as active, passive, or quasi-passive;

and (iii) the level of resemblance they have to a human as anthropomorphic, non-anthropomorphic or

quasi-anthropomorphic (20).

Exoskeletons’ effects on assisted working are still not deeply known due to a lack of studies. The few

studies that can be found seem to back up the idea that the use of such devices leads to a decrease in
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workers’ physical stress (joint loads) and strain (muscle activity, discomfort, and fatigue), but the general

perceived strain felt by the users seem to increase, probably because of the discomfort associated with

the operation of an exoskeleton (21). So, it seems that, by providing an external torque to the joints of the

user, an exoskeleton can reduce the wearer’s muscle activity and support the addressed musculoskeletal

structures. This leads to an increase in human strength and endurance and allows workers to perform

certain tasks that otherwise could not be independently achievable (2, 21). The objective of this section is

to provide an overview of industrial LLEs that are already being used to increase the strength of workers

in occupational tasks and devices that are currently under development.

2.1.2 Methods

Search methodology

The literature search was conducted in the online database Scopus with the following combination of

keywords: exoskeleton AND ((“lower limb” AND industry) OR (bleex) OR (”Hanyang Exoskeleton Assistive

Robot” OR ”HEXAR”) OR “legx” OR (load AND lifting AND assistance AND ”lower limb” ). Additionally, the

search was extended to the websites of the commercialized exoskeletons whose descriptions could not

be found in any of the papers. The search was executed between the 21st of September of 2022 and the

30th of August of 2023, and no restriction related to the papers’ release date was taken into account.

Selection strategy

The papers were selected based on the following criteria: (i) presented an LLE used for industrial

applications; (ii) presented a detailed description of the device’s hardware and control architecture.

Passive devices were not excluded from the search. Additionally, only one paper was selected for each

exoskeleton, namely the paper with a higher level of detail regarding the technical features of the device.

Data extraction

The selected papers were analyzed in order to obtain the following information: (i) the device

presented; (ii) the motor and industrial tasks assisted by the device; (iii) the weight of the exoskeleton

and its maximum payloads; (iv) the number of joints and degrees of freedom (DOFs); (v) the torque

provided to the users; (vi) the range of motion (ROM) of each joint; (vii) the locomotion speeds allowed;

(viii) the sensors implemented in the device; (ix) the controller architecture, and (x) and the device’s

limitation. The extracted information served as the benchmark for the discussion of the current state of

industrial LLEs.
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2.1.3 Results

The search methodology resulted in 94 papers, that were filtered, following the mentioned selection

strategy, and reduced to 12 articles. The literature available revealed that the function and areas supported

can vary a lot across the LLEs commercially available, but two main types were identified: some assist the

human joints in movements like walking, squatting, or kneeling, while the wearer carries significant loads

– exoskeletons for power augmentation; others provide support for prolonged standing or sitting positions,

while the worker performs repetitive and stationary assembly tasks, with their upper limbs – “chair-like”

exoskeletons (21). Figure 1 presents some of the LLEs developed for and used in industrial applications,

were Figures 1a and 1b depict two devices used for power augmentation, while Figures 1c and 1d depict

two chair-like exoskeletons.

(a) BLEEX. Taken

from: (23)

(b) Hercules. Taken

from: (24)

(c) Chairless Chair.

Taken from: (25)

(d) legX. Taken from:

(26)

Figure 1: LLEs for assisting industry workers.

Exoskeletons for power augmentation

Many work environments do not allow the transportation of heavy objects by wheeled vehicles, like

rough slopes and staircases, making legged locomotion the desired method of transportation. LLEs can

help an able-bodied person carry heavy loads, in those harsh locations, and even assist them in performing

the weight-lifting movement itself (2, 27).

An overview of power-augmentation LLEs can be found in Table 1. There, it is possible to analyze

the assessed technology readiness level (TRL), the motor and industrial tasks assisted, the weight and

load capacity, the joints, the actuated DOFs in the sagittal plane and the type of actuator used, the torque

applied to the joints, the ROM of each joint and the sensors implemented in each LLE. The BLEEX and

Hercules devices are presented in Figure 1a and 1b, respectively.
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The TRL was used to analyze the state of development of each exoskeleton, useful for comparison

purposes. Since no information on this matter could be found in the literature, the values provided were

self-accessed according to the descriptions of the levels presented in Figure 2.

Figure 2: Description of each TRL. Taken from: (36).

”Chair-like” exoskeletons

“Chair-like” exoskeletons are wearable lightweight passive devices that support their users’ weight

when they want to stand or sit for long periods, anytime and anywhere, by “locking” the knee joint. These

ergonomic exoskeletons do not constrain any type of primary movement and allow the worker to freely

walk when performing other tasks, while still wearing the devices.

An overview of the ”chair-like” exoskeletons can be found in Table 2, where the TRL, the motor and

industrial tasks assisted, the weight, the joints per leg, the sensors, and the special features of each device

were summarized. The Chairless Chair and legX devices are presented in Figure 1c and 1d, respectively.
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Control strategies of LLEs used in industrial applications

Control loops can be essentially divided into three layers: high-, mid-, and low-level. The high-level

block receives information from the environment and/or the user to detect changes in the surroundings

and/or the user’s intentions. The mid-level controller is used to continuously compute the joint’s desired

torque or position and is typically divided into two sub-layers: The detection/synchronization block that

outputs the gait phase (0-100%) or the gait state (swing, stance, etc.); The action block that outputs a

motor command that controls the kinematics (angle/speed) or the kinetics (forces/torques) of the LLE.

The final layer is the low-level controller used to manipulate the position or the torque of the actuators

(44).

Baud et al. (44) studied the control strategies of 291 LLEs, identifying the most common blocks

used in the device’s control loops and describing the different possible implementations. Based on the

nomenclature used by Baud et al., the control strategies of the LLEs presented in the previous sections

are shown in Table 3, where the high-, mid-, and low-level blocks are presented.

Table 3: Control strategies of the analyzed LLEs. Based on: (44). Legend: N/A - ”Not available/applicable”

Exoskeleton High-level control
Mid-level control

Low-level control
Detection Action

Roboknee N/A Gait phase detection Function of joint instant state Closed-loop torque controller

NTU’s N/A Gait phase detection Position profile Position controller

BLEEX N/A Gait phase detection
Joint torque estimation

(Method unknown)

Position controller (stance)

Closed-loop torque controller (swing)

HULC N/A N/A N/A N/A

HEXAR N/A Gait phase detection
Joint torque estimation

(Torque sensor)
Closed-loop torque controller

Hercules N/A N/A N/A N/A

SADO’s Movement recognition State-machine function
Joint torque estimation

(Dual extended Kalman filter)

Gait-cycle dependent

torque controller

MIT’s N/A State-machine function Position profile
Gait-cycle dependent

damper controller

Capitani’s N/A N/A N/A N/A

CC Manual user input N/A Body weight support Fully Passive

Archelis N/A N/A Body weight support Fully Passive

legX Manual user input Event trigger Body weight support Fully Passive

ChairX
Movement recognition

Manual user input
State-machine function Event trigger

Position profile

Body weight support
Position controller

E-LEG N/A State-machine function Body weight support Fully Passive

KARE-1 Manual user input N/A Body weight support Position controller

CEX N/A N/A Body weight support Fully Passive
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2.1.4 Discussion

From the literature review provided in Table 1, it was possible to conclude that exoskeletons for power

augmentation are mainly used for assisting users in load carrying. It also showed that most of the devices

were actively actuated in, at least, one joint and that most of these LLEs were constituted by electric

motors (29, 31, 32). Regarding the torque provided by the active actuators, barely any information could

be found, except on two papers that provided 34 Nm/38 Nm (31, 35) and 17 Nm (35) of continuous

torque in the hip and knee joint, respectively. The joint that was more commonly actively actuated was

the knee, followed by the hip, both for walking and lifting assistance, with an emphasis on motions on the

sagittal plane. In terms of the joints’ ROM, the devices analyzed differed significantly from each other but

in general, the hip, knee, and ankle joints’ ROM ranged between -40° to 150°, 0° to 127°, and -30° to

121°, respectively (9, 29, 31, 35).

Additionally, it was found that ”chair-like” exoskeletons are ideal for the assistance of workers

performing tasks in stationary positions, that do not move for long periods of time, like the ones

presented in Table 2. Most of these devices focus on knee assistance by locking this joint and allowing

the person to sit or stand anywhere, making those tasks less strenuous on the leg muscles, representing,

therefore, passive devices without active actuation (37–39, 41, 43). Additionally, two of the ”chair-like”

exoskeletons presented were semi-active devices, as one was composed of an active leg support unit

(40), and the other of an active rotary actuator (42). The ROM of the knee joint of such devices varied

depending on the allowed sitting height, but little information was found regarding this requirement.

The weight of the devices varied significantly depending on the number of actuated joints and the type

of actuation. Fully passive exoskeletons with one-joint assistance (the ”chair-like” exoskeletons) weighted

between 1.6 kg to 6 kg (37–39, 41, 43) while passive exoskeletons with three-joint assistance weighted

from 6 kg to 11,7 kg (10, 27). Actively actuated LLEs with three-joint assistance weighted significantly

more, from 23 kg to 34,6 kg (9, 29–32). This showed that a trade-off has to be made between the

weight of the device and the torque provided by the joints (level of assistance). Additionally, the maximum

payload of the devices was also limited, varying from 20 kg (29) to 91 kg (30), and was generally directly

correlated with the LLE weight.

In terms of the type of sensors normally used in the LLEs, the most common were

encoders/potentiometers used to measure joint angles (9, 10, 28, 29, 35, 40, 41) and ground reaction

force (GRF) sensors used to measure the force between each foot and the floor (10, 28, 29, 31, 35, 39,

42). Other sensors were also used, depending on the type and features of each LLE controller, such as
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accelerometers (9) to measure the joints’ acceleration, human-robot force sensors (9) and strain gauges

(10) to measure the interaction force between the human and the robot, load distribution sensors (9) to

measure the center of pressure of the user, inclinometers (9) to measure the orientation relative to

gravity, torque sensors (31) to measure the torque applied by an active actuator, and absolute

enconders (42) to measure the angular velocity of the joints.

Regarding the control strategies followed by the analyzed devices, presented in Table 3, there was a

significant difference between the devices used for power augmentation (mainly active) and the ”chair-

like” exoskeletons (mainly passive) since the passive devices required no torque nor damping control.

Table 3 also showed that most of the exoskeletons used for power augmentation did not have any high-

level control, except the exoskeleton that was used for both carrying and walking loads (35), that used

movement recognition to detect the humans’ intentions. In fact, recognizing human intentions is essential

for industrial exoskeletons that need to be employed in spaces with multiple terrain types (e.g. stairs and

ramps) and are worn by workers who are in constant movement and need to perform various tasks.

Additionally, there is a lack of controllers that enable smooth and imperceptible transitions between

assistance modes. Furthermore, the exoskeletons’ controllers were designed to assist the average person

and did not take any physiological parameter into account, such as their effort or MC.

Limitations of industrial exoskeletons

Some concerning limitations were found across the literature, which varied depending on the industrial

task being performed and the type of actuators incorporated in the devices (21). In Table 4, the most

relevant limitations to the implementation of LLEs by companies are presented, for each of the industry

applications discussed and actuation type (2, 20, 21, 45).

Additionally, some general limitations, independent of the exoskeleton type and application, were also

identified in the literature. Namely, the lack of universal safety standards for industrial applications of

exoskeletons imposes an important barrier to their adoption by companies. Secondly, the impossibility of

an exoskeleton to be worn by everyone (due to weight and anatomic limitations) and the general increase

in MC and discomfort associated with wearing LLEs are restraining their acceptance by the workers (2,

20). Furthermore, the exoskeletons’ controllers focus on either fixed trajectories or trajectories adapted

to the gait phase, and not on adapting their assistance to the workers’ exertion.
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Table 4: Current major limitations of industrial exoskeletons (2, 20, 21, 45)

Industrial task Actuator type Limitations

Lifting and

carrying

heavy loads

Active

- Heavy, big, and noisy devices;

- Short battery span;

- User’s movements are limited to walking in a

rigid gait;

- More expensive;

- Mechanisms that automatically recognize human

intentions to move are still limited;

- The limited technology state of actuators

and power supply sources;

- The design of exoskeletons is a complex

process due to the kinematic complexity

and variability of the muscle-skeletal system;

- Lack of studies that analyze the efficacy

and effects of wearing exoskeletons;

- Assistance limited to specific motor tasks;

- Donning and doffing takes too long and

requires assistance;

- User’s speed is very limited;

Passive - Can’t fully assist the joints with the necessary torque;

Stationary

assembly

tasks

Passive

- Sitting height is normally non-adaptive;

- Movements such as ascending and descending stairs can be more difficult to perform, and some

others can even be completely restricted, like kneeling;

- Can lead to discomfort during long-term sitting;

- Needs for repetitive donning and doffing are time-consuming;

Risks of LLEs

Despite all the benefits that LLEs provide to their users, they are also exposed to certain risks that

subject their health to danger. These risks are often ignored by the literature, and rarely candidly discussed,

hindering the evaluation of risk-to-benefit ratios of exoskeletons.

In 2013, on an evaluation review of the ReWalk - a rehabilitation exoskeleton - written by the U.S.A.

Food and Drug Administration (FDA), several risks were identified (46). Despite being associated with that

specific device, the exposed dangers could also be extended to other LLEs because of the shared design

principles between devices. The possible adverse events that could occur when using an LLE identified

by the FDA were: (i) instability, falls, and associated injuries; (ii) Bruising, skin abrasion, pressure sores,

and soft tissue injuries; (iii) hypertension, and changes in blood pressure and heart rate (HR); (iv) adverse

tissue reactions; (v) electrical interference with other devices; (vi) burns and electrical shocks; (vii) device

malfunctions; and (viii) use errors (46).

In 2017, He et al. (47) accessed the reports of adverse events involving several rehabilitation

exoskeletons. In this study, two other risks of wearing LLEs were identified: Bone fractures not caused

by falls and long-term secondary effects. More recently, Rodríguez-Fernández et al. (48) studied the

adverse events experienced by patients with muscular impairments while wearing an LLE. Out of the 87

studies reviewed, of a list of 25 different devices, 36 studies reported the existence of adverse events.

Besides the risks recognized by the FDA, other secondary effects were reported: fatigue of the upper
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limbs, low back pain, urinary infections, and dizziness (48).

In general, it was possible to conclude that LLEs are still barely used in industry and commercialized

devices focus on ”chair-like” assistance, instead of power augmentation, due to the limitations and risks

of the heavier, but powered, devices. HITL controllers that focus on the optimization of the assistance

to each user, in an individualized approach, could diminish the challenges of the LLEs and increase the

users’ acceptance of the devices.

2.2 State of the art on human-in-the-loop controls

2.2.1 Introduction

Various studies have shown that the energy expended by humans during various tasks can be reduced

by wearing LLEs. However, the reduction verified could, potentially, be maximized by implementing user-

oriented assistive strategies.

Typical assistance strategies can only evaluate the performance of exoskeletons and change their

design if needed after they are effectively used and physiological data is obtained - offline optimization.

Additionally, natural differences between users often result in inter-subject variability in their responses to

the same device with the same control strategy (11, 13).

HITL algorithms can be implemented in LLEs for the automatic tuning of desired controller parameters

(like the assistive torque) depending on real-time physiological measurements (like energy consumption).

These reinforcement learning methods operate on “trial-and-error” approaches until finding the optimal

assistance profile for each user – online optimization (13). Recently, various studies showed that this

alternative control method allowed for improved responses to powered devices due to the individualized

approach of the assistance, which is automatically tailored for each specific user. Figure 3 depicts the

general control loop of a HITL strategy.

HITL control strategies for LLEs normally focus on the minimization of a cost function based on the

MC of the user. In order to estimate the MC, indirect calorimetry methods are normally applied, by using

respiratory measurements. This method utilizes the Brockway equation in order to convert carbon dioxide

(CO2) and oxygen (O2) rates [mL/sec] into energy consumption [W]. Paired with the Brockway equation,

a first-order dynamic model is usually used in HITL applications to obtain the instantaneous energetic

consumption for faster estimation, since the indirect calorimetry method can only provide an accurate

measurement after the MC steady-state is achieved (roughly two to three minutes after starting a new

activity).
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Figure 3: General control strategy of HITL algorithms. Taken from: (13).

This section will provide an overview of HITL algorithms currently being used on LLEs controllers.

Additionally, it will be presented a discussion sub-section about the results found.

2.2.2 Methods

Search methodology

The literature search was conducted in the online database Scopus with the following combination of

keywords: (”human-in-the-loop” OR ”body-in-the-loop”) AND ((”lower limb exoskeleton” OR ”ankle

exoskeleton” OR ”knee exoskeleton” OR ”hip exoskeleton” OR ”exosuit”) OR (”exoskeleton” AND

”energy cost” AND ”metabolic cost”) OR ”exoskeleton” OR (”exoskeleton” AND ”metabolic”)). The

search was executed between the 10th of October of 2022 and the 30th of August of 2023, and no

restriction related to the papers’ release date was taken into account.

Selection strategy

The papers were selected based on the following criteria: (i) presented a HITL algorithm

implemented in an LLE; (ii) the HITL strategy fitted in the definition followed by this dissertation - online

optimization of control parameters based on a physiological signal measured in real-time; (iii) presented

an intelligible description of the control loop and optimization algorithm; (iv) performed human

experiences and presented clear results. Additionally, a preference was given to papers: (i) published in

17



the last five years; (ii) with more citations; (iii) and published in journals with high impact factors.

Data extraction

The selected papers were analyzed in order to obtain the following information: (i) the type of

exoskeleton controlled; (ii) the assisted motor task; (iii) the optimization algorithm and time required; (iv)

the control parameters updated in real-time; (v) the physiological signal that controlled the optimization

function (vi) the algorithms for MC estimation, sensors used for that matter, estimation time, and

estimation error; (vii) the experimental protocol; (viii) the obtained results; (ix) and the limitations of HITL

controllers.

2.2.3 Results

The search methodology resulted in 115 papers, that were filtered, following the mentioned selection

strategy, and reduced to 17 articles. Tables 5 and 6 present the studies that developed a HITL strategy

on an LLE based on the MC or based on another physiological signal, respectively. Tables 5 and 6

present the exoskeletons used by each study, the optimization algorithm and its optimization time, the

control parameters, the MC estimation method and the sensors used for that purpose, the summarized

experimental protocol, and the results obtained by each study.

The analyzed strategies differed significantly from each other, namely, regarding the optimization

algorithm that was implemented and the cost function’s signal. In the following text, these divergences

will be presented.

HITL optimization algorithms

In 2016, Koller et al. (13) implemented a 1D gradient descent method that was able to find an optimal

threshold for controlling the torque that was applied to an ankle exoskeleton. This study confirmed the

feasibility of HITL strategies.

Only one year later, Zhang et al. (11) proposed another method for HITL optimization of the assistance

of a tethered ankle exoskeleton to minimize the MC during walking, with a 4D covariance matrix adaptation

evolution strategy (CMA-ES) optimization algorithm. CMA-ES optimizers have also been implemented in

the control of a tethered ankle exoskeleton optimized for running (49), walking at self-selected speeds

(12) and at different inclines (50), a tethered hip-knee-ankle exoskeleton for walking with heavy loads (51),

walking at different speeds (52), and walking at different inclines (53), a tethered hip exosuit for optimized

flexion torque while walking (54), and a portable hip exoskeleton (55).
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In 2017, Kim et al. (11) evaluated the use of a Bayesian optimization (BO) algorithm for efficiently

identifying control parameters that minimized the MC, estimated using respiratory data. Ding et al. (19)

managed to use the BO method to optimize two hip torque parameters of a tethered soft exosuit, with a

HITL control strategy, that allowed 17.4% of MC reduction (compared to not wearing the suit), taking only

21.4 minutes of optimization time. Other BO approaches have been developed, namely in the optimization

of an active pelvis orthosis during normal walking (58), of a tethered unilateral ankle exoskeleton for

squatting assistance (56), a tethered soft hip and ankle exoskeleton (57), and a portable hip exoskeleton

during walking (55). More recently, in 2020, Tucker et al. (61) coupled a BO algorithm with a Gaussian

process preference model to optimize the assistance of a powered LLE.

In 2019, Jackson and Collins (59) took a different approach to the HITL optimization problem and

developed a heuristic co-adaptive controller, that used muscle activity measures of the soleus and tibialis

anterior muscles and the ankle joint angle to control the magnitude of the ankle torque applied to a tethered

bilateral ankle exoskeleton (59). Yan et al. (60), in 2019, used a Particle Swarm Optimization algorithm to

optimize the assistance of another tethered ankle exoskeleton, with the objective of minimizing the muscle

activity of the soleus muscles.

A recent study from Xu et al. (55) compared the results achieved by both CMA-ES and BO algorithms,

with similar characteristics, in the optimization of four hip torque profile parameters to minimize the muscle

activity of four participants. In the end, the optimization algorithms achieved similar optimal torque profiles

but the CMA-ES resulted in a bigger reduction in muscle activity on average - a difference of almost 3%.

However, the optimization times of the algorithms were not the same, as the CMA-ES lasted for one and

a half hours (80 iterations) and the BO for an hour (61 iterations), taking 1.12 min./iteration and 0.98

min./iteration, respectively.

HITL cost function

The cost function implemented in the HITL algorithm is employed to allow the minimization of a

kinematic or physiological signal related to the human perceived strain. The cost function’s signal differed

from study to study, but two main types of HITL algorithms could be distinguished: (i) studies that used

the MC; and (ii) studies that used other signals, e.g. the users’ muscle activity.

The majority of the analyzed studies used the indirect calorimetry method for the estimation of the MC,

followed by: (i) a first-order dynamic model (8, 19, 49, 51–53, 57); (ii) a discrete linear system (13); or

(iii) a phase-plane-based metabolic estimator, combined with a double deep-Q network for early stopping

(56). Additionally, Kim et al. added an unscented Kalman filter to the first-order filter in order to obtain

an optimal stopping point and, therefore, decrease the optimization duration. Alternately, Gordon et al.
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(58) presented another methodology for estimating the MC of a user wearing an active pelvis orthosis by

implementing a simulated human-device biomechanical model, in OpenSim, that was used to compute

the MC based on the user trajectories and external forces. Table 5 presents the studies that developed

HITL controllers with cost functions that minimized the estimated MC.

Alternatively, in 2019, Jackson and Collins (59) proposed a HITL ankle torque assistance based on the

optimization of muscle activity and the ankle angle. In 2021, Han et al. (50) created a method based on

a cost function of muscle activity, with weights optimized with a Swarm optimization algorithm, and Song

et al. (12) used HITL optimization to control a tethered ankle exoskeleton and maximize the self-selected

speed of users walking on a self-paced treadmill. Other approaches that did not optimize the MC of the

participants were the studies of Yan et al. (60), which minimized the muscle activity of the soleus muscle,

Tucker et al. (61), which optimized the gait according to the users’ preference measured by a subjective

feedback system, and Xu et al. (55) which minimized the muscle activity of the rectus femoris muscles.

A data-driven model was used by Slade et al. (62) to optimize the assistance of an untethered ankle

exoskeleton in an outdoor environment, being the first HITL-controlled device used outside a laboratory.

This team combined a data-driven model, that ranked different control laws after receiving the ankle angle,

velocity, and torque parameters of each law, with a CMA-ES algorithm, that found optimal parameters and

generated a new set of control laws to be tested. Despite not measuring the MC during the optimization

in the real world, the data-driven was first trained with MC data obtained by indirect calorimetry, in a

laboratory, using a respiratory device (Quark CPET, COSMED).

2.2.4 Discussion

This section presents a synthesis of the main conclusions taken from the literature review, as well as

a presentation of the limitations of the current HITL controller. The first optimization algorithm used for

HITL applications was the 1D gradient descent method. Because of its inefficiency and high sensitivity

(13), other methods appeared. The CMA-ES algorithm allows for high-dimensional optimization problems,

essential for the real-time control of complex exoskeleton joints (11). Despite the broad use of CMA-ES as

the optimization algorithm in HITL strategies, this method is often time-consuming, due to the considerable

number of iterations executed for parameter evaluations (11). Compared to the other strategies, the BO

method allows for quicker optimization, even whenmetabolic measurements present high noise. However,

this method assumes that the relationship between the assistance and the MC is not time-varying and is

significantly more complex than the previous methods (11). Heuristic algorithms are simpler approaches,

but the use of electromyography (EMG) sensors proved to be cumbersome to the user and limited the
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use of this method to hip joint assistance (59). Additionally, the heuristic control strategy forces the

users to walk with sub-optimal torque profiles for long periods, requires a rigorous characterization of the

control parameters, and is probably ineffective for users with muscle impairments (59). A Particle Swarm

Optimization algorithm has also been used for HITL assistance (60), however, the choice of this algorithm

was not justified, and, at first sight, had no advantage over the other algorithms.

In terms of the signal being optimized, the vast majority of the papers used the users’ MC, estimated by

indirect calorimetry, as the cost function. However, these approaches are limited by the lengthy evaluation

periods that are necessary to obtain the MC estimation, the low signal-to-noise ratio of the respiratory

data, the difficulty of using respiratory masks in real-world applications, and the long delay between the

instantaneous energetic demand and the physical respiratory measurements due to slow mitochondria

response (8, 19, 56). Alternately, the use of biomechanical simulations to estimate the MC allowed

for significantly quicker optimization times, but a comparison with the ground-truth MC, measured with

respiratory data, showed significant differences between the two estimations (58). Besides, biomechanical

simulations like the one presented at (58) often require precise joint kinematics and musculoskeletal

knowledge about each specific user and significant computational power (14). Additionally, there were

seven studies that did not use the MC cost as the cost function, using instead one alternative signal for the

optimizations such as the muscle activity (EMG) (50, 55, 59, 60). These approaches, however, generally

resulted in less MC reduction and focused on other results (12, 62).

Regarding the control parameters optimized in real-time, the papers generally focused on the

optimization of the torque profile being applied to the controlled joint(s), with the exception of two studies

that optimized: (i) two stage-dependant parameters (56) and (ii) six gait parameters (61). The studies

that focused on the torque profile tried to simplify its curve by optimizing the minimum necessary

parameters, namely the peak torque, peak timing, rise and fall times, and inflection points. Several of

these papers noticed that the optimal values of some of the parameters, like the peak and fall times,

varied little across participants, showing that some control parameters can actually be fixed without

altering significantly the algorithm’s performance (8, 12, 14, 51). One trend that could also be noticed in

the analyzed studies was the implementation of HITL control on single-joint exoskeletons (mostly the

ankle joint). Only three studies, performed by the same team, optimized the assistance of three joints

(hip, knee, and ankle) at the same time (51–53).

As to the optimization time of the algorithms, it was possible to conclude that, as expected, increasing

the number of control parameters also leads to an increment in the optimization period. The optimization

time was roughly 10 to 15 minutes/parameter, which emphasizes the importance of the simplification
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of the control parameters. However, this is not a linear relationship since the optimization time also

depends on the type of parameters being optimized and the way the algorithm is initialized. Regarding

the experimental protocol, most of the studies included 9 to 11 healthy participants and were performed

in two to three days.

In regard to the results achieved by the analyzed studies, it was observed that all of the controllers

were able to achieve a significant reduction of the minimized physiological signal, demonstrating the

viability of HITL strategies. With respect to the studies that optimized the users’ MC, reductions from

7% (57) up to 48% (53) of this signal were obtained, when comparing the optimized assistance to not

wearing the exoskeleton. Regarding the controllers that did not optimize the MC, Xu et al. (55) achieved

reductions of the users’ muscle activity of 21%, while Slade et al. (62) obtained MC reductions of 23%, both

when comparing the optimized controller to walking without the device. Additionally, better results were

obtained when comparing the optimized assistance to a zero-torque condition, a strategy that increases

human effort.

Limitations of current HITL control strategies

From the performed survey, several limitations and challenges associated with different HITL

algorithms were observed, as follows. The optimization of multiple parameters per joint poses a

significant limitation to the application of HITL strategies in fully actuated LLEs, as higher-dimensional

problems require longer optimization times and greater computational power (8). Besides that, most of

the used devices were tethered to the electric motors that supplied the power to their actuators, which

shows the difficulty of implementing HITL controllers in portable systems (8, 13, 19). Additionally, HITL

control strategies require a well-thought-out choice of the control parameters and their ranged values

(12). Some studies also reported that the optimization is dependent on users’ level of experience in

using the devices and that adaptation effects are possible (19, 52, 53, 56).

In general, it was possible to conclude that optimization algorithms are already broadly used in HITL

controllers and applied in LLEs in real-time, however, the analyzed approaches still heavily rely on the

MC estimated by indirect calorimetry, which has several limitations and were only applied in tethered

exoskeletons not designed for independent use in the real world. One approach to the MC estimation,

without using respiratory sensors, is the implementation of regression models that use data obtained from

portable and wearable sensors to establish a relationship between that data and the energy expended

by the user. Despite not yet being implemented for real-time HITL optimization, these models will be

presented in Chapter 2.3.
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2.3 State of the art on metabolic cost estimation models

2.3.1 Introduction

To implement a HITL control strategy in exoskeletons it is essential to obtain the MC of the user in real-

time. The gold standard method used to assess the MC during any activity is direct calorimetry, however,

it is also the most expensive strategy, and it is impossible to implement on an exoskeleton being worn in

the real world.

Two well-established estimation methods are used in the literature, as they obtain the closest results

to the ground truth: indirect calorimetry and doubly labeled water. The former uses a respirometer device

to measure the consumption of oxygen and the production of carbon dioxide, which can be used to obtain

an approximated value of the MC. The latter uses labeled water, ingested by the human, that is traced

until leaving the organism and used to evaluate how much carbon dioxide was used by the metabolism

and estimate the MC of the participant (63).

Despite obtaining astonishing results, these methods require expensive equipment and materials, take

too long to obtain the MC estimation, and most importantly are infeasible for everyday use by exoskeleton

users. Therefore, a need for fast estimation methods based on data acquired in real-time by wearable,

practical, and light sensors has arisen. Ideally, for HITL-controlled exoskeletons used in the real world

(both for industry and/or daily living activities) these sensors should even be integrated into the device or

built into a wearable electronic gadget, that is practical to carry around.

Several regression models have been created to estimate the MC, by establishing a relationship

between sensor data and MC. Alvarez-Garcia (63) organized the possible strategies for MC estimation

into three groups: single methods, activity-specific methods, and context-specific methods. The general

proceeding followed by the estimation methods comprises the data acquisition and processing, features

extraction and selection, and the computation of the MC estimate by the regression model(s) (63). The

objective of this section is to provide an overview of current methods for the estimation of MC.

2.3.2 Methods

Search methodology

The literature search was conducted in the online database Scopus with the following combination of

keywords: ((”metabolic cost” OR ”metabolic energy cost”) AND ”regression model”) OR (”energy

expenditure estimation”) OR (”energy expenditure measurement” AND ”machine learning”). The search
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was executed between the 19th of October 2022 and the 10th of August 2023, and no restriction related

to the papers’ release date was taken into account.

Selection strategy

The papers were selected based on the following criteria: (i) presented a regression model capable of

estimating the energy expended by a person based on wearable sensors; (ii) presented a clear description

of the regression model; (iii) presented a concise description of the data used as input and the sensors

used for its acquisition; (iv) presented at least one performance metric; (v) the experimental protocol

studied at least one gait condition. Additionally, a preference was given to papers: (i) recently published;

(ii) with more citations; (iii) and published in journals with bigger impact factors.

Data extraction

The selected papers were analyzed in order to obtain the following information: (i) the model’s

algorithm; (ii) the activities performed during the data acquisition; (iii) the model’s input(s); (iv) the type

and location of the sensors used for the data acquisition; (v) the estimation error and other performance

metrics.

2.3.3 Results

The search methodology resulted in 202 papers, that were filtered, following the mentioned selection

strategy, and reduced to 15 articles. Distinct models have been found in the literature, differing a lot

from each other, as shown in Table 7. The studies varied in the activities performed, the algorithms

implemented, the type of data collected for regression, and the number, type, and location of the sensors

used. Early approaches focused on simpler models, like linear one-variable or multivariate regression

models, based on one single data type. The algorithms constructed by Silder et al. (64) and Strath et al.

(65) were based only on EMG signals and acceleration data, respectively.

Although simpler approaches, single-parameter methods present lower estimation accuracy, as one

single parameter is unable to explain changes in the MC of participants performing a variety of tasks.

Ingraham et al. (66) showed that even a simple multivariate linear regressor (LR) can achieve great results

when a significant number of signals, obtained by six different sensors, are sent to the model. The team

concluded that the more significant variables were the minute ventilation, EMG sum, waist acceleration,

electrodermal activity, breath frequency, and HR; the signal that was least correlated with ground truth

MC was skin temperature.

27



T
a
b
le
7
:
S
tu
d
ie
s
th
a
t
p
ro
p
o
se
d
m
o
d
e
ls
fo
r
M
C
e
st
im
a
ti
o
n
u
si
n
g
d
a
ta
a
cq
u
ir
e
d
b
y
w
e
a
ra
b
le
se
n
so
rs
.
L
e
g
e
n
d
:
A
C
C
-
”A
cc
u
ra
cy
”;
A
S
M
-
”A
ct
iv
it
y-
sp
e
ci
fi
c
m
e
th
o
d
”;
B
M
I
-
”B
o
d
y

m
a
ss

in
d
e
x”
;
C
S
M
-
”C
o
n
te
xt
-s
p
e
ci
fi
c
m
e
th
o
d
”;
M
A
E
-
”M

e
a
n
a
b
so
lu
te
e
rr
o
r”
;
N
/
A
-
”N
o
t
a
va
ila
b
le
/
a
p
p
lic
a
b
le
”;
S
M
-
”S
in
g
le
M
e
th
o
d
”;
S
V
M
-
”S
u
p
p
o
rt
ve
ct
o
r
m
a
ch
in
e
”

S
tu
d
y

M
o
to
r
ta
s
k
(s
)
a
n
a
ly
z
e
d

R
e
g
re
s
s
io
n
m
o
d
e
l

T
y
p
e

E
s
ti
m
a
to
r
s
ig
n
a
ls

O
th
e
r
in
p
u
ts

S
e
n
s
o
rs

u
s
e
d

R
M
S
E
a
v
g
.

(R
M
S
E
ra
n
g
e
)

O
th
e
r
m
e
tr
ic
s

S
ild
e
r
e
t
a
l.
,

2
0
1
2
(6
4
)

W
a
lk
in
g
a
t
d
if
fe
re
n
t

in
cl
in
e
s

M
u
lt
iv
a
ri
a
te

re
g
re
ss
io
n
m
o
d
e
l

S
M

E
M
G

T
re
a
d
m
ill
in
cl
in
a
ti
o
n

E
M
G
se
n
so
rs

N
/
A

R
2
=
0
.9
6

P
a
n
d
e
e
t
a
l.
,

2
0
1
4
(6
7
)

S
ta
n
d
in
g
,
si
tt
in
g
,

w
a
lk
in
g
,
a
sc
e
n
d
in
g
a
n
d
´

d
e
sc
e
n
d
in
g
st
a
ir
s

B
a
g
g
e
d
re
g
re
ss
io
n

tr
e
e
s

S
M

A
cc
e
le
ra
ti
o
n
(w
a
is
t)

a
n
d
b
a
ro
m
e
te
r
d
a
ta

W
e
ig
h
t,
h
e
ig
h
t,
B
M
I,

a
g
e
,
a
n
d
g
e
n
d
e
r

B
u
ilt
-in

se
n
so
rs
o
f

a
sm

a
rt
p
h
o
n
e

0
.7
3
kc
a
l/
m
in

(0
.5
-1
.2
)

R
2
=
0
.9
6

S
tr
a
th
e
t
a
l.
,

2
0
1
5
(6
5
)

W
a
lk
in
g
a
n
d
d
a
ily

liv
in
g
a
ct
iv
it
ie
s

N
g
ra
m
ti
m
e
se
ri
e
s

A
S
M

A
cc
e
le
ra
ti
o
n
(n
o
n
-d
o
m
in
a
n
t

w
ri
st
,
h
ip
,
a
n
d
a
n
kl
e
)

W
e
ig
h
t,
h
e
ig
h
t,

g
e
n
d
e
r,
fa
t
%
,
a
n
d

g
a
it
sp
e
e
d

A
cc
e
le
ro
m
e
te
rs

(0
.8
4
-1
.0
4
)
M
E
T

A
C
C
=
8
9
.2
4
%

S
a
zo
n
o
v

e
t
a
l.
,

2
0
1
5
(6
8
)

S
ta
n
d
in
g
,
si
tt
in
g
,
w
a
lk
in
g
,

ru
n
n
in
g
,
a
n
d
cy
cl
in
g

L
R
a
n
d
S
V
M

A
S
M

F
o
o
t
p
re
ss
u
re
a
n
d
a
cc
e
le
ra
ti
o
n

W
e
ig
h
t,
B
M
I,

lo
g
(B
M
I)
,
a
n
d
a
g
e

F
iv
e
G
R
F
se
n
so
rs
a
n
d
o
n
e

a
cc
e
le
ro
m
e
te
r
o
n
e
a
ch

fo
o
t

0
.7
8
kc
a
l/
m
in

(0
.5
8
-1
.4
9
)

N
/
A

G
jo
re
sk
i

e
t
a
l.
,

2
0
1
5
(1
7
)

W
a
lk
in
g
,
ru
n
n
in
g
,
cy
cl
in
g
,

a
n
d
d
a
ily

liv
in
g
a
ct
iv
it
ie
s

M
u
lt
ip
le
co
n
te
xt
s

e
n
se
m
b
le

C
S
M

A
cc
e
le
ra
ti
o
n
co
u
n
ts
,
H
R
,
b
re
a
th

ra
te
,
ch
e
st
,
a
rm

,
a
n
d
a
m
b
ie
n
t

te
m
p
e
ra
tu
re
s,
g
a
lv
a
n
ic

sk
in
re
sp
o
n
se
,
a
n
d
a
ct
iv
it
y

N
/
A

A
cc
e
le
ro
m
e
te
rs
,
ze
p
h
yr
se
n
so
r,

a
n
d
B
o
d
yM

e
d
ia
se
n
so
r

0
.8
2
5
M
E
T

(0
.5
7
-1
.2
)

M
A
E
=
0
.6
0
1
M
E
T

Z
h
u
e
t
a
l.
,

2
0
1
5
(1
8
)

S
ta
n
d
in
g
,
si
tt
in
g
,

w
a
lk
in
g
,
a
sc
e
n
d
in
g

a
n
d
d
e
sc
e
n
d
in
g
st
a
ir
s

C
o
n
vo
lu
ti
o
n
a
l
n
e
u
ra
l

n
e
tw
o
rk
a
n
d
a

b
a
ck
p
ro
p
a
g
a
ti
o
n

m
u
lt
ila
ye
r
p
e
rc
e
p
tr
o
n

A
S
M

A
cc
e
le
ra
ti
o
n
(w
a
is
t)
a
n
d
H
R

W
e
ig
h
t,
h
e
ig
h
t,
b
a
sa
l

m
e
ta
b
o
lic

ra
te
,
a
g
e
,

a
n
d
a
ct
iv
it
y
le
ve
l

A
cc
e
le
ro
m
e
te
rs
a
n
d
H
R
se
n
so
r

1
.1
2
kc
a
l/
m
in

(0
.6
4
-1
.8
3
)

N
/
A

28



T
a
b
le
7
:
S
tu
d
ie
s
th
a
t
p
ro
p
o
se
d
m
o
d
e
ls
fo
r
M
C
e
st
im
a
ti
o
n
u
si
n
g
d
a
ta
a
cq
u
ir
e
d
b
y
w
e
a
ra
b
le
se
n
so
rs
(C
o
n
ti
n
u
e
d
).
L
e
g
e
n
d
:
A
C
C
-
”A
cc
u
ra
cy
”;
A
S
M
-
”A
ct
iv
it
y-
sp
e
ci
fi
c
m
e
th
o
d
”;

IM
U
-
”I
n
e
rt
ia
l
m
e
a
su
re
m
e
n
t
u
n
it
;
M
A
E
-
”M

e
a
n
a
b
so
lu
te
e
rr
o
r”
;
N
/
A
-
”N
o
t
a
va
ila
b
le
/
a
p
p
lic
a
b
le
”;
S
M
-
”S
in
g
le
M
e
th
o
d
”

S
tu
d
y

M
o
to
r
ta
s
k
(s
)
a
n
a
ly
z
e
d

R
e
g
re
s
s
io
n
m
o
d
e
l

T
y
p
e

E
s
ti
m
a
to
r
s
ig
n
a
ls

O
th
e
r
in
p
u
ts

S
e
n
s
o
rs

u
s
e
d

R
M
S
E
a
v
g
.

(R
M
S
E
ra
n
g
e
)

O
th
e
r
m
e
tr
ic
s

C
a
ta
l
e
t
a
l.
,

2
0
1
8
(6
9
)

W
a
lk
in
g
,
ru
n
n
in
g
,
cy
cl
in
g
,

a
n
d
d
a
ily

liv
in
g
a
ct
iv
it
ie
s

B
o
o
st
e
d
d
e
ci
si
o
n
tr
e
e

re
g
re
ss
io
n

A
S
M

A
cc
e
le
ra
ti
o
n
co
u
n
ts
,
H
R
,
b
re
a
th

ra
te
,
ch
e
st
,
a
rm

,
a
n
d
a
m
b
ie
n
t

te
m
p
e
ra
tu
re
s,
g
a
lv
a
n
ic
sk
in
re
sp
o
n
se
,

a
n
d
a
ct
iv
it
y

N
/
A

A
cc
e
le
ro
m
e
te
rs
,
ze
p
h
yr
se
n
so
r,

a
n
d
B
o
d
yM

e
d
ia
se
n
so
r

0
.7
5
7
M
E
T

M
A
E
=
0
.5
2
6
M
E
T

In
g
ra
h
a
m

e
t
a
l.
,

2
0
1
9
(6
6
)

W
a
lk
in
g
,
ru
n
n
in
g
,
cy
cl
in
g
,

a
n
d
a
sc
e
n
d
in
g
st
a
ir
s

L
R

S
M

B
re
a
th
fr
e
q
u
e
n
cy

a
n
d
vo
lu
m
e
,

a
cc
e
le
ra
ti
o
n
(c
h
e
st
,
h
ip
,
a
n
kl
e
),

E
M
G
,
H
R
,
e
le
ct
ro
d
e
rm

a
l
a
ct
iv
it
y,

sk
in
te
m
p
e
ra
tu
re
,
a
n
d
o
xy
g
e
n

sa
tu
ra
ti
o
n

N
/
A

H
R
se
n
so
r,
IM
U
s,
w
ri
st
b
a
n
d
s,

E
M
G
se
n
so
rs
,
a
n
d
p
u
ls
e
o
xi
m
e
te
r

1
.0
3
W
/
kg

N
/
A

A
zi
z
e
t
a
l.
,

2
0
2
0
(7
0
)

S
ta
n
d
in
g
,
si
tt
in
g
,
a
n
d

w
a
lk
in
g

S
u
p
p
o
rt
ve
ct
o
r

m
a
ch
in
e

A
S
M

A
cc
e
le
ra
ti
o
n
(w
ri
st
)
g
yr
o
sc
o
p
e

d
a
ta
(w
ri
st
),
a
n
d
a
ct
iv
it
y

W
a
lk
in
g
sp
e
e
d

S
m
a
rt
w
a
tc
h
(r
ig
h
t
w
ri
st
)

N
/
A

M
A
P
E
=
1
5
.3
7
%

S
e
vi
l

e
t
a
l.
,

2
0
2
0
(7
1
)

L
a
yi
n
g
,
si
tt
in
g
,
ru
n
n
in
g
,

cy
cl
in
g
,
re
si
st
a
n
ce

tr
a
in
in
g
,

a
n
d
d
a
ily

liv
in
g
a
ct
iv
it
ie
s

L
o
n
g
sh
o
rt
-t
e
rm

m
e
m
o
ry
m
o
d
e
l

A
S
M

A
cc
e
le
ra
ti
o
n
(w
ri
st
),
b
lo
o
d
vo
lu
m
e

p
u
ls
e
,
H
R
,
sk
in
te
m
p
e
ra
tu
re
,
g
a
lv
a
n
ic

sk
in
re
sp
o
n
se
,
a
n
d
a
ct
iv
it
y

N
/
A

W
ri
st
b
a
n
d

0
.5
M
E
T

A
C
C
=
9
4
.8
%

29



T
a
b
le
7
:
S
tu
d
ie
s
th
a
t
p
ro
p
o
se
d
m
o
d
e
ls
fo
r
M
C
e
st
im
a
ti
o
n
u
si
n
g
d
a
ta
a
cq
u
ir
e
d
b
y
w
e
a
ra
b
le
se
n
so
rs
(C
o
n
ti
n
u
e
d
).
L
e
g
e
n
d
:
A
S
M
-
”A
ct
iv
it
y-
sp
e
ci
fi
c
m
e
th
o
d
”;
E
C
G
-

”E
le
ct
ro
ca
rd
io
g
ra
m
”;
IM
U
-
”I
n
e
rt
ia
l
m
e
a
su
re
m
e
n
t
u
n
it
;
M
A
E
-
”M

e
a
n
a
b
so
lu
te
e
rr
o
r”
;
N
/
A
-
”N
o
t
a
va
ila
b
le
/
a
p
p
lic
a
b
le
”;
S
M
-
”S
in
g
le
M
e
th
o
d
”

S
tu
d
y

M
o
to
r
ta
s
k
(s
)
a
n
a
ly
z
e
d

R
e
g
re
s
s
io
n
m
o
d
e
l

T
y
p
e

E
s
ti
m
a
to
r
s
ig
n
a
ls

O
th
e
r
in
p
u
ts

S
e
n
s
o
rs

u
s
e
d

R
M
S
E
a
v
g
.

(R
M
S
E
ra
n
g
e
)

O
th
e
r
m
e
tr
ic
s

S
la
d
e
e
t
a
l.
,

2
0
2
1
(1
5
)

W
a
lk
in
g
,
ru
n
n
in
g
,
cy
cl
in
g
,

a
sc
e
n
d
in
g
,
a
n
d

d
e
sc
e
n
d
in
g
st
a
ir
s

L
R

S
M

In
e
rt
ia
l
m
e
a
su
re
m
e
n
ts
(s
h
a
n
k

a
n
d
th
ig
h
s)

W
e
ig
h
t,
h
e
ig
h
t,
a
n
d

st
ri
d
e
d
u
ra
ti
o
n

IM
U
s

N
/
A

M
A
P
E
=
1
3
.7
%

L
u
ce
n
a
e
t
a
l.
,

2
0
2
1
(7
2
)

L
a
yi
n
g
,
st
a
n
d
in
g
,
si
tt
in
g
,

w
a
lk
in
g
,
a
sc
e
n
d
in
g
,
a
n
d

d
e
sc
e
n
d
in
g
st
a
ir
s

H
ie
ra
rc
h
ic
a
l
L
R

A
S
M

A
cc
e
le
ra
ti
o
n
co
u
n
ts
(d
o
m
in
a
n
t

w
ri
st
a
n
d
a
n
kl
e
,
a
n
d
ri
g
h
t
h
ip
)

a
n
d
H
R

W
e
ig
h
t,
se
x,
a
n
d

a
ct
iv
it
y
le
ve
l

A
cc
e
le
ro
m
e
te
rs
a
n
d

H
R
se
n
so
r

0
.6
1
3
kc
a
l/
m
in

R
2
=
0
.8
3
2

L
o
p
e
s
e
t
a
l.
,

2
0
2
2
(1
6
)

W
a
lk
in
g
a
t
d
if
fe
re
n
t

sp
e
e
d
s,
w
it
h
a
n
d
w
it
h
o
u
t

e
xo
sk
e
le
to
n
a
ss
is
ta
n
ce

C
o
n
vo
lu
ti
o
n
a
l
n
e
u
ra
l

n
e
tw
o
rk

S
M

In
e
rt
ia
l
m
e
a
su
re
m
e
n
ts
(f
e
e
t,

le
g
s,
p
e
lv
is
,
a
n
d
to
rs
o
),
E
M
G
,

a
n
d
H
R

W
e
ig
h
t,
h
e
ig
h
t,
a
g
e
,

a
n
d
g
a
it
sp
e
e
d

IM
U
s,
H
R
m
o
n
it
o
r,

a
n
d
E
M
G
se
n
so
rs

0
.3
6
W
/
kg

R
2
=
0
.7
9

N
i
e
t
a
l.
,

2
0
2
2
(7
3
)

R
u
n
n
in
g
a
t
d
if
fe
re
n
t

sp
e
e
d
s

C
o
n
vo
lu
ti
o
n
a
l
n
e
u
ra
l

n
e
tw
o
rk
a
n
d
a
tw
o
-

-s
ta
g
e
re
g
re
ss
io
n

m
o
d
u
le

A
S
M

In
e
rt
ia
l
m
e
a
su
re
m
e
n
ts
(w
a
is
t)

a
n
d
E
C
G

W
e
ig
h
t,
h
e
ig
h
t,

w
a
is
tl
in
e
,

se
x,
a
n
d
a
g
e

IM
U
o
n
th
e
w
a
is
t
a
n
d

1
2
-le
a
d
E
C
G
se
n
so
rs

0
.7
1
kc
a
l/
m
in

R
2
=
0
.9
7

M
A
E
=
0
.5
3
kc
a
l/
m
in

R
a
m
a
d
u
ra
i
e
t
a
l.
,

2
0
2
3
(7
4
)

S
q
u
a
tt
in
g

R
a
n
d
o
m
fo
re
st

A
S
M

M
a
g
n
it
u
d
e
o
f
fe
e
t
ce
n
te
r
o
f

p
re
ss
u
re
a
n
d
fe
e
t
p
o
si
ti
o
n

N
/
A

P
re
ss
u
re
-s
e
n
si
n
g
in
so
le
s

N
/
A

R
2
=
0
.7
9

M
A
E
=
0
.5
5
W
/
kg

30



In 2021, Lucena et al. (72), proposed a hierarchical regression method, a type of multivariate

regression model, that started with fifteen different variables and was able to reduce them to only seven

significant signals. The most significant variables were: the HR, wrist acceleration counts per minute,

ankle acceleration counts per minute, participants’ weight, physical activity level, and participants’

gender.

More complex approaches have been implemented with machine learning algorithms such as bagged

regression trees and support vector machine (SVM) models, like the ones implemented by Pande et al.

(67) and Sazonov et al. (68), respectively. In 2015, Gjoreski et al. (17) went a step further and compared

a novel multiple contexts approach with five other models: (i) a multilayer perceptron feedforward artificial

neural network (NN), (ii) an SVM, (iii) a multiple LR, (iv) a gaussian process regressor (GPR), and (v) a

model tree. Additionally, the authors compared two different aggregation techniques: average andmedian.

The multiple contexts algorithm consisted of a congregation of eight regression models, each trained for

a different feature, and obtained better results than any other method when the median aggregation

approach was implemented.

Three years later, Catal et al. (69) used the dataset published by Gjoreski (17) and studied the

performance of several regression-based machine learning models: a Bayesian LR, a boosted decision

tree (BDTR), a decision forest, an LR, an NN, and a Poisson regressor. The BDTR model outperformed all

algorithms, including Gjoreski’s multiple context algorithm.

Deep learning algorithms have recently also been used for MC estimation. This approach, despite

being more complex, ends up reducing the computational load by enabling automatic feature selection.

Zhu et al. (18) used a convolutional neural network (CNN) and, despite using just two simple sensors, it

was able to outperform an activity-specific LR and a backpropagation multilayer perceptron artificial NN. In

2020, Sevil et al. (71) used a long short-term memory model to estimate the MC, which achieved a better

performance than six other machine learning models. More recently, in 2022, Ni et al. (73) implemented

a CNN, followed by a two-stage regression layer, and were able to obtain even better results by using

electrocardiogram (ECG) sensors. Additionally, Lopes et al. (16) concluded that CNNs also outperform

long short-term memory networks.

Regarding the type of signals more commonly used by regressors, acceleration measurements stand

out, since thirteen of the fifteen papers analyzed used at least one acceleration or inertial sensor (15–18,

65–73). However, the articles differentiated themselves by the number of acceleration sensors used and

their location. Six of the papers only used one sensor, five used two or three sensors, and three studies

used four to five different sensor locations. The locations more common for the acceleration measurement
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were the wrist and ankle (six papers), followed by the waist, thigh, and chest (three papers). Additionally,

the hip, foot, shank, leg, pelvis, and torso were also used for the location of the accelerometers, but less

frequently. Besides the acceleration, the HR (16–18, 69, 71, 72) and activity levels (17, 18, 69–72)

were also commonly measured, followed by the EMG (16, 64, 66), the breath rate (17, 18, 66), skin

temperature (17, 18, 71), galvanic skin response (GSR) (17, 18, 71), ambient temperature (17, 18),

breath volume (66), electrodermal activity (66), oxygen saturation (66), ECG (73), foot center of pressure

(74), foot position (74), blood volume pulse (71), and gyroscope data (70).

Using more signals to estimate the MC can be useful to improve the regression models’ performance,

however, it generally results in a need for a larger network of sensors. Some studies have successfully

managed to obtain various signals with only one sensor. Pande et al. (67) used only one smartphone

to measure the waist acceleration and air pressure. Aziz et al. (70) used a smartwatch, placed on the

right wrist, and measured the 3D acceleration and the 3D rotational data. Ramadurai et al. (74) used a

pressure-sensing insole to measure the foot center of pressure and its position, and managed to obtain

various features from that data, like the mean magnitude and its standard deviation, the minimum and

maximum pressure, and others.

2.3.4 Discussion

Several different regression models were implemented across the analyzed papers, however, none

of the studies were performed exactly with the same conditions. From the papers that studied multiple

regression models, it was possible to conclude that the BDTR from (69) outperformed a multiple context

algorithm, a multilayer perceptron feedforward artificial NN, an SVM, a multiple LR, a GPR model, a model

tree, a Bayesian LR, a decision forest regression, an LR, a NN regression, and a Poisson regression (17,

69). Additionally, a long short-term memory network achieved better results than an ensemble learning

model of decision trees, a k-nearest neighbors model, a linear discrimination model, an SVM, and a

decision tree model (71). Finally, CNNs were able to outperform a long short-term memory network (16),

an activity-specific LR (73), and a backpropagation multilayer perceptron artificial NN (73).

Studies that compared different input signals in order to analyze which ones were the significant

variables with a higher correlation to the ground truth were also scarce in the literature. From the two

studies that performed this analysis - (66) and (72) - it was possible to see that the acceleration signals

measured at the waist, wrist, and ankle were more significant than the acceleration of the chest and hip

(66, 72). Additionally, the minute ventilation data, EMG composite sum, electrodermal activity, breath

frequency, and HR were more significative than the breath volume, skin temperature, and oxygen
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saturation (66), and the HR and physical activity level were more significative than the anxiety level (72).

Regarding the anthropometric features given as an input to the regression models, the subjects’ body

mass, and gender were also deemed as more significative than the ethnicity, height, age, and body

composition (72).

As seen in Table 7, all of the analyzed studies produced low RMSEs on average (all were below 1.12

kcal/min (18)), however, the errors obtained varied significantly depending on the activity level, as seen by

the range of values presented (17, 18, 65, 67, 68). The results obtained from the studies are difficult to

compare since they differed a lot from each other regarding the tasks analyzed, the algorithm, the number

of regressor signals, and the sensors type and location, but, in general, the error range increased when

activities with greater MC consumption, such as running and cycling, were introduced to the participants

(17, 68).

In general, it was possible to conclude that the results from models that estimate the MC can be

improved by using algorithms like BDTRs or CNNs and using the most significative variables (like the

waist, wrist, and ankle acceleration, HR, physical activity level, and EMG). Despite the significant advances

made in MC estimation algorithms, none of the studies discussed so far were orientated specifically for

HITL optimization, and most of them were even unfeasible for that application because of the impractical

nature and bulkiness of the sensors used. To the authors’ best knowledge, only one study performed MC

estimation of participants wearing an exoskeleton (Lopes et al. (16)). This article represents the starting

point of this dissertation.

2.4 General conclusions

This sub-chapter presents a synopsis of the conclusions that were taken by the literature review,

namely the limitations of the current industrial LLEs and HITL controllers.

Firstly, the state of the art demonstrated that several conditions still hinder the application of LLEs

in industrial contexts, despite their potential for minimizing workers’ physical stress and strain. Those

limitations include the lack of human intention recognition algorithms, the lack of studies that analyze

the efficacy of wearing the exoskeletons on industrial sites, and the lack of exoskeletons using adaptive

controllers to tailor, in real-time, the exoskeleton assistance according to worker’s real physical needs and

effort.

Despite the advantages of adaptive controllers like HITL strategies, these also implicate some major

problems. This dissertation aims to address the lack of applications of HITL controllers for exoskeleton-

driven assisted work.
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The major limitation of HITL controllers that use the MC as the optimization function is that this

physiological signal needs to be estimated in real-time, and as fast as possible. The standard method for

this procedure is indirect calorimetry, however, this requires expensive and not practical sensors

(respiratory masks), generates signals with a low signal-to-noise ratio, and takes too long to obtain the

MC estimation. One alternative for calorimetry estimation is the use of regression models, such as LRs

and CNNs. However, these methods have still not yet been incorporated into HITL controllers. This

dissertation aims to tackle this challenge. Another major limitation is the required time for the

optimization of the exoskeleton assistance, which hinders the use of this strategy in real-world

applications. To overcome this issue, this dissertation aims to only optimize the parameters that mostly

vary across subjects to limit the optimization time. Additionally, no HITL controller has been developed

solely for knee assistance, and all of the controlled devices were tethered to the actuator. This

dissertation aims to implement the HITL controller for an untethered knee exoskeleton.
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3 System requirements and overview for assisted working

This chapter begins by introducing the requirements for industrial LLE devices that assist workers

during the relevant occupational tasks, as previously discussed: (i) carrying loads; (ii) lifting loads; and

(iii) stationary assembly tasks. The analysis of these tasks regarding the workers’ joints’ ROM and torque

ranges is presented. Then, the lower-limb powered exoskeleton used in this work - SmartOs - is presented.

This chapter follows with the presentation of the proposed controller for this dissertation, which aims to

tackle the major challenges identified in Chapter 2.

3.1 Industrial assistance requirements

As mentioned in Chapter 1, the industrial tasks that are more often associated with WMSDs on the

lower limbs are carrying and lifting heavy loads (Figures 4a and 4b) and tasks that require stationary

positions for long periods of time (Figures 4c and 4d). Table 8 associates a motor task (human

motion/position) to each of these industrial tasks and presents examples of industrial sectors where

each task is more prevalent.

(a) Carrying loads. (75) (b) Lifting loads. (76) (c) Sitting. (77) (d) Standing. (78)

Figure 4: Industrial tasks more often associated with WMSDs.

These industrial tasks will be the focus of this work which was developed using an LLE designated by

SmartOs. As a preliminary step, it was conducted a survey of the humans’ needs during the corresponding

motor tasks, both in terms of the natural joints’ ROM and required joint torques. Table 9 presents the

average ROM for each lower limb joint during unloaded walking (79), loaded walking (79), squatting (80),

sit-to-stand (81), and stand-to-sit (81) motions and the SmartOs’ features.
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Table 8: Industrial tasks more often associated with WMSDs and their corresponding motor tasks, and the

industrial sectors with a significant prevalence of those tasks.

Industrial task Human motor task Examples of industrial sectors

Stationary assembly

tasks
Standing and sitting

Assembly lines, production lines,

and textile

Load carrying Walking Logistics, construction, mining,

transportationLoad lifting Squatting

Table 9: Natural ROM of each joint during each of the relevant motor tasks, and the correspondent exoskeleton

limits (79–81)

Motor task Hip ROM (°) Knee ROM (°) Ankle ROM (°)

Walking (unloaded) [-20,25] [10,70] [-15,15]

Walking (20kg loads) [-10,30] [10,70] [-10,15]

Squatting [-20,80] [0,125] [5,40]

Sit-to-stand/Stand-to-sit [10,90] [0,90] [5,25]

Total [-20,90] [0,125] [-15,40]

SmartOs ROM N/A [-3,100] [-20,20]

Table 9 reveals that the SmartOs’ ROM is high enough for the motor tasks analyzed, with the exception

of the squatting motion, which is limited due to a constraint in the knee and ankle joints during the flexion

movement. This restriction however is not expected to limit humans’ dexterity and the users will still be

able to lift loads.

Table 10 presents the average normalized torque range for each lower limb joint during unloaded

walking (79), loaded walking (79), squatting (80), sit-to-stand (82), and stand-to-sit (82) motions, along

with the total torque range required for a 100 kg person.

Table 10 shows that the LLE used in this work (SmartOs) provides a 100 kg person with all the

necessary torque during all the discussed activities since it can achieve up to 180 Nm of peak torque.

Additionally, Tables 9 and 10 established that the hip and knee joints are of critical importance, as they

generally perform wider ROMs and require larger torques (especially in the extension motions). Having

this in mind, going forward, this dissertation will focus on the assistance of the knee joint because of its

crucial importance during all the mentioned industrial tasks.
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Table 10: Natural torque of each joint during each of the relevant motor task (79, 80, 82)

Motor task Hip Torque (Nm/kg) Knee Torque (Nm/kg) Ankle Torque (Nm/kg)

Walking (unloaded) [-1,1.2] [-0.2,0.8] [-0.1,1.4]

Walking (20 kg loads) [-0.8,1.8] [-0.3,1.4] [-0.1,2.0]

Squatting (15 kg loads) [0,1.8] [-1.5,-0.2] [0.2,1]

Sit-to-stand/Stand-to-sit [0,0.4] [0,0.5] [0.2,0]

Total [-1,1.8] [-1.5,1.4] [-0.1,2.0]

Total (100 kg person) [-100,180] (Nm) [-150,140] (Nm) [-10,200] (Nm)

3.2 SmartOs system

SmartOs is a wearable, modular, lower-limb powered exoskeleton developed to assist users according

to their needs and intentions. The system is composed of two active joints on the right leg - an ankle and

knee module - with one DOF per joint in the sagittal plane. The system follows a modular architecture,

enabling the inclusion of further active joints. Each joint is coupled with a potentiometer, four strain gauges

(that measure the human-robot interaction torque), and a Hall effect sensor (that measures the actuators’

torque). The SmartOs device also accommodates two force-sensitive resistors in the heel and toe of each

foot and three inertial measurement units (IMUs) (83).

The actuators consist of DC motors (EC60-100W, Maxon) coupled to gearboxes (CSD20-160-2A,

Harmonic Drive), from the company ’Technaid’, and provide average torques of 35 Nm and peak

torques of 180 Nm. The system is powered by a lithium iron phosphate battery with an autonomy of 8

hours. The system weighs approximately 5.5 kg (considering both ankle and knee joints) and can assist

users with heights ranging from 150 to 190 cm and weights ranging from 45 to 100 kg. Its assistance is

limited to gait speeds from 0.5 to 1.6 km/h (83). Figure 5 presents the knee module of the SmartOs

system and its sensors and components.

The SmartOs is controlled by a non-centralized team-developed architecture that is structured in three

control levels (high-, mid-, and low-level). The frequency of the low-level and mid/high-level controllers is 1

kHz and 100 Hz, respectively (83). The architecture includes: (i) a central controller unit (CCU) responsible

for running the system’s high-level control, gait analysis algorithms, and external communications; (ii) a

low-level orthotic system (LLOS) responsible for running the low- and mid-level control of the actuators;

(iii) a wearable motion system (WMSS) responsible for the communication with external wearable and

non-intrusive sensors systems; and (iv) a mobile application (APP) that works as the user-device interface
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and allows the system configuration and initiation (83). Figure 6 presents a diagram of the architecture.

Figure 5: Knee module of SmartOs and respective components.

Figure 6: Diagram of SmartOs architecture.

The CCU is a UDDO X86 board, with a quad-core central processing unit (64 bits) and 8GB of RAM.

This board interfaces with both LLOS and WMSS boards by a UART protocol using USB cables and with

the mobile APP through Bluetooth. The high-level code is executed in the CCU, in an Ubuntu operating

system, in C++. The code flow is organized using threads with different priority levels running in parallel

to each other (83). The CCU code is developed using the QT Creator integrated development environment

(IDE).

Both LLOS and WMSS boards are STM32F4-discovery boards (STMicroelectronics, Switzerland), with

STM32F407VGT microcontrollers (32 bits). These boards are coupled with USB converters (FT232RL

FTDI), allowing direct communication with the CCU by USB. The software of these boards is executed in

C. These boards’ code is developed using the freeRTOS operating system, which allows easy management
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of the different threads and tasks, in the Keil uvision 5.0 IDE. The LLOS board is also able to send command

controls to the active actuator through a CAN protocol, at a frequency of 1 kHz. (83).

The WMSS can connect several different sensor systems to the CCU. This work used a wearable

inertial sensor system, composed of IMUs, called InertiaLab. Each IMU is comprised of an MPU-6050, a

small and light module capable of measuring the 3D acceleration and the 3D rotational rate. The WMSS

board communicates with these IMUs by an I²C (Inter-Integrated Circuit) protocol. Figure 7a presents the

InertiaLab’s architecture, and Figures 7b and 7c present a single IMU, displaying the mini USB port and

the MPU-6050 module (the blue board) (84).

(a)

(b)

(c)

Figure 7: InertiaLab system, where (a) presents the full InertiaLab’s architecture (84), and (b) and (c) present a

single IMU with the lid closed and opened, respectively.

3.3 Proposed solution

This section presents a proposed solution to the problems identified in the state of the art, that was

conceptualized envisioning the SmartOs’ knee module. Chapter 2.1 presented the various limitations of

current industrial exoskeletons. It was seen that adaptive controllers according to the human physical

effort have not been implemented yet in industrial exoskeletons. This work aims to develop an adaptive

control strategy capable of automatically optimizing the exoskeleton’s control parameters in real-time by

minimizing the user’s effort - a HITL controller. The HITL controllers require real-time MC

measurements, which, as seen in Chapter 2.2, is commonly estimated by indirect calorimetry. However,
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the indirect calorimetry method faces major issues, namely with the materials cost, the impracticality of

the respirometer device, the noisy nature of the estimation, and the time requirements for estimation.

Chapter 2.3 presented various machine and deep learning models capable of estimating the MC based

on wearable and non-intrusive sensors’ data. However, most of these strategies are not feasible for HITL

assistance of industrial workers.

The proposed solution consists of the implementation of a HITL controller on the knee actuator of

SmartOs, that adapts the knee torque according to the users’ MC and interaction torque. The MC is

estimated by a regression model based on wearable and non-intrusive sensors’ data. Figure 8 shows the

general diagram of the proposed HITL control strategy for the SmartOs device, that aims to tackle these

current challenges.

Figure 8: Diagram of the proposed controller for optimizing the assistance of an active knee exoskeleton and

minimizing the MC of a person in real-time.

The HITL controller uses a regression model to estimate the MC (MC estimation, blue block of Figure

8) based on real-time wearable and non-intrusive sensors’ data measured while the human is performing

the motor task (Data acquisition, green block of Figure 8). The development and validation of this MC

estimation model are presented in Chapter 4. The controller then tries to minimize the user’s effort by

adapting two control parameters: the magnitude of the peak flexion and extension torques of the knee

joint. This optimization is performed by the evolutionary algorithm CMA-ES in real-time (HITL optimization,

red block of Figure 8). This optimizer changes the peak torques, in real-time, and analyzes the effect of

the new control parameters on the MC of the person. Additionally, the CMA-ES algorithm also analyses

the reference torque’s integral and the cumulative sum of the interaction torque (torque resultant from the

interaction between the user and the device) at each iteration. The algorithm ends when the optimal torque
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is found, i.e., the peak torque magnitudes that lead to a minimal MC, interaction torque, and reference

torque’s integral, or when any termination condition is verified.

Regarding the HITL controller, a natural cubic spline interpolator is used to generate a different torque

profile for every set of control parameters from CMA-ES (HITL optimization, red block of Figure 8). This

interpolator receives a set of torque values at various gait cycle percentages, two of which are variable:

the peak flexion and the peak extension torque magnitudes. Each generated torque profile is then sent

to a proportional-integral-derivative (PID) torque controller. The development and validation of the HITL

controller are demonstrated in Chapter 6.

For implementing the HITL into the SmartOs’ architecture, it was also necessary to develop and

implement a novel PID torque controller (Mid- and low-level control, grey block of Figure 8). The controller

receives a reference knee torque profile and drives the active actuator to follow the desired pattern. The

mid-level stage of the controller estimates the gait cycle phase and obtains the reference torque for the

respective phase. Then, a PID controller ensures that the system’s knee joint torque reaches the desired

torque, at the low-level block of the controller. The development and validation of this torque controller

are demonstrated in Chapter 5.
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4 Metabolic cost estimation

This chapter describes the development of the regression model used to estimate the MC in real-time

based on the data from wearable and non-invasive sensors. The work presented in this section started with

the analysis of publicly available datasets constituted by data from a variety of wearable sensors and the

MC of the participants estimated through indirect calorimetry, by measuring the oxygen consumption and

carbon dioxide production with a respirometer device. To choose the best dataset different requirements

were established and the dataset used to train and benchmark the models for MC estimation was chosen

based on those conditions.

One focus of this study was the preprocessing of the data. The various phases during the data

preparation were studied and optimized to obtain the best possible model performance. This was followed

by the selection of the best estimators, i.e., the input signals that had a higher correlation to the MC and

could be used to estimate it accurately. Additionally, activity-specific models, i.e., models that were trained

using data from only one motor task, were compared to general models that were trained with all the data

from different activities.

Various machine and deep-learning models were explored and compared. The regression models

included: (i) linear models; (ii) decision trees; (iii) SVMs; (iv) Gaussian support vector machines (GSVMs);

(v) GPRs; (vi) kernel approximations; (vii) tree ensembles; (viii) simple NNs; and (ix) CNNs. The models

were evaluated regarding the RMSE and the coefficient of determination (R2) during the validation phase,

which followed the leave-one-out cross-validation (LLOCV) method. The best model was then used to

estimate the MC of a test participant whose data was not used during the training and validation processes.

Afterward, the best regression model was integrated into SmartOs’ architecture to enable the MC

estimation in real-time based on data acquired by the system. This implementation was then validated

with a real-time protocol where the MC estimation made by the regression model was compared to the

estimation made by a respirometer, through indirect calorimetry.

4.1 Introduction

Indirect calorimetry is the most common method used to estimate the MC of a person during a

certain activity. This method computes an MC estimation by applying an equation that linearly relates the

consumption of oxygen and carbon dioxide production to the user’s MC. The gold standard equation used

for this purpose is Brockway’s equation, first published in 1987 (85).

Theoretically, indirect calorimetry is very simple to apply due to the simplicity of the equation and the
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reduced number of variables it requires, however, in practice, measuring the oxygen and carbon dioxide

flow in the human body is not elementary. The rate of production and consumption of these gases can

be measured using a respirometer device, like the one presented in Figure 9 (63).

Figure 9: Woman wearing a respirometer device (K5, Cosmed, Italy). Taken from: (86)

Despite facilitating the MC estimation with high accuracy, these devices, as seen in Figure 9 are

not practical to wear, as breathing through a mask can be uncomfortable for long periods of time, and

the person is required to also wear a heavy system, on their back, that measures the gas exchanges.

Additionally, these devices are also quite expensive and have a limited autonomy of only a few hours,

depending on the device.

Furthermore, the limitations associated with the indirect calorimetry method are not just related to

the respirometers. Another significant drawback of this method is the time it requires to estimate the first

value of the MC for a certain activity - roughly 3 minutes (87). This can be explained by the fact that the

human body takes some time to adapt to a change in activity, resulting in a time period during which the

MC is not yet stable (i.e., the MC is not yet in a steady-state).

An alternative to indirect calorimetry is the use of regression models that estimate the MC of a person

based on data acquired by wearable and non-intrusive sensors placed on the person. Regression models

work in a similar way to indirect calorimetry, in the sense that they find an equation, or equation system,

between the MC and a set of variables measured in real-time. Regression models replace the need for
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respirometers since they can form a correlation between the MC and signals like acceleration, HR, and the

GSR, which are much more practical to measure (17, 65, 67). Furthermore, this method can substantially

decrease the time required to obtain an MC estimation.

Despite the expanding studies developing regression models for MC estimation (analyzed in Table

7), these models have not been developed for HITL control strategies in exoskeletons and much less for

assisting industrial workers and measuring the MC while they perform their tasks. When developing a

system meant to be worn by workers, it is important to use the smaller number of sensors as possible,

that these sensors are light and small, do not affect the natural movement of the workers, and are easy to

don and doff. Therefore, it is critical that the regression model achieves high accuracy based on a limited

number of practical wearable and non-intrusive sensors. The regression model presented in this chapter

aims to tackle these challenges.

4.2 Methods

4.2.1 Dataset selection

Several datasets for estimating the MC are available online, however, they all differ significantly from

each other either in terms of the number of participants, the tasks performed during the experimental

protocol, or the signals measured. Therefore, the datasets were compared with each other according

to a set of desired requirements. The requirements for the dataset were: (i) participants must have

performed, at least, the sitting and walking activities, as they are activities similar to the motor tasks

identified in Chapter 3.1; (ii) the model’s inputs contained acceleration and HR signals, as they can be

measured by practical sensors for industrial applications. Additionally, a preference was given to datasets

with the most activities analyzed and with the greater number of participants (and age variability). Table

11 presents the publicly available datasets and their characteristics.

From Table 11, it was possible to observe that Cvetković et al. (88) and Ingraham et al. (66)

datasets (colored in orange) were the only ones whose participants performed both the walking and

sitting activities. Another strong suit of these datasets is the fact that participants also performed the

standing activity. Additionally, both the acceleration and HR were provided, and the acceleration was

measured in four different on-body locations. However, a negative aspect of both datasets was the low

number of participants in each study and the low diversity of the participants’ ages.
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Therefore, both these datasets were first selected for a preliminary analysis. During this study, it

was noticed a significant disparity between the 3D acceleration signals of the two datasets. A further

investigation demonstrated that Cvetković’s acceleration data did not match the expected values, therefore,

that dataset was set aside and Ingraham’s dataset was chosen to train, validate, and test the regression

model.

Ingraham’s dataset

Ingraham’s dataset was obtained at the University of Michigan, in Ann Arbor, U.S.A. The data, obtained

from ten participants, is publicly available in figshare (90). The participants (8 male and 2 female) had

ages between 24 and 37 years old (27,4 ±4,5 yr), with body masses between 58.05 kg and 95.24 kg

(69.1 ±9.9 kg), and body heights between 1.63 m and 1.85 m (1.76 ±0.09 m). Figure 10 presents the

location and the signals measured by each sensor worn by the participants.

Figure 10: Representation of on-body location of the sensors of Ingraham’s dataset. Legend: BF - ”Biceps

femoris”; EDA - ”Electrodermal activity”; GMAX - ”Gluteus maximus”; MGAS - ”Medial gastrocnemius”; RF -

”Rectus femoris”; SOL - ”Soleus”; SpO2 - Oxygen saturation; ST - ”Semitendinosis”; TA - ”Tibialis anterior”;

V̇ CO2 - Rate of carbon dioxide consumption; V̇ O2 - Rate of oxygen consumption; VL - ”Vastus lateralis” (66).

Each person wore 25 different sensors: (i) four 3-axis accelerometers on the chest, waist, and the right

and left ankles (Opal, APDM, U.S.A.); (ii) two wristbands on the right and left wrists (E4, Empatica, Italy);
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(iii) sixteen surface electrodes placed on eight different muscles on each leg; (iv) a pulse oximeter (Oxycon

Mobile, Carefusion, U.S.A.); (v) an HR monitor (Polar Electro, Finland); and (vi) a portable respirometer

(Oxycon Mobile, Carefusion, U.S.A.).

The participants performed six activities: (i) leveled walking at 2.16, 3,24, and 4,32 m/s; (ii) inclined

walking at 2.16, 3,24, and 4,32 km/h; (iii) backward walking at 0.4 and 0.7 km/h; (iv) running at 6,48,

7.92, and 9.72 km/h; (v) cycling at 70 and 100 rpm, with 3 different levels of resistance; and (vi) stair

climbing at 60, 75, and 90 Watts. Additionally, for each activity, the participants also stood and sat down

for 6 minutes, before and after the activity, respectively.

4.2.2 Data preprocessing

The first step was the data preprocessing, a fundamental procedure in training machine and deep

learning models. Firstly, the ground-truth MC of Ingraham’s dataset was computed by indirect calorimetry

using Brockway’s equation (Equation 1), where V̇ O2 and V̇ CO2 are the rates of consumption of oxygen

and production of carbon dioxide, respectively.

MC (W ) = 16.58 V̇ O2 (mL/s) + 4.51 V̇ CO2 (mL/s) (1)

Then, it was analyzed if normalizing the HR and MC by the weight of the participants improved the

MC estimation’s accuracy (16, 17). This was done by dividing the two signals by the corresponding

participant’s weight and comparing the model’s performance.

Following this, the acceleration was filtered with a real-time 4th-order Butterworth filter. Both a low-

pass filter and a band-pass filter were used and compared, with cut-off frequencies of 20 Hz and 0.1/20

Hz, respectively (16, 91).

Afterward, the variables of interest were selected from the dataset, namely the 3D acceleration, HR,

GSR, and ground-truth MC. Furthermore, two other variables were computed from the 3D acceleration: its

derivative and its vector norm/magnitude (Equation 2). These additional features were used to train the

regression models both instead and in addition to the 3D acceleration, and their results were compared

to the results achieved by using only the 3D acceleration. Along with the acceleration, HR, and GSR, the

body mass index (BMI) and body mass of each participant were also given as features to the model. All

these input variables were tested to verify their impact on the models’ performance.

|v|=
√
x2 + y2 + z2 (2)
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Along with the removal of the variables unused in this work, some activities were also withdrawn

from the datasets, and only the following were maintained: (i) standing; (ii) sitting; and (iii) walking.

These activities were selected due to their resemblance to the industrial activities with a higher risk of

WMSDs, presented in Chapter 3. This was followed by the creation of three separate sub-datasets.

These sub-datasets were used to train three different regression models (activity-specific models) and

their performances were compared to the complete dataset’s performances.

Subsequently, and repeating the strategy followed by Gjoreski et al. (17), the datasets were segmented

in 10-second windows. For each window, to obtain the final feature vectors used to train the regression

models, it was computed the average and the mean absolute deviation (MAD) of each variable, and both

these methods were compared. The ground-truth MC of each window (i.e., the label) was obtained by

computing its mean during that period of time. Additionally, the windows were tested with and without

overlaps of 5 seconds (17), used to enable faster updates of the MC estimation in real-time. Figure 11

presents a diagram that better explains the process implemented to obtain the data that was used to train

the regression models without (up) and with (down) 5-second overlaps.

Figure 11: Diagram of the process of segmentation of the dataset into 10-second windows, with and without the

5-second overlaps (bottom and top diagrams, respectively).

After obtaining the features and labels for each participant the datasets were balanced to provide the

same amount of data from each participant to the regression models. This was done by analyzing which

participant had the least data, and then removing the excess data from the other participants to match

the size of the smaller table.

Then, given the different sampling rates of each sensor, an interpolation method was applied
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(piecewise cubic interpolation) to the HR and EE signals (18, 73). Additionally, the dataset was analyzed

to verify the existence of outliers. By studying the average MC, and its standard deviation, for the

walking, sitting, and standing sub-datasets, it was noticed that no participant had an average MC

superior to the average of all participants by 2 times the standard deviation, and, therefore, no

participant was removed from the dataset (14).

The final step was the normalization of every variable across all participants. Three different

normalization methods were compared: median normalization, min-max normalization, and z-score

normalization. Table 12 presents a synthesis of the various preprocessing steps tested, where ACC

represents the 3D acceleration, ACC’ and |ACC| its derivative and vector norm, respectively, and BW

represents the body weight.

Table 12: Conditions tested during the data preprocessing. Legend: ACC - ”Acceleration”; BW - ”Body weight”

Order Preprocessing Step Conditions tested

1 HR and MC normalization by the participants’ body mass Yes/No

2 Acceleration filtering with 4th order Butterworth filter
Low-pass (20 Hz)

Band-pass (0.1/20 Hz)

3 Input variables selection

ACC + HR + GSR + BMI

ACC + HR + BW + BMI

ACC + HR + BMI

ACC + ACC’ + HR + BMI

ACC’ + HR + BMI

ACC + |ACC| + HR + BMI

|ACC| + HR + BMI

4 Segmentation of data into the 10-second windows 5-second overlaps (Yes/No)

5
Obtention of the input features by computing a certain

metric of the input variables for each 10-second window
Studied metric: Mean/MAD

6 Data normalization Median/Max-Min/Z-score

4.2.3 Regression Models

Following the data preprocessing, several regression models (machine learning models and CNNs)

were trained, validated, and tested. Before the models’ training, the dataset and each sub-dataset were
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divided into training/validation data and test data by randomly selecting a participant for testing the model.

Then, the training data was shuffled. The validation method enforced was the LOOCV, a form of k-fold

cross-validation where k (the number of folds) is equal to the number of subjects used for training. During

k-fold cross-validation, the training dataset is divided into k sets, where k-1 subjects’ data is used to train

the model, and the other subject’s data is used to validate it. This process is repeated k times, meaning

that each subject was used for validation once.

CNNs with a regression layer

The CNNs were implemented using a team-owned deep-learning regression tool implemented in

MATLAB (2022b, The Mathworks, Natick, MA, USA). Several models were trained, with different

architectures and hyperparameters.

Each CNN was composed of one to three convolutional layers, each followed by a rectified linear

activation function (ReLU) layer and an average pooling layer with a pool size and stride of 2. After the

convolutional layer(s), a global average pooling layer was implemented, followed by two fully connected

(FC) layers and, at last, a regression layer. The model’s hyperparameters optimized for MC estimation

were: (i) the number and size of the filters on each convolutional layer, (ii) the number of hidden neurons

on the first FC layer, (iii) the learning rate, and (iv) the batch size. Table 13 summarizes the

hyperparameters studied for the CNN, presenting the tested values for each parameter. Some

hyperparameters’ are represented by a range of values. In these cases, various values in the range were

verified, but not all.

Table 13: Tested hyperparameters for the CNN

Hyperparameter Values

Number of convolutional layers 1, 2, or 3

Number of filters 8 to 360

Filter size 5 to 30

Hidden neurons 0 to 1000

Learning rate 0.01, 0.005, or 0.001

Batch size 8 to 360
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Regression Learner APP

The machine learning models were implemented using the Regression Learner APP, a MATLAB

(2022b, The Mathworks, Natick, MA, USA) tool that allows a simple and straightforward training,

validation, testing, and optimization of various regression models. The regression models used varied

from: (i) LRs; (ii) decision trees; (iii) SVMs; (iv) GSVMs; (v) GPRs; (vi) kernel approximations; (vii) tree

ensembles; and (viii) NNs. Initially, the hyperparameters used for each model were the ones

predetermined by the Regression Learner APP, then, the best model’s hyperparameters were optimized

using three different techniques: (i) BO; (ii) grid search; and (iii) random search. Table 14 presents an

overall view of all the implemented machine learning models in the Regression Learner APP.

Table 14: Machine learning models implemented in the Regression Learner App

Model family Type Hyperparameters Model family Type Hyperparameters

LR
Simple

Max steps: 1000 GPR
Matern 5/2

Sigma: automatic
Stepwise Exponential

Decision tree

Fine Min. leaf size: 4 Kernel

appoximation

SVM Kernel scale:

automaticMedium Min. leaf size: 12 Least squares

Coarse Min. leaf size: 36
Tree ensemble

Boosted Min. leaf size: 8

SVM

Linear
Kernel scale:

automatic

Bagged Min. leaf size: 30

Quadratic

NN

Narrow Neurons: 10

Cubic Medium Neurons: 25

GSVM

Fine Kernel scale: 0.9 Wide Neurons: 100

Medium Kernel scale: 3.6 Bilayered Neurons: 10/10

Cubic Kernel scale: 14 Trilayered Neurons: 10/10/10

GPR
Rational Quadratic

Sigma: automatic
Squared Exponential

In terms of the LRs, two different strategies were studied. The first model was a simple LR and the

second regression model was a stepwise LR, with a maximum number of steps of 1000. Regarding the

decision trees, three types of models were tested: a fine tree, a medium tree, and a coarse tree, with a

minimum leaf size of 4, 12, and 36, respectively.

As to the SVMmodels, three regressors were analyzed, varying from each other on the kernel functions

implemented (linear, quadratic, and cubic kernels). Additionally, three types of GSVMs were also studied,

namely a fine, medium, and coarse model, with manual kernel scales of 0.9, 3.6, and 14, respectively.

Regarding the GPRs, four different models, with different kernel modes, were studied: a rational

quadratic GPR, a squared exponential GPR, a matern 5/2 GPR, and an exponential Gaussian process
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regressor (EGPR). As to the kernel approximation models, two learners were analyzed, an SVM kernel and

a least squares kernel. Furthermore, two types of ensembles of decision trees were trained, a BDTR and

a bagged decision tree, both with a minimum leaf size of 8 and 30 learners.

Lastly, five NNs were also analyzed. Three of those NNs had one single layer, each one with a different

number of neurons. The narrow NN had 10 neurons, the medium NN had 25, and the wide NN had 100

neurons. A bilayered and trilayered NN, with 10 neurons on each layer, were also tested.

4.2.4 Model integration in SmartOs’ architecture

The best-performing model, which was first developed, trained, validated, and tested using MATLAB,

was then implemented in the high-level control system of the exoskeleton, on the UDOO board. This

conversion was performed using MATLAB Coder APP/Codegen, a program used to generate C/C++ code

from the MATLAB code.

To generate the C++ code, firstly, a function that used the regression model to predict the MC from one

feature vector was created in MATLAB, this was the Coder APP’s entry-point function. Then, an example

code that used the entry-point function was created for the Coder APP to determine the type of variables

used by the function. Finally, the Coder APP generated a standalone C++ code that replicated the entry-

point function. The code generated by the Coder APP was then integrated into the exoskeleton’s control

architecture.

Then, following the general structure of SmartOs’ gait analysis algorithms, the code generated was

adapted and condensed to fit the existing architecture. Figure 12 presents the algorithm of the high-level

controller.

The algorithm presented was integrated into the CCU of the system, which communicates with the

WMSS board (acquisition of 3D acceleration data from InertiaLab’s sensors), the LLOS board (mid- and low-

level control of the exoskeleton), and the mobile APP that configures the system and begins the assistance.

The regression model requires the accelerometers’ data from the ankle, waist, chest, and wrist, obtained

by the WMSS system (InertiaLab), and the persons’ anthropometric data, namely their height and weight

used to compute the BMI, which are provided to the mobile APP and transmitted to the CCU.

Regarding the code developed in the WMSS board, presented in the top block of Figure 12, its purpose

was to send the 3D acceleration data, measured by the four IMUs (InertiaLab’s sensors), to SmartOs’ CCU.

Every 10 milliseconds, the board reads the acceleration along each axis, processes this data according to

the initial sensors’ calibration, and sends it to the CCU.

In regards to the code developed in the CCU board, presented in the bottom block of Figure 12, its

52



Figure 12: Fluxogram depicting the code developed in SmartOs’ architecture that allowed for the MC estimation

in real-time based on the data from 4 accelerometers.

purpose was to read the 3D acceleration data provided by the WMSS board and use this data to estimate

the person’s MC in real-time. The code was divided into two main blocks - data processing (blue block in

Figure 12) and the MC estimation (pink block in Figure 12). The data processing block was established

to make the CCU read, process, and save the 3D acceleration data after a message from the WMSS data

was received. The MC estimation block was executed every 10 seconds, something made possible by a

timer, and was composed of the necessary algorithms to estimate the MC based on the 3D acceleration

of the chest, left waist, right wrist, and right ankle measured in the past 10 seconds and the person’s BMI.

The IMUs orientation of Ingraham’s dataset was studied to use the same axis orientations when

using InertiaLab’s IMUs. This was done by conducting a walking test, on a treadmill, during which the

InertiaLab’s IMUs were used to obtain the 3D acceleration of the chest, right wrist, left waist, and right

ankle, at a speed of 3 km/h, and comparing the acquired data to Ingraham’s acceleration data respective

to walking at the speed of 3.2 km/h. The comparison was done by studying the cross-correlation of

the different signals for the four pairs of IMUs (Ingraham’s and InertiaLab’s) using MATLAB’s tools. The

cross-correlation results are presented in Appendix A. Afterward, it was performed a visual inspection of

the achieved results where the similarity between the signals with higher correlation was analyzed and

the axis correspondence was verified. For this purpose, it was analyzed if the rotation of the axis from

Ingraham’s configuration to the InertiaLab’s configuration would be possible by following the right-hand

rule. Figure 13 presents the axis correspondence between the two IMUs sets.
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Figure 13: Representation of InertiaLab’s axis orientation in relation to Ingraham’s axis orientation.

Lastly, the SmartOs’ mobile APP was adjusted. To enable the activation of the MC estimation

through the APP an additional setting was added to the system’s configuration interface. This step was

performed using Android Studio’s IDE. The regression model needs the data obtained by the InertiaLab’s

sensors (IMUs), therefore, when the “MC Estimation” option is toggled, the communication between the

InertiaLab’s sensors and the CCU, through the WMSS board, is turned on by forcefully toggling the

“Inertial Lab” checkmark. Figure 14 shows the changes performed to the APP.

Figure 14: Interface options added to SmartOs’ APP that enabled the start of MC estimation.
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4.3 Validation

This section presents the validation of the developed regression model used for MC estimation. The

validation phase was branched into three stages: (i) offline phase, used to optimize the preprocessing

method, find the best model’s inputs, and study the best-performing model; (ii) bench tests, performed to

access the correct functioning of the best-performing regression model; and (iii) human experiments, to

validate the regressor in real-time, when compared to the ground-truth.

4.3.1 Offline

The offline validation was performed to obtain the best possible performance when estimating the

MC, by using Ingraham’s dataset (66) to train and validate different regression models through the LLOCV

method. Various aspects of the regression model training were analyzed and optimized, namely: (i) the

data preprocessing method; (ii) the model’s inputs; (iii) the use of activity-specific models; (iv) the best

models’ hyperparameters; and (v) the best regression algorithm.

The various studied models were evaluated regarding the metric obtained during the validation

process, namely the RMSE, which measures the difference between the predicted values and the target

values (ground-truth of the MC, measured through indirect calorimetry), and the coefficient of

determination (R2), which assesses the fit quality of the regression models. The performance of each

regression model was obtained for each of the validation iterations of the LOOCV method, and, in the

end, the average and standard deviation of each metric were computed. The RMSE was computed using

Equation 3, where N is the number of predictions, y(i) is the ith ground-truth MC, and ŷ(i) the ith MC

estimated by the EGPR model.

RMSE =

√∑N
i=1(y(i)− ŷ(i))2

N
(3)

4.3.2 Bench tests

The following bench tests were performed to validate the performance of the regression model for real-

time MC estimation. Firstly, the regression model implemented in C++ was compared with the original

model developed in MATLAB. This was done by testing the regression model with the input data from the

test participant. The MC prediction made by the C++ model was then compared to the ground-truth MC

and the MATLAB prediction.
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Then, the computational load of the regression model was analyzed. This validation process was done

by analyzing the time taken to execute each function of the MC estimation algorithm. To do this, an output

pin of the CCU board was activated every time each function was called and deactivated when it ended.

The timings of the algorithm were then obtained by inspecting this pin in an oscilloscope. The results were

organized in a time diagram to verify any time constraints in the code.

4.3.3 Human experiments

The experimental validation of the regression model model was performed to verify the accuracy of its

MC estimation. In this phase, the ground truth of the MC was obtained through indirect calorimetry, by

equipping participants with a respirometer device (K5, COSMED, Italy). The participants also wore the four

IMUs necessary for estimating the MC and performed the three motor activities studied: standing, walking,

and sitting. The prediction made by the regression model was then compared to the MC estimated through

indirect calorimetry.

Additionally, participants were also equipped with motion track markers (Qualysis, Sweden) in their

lower limbs, a chest HR monitor (HRM Dual, Garmin, U.S.A), and three additional InertiaLab IMUs placed

on the right knee, left waist, and back side of the waist. The motion track system was used to study

the kinematics and kinetics of the lower limbs during walking. The participants walked on a force plate-

instrumented treadmill (AMTI, U.S.A) that measured the bilateral forces during the gait. The protocol was

performed in two days, at Porto Biomechanics Laboratory (LABIOMEP), University of Porto.

Participants

Five volunteers (3 males and 2 females) participated in this study after giving their informed consent.

The participants were healthy individuals with no history or evidence of locomotor or balance impairments

and did not suffer any musculoskeletal injury six months prior to this experiment. The participants, whose

demographic information is presented in Table 15, had ages between 22 and 29 years old (25 ± 2.9

yr), body masses between 65 kg and 99 kg (77.8 ± 13.4 kg), and BMIs between 24.0 kg/m2 and 29.2

kg/m2 (26.8 ± 2.0 kg/m2). This protocol was conducted under the ethical procedures of the Ethics

Committee in Life and Health Sciences (CEICVS 006/2020), following the Helsinki Declaration and the

Oviedo Convention.

In contrast to Ingraham’s protocol (66), this study was more balanced regarding its participants’

gender, with 40% of the participants being females, against the 20% in Ingraham’s dataset. Additionally,

two participants’ BMIs were out of the Ingraham dataset’s BMI range (18.6 to 27.8 m/kg2), Participant
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Table 15: Validation participants’ demographics

Participant Age (years) Gender Weight (kg) Height (m) BMI (kg/m2)

1 29 M 76 1.78 24.0

2 24 M 99 1.84 29.2

3 23 F 68 1.60 26.6

4 27 M 81 1.70 28.0

5 22 F 65 1.58 26.0

2 was heavier than the heaviest Ingraham’s participant (95.2 kg), and Participants 3 and 5 were smaller

than the smallest Ingraham’s participant (1.63 m). Furthermore, two of the participants (3 and 5) were

younger than the youngest Ingraham’s participant (24 yr).

Experimental protocol

The participants were first equipped with seven InertiaLab IMUs in the right ankle, right knee, right

wrist, right waist, left waist, back waist, and chest. These sensors were connected to the WMSS board,

which was linked to the CCU of the SmartOs’ system. The WMSS board, the CCU, the system’s battery,

and the power supply interface were all placed on a backpack worn by the participants. Afterward, the

participants were equipped with a chest HR monitor.

Then, the motion track markers were placed on the participants’ lower bodies. Figure 15 presents

each marker’s location. A total of 44 markers were placed, 8 of which were placed on the hip area, 8 on

the upper legs, 8 on the knees, 8 on the lower legs, and 12 on the feet.

Figure 15: Locations of the lower body motion track markers.
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Afterward, the participants were equipped with the respirometer. The face mask was tightened

enough to prevent air from escaping the system but not too tight to make its use too uncomfortable. The

respirometer backpack was also placed on the participants’ backs, above SmartOs’ backpack. Figure 16

presents the sensors’ placements when worn by a participant.

(a) Front view (b) Side view (c) Back view

Figure 16: Participant instrumented with the wearable sensors, namely, the InertiaLab’s IMUS, motion track

markers, HR chest monitor, and the respirometer device.

The data acquisition was then started. Firstly, the participants stood completely still for 5 seconds

to calibrate the IMUs. Afterward, a static trial was performed to calibrate the motion track software, with

the participants also standing still. After the calibration was concluded, the MC estimation was turned on

simultaneously with the respirometry acquisition.

The participants performed 5 motor tasks: (i) standing; (ii) walking at 1.5 km/h; (iii) walking at 2

km/h; (iv) walking at 3 km/h; and (v) sitting. Each motor task lasted 10 minutes and the participants

did not rest between tasks. The order of the different walking tasks (ii, iii, and iv) was randomized. The

standing and walking activities were performed on the instrumented treadmill, and the sitting activity was

performed on a chair right next to the treadmill, meaning that the participants had to move between the

last walking task and the sitting task. Figure 17 presents the three types of activities performed by the

participants. In Figure 17, it is also possible to observe the instrumented treadmill and the chair used

during the experiment.

It was asked to the participants to be as still as possible during the standing and sitting tasks and to

not rest their right arm on the treadmill. The motion capture system was only turned on for one minute at

the end of each walking task. The treadmill was composed of two force-sensing plates with a front-to-back

split configuration, and, during the motion capture period, the participants were asked to only place one
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(a) Standing (b) Walking (c) Sitting

Figure 17: Activities performed by the participants.

foot on the front plate at a time, after the other foot was entirely on the back plate.

Due to a sudden stop in SmartOs’ system halfway through Participant 2 acquisition, the participant

was asked to repeat the protocol on the second day, resulting in the execution of two different trials by the

participant. Additionally, the SmartOs’ system also failed midway through the protocols of Participants 2

(during their second trial) and 5.

Data collection and analysis

The data acquired during the protocol comprised: (i) the 3D acceleration of the right ankle, right knee,

right waist, back waist, left waist, chest, and right wrist, measured by InertiaLab’s sensors and stored by

the SmartOs system; (ii) the HR, measured by a chest monitor; (iii) the rate of oxygen consumption and

carbon dioxide production, measured by a respirometer device; (iv) the gait kinetics and kinematics of the

lower body, measured by motion capture markers and a force-instrumented treadmill; (v) the estimation

of the MC made by the SmartOs system. The data acquired with the optical markers and the force plate-

instrumented treadmill did not concern the work presented in this dissertation and thus are not analyzed

in this manuscript.

Figure 18 is composed of four graphics depicting the 3D acceleration of Participant 4, measured by

the IMUs placed on the chest, right wrist, left waist, and right ankle, which were the signals used by the

regression model to estimate the MC. The 3D acceleration of the remainder participants is presented in

Appendix B.
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(a) Chest (b) Right wrist

(c) Left waist (d) Right ankle

Figure 18: Raw 3D acceleration signals measured by the InertiaLab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 4.

Figure 19 presents the HR of the five participants (including both trials of Participant 2) during their

respective protocols. Each participant’s plot is labeled according to the activities being performed at each

time. Additionally, the average HR of each participant is presented at the top of each plot.

For validating the real-time performance of the regression model, the SmartOs data and the

respirometer data were processed and compared in MATLAB (2022b, The Mathworks, Natick, MA,

U.S.A). Firstly the relevant data was selected from the files, i.e., the acceleration and MC estimation,

from the SmartOs’ files, and the rate of oxygen consumption (V̇ O2), carbon dioxide production

(V̇ CO2), and HR from the respirometer data. Two separate data structures were created - one for each

system. The structures were processed to present the acquisition time in minutes and an activity label to
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Figure 19: Heart rate of each participant during the experiment, and respective average.
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identify the performed task at any time period. Afterward, the first three minutes of respirometer data

were removed from the structures, since the respirometry data only achieves a steady-state after that

time period.

The ground-truth from the respirometer data structure was obtained following three different

approaches: (i) the per-breath respirometry; (ii) the steady-state respirometry; and (iii) the fast-estimated

respirometry. This was based on the approach followed by Slade et al. (15), which compared a model

for MC estimation with the results achieved by these three indirect calorimetry methods. The per-breath

respirometry was obtained by applying Brockway’s equation (Equation 1) to the respirometer data

measured at every breath. This MC was normalized by the weight of each participant and averaged into

10-second periods to match the estimation frequency of the regression model. The steady-state

respirometry was obtained by averaging the MC, also estimated by Brockways’ equation, during the

steady-state period. The fast-estimated respirometry was computed by fitting a first-order dynamical

model to the per-breath MC data (obtained with Brockway’s equation as well) acquired during the

steady-state phase. A First-order dynamical model was chosen for comparison since it is the most

common method to estimate the MC in HITL controllers, as shown in Chapter 2.2. The dynamical model

used was presented and described by Zhang et al. (8).

4.4 Results and discussion

This section presents the results obtained during the three validation phases (offline, bench tests, and

human experiments), as well as the results obtained by an offline test to the best-performing regression

model, concluded after the offline validation. The offline validation results address the various optimization

steps executed to obtain the ideal MC estimator. The bench test’s results concern themodel’s performance

in C++ and its computational load to the system. The human experiments’ results refer to the real-time

validation of the regression model, i.e., its comparison to the MC estimated by indirect calorimetry.

4.4.1 Offline validation

Preprocessing methods

Regarding the data preprocessing steps, the following aspects were studied: (i) the filtering of the

acceleration signals, comparing the effects of low-pass and band-pass Butterworth filters; (ii) the effect

of normalizing the HR and MC to the user’s body mass; (iii) the effect of segmenting the 10-second

windows in 5-second overlaps; (iv) the metric used to compute the final features on each window; and
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(v) the final normalization method. These tests were conducted by using the same regression model

for each experiment, and only changing the test conditions. Figure 20 presents an overview of the best

preprocessing steps.

Figure 20: Diagram of the preprocessing steps that resulted in the best regression model performance.

The results showed that the preprocessing methods used to prepare the data can affect the efficacy of

a regression model. Better results were achieved by using a low-pass filter, as performed by Su et al. (91),

to remove high-frequency noise from the acceleration since the bandpass filter ended up erasing small

variations in these signals that were related to changes in activities. The model also performed better

when the HR and MC were normalized by the users’ body mass, compared to using the body mass as an

input estimator, demonstrating that a person’s body mass impacts their MC. This normalization was also

performed by two literature studies (16, 66).

Overlapping the 10-second feature windows every 5 seconds like Gjoreski et al. (17) also resulted in an

increase in the model’s performance due to an increment in the data given to the regression model. Giving

the MAD of each signal (3D acceleration, GSR, and HR), instead of the mean of each signal, as performed

by Bazuelo-Ruiz (92), also improved the MC estimation, since this metric was useful for identifying the

distance of the measurements to the signals’ means (i.e. the signals’ variability). Therefore, the variability
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of the signals proved to be more related to the MC measured. Additionally, the best normalization method

turned out to be the z-score method, where the data is normalized based on its mean and standard

deviation, which could possibly be explained by the effectiveness of this method in handling outlier data.

Model’s inputs

Several signals were given to the regression models during the training process, namely the 3D

acceleration of the chest, right wrist, left waist, and right ankle, the derivative and vector norm of each

acceleration signal, the HR, and the GSR. Furthermore, two anthropometric features were also tested as

inputs: the body mass and BMI. Best validation results were achieved when using the following features

to train the regression models: (i) the 3D acceleration on the four locations, (ii) the HR, and (iii) the BMI.

These results resonate with the results achieved in the literature that proved the 3D acceleration and

HR to be highly related to the MC (66, 72). Additionally, it was possible to conclude that providing more

inputs to the models did not always improve their performance, since some estimator signals, namely the

acceleration vector norm, acceleration derivative, and GSR did not correlate as much to changes in the

participants’ MC. Using these signals, therefore, resulted in biased models, i.e., models less capable of

generalization. Using the body mass as an input signal did not improve the performance likely due to the

weight normalization previously performed during the preprocessing phase.

However, for the HITL application, it is desired to reduce the number of sensors as much as possible.

Therefore, the effect of using only the 3D acceleration and BMI data to train the EGPR model was studied.

Table 16 presents the performance of the comparedmodels: (i) a model that used the HR, 3D acceleration,

and BMI; and (ii) a model that used the 3D acceleration and the BMI.

Table 16: Performance comparison between the model that was trained with the HR, acceleration, and BMI,

and the model that was trained with the acceleration and BMI

Model trained with the HR,

acceleration, and BMI

Model trained with the

acceleration and BMI

Validation RMSE (W/kg) 0.304 ±0.014 0.308 ±0.026

Test RMSE (W/kg) 0.412 0.45

Despite the validation error increasing by 0.004 W/kg, the test error increased by 0.038 W/kg when

the HR signal was removed from the training data. However, this increase was not considered to be

significant, as the regression model was still capable of accurately estimating the MC based only on the

four 3D acceleration signals. The regression model presented here was, therefore, more feasible for
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HITL applications than most models used in the literature and could lead to less obtrusive exoskeleton

assistance for workers during occupational tasks. Consequently, the input estimators more adequate for

HITL applications are: the 3D acceleration of the chest, left waist, right wrist, and right ankle, and the

BMI.

General vs activity-specific models

Table 17 presents the comparison of the results when using activity-specific regression models

(different regression models trained for different activities with the sub-datasets) to the performance of a

global regression model (trained with the full dataset), when using a CNN with the same architecture.

The results showed that using the activity-specific regression models led to a slightly better RMSE during

validation, but worse R2 compared to the general regression model. However, when predicting the MC

of the test subject, the activity-specific models significantly decreased their performance in both RMSE

and R2 metrics.

Table 17: Validation and test performance of the three activity-specific models (walking, sitting, and standing)

and the general model

Walking Sitting Standing All activities

RMSE (Val) 0.42 0.39 0.26 0.5

R2 (Val) 0.49 0.46 0.33 0.73

RMSE (Test) 0.57 1.13 0.4 0.41

R2 (Test) 0.08 -4.69 -1.73 0.84

The results showed that the activity-specific models suffered from overfitting. This was believed to be

due to the smaller datasets used to train the activity-specific models, which resulted in an inaccuracy of

the models when predicting the MC based on unseen data. Therefore, a general model was used in this

work to estimate the MC of humans performing different motor tasks.

Best CNN

The CNN that achieved the best results during validation was a network with two convolutional layers,

with 32 filters with a size of 10. Each convolutional layer was followed by a ReLU layer as the activation

function, which was followed by an average pooling layer with a pool size of 2, stride of 1, and padding

equal to the input vector’s size. Then, the data went through a global average pooling layer, two fully

connected layers with an output size of 50 and 1, in that order, and a final regression layer.
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The batch size, number of epochs, and learning rate that led to the best performance were 32, 100,

and 0.01, respectively. Additionally, it was used an L2 regularization method to reduce overfitting. The

regularization term that resulted in the best validation results was 1e-4. Figure 21 presents a diagram of

the CNN’s layers.

Figure 21: Layer diagram of the best performing CNN model.

These results showed that highly complex models are not necessarily more accurate in predicting the

MC, since the best-performing CNN was a relatively simple NN, with only two convolution layers purely

composed of 32 small filters, and only 50 hidden layers in the first fully connected layer. This revealed

that there was no necessity for many layers to find patterns in the data.

Models’ comparison

Table 18 presents the performance of the various machine and deep-learning models trained,

including the validation results obtained by the best CNN. In total, 25 regression models were trained

and validated.

These results showed that the model with the best performance (lowest RMSE and higherR2) was the

EGPR. The EGPR model’s results were very similar to the rational quadratic GPR’s. The third and fourth

best models were also GPR models: the matern 5/2 and the squared exponential GPRs, respectively.

This demonstrated the superiority of the GPR models in predicting the MC.

Additionally, despite being the most complex model in the study, the CNN was only the 10th best

regression model during validation. This could be explained by the small size of the dataset used to train

the models, as simple machine-learning models are generally superior when trained with less data. The
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Table 18: Validation RMSE and R2 of each regression model trained

Model RMSE R2 Model RMSE R2

LR 0.432 0.80 Matern 5/2 GPR 0.319 0.89

Stepwise LR 0.379 0.85 EGPR 0.306 0.91

Fine tree 0.400 0.83 SVM Kernel 0.422 0.81

Medium tree 0.371 0.85 Least squares Kernel 0.414 0.82

Coarse tree 0.360 0.86 BDTR 0.372 0.85

Linear SVM 0.435 0.80 Bagged decision tree 0.326 0.89

Quadratic SVM 0.379 0.85 Narrow NN 0.377 0.85

Cubic SVM 4.234 -18.3 Medium NN 0.397 0.83

Fine GSVM 0.342 0.87 Wide NN 0.396 0.83

Medium GSVM 0.358 0.86 Bilayered NN 0.347 0.87

Coarse GSVM 0.414 0.82 Trilayered NN 0.366 0.86

Rational quadratic GPR 0.306 0.90 CNN 0.366 0.82

Squared exponential GPR 0.331 0.88

data previously presented in Figure 18 of Chapter 4.3.3 showed that the acceleration variation, along the

three axes, was linearly related to the walking speed and that the transitions between the speeds could

be noticed just by looking at the plots. This could explain why a simple machine-learning model achieves

better results when estimating the MC based only on these signals.

The performance achieved by the EGPR model (RMSE of 0.31 W/kg) was better than the results

achieved by the study performed on the same dataset (RMSE of 1,03 W/kg) despite using significantly

fewer sensor data (66). It is important to note that Ingraham et al. used the model to predict the MC

during heavier activities, namely running, cycling, and stair climbing, that are generally associated with

lower MC estimation accuracy (66).

Optimization of EGPR’s parameters

After observing that the model with the best performance was the EGPR, the Sigma parameter of

the model was optimized by using three distinct methods: BO, grid search, and random search. The

acquisition function used, i.e., the technique used to determine which hyperparameters are evaluated at

each iteration, was the probability of improvement method. The results obtained by each optimization

method are presented in Table 19, as well as the performance previously obtained when comparing all
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the models by using MATLAB’s Regressor Learner APP standard value for the Sigma parameter (0.1650).

Table 19: Validation RMSE of an EGPR model with a Sigma parameter optimized by different methods (BO, grid

search, and random search) in comparison to no optimization process

Optimal Sigma RMSE (Val)

No optimization 0.1650 0.306 ± 0.018

BO 0.1492 0.304 ± 0.014

Grid search 0.2101 0.310 ± 0.164

Random search 0.1088 0.306 ± 0.017

Therefore, it was observed that the method that achieved the best results was the BO, however, there

was not a significant difference in the validation RMSE obtained by the different techniques. Nonetheless,

this optimization allowed for a reduction in the validation RMSE average of 0.002 W/kg.

4.4.2 Offline testing

The offline validation previously described resulted in the development of the best possible regression

model for MC estimation. The optimized EGPR model was then used to predict the MC of the test subject

based on the data acquired by the accelerometers and the participant’s BMI. As previously mentioned,

the test participant was chosen randomly. The RMSE and R2 of the test prediction were 0.45 W/kg and

0.84, respectively. Figure 22 presents the prediction of the EGPR, in blue, in comparison to the target MC

(ground-truth), in orange.

Figure 22: Comparison between the test subject’s true MC (orange) and the estimated MC (blue).
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The results revealed a slightly higher RMSE and smaller R2 when compared to the performance

during validation, with the RMSE increasing by 0.142 W/kg and the R2 decreasing by 0.07. However,

these results were satisfactory as the EGPR model achieved similar performance to the best model in the

literature (0.36 W/kg (16)) despite using fewer input signals and being a much simpler regression model.

4.4.3 Bench tests

Accuracy of the MC prediction in SmartOs system

The EGPR model was implemented in the SmartOs system and its performance was compared with

the one obtained in Matlab for the same data. It was observed that when given the same feature vector,

the output (i.e., the MC estimation) was the same for both EGPR models (RMSE of 6.94e−6). Figure

23 shows the differences between the models’ predictions, revealing the resemblance between the two

curves.

Figure 23: Comparison between the test subject’s true MC (yellow), the estimated MC in MATLAB (blue), and

the estimated MC in C++ (orange).

These results are ideal since they showed that the model developed in C++ was able to predict the

MC with the same accuracy as the original model. Therefore, the code generated by the Coder APP was

viable to be integrated into SmartOs’ architecture.

Code timing analysis

Figure 24 presents the time diagram of the MC estimation algorithm, integrated into the SmartOs’

CCU. The duration of each main function of the algorithm is presented in the diagram, namely the time

needed to read and save the acceleration data into 10-second windows, to preprocess that data, and to

estimate the MC.
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Figure 24: Time diagram depicting the time it takes to execute the different MC estimation algorithm’s functions.

The diagram showed that saving the acceleration data happened, as expected, every 10 milliseconds

since that was the frequency at which the WMSS board was programmed to send the data to the CCU. This

process took, on average, 0.23 milliseconds. Therefore, this function did not disturb the communication

between the two boards, which happens every 10 milliseconds.

The additional functions of the MC estimation algorithm were programmed to execute every 10

seconds. The results showed that this was successfully achieved. Additionally, the time diagram

revealed that the data preprocessing took, on average, 2.6 milliseconds, and, the MC estimation took

7.3 milliseconds. The all process lasted, therefore, for 9.9 milliseconds.

Together, the three main functions took an average of 10.13 milliseconds, more than the 10

milliseconds necessary to undisturbingly read the data from the WMSS board. However, since the

processes were developed into different threads (depicted using the colors blue and red) they were able

to be executed simultaneously with no delays.

4.4.4 Human experiments

Figure 25 depicts the MC estimated, in real-time, by the EGPR model in comparison to the MC

calculated by the three methods of indirect calorimetry, for the five participants, including the two trials

performed by Participant 2. Furthermore, the activity transitions are also marked and labeled.

The prediction results presented in Figure 25 show that the accuracy of the prediction varied across

the different trials. Additionally, it was possible to observe that the per-breath respirometry estimation was

very noisy. The fast-estimated respirometry estimation was very close to the average of the MC for each

activity (the steady-state respirometry estimation). In general, it was possible to see that the EGPR model

underestimated the MC when compared to the ground truth in every trial, and this underestimation was

higher for the participants who spent more energy during the protocol.
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Figure 25: Comparison between the MC estimated by the three methods of respirometry (per-breath,

fast-estimated, and steady-state, in orange, black, and red, respectively) and the MC estimated by the EGPR model

(in blue), for each participant.
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As seen in Figure 25, the difference between the regression model estimation and the respirometry

estimations was significantly higher for Participant 3. The MC estimated by the model for this participant

was similar to the MC estimated for the other participants, since the 3D acceleration was similar for all of

them, however, the third participant had an abnormally high MC during the walking activities. Participant

3 presented a normal HR during the trial, close to the average HR for all participants, as seen in Figure

19, and had similar characteristics to Participant 5, regarding their age, gender, body mass, and height.

Additionally, Participants 3 and 5 performed their respective trials at a similar time of the day, with similar

room temperatures, and it is possible to observe that both participants had similar steady-state MC during

the standing activity. Therefore, Participant 3’s high MC could not be explained by any of the mentioned

factors.

Additionally, it was possible to observe that the Participant 2 MC was higher during the first trial. One

factor that varied between the two trials was the time of day: the first trial was performed after lunch, and

the second trial before lunch. This could explain this difference since the basal MC naturally increases

after a meal. This difference could also be related to the HR disparity noticed in Figure 19.

The closest prediction to the ground truth was obtained by Participants 2 (second trial) and 5, despite

the participants presenting very different demographics. Additionally, both participants had different HR

averages (63.3 bpm and 113.4 bpm for Participants 2 and 5, respectively), and the trials were performed

at different times of the day. The remainder of this chapter presents some performance metrics of the

EGPR estimation in real-time, namely: (i) the RMSE; (ii) the mean absolute percentage error (MAPE); (iii)

the agreement between the model’s prediction and the ground-truth (Bland-Altman plots); and (iv) the

estimation delay.

Model evaluation: RMSE

Table 20 presents the RMSE (Equation 3) of the MC estimated by the EGPR model when compared

to the ground truth (the three methods of indirect calorimetry), for all participants (P1 to P5), including

the two trials of Participant 2 (T1 and T2), and all the activities (standing, walking at 1.5 km/h, 2.0 km/h,

and 3.0 km/h, and sitting). Additionally, the last row presents the RMSE average and standard deviation

for each activity.

From the results presented in Table 20, it was possible to conclude that the RMSE was higher when

the MC estimated by the regression model was compared to the per-breath respirometry calculation,

due to the noisy nature of this method. Additionally, due to the similarity between the steady-state and

fast-estimated respirometry calculations, the RMSEs between the regression model estimation and these

calculations were very similar across the different activities.
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Table 20: RMSE between the MC estimated by the EGPR model and the MC estimated by each respirometry

method (in W/kg), for each activity (standing, walking at 1.5 km/h, 2km/h, and 3 km/h, and sitting), and for each

participant (P1-P5). The average RMSE for each activity is presented in the last row

Per-Breath Respirometry Steady-State Respirometry Fast-estimated Respirometry

P1 0.68 0.74 1.07 0.84 0.62 0.32 0.56 0.88 0.58 0.06 0.30 0.60 0.88 0.55 0.07

P2 (T1) 0.28 1.08 - 1.08 - 0.08 1.08 - 1.05 - 0.08 1.20 - 1.10 -

P2 (T2) 0.30 - 0.33 0.38 - 0.22 - 0.21 0.22 - 0.22 - 0.20 0.05 -

P3 0.33 1.35 1.81 1.67 0.20 0.33 1.35 1.81 1.64 0.25 0.34 1.32 1.86 1.64 0.24

P4 0.37 0.51 0.60 0.59 0.26 0.14 0.40 0.49 0.52 0.23 0.14 0.42 0.50 0.49 0.24

P5 0.40 0.38 0.31 - - 0.27 0.31 0.27 - - 0.28 0.34 0.26 - -

RMSE
0.39 ±

0.15

0.81 ±

0.40

0.82 ±

0.64

0.91 ±

0.50

0.36 ±

0.23

0.23 ±

0.10

0.74 ±

0.45

0.73 ±

0.66

0.80 ±

0.55

0.18 ±

0.10

0.23 ±

0.10

0.78 ±

0.45

0.74 ±

0.68

0.77 ±

0.61

0.18 ±

0.10

Regarding the results of the comparison to the per-breath respirometry, the average overall RMSE, for

every participant and activity was 0.66 W/kg. Furthermore, the average coefficient of determination (R2)

was 0.75. Compared to the metrics obtained during the offline testing, the RMSE increased by 31.8%

and the R2 by 12%. This could be explained by the fact that the model was dealing with new data, from

different subjects and different sensors. These results were analogous to another literature study that

achieved a 40.4% increase in the estimation error during real-time validation, in comparison to the offline

results (15).

Model evaluation: MAPE

Figure 26 presents five sets of box plots (one for each task studied) depicting the MAPEs between

the MC estimated by the regression model and the estimation computed by indirect calorimetry using the

per-breath respirometry method, for each participant (P1 to P5). The MAPE was calculated using Equation

4.

MAPE =
1

N

N∑
i=1

∣∣∣∣∣y(i)− ŷ(i)

y(i)

∣∣∣∣∣ (4)

Each box plot displays five metrics of the MAPEs for a particular activity and participant: the median

MAPE (the horizontal line roughly at the center of the box), the first and third quartiles (represented by

the bottom and top limits of the box, respectively) and the minimum and maximum MAPEs, excluding the

outliers (represented by the limits of the whiskers, i.e. the dotted lines outside the boxes that show the

range of MAPEs outside the middle 50% of data). The outliers are represented by the points outside the

box plots.
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Figure 26: Boxplots presenting the MAPEs between the MC estimated by the EGPR model and the per-breath

respirometry method. Each boxplot presents the results of the five participants (P1-P5) for a single activity.

From Figure 26, it was observed that the MAPE was minimal during the static activities, i.e., the

standing and sitting activities. The MAPEs for the walking activities were similar, despite them being

performed at different speeds, however, walking at 3 km/h was the walking task with the lower average

MAPE, for all participants except Participant 2 (second trial). This could be explained by the fact that

this speed was an intermediate value between the speeds performed during Ingraham’s protocol, and,

therefore, the regression model was much more used to data from similar speeds.

Additionally, it was noticed that the MAPEs during the standing activity had many more outlier points.

This could be explained by undesirably spontaneous movements performed by the participants during this

activity that could have influenced the MC estimations. This could also explain the existence of various

outliers in the MAPEs of Participant 1 during the sitting activity.

Regarding the literature studies analyzed in Table 7, only Slade et al. (15) validated the model in

real-time, in a protocol with 24 participants who performed four types of activities: (i) walking; (ii) running;

(iii) climbing stairs; and (iv) cycling. The overall average MAPE achieved by Slade et al. was 23%. This

value is in the range of the MAPEs obtained in this work for Participants 1, 2 (second trial), 4, and 5, while

Participants 2 (first trial) and 3 had an average MAPE higher than 23%.

Model evaluation: Bland-Altman plots

Figure 27 presents the Bland-Altman plot comparing the MC estimations of the EGPR model and

the per-breath respirometry, for every participant. Each Bland-Altman plot shown depicts the agreement

between the regression model estimation and the ground truth (the target).
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Figure 27: Bland-Altman plots depicting the agreement between the MC estimated by the EGPR model and the

per-breath respirometry for each participant, where the black line represents the mean difference and the red and

blue lines represent the 95% limits of agreement.
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The plots of Figure 27 show the relationship between the difference between the two signals (y-axis)

and the average of the two estimation methods (x-axis), for each participant. This allows the identification

of estimation biases, given by the mean difference between the two signals (black line). Additionally, the

upper and lower limits of agreement are also represented in the plot (red and blue lines, respectively),

which are computed by the mean difference plus/minus 1.96 times its standard deviation.

Regarding the results presented by the Bland-Altman plots, they showed that the model’s prediction

and the ground truth had a higher agreement for Participants 2 (second trial), 4, and 5, perceived by the

smaller bias between the two signals for these participants (-0.038 W/kg, 0.219 W/kg, and 0.171 W/kg,

respectively), and the smaller limits of agreement (1.27 W/kg, 1.70 W/kg, and 1.28 W/kg, respectively).

With the exception of the second trial of Participant 2, whose bias was negative but close to zero, all the

biases were positive, demonstrating the general underestimation made by the regression model.

Model evaluation: Estimation delay

Table 21 presents the mean delay of the EGPR model estimation and the RMSE of the time agreement

between the regression model and the respirometer, for each participant (P1 to P5) and each trial of

Participant 2 (T1 and T2). The delay was given by the difference between the time of each estimation

made by the EGPR and the time of the previous estimation made by the respirometer (the previous breath).

The time agreement RMSE was computed by comparing the estimation delay to an ideal model’s time

response (no delay).

Table 21: Average delay between the estimation made by the regression model and the respirometer, and

RMSE of the time agreement between the two methods, for each participant (P1-P5)

P1 P2 (T1) P2 (T2) P3 P4 P5

Average estimation

delay (s)

2.48 ±

2.30

1.61 ±

1.28

1.91 ±

1.88

1.64 ±

1.60

2.02 ±

1.86

1.77 ±

1.68

Time agreement

RMSE (s)
3.28 2.05 2.68 2.29 2.74 2.45

The results presented in Table 21 show that the regression model estimated the MC, on average, 1.61

to 2.48 seconds later than the respirometer, and the RMSE of the time agreement was between 2.05 and

3.28 seconds. Since the average breath frequency of an adult is between 12 and 18 breaths per minute,

this means that the interval between breaths is between 5 and 3.3 seconds. Therefore, the average time

delay was still below the time it takes to estimate a new MC by indirect calorimetry.
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Additionally, the developed model was able to estimate the MC every 10 seconds, without any delays

from the SmartOs system. This is a significant upgrade when compared to a respirometer device, which

takes 3 minutes of estimations before reaching a steady-state value. Therefore, the time taken by the

regression model to estimate a new steady-state MC was 18 times lower than a respirometer device.

4.4.5 Conclusions

In this chapter, a regression model was developed to estimate the MC from only four IMUs, wearable

and non-intrusive sensors, practical for industrial applications. The model was capable of achieving low

estimation errors in real-time, similar to the metrics achieved by the best-performing models in the

literature. The model was successfully integrated into the SmartOs system, with low computational cost

and without affecting the system’s performance. Additionally, this work allowed the reduction of the

steady-state MC estimation time from 3 minutes to 10 seconds. In conclusion, the regression model was

considered fit to be integrated into a HITL controller (Chapter 6).
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5 Torque tracking control

The proposed HITL control presented in Chapter 3.3 is based on the premise that optimizing an

exoskeleton torque profile improves the human-robot interaction and reduces the users’ physical exertion.

So, before implementing this HITL strategy into SmartOs’ architecture, a torque tracking control was

developed to manipulate the active actuator based on a reference torque profile. This chapter describes

the development of this control strategy and its integration into the knee exoskeleton of SmartOs system.

Firstly, the algorithm for generating a torque profile is explained. A natural cubic spline interpolator

was used for this purpose since it enabled the representation of any desired torque profile shape through

the combination of multiple sinusoidal curves. The spline generates a torque profile, which is used as the

reference torque trajectory for the torque tracking control.

Then, the torque control is presented, which starts with the generation of a desired torque profile and

is composed of two hierarchic stages - the mid- and low-level controllers - that continuously compute the

knee joint’s torque. The mid-level controller was based on the continuous estimation of the gait phase

based on the gait speed, and posterior calculation of the torque for that gait point. The low-level controller

was a PID torque controller, a loop mechanism with the objective of minimizing the difference between

the desired/reference and the real actuator’s torque.

Lastly, the validation of the controller is presented. Initially, bench tests were performed to identify the

best PID controller parameters (i.e., the proportional, integral, and differential gains), and the ideal knee

torque profile for gait assistance. Then, a human experimental validation enabled the assessment of the

HITL strategy’s effectiveness.

5.1 Introduction

Most of the torque tracking controllers in the literature are developed for pneumatic actuators or

tethered exoskeletons (8, 49, 51), not for LLEs with electric motors. Pneumatic or cable-driven actuators’

controllers are implemented to follow the torque trajectory of healthy humans. However, this strategy is

not the most adequate for electric actuators as DC motors, due to their different mechanical system.

Some studies in the literature that developed torque tracking controllers for ankle exoskeletons with

electric motors created time-adaptive control algorithms that generate torque profiles with adjustable

torque timings and magnitudes, based on the device’s movement (93) (94). The torque profile

implemented by these studies had to be different from the natural human torque profile, in order for the

electric motor to perform the desired movement.
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Therefore, when developing a torque tracking controller for an electric actuator, the torque profile that

will be used as a reference trajectory must be manually adapted for the required application. Figure 28

presents the differences between the ankle torque profile of a tethered actuator (8) and a DC motor (93),

as well as the natural torque profile for the ankle joint from a healthy person (95).

(a) Cable-driven actuator (b) Electric actuator

(c) Healthy torque

Figure 28: Ankle torque profiles used on torque tracking controllers for a tethered exoskeleton (8) and an

exoskeleton with electric actuators (93), and the natural ankle torque profile (95)

Figure 28 shows that the torque profile used by the tethered device (Figure 28a) tries to replicate the

natural ankle torque (Figure 28c) by simplifying the curve to one single positive curve. However, that is

not the case for the torque profile used by the electric exoskeleton (Figure 28b), which was composed of

two torque curves, one positive and one negative, with similar torque magnitudes. This profile was set

in order to ensure the movement of the actuator in both dorsiflexion and plantarflexion directions, so the

device performs a similar ankle trajectory to the natural ankle trajectory of a human. Therefore, in order

to perform the desired ankle movement, the torque profile of the electric actuator ended up differing from

the natural human torque profile. This was the approach followed during the development of the torque

tracking control developed in this chapter.
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5.2 Methods

5.2.1 Torque profile generation

The knee torque profile is the variation of the torque magnitude in time, during one gait cycle. Figure

29 presents the natural human torque, of the knee joint, when walking at speeds from 0.5 m/s (1.8 km/h)

to 2.6 m/s (9.4 km/h) (95). Figure 29 shows that the natural knee torque is mainly composed of two

positive curves, that generate the joint’s flexion movement, and one negative curve, responsible for the

extension movement.

Figure 29: Human knee torque profile when walking at different speeds (95).

The knee torque profile can be simplified by a combination of multiple positive and negative sinusoidal

curves, that represent the flexion and extension movements of the knee joint, respectively. Therefore, it is

possible to use mathematical algorithms to generate this curve, such as a natural cubic interpolator.

The development of the torque profile described in this chapter started, therefore, with the creation

of an algorithm capable of generating the knee torque profile in C by natural cubic interpolation, and its

implementation in the LLOS controller, following the guidelines in the literature (96). The Algorithm 1

is the pseudocode that computes the torque profile’s parameters, where n is the number of points that

define the spline, x is an array with those points’ gait cycle percentages, and a is the torque magnitude

in those points (ai = T (xi)).

After the torque profile’s parameters are obtained, it is possible to determine any point in the torque

profile by knowing its gait cycle percentage. Equation 5 shows how the torque magnitude - T (X) - for

the point X is determined, knowing that X value ranges between xi and x(i+1).

T (X) = ai + bi(X − xi) + ci(X − xi)
2 + di(X − xi)

3 (5)
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Algorithm 1 Natural cubic spline algorithm

SET n, x = [x0, x1, ..., xn], a = [a0, a1, ..., an]

SET l0 = 1, u0 = 0, z0 = 0

for i = 1 to n− 1 do

SET hi = x(i+1) − xi

SET αi = 3
(a(i+1)ai)

hi
− 3 (aia[i−1])

h[i−1]

SET li = 2(x(i+1) − x(i−1))− h(i−1)u(i−1)

SET ui =
hi

li

SET zi =
αi−h(i−1)z(i−1)

li

end for

SET ln = 1

for j = n− 1 to 0 do

SET cj = zj − ujc(j+1)

SET bj =
(a(j+1)−aj)

hj−hj(c(j+1)+2cj)/3

SET dj =
c(j+1)−cj

3hj

end for

Figure 30 presents one possible knee torque profile, as an example, with two flexion torque peaks (8

N.m and 18 N.m) and one extension torque peak (-16 N.m). This profile replicates the general shape of

the natural knee torque profile (Figure 29) for slow walking speeds (1.8 km/h).

Figure 30: Curve shape of a torque profile with two flexion movements, with torque magnitude peaks at 20%

and 60% of the gait cycle, and one extension movement with a torque magnitude peak at 87.5% of the gait cycle.
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5.2.2 Torque controller implementation

Figure 31 presents the overall diagram of the torque tracking controller integrated into SmartOs’

architecture. The code was fully developed in the LLOS board, however, the SmartOs’ CCU is needed to

start the device, and the mobile APP to configure its assistance.

Figure 31: Diagram of the torque controller integrated into SmartOs’ architecture.

The controller starts by generating the torque profile that will be replicated by the SmartOs’ knee

actuator. Then, every 10 milliseconds, in the mid-level stage of the controller, the gait cycle percentage

is estimated and the reference torque is obtained, i.e., the instant torque of the torque profile for the

estimated gait cycle percentage (Equation 5). The low-level controller is executed every millisecond and it

runs a PID controller that repeatedly measures the torque error (i.e., the difference between the reference

and the real motor torque) and feeds the active actuator with the torque command required to reduce this

error. The following paragraphs will better explain each block of the torque controller.

Cubic spline interpolator

The code of the cubic spline interpolator is composed of two simple steps that are executed when

starting the SmartOs’ device before the knee actuation is activated. Firstly, the cubic spline is initialized
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and the arrays that define the torque profile (x and a) are established. Then, the torque profile is generated

by following Algorithm 1.

Mid-level control

In the mid-level controller, an algorithm to compute the reference torque for the PID low-level controller

was implemented. This algorithm is executed every 10 milliseconds, something made possible by a timer.

The mid-level controller can be divided into two phases: the detection and action phases.

In the detection phase, the algorithm estimates the gait cycle phase, given by a percentual point (0%

refers to the start of a gait cycle, while 100% refers to its end). This estimation is done by using an

equation used to obtain the duration of one gait cycle in milliseconds (gcd) - Equation 6 - based on the

walking velocity in km/h (v). The algorithm then increments the gait cycle percentage every 10 ms by

following Equation 7, where gcpi is the new gait cycle percentage and gcpi−1 is the percentage previous

to that one. The fmod() function is used to calculate the floating-point remainder of gcpi/100, setting

the maximum ceiling of the gait cycle percentage to 100%.

gcd = (−34, 62 v + 107.31)× 49

1000
(6)

gcpi = fmod(gcpi−1 +
100× 10ms

gcd
, 100) (7)

The action phase is based on a force profile control strategy, where the torque is computed for each

gait cycle percentage and transmitted to the low-level controller. This step uses Equation 5 to calculate

the torque magnitude of the torque profile for each gait cycle point.

Low-level control

A PID controller was implemented at the low-level stage of the LLOS controller, which was executed

every millisecond due to the implementation of a timer. Algorithm 2 presents the PID controller’s algorithm.

The PID controller’s objective is the minimization of the difference between the reference torque and

the real torque, i.e., the controller error, where the real torque is the knee actuator’s torque measured

by a Hall sensor installed in the DC motor. The algorithm starts by setting the proportional, integral, and

derivative gains (kp, ki, and kd, respectively), and initializing the error integral (et). Every millisecond,

the torque error is computed, its time integral is updated, and the output torque is obtained. The error’s

integral was saturated at 40 N.m.s. This output torque is then sent to the knee actuator motor.
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Algorithm 2 PID controller algorithm

SET kp, ki, kd

SET errori = ref_torque− real_torque

UPDATE et = et+ errori

if et > 40 then

SET et = 40

else if et < −40 then

SET et = −40

end if

SET ouput_torque = errori × kp+ et× ki+ (errori − errori−1)× kd

Furthermore, the PID output was limited to values between −2500 and 2500. Additionally, to

guarantee the users’ safety, the knee angle was limited to values between 15◦ and 80◦. This was

ensured by assessing the PID output and the knee angle after the execution of Algorithm 2.

SmartOs mobile APP

The SmartOs’ mobile APP was altered to allow the activation of the developed torque controller. For

this purpose, an additional option was added to the assistance settings page of the APP called ’Therapy

Torque’. Figure 32 depicts the assistance settings page when the torque controller is selected for the right

knee exoskeleton and walking speeds of 1.5 km/h.

5.3 Validation

5.3.1 Bench tests

The validation started with the tuning of the PID controller, i.e., with the adjustment of the proportional,

integral, and differential gains to ensure a quick and adequate response from the low-level controller’s

stage. This was achieved by following the Ziegler–Nichols method (97).

Additionally, the knee torque profile was also continuously adjusted to identify the ideal torque

assistance, in a manual process. During this process, it was ensured a correct and comfortable gait

pattern by the SmartOs’ user.
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Figure 32: Interface option added to the SmartOs’ APP that enabled the start of torque control.

5.3.2 Human experiments

Following the bench tests used to assess the operationality of the torque controller and tune the

controller’s parameters, an experimental validation was conducted to assess the human biomechanics

and physiological state when assisted by the knee module of SmartOs’ controlled by the developed

torque strategy. Additionally, the device behavior was also evaluated, namely regarding its motor’s

torque conformity to the reference torque and the PID command output.

In this phase, one volunteer was equipped with the SmartOs’ knee exoskeleton on the right leg.

Furthermore, the participant wore the four InertiaLab’s IMUs required by the regression model, previously

described in Chapter 4, to estimate the MC of the participant in real-time.

Participants

One healthy volunteer participated in this validation phase after giving her informed consent. The

participant had no history of locomotor or balance impairment nor did she suffer any musculoskeletal

injury six months prior to this experiment. The participant was a 23-year-old female, with a body mass
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of 65 kg and a height of 1.62 m. The participant had no previous experience in wearing the SmartOs’

device. This protocol was conducted under the ethical procedures of the Ethics Committee in Life and

Health Sciences (CEICVS 006/2020), following the Helsinki Declaration and the Oviedo Convention.

Experimental protocol

The participant was first equipped with four InertiaLab’s IMUs in the right ankle, right wrist, left waist,

and chest. Then, the knee module of SmartOs’ was tightly secured to the participant’s right leg, with three

straps - one at the upper leg, and two at the lower leg - and one belt at the waist. The IMUs were then

connected to the WMSS board through USB cables and the knee actuator was connected to the LLOS

board through a CAN Bus cable. Afterward, both the WMSS and LLOS boards were connected to the

SmartOs’ CCU, and the system was plugged into the SmartOs’ battery. Figure 33 presents an overview

of the equipment worn by the participant during the protocol.

Figure 33: Equipment worn by the participant during the torque controller’s validation.

Before the participant was subjected to the torque controller, she went through a familiarization period

to get comfortable and experienced in wearing the SmartOs’ knee device. Firstly, the participant walked

with the device in zero-torque mode, a control strategy that makes the active actuator mimic the functioning
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of a passive actuator (i.e., it is the person who controls the device). Then, the participant walked with the

device in position tracking control, a reference-tracking controller where the reference signal is the knee

trajectory during a gait cycle. This familiarization process lasted until the participant felt comfortable

wearing and walking with the device.

Then, the participant was finally prepared to test the developed torque controller. Firstly, the

participant stood still for 5 seconds to calibrate the IMUs. After the calibration, the participant walked on

a treadmill at 1.5 km/h with the SmartOs in torque tracking control. This procedure lasted for a total of

5 minutes.

Data collection and analysis

The protocol was concluded in one day, and performed at the Biomedical Robotic Devices Laboratory

(BirdLab) facility, at the University of Minho. The data acquired during this protocol comprised of (i) the

3D acceleration of the right ankle, right wrist, left waist, and chest; (ii) the estimated MC; (iii) the right

knee angle; (iv) the human-robot interaction torque; (v) the real actuator’s torque; and (vi) the PID output

commands. The data collected was saved during the acquisition into text files, in real-time, at a frequency

of 100 Hz.

The data was then processed and analyzed in MATLAB (2022b, The Mathworks, Natick, MA, U.S.A).

The processing procedure consisted of organizing the collected data in a single table. Then, there were

created graphs to analyze the controller’s performance.

5.4 Results and discussion

5.4.1 Bench tests

Regarding the tuning of the proportional, integral, and differential gains (kp, ki, and kd, respectively),

the optimal found values are presented in Table 22. The PID tuning was conducted by following the Ziegler-

Nichols method (97). Firstly, the integral and differential gains were set to zero and the proportional gain

increased until a stable output was achieved. Then, the integral and differential gains were found based

on the optimal proportional gain.

Table 22: Best PID gains values

Gain kp ki kd

Value 135 1.5 1.5
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The proportional gain ended up being significantly higher than the other gains, resulting in larger

command outputs for smaller torque errors. Regarding the integral and differential gains, the rather small

values in comparison to the kp were sufficient to diminish overshoot and oscillations and fix any offset.

In regards to the optimal torque profile for gait assistance, various shapes, with various torque

magnitudes at the flexion and extension peaks, were generated and tested until a good pattern was

established, i.e., a profile that ensured a correct and comfortable gait pattern. Figure 34 presents the

various torque profiles that were tested and their order (from the first to the sixth profile), depicting,

therefore, the torque profile’s evolution during this procedure. The peak torque magnitudes for each

profile differed, and various profiles were tested for each shape presented, by changing the x and a

vectors of Algorithm 1. To simplify, only the torque magnitudes for flexion and extension peaks of 15

N.m and -15 N.m, respectively, are presented.

Figure 34: Tested torque profiles, for flexion and extension peak torques of 15 N.m and -15 N.m, respectively.

Figure 35 presents the torque profile that achieved the best results, both in terms of the capability

of the PID controller to achieve the desired pattern and on the generated gait’s quality, evaluated by one

user’s perceived comfort level. The profile is composed of a positive curve (flexion movement) with a peak

of 20 N.m of magnitude at 55% of the gait cycle, and a negative curve (extension movement) with a peak

at 86% of the gait cycle and a magnitude of -20 N.m.

Regarding the best torque profile, it was observed that a curve with only one positive and a negative

peak felt more natural to the user and could be better replicated by the PID low-level controller. Despite not

perfectly reproducing the natural knee torque pattern of a healthy person, the profile presented in Figure
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Figure 35: Best performing knee torque profile.

35 allowed for a full flexion movement and a subsequent extension movement that restored the leg to the

original position. Furthermore, the timings of each movement enabled the user to walk comfortably at

any gait speed between 0.5 km/h and 1.5 km/h (i.e. the SmartOs’ speed range). This work followed the

approach of other studies that developed torque controllers for DC motors, that found a torque reference

that drove the device to follow a desired trajectory (93, 94).

5.4.2 Human experiments

The following section presents the results achieved during the experimental protocol performed to

validate the torque controller. The results’ analysis focused on the PID’s performance and the physiological

and biomechanical signals of the user.

PID’s performance

Figure 36 shows the performance of the PID low-level controller. The figure depicts the reference

torque profile (blue, dotted), the real motor torque (blue, solid), and the PID command (orange, solid)

during the first 30 seconds of data.

From this analysis, it was possible to conclude that the SmartOs’ system was capable of following the

torque trajectory without delay. Additionally, the participant was able to walk at 1.5 km/h in a comfortable

gait pattern, fully synchronized with the knee exoskeleton. Therefore, the main requirements of the torque

tracking controller were verified.

These results indicate that the motor torque was incapable of achieving the 20 N.m torque magnitude.
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Figure 36: Actuator and reference torques during 30 seconds of torque control (colored blue, solid and dotted,

respectively) and the PID command output (colored orange).

Despite the device’s torque curve shape being mostly identical to the torque pattern, the maximum torque

magnitudes were roughly around 7 N.m and -7 N.m for the flexion and extension movements. This was

due to limitations regarding the SmartOs’ DC motor and was impossible to correct. Despite this limitation,

the motor torque was still sufficient to assist the device’s user during a normal gait.

Figure 36 also shows that around some zero-torque zones (i.e., the stance phase) the PID command

suffered some oscillations. This was due to a safety feature that conditions the PID command to increase

when the knee angle goes below 15 degrees, to force the motor to move in the opposite direction and

increase the knee angle. Therefore, this was not prejudicial to the system and even proved that the safety

feature was operational.

Furthermore, it was observed that some of the reference torque’s positive curves’ shapes were not

perfectly replicated by the motor, namely in the 6th and 8th gait cycles presented in Figure 36. In these

two cycles, the motor torque ’blanked’ for some milliseconds, at the start of the extension movement,

causing the device to interrupt the movement momentarily. This could be explained by the mechanical

limitations of the system caused by the actuator’s latency. Still, the controller was able to respond fast

to match the intended torque reference. These anomalies were quick and almost imperceptible, and the

participant was still perfectly capable of walking at 1.5 km/h by increasing the interaction with the device

to move to the desired position when these motor failures occurred.
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Physiological and biomechanical signals

Figure 37 presents the physiological and biomechanical analysis of the user when walking with the

device in torque control mode, at 1.5 km/h. Figure 37a depicts the variation of the estimated MC during

the 5-minute protocol, as well as a horizontal red line representing the MC average. Figure 37b presents

the human-robot interaction torque, with two red lines referent to the maximum and minimum interaction

torque during the gait. Figure 37c shows the knee angle during the experiment.

Figure 38 presents the interaction torque and knee angle measured during a smaller period of 30

seconds (between minutes 3.5 and 4 of the 5-minute walking trial), corresponding to 12 gait cycles.

Figure 38a depicts the participant’s interaction torque, while Figure 38b the knee angle.

Regarding the person’s MC, Figure 37a shows that the participant’s MC varied significantly at the

start of the experiment (first 2 minutes), and was more stable towards the final 3 minutes. This initial

instability could be explained by the fact that the participant was still getting used to wearing the device

with the torque controller and performed some abrupt movements when trying to gain balance since the

movement was still quite unstable. Nonetheless, even after the 2-minute mark, the person’s MC was still

fluctuating, however, this fluctuation was not abnormal to the MC estimating regression model and was

generally below 0.05 W/kg, therefore, it was considered insignificant. The average MC was 1.92 W/kg,

which is a high value for walking speeds of 1.5 km/h when compared to walking without the exoskeleton

(as seen in Figure 25). The high MC could be explained by the high torque of the system, which resulted

in fast leg movements, increasing the ankle acceleration and, thus, the MC.

In regards to the participant’s interaction torque (Figures 37b and 38a), it was observed that, in

general, this metric was rather small - between 7 N.m and -4 N.m. However substantial outlier positive

values were measured at some points during the gait, setting the maximum interaction torque to be

15.5 N.m. These abnormalities could be explained by the motor torque’s glitches identified in Figure

36. As mentioned before, when these motor failures occurred, the participant was forced to increase the

interaction torque to push the device in the correct trajectory. However, ignoring these rare mishaps, the

participant’s torque was significantly lower than the natural torque of a 65 kg person when free-walking,

without an exoskeleton (52 N.m during flexion and -13 N.m during extension, as presented in Table 10).

Regarding the knee angle, presented in Figures 37c and 38b, it was verified that the torque controller

enabled a continuous and regular knee’s trajectory. Additionally, it was observed that the knee angle

was successfully maintained above 15 degrees, which was a safety and operational requirement of the

DC motor. Despite the natural knee’s ROM during walking activities being 60 degrees (Table 9), it was

concluded that the participant could still comfortably walk at 1.5 km/h with a ROM of 50 degrees.
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(a) Estimated MC (dotted red line presents the variable’s average)

(b) Measured interaction torque (dotted red lines present the variable’s maximum (top) and

minimum (bottom)

(c) Measured knee angle

Figure 37: Physiological and biomechanical variables measured during the human experimental protocol.

92



(a) Measured interaction torque (b) Measured knee angle

Figure 38: Participant’s interaction torque and knee angle, measured during 30 seconds (between 3.5 and 4

minutes).

5.5 Conclusions

This chapter presented the development of a torque tracking control for a knee exoskeleton, which

was successfully integrated into the SmartOs’ architecture. Firstly the ideal torque profile was found to

guarantee a comfortable gait by the exoskeleton’s user. The controller was capable of following the desired

torque profile, by estimating the gait phase, computing the reference torque, and driving the actuator to

minimize the difference between its torque and the reference. The user was able to accurately perform the

desired knee movement during a gait at 1.5 km/h. In conclusion, this controller was considered adequate

to be integrated into the HITL controller.
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6 Human-in-the-loop control

This chapter describes the development of a HITL control capable of adapting the reference torque

control to minimize the effort of a person wearing the SmartOs system. The effort will be measured by

the user’s MC and the user’s interaction torque with the device. The work presented here followed the

development of a regression model used to estimate the MC in real-time, presented in Chapter 4, and

the implementation of a torque control strategy in SmartOs’ architecture, presented in Chapter 5. The

regressionmodel was capable of obtaining an estimation of the MC based on the 3D accelerationmeasured

by four IMUs on the right ankle, left waist, right wrist, and chest. The torque control was developed to

make the knee DC motor follow a desired torque profile.

The HITL controller adapted two parameters from the knee torque profile: the torque magnitudes of

the flexion and extension peaks. This work started with the establishment of the knee torque profile shape,

which was based on a natural cubic spline with two peaks on predefined fixed points of the gait cycle and

fixed durations.

Then, the optimizer used to find the knee torque profile that leads to the minimal value of the objective

function is described. The optimizer used in this work was a CMA-ES optimizer, an evolutionary algorithm

that mimics the process of natural selection, and adapts the reference torque over various generations

to find the fittest solution. The objective function optimized by the algorithm was a weighted sum of the

users’ MC, the torque profile’s integral, and the user’s interaction torque with the device. The CMA-ES

was integrated into the SmartOs’ architecture, more specifically into the LLOS board, and combined with

the torque controller previously presented.

Finally, the validation of the HITL controller is also presented here. Firstly, a bench test was performed

to analyze possible time constraints between the optimizer and the mid- and low-level controllers and

optimize the CMA-ES objective function’s weights. Then, the effectiveness of the controller was studied,

i.e., its capability of minimizing the MC of a person, the torque profile’s integral, and the interaction torque,

in real-time.

6.1 Introduction

Several literature studies have proved that wearing an LLE can result in a reduction of the MC of their

users when the right assistance strategies are employed, such as HITL controllers (8). One possible HITL

strategy is the adaptation of the exoskeleton joints’ torque profiles, in real-time, to minimize the MC of a

person (52).
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This automatic and individualized optimization approach has been successful in various published

studies. However, most of the studies that developed a HITL controller used a respirometer device to

estimate the MC in real-time by indirect calorimetry. This approach is not practical to implement in real-

world applications due to the discomfort that comes with wearing these masks, the cost of the materials,

and the time restrictions associated with this slower MC estimation method (15, 16).

The most common alternative to indirect calorimetry is the use of machine or deep learning models to

estimate the MC based on signals acquired by one or more wearable sensors (98), however, to the authors’

best knowledge, no study so far has integrated this approach into a HITL control strategy. Additionally,

the HITL controllers developed for portable exoskeletons are scarce in the literature, and most of the

optimization algorithms take too long to compute the optimal control parameters (8, 13, 19).

The HITL controller presented here aims to tackle the limitations found in the existing strategies present

in the literature. Firstly, the controller was developed for the SmartOs device, which is an LLE with an

8-hour autonomy. The controller minimizes an MC estimated by a regression model fed by data from

only four wearable, non-intrusive and light IMUs, replacing the need for a respirometer device. The use of

the regression model developed in Chapter 4 also enabled the reduction in the time needed to estimate

the MC from 3 minutes to 10 seconds, therefore, significantly decreasing the time required to reach the

optimal control parameters.

Furthermore, when designing a controller that aims to minimize users’ physical effort it is also

important to reduce the burden placed on their joints. So, in addition to the MC, the controller should

minimize the interaction torque and the reference torque profile’s integral final value (i.e., the total

system’s torque during a gait cycle). When the reference torque’s integral after one gait cycle is zero, the

knee joint’s final position will be the same as its initial position, meaning that the user’s movement is

fully assisted by the exoskeleton. The interaction torque is another metric that measures the user’s effort

when wearing the exoskeleton. When the exoskeleton is capable of achieving the desired trajectory

without the users’ help, the person’s exertion will be reduced, and the user-exoskeleton interaction

torque will be minimal.

6.1.1 Covariance Matrix Adaptation – Evolutionary Strategy

In this section, the optimizer implemented in the HITL controller is described. The CMA-ES is a

derivative-free randomized search algorithm that can be used for black-box scenarios where a certain

objective function needs to be optimized by adapting the covariance matrix of a multivariate normal

distribution (99, 100). CMA-ES is an evolutionary strategy as it stochastically samples a fixed number of
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individuals (also known as candidates) in every generation, based on the results of the individuals of the

previous generation, and evaluates their fitness (the value of the objective function), to have superior

individuals every generation (12, 55).

The multivariate normal distribution that is updated every generation (g) is represented by a mean and

covariance matrix that depends on the objective function values measured by that generation’s individuals

(N(m,C), wherem is the mean, andC the covariance matrix). Every generation, a new set of individuals

is chosen when sampling this distribution, by following Equation 8 (12, 99), where x
(g+1)
k is the kth

individual from generation g+1, m(g) is the search distribution’s mean value for generation g, σ(g) is the

standard deviation/step-size at generation g, C(g) is the covariance matrix for generation g, and λ is the

number of individuals per generation.

x
(g+1)
k ∼ m(g) + σ(g)N(0, C(g)) for k = 1, ..., λ (8)

For the optimization algorithm to have information on all previous generations, an evolution path (pc)

that saves the relation between consecutive steps (generations) is implemented in CMA-ES. Additionally,

the scale of the normal distribution – its step-size – is also increased or decreased every generation. The

step-size is also controlled by an additional evolution path (pσ) (99).

Overall, after the fitness value of every candidate in a generation g is obtained, the distribution is

updated by updating the five state variables of the optimizer: (i) the mean of the search distribution,

m(g+1), obtained using Equation 9; (ii) the step-size evolution path, p
(g+1)
σ , by using Equation 10; (iii)

the evolution path of the covariance matrix, p
(g+1)
c , which is calculated by using Equation 11; (iv) the

covariance matrix, C(g+1), by using Equation 12; and (v) the step-size itself σ(g+1) by using Equation 13

(99).

m(g+1) =

µ∑
i=1

ωix
(g+1)
i:λ ,

µ∑
i=1

ωi = 1, ωi > 0 (9)

p(g+1)
σ = (1− cσ)p

(g)
c +

√
cσ(2− cσ)µeff

m(g+1) −m(g)

σ(g)
(10)

p(g+1)
c = (1− cc)p

(g)
c +

√
cc(2− cc)µeff

m(g+1) −m(g)

σ(g)
(11)

(12)

C(g+1) = (1− ccov)C
(g) +

ccov
µcov

p(g+1)
c p(g+1)T

c + ccov

(
1− 1

µcov

)
×

µ∑
i=1

ωi

(
x
(g+1)
i:λ −m(g)

σ(g)

)(
x
(g+1)
i:λ −m(g)

σ(g)

)T
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σ(g+1) = σ(g)exp

(
cσ
dσ

(
‖ p

(g+1)
σ ‖

E ‖ N(0, I) ‖
− 1

))
(13)

Various variables are used from Equations 9 to 13, namely the recombination weights (ωi), the learning

rate for the cumulation step size control (cσ), the variance effective selection mass (µeff ), the learning

rate for the cumulation for the rank-one update of the covariance matrix (cc), the learning rate for the

matrix update (ccov), the weighting parameter between rank-one and rank-µ update (µcov), the damping

parameter for step-size update (dσ), the expectation value (E), and the normal distribution with zero mean

and unity covariance matrix (N(0, I)) (99).

The first step when optimizing a certain function with CMA-ES is the initialization of the optimizer

variables. Hansen (99) published a default strategy to set these variables, which used Equations 14 to

22, where n denotes the search space dimension:

λ = 4 + 3b3 lnnc (14)

µ = bλ/2c (15)

ωi =
ln(µ+ 1)− ln i∑µ

j=1(ln(µ+ 1)− ln j
for i = 1, ..., µ (16)

µeff =
1∑µ

i=1 ω
2
i

(17)

cσ =
µeff + 2

n+ µeff + 3
(18)

dσ = 1 + 2max

(
0,

√
µeff − 1

n+ 1

)
+ cσ (19)

cc =
4

n+ 4
(20)

µcov = µeff (21)

ccov =
1

µcov

2

(n+
√
2)2

+

(
1− 1

µcov

)
min

(
1,

2µeff − 1

(n+ 2)2 + µeff

)
(22)
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The algorithm ends when a termination criterion is met. Various termination conditions can be set,

such as limiting the number of generations or limiting the fitness function values that can be measured.

These conditions are normally application-dependent and are chosen according to the user’s needs.

6.2 Methods

6.2.1 Knee torque profile

As previously explained, only the peak torque magnitudes of the knee torque profile are adapted in

real-time by the CMA-ES algorithm to minimize the exoskeleton user’s effort, meaning that the shape of

the profile stays consistent. This was done following the results achieved by several studies that proved

that when optimizing a torque profile to minimize the MC of several distinct individuals, the peak torque

magnitudes of the optimized profile observed more fluctuations than the time parameters across the

different participants (8, 12, 14, 51).

Figure 39 presents the knee torque profile that will be optimized by the HITL control. This profile was

based on the results previously obtained in Chapter 5.4.1. The points adapted by the CMA-ES algorithm,

in real-time, are represented by a red dot. The points of the profile that intersect the x-axis (the zero-torque

points from 0-30% and at 70%) were fixed. Figure 39 shows that the positive and negative peaks are

executed at 55% and 86% of the gait cycle, respectively, and the flexion and extension torques have a

duration of 40% and 30% of the gait cycle, respectively.

Figure 39: Curve shape of the knee torque profile that was optimized by the HITL controller.
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6.2.2 CMA-ES optimizer

For the torque profile to be adjusted in real-time and for the controller to learn the effect of each

change on the user’s exertion, a CMA-ES optimizer was then implemented in the LLOS board. The code

was based on a publicly available repository (101), adapted and condensed to be integrated into the LLOS

controller and fit the existing code, using the Keil µVision 5.0 IDE. Algorithm 3 presents the pseudocode

of a generic CMA-ES optimizer.

Algorithm 3 CMA-ES optimizer algorithm

INITIALIZE optimizer’s parameters

while ! termination() do

COMPUTE λ new candidate solutions

SET i = 0

repeat

GET (i+ 1)th candidate

GET (i+ 1)th fitness function value

INCREMENT i

until i = λ

UPDATE function value history

UPDATEm, pσ, pc, C, σ

end while

Table 23 presents the optimizer’s initial parameters. These parameters were chosen following the

recommended strategy identified in the literature (99). Furthermore, Table 23 presents the initial torque

peaks studied by the optimizer: 17.5 and -17.5 N.m, for the peak flexion magnitude and the peak extension

magnitude, respectively (start1 to start2). Additionally, it also presents the range of possible torque

magnitudes for each peak. The parameters max1 and max2 are the maximum possible magnitudes

for the flexion and the extension peak torques, respectively. The min1 and min2 are the minimum

magnitudes for the flexion and the extension peak torques, respectively. The initial step-size (σ) was

chosen based on the literature (55).

99



Table 23: Initial parameters’ values for the CMA-ES optimizer. Based on: (99)

n 2 µ 3

λ 6 cσ 0.51

dσ 1.51 cc 0.7

ccov 0.12 µcov 2.24

σ1 1.4 max1 20 N.m

σ2 1.4 max2 -15 N.m

σ 1.4 min1 15 N.m

C
Identity

matrix
min2 -20 N.m

ω1 0.59 start1 17.5 N.m

ω2 0.29 start2 -17.5 N.m

ω3 0.12 µeff 2.24

Seven termination conditions were set on the algorithm. The optimization process stopped when:

1. The fitness function value reached a smaller value than the StopFitness parameter.

2. The fitness function value difference between two consecutive steps was smaller than the TolFun

parameter.

3. The fitness function value of the best values in two consecutive generations was smaller than the

StopTolFunHist parameter.

4. The step-size, in the x-space, was smaller than the TolX parameter.

5. The step-size, in the x-space, increased by more than the TolUpXFactor parameter.

6. The maximum number of generations (StopMaxIter) is reached.

7. The maximum number of function evaluations (StopMaxFunEvals) is reached.

The termination parameters were all set to the code default values, apart from the maximum number

of iterations which was set to 20, and the maximum number of function evaluations, which was set to

900(n+ 3)(n+ 3). Table 24 presents the values used for the termination conditions’ parameters.
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Table 24: Values of the parameters used for the termination conditions of the CMA-ES optimizer.

StopFitness 0 TolUpXFactor 1e3

StopTolFun 1e-12 StopMaxIter 20

StopTolFunHist 1e-13 StopMaxFunEvals 22500

TolX 1e-11

6.2.3 HITL control implementation

Figure 40 presents the overall diagram of the HITL control integrated into SmartOs’ system. This

figure presents the general data flow between the different elements of SmartOs’ architecture: (i) the

InertiaLab’s sensors, (ii) the WMSS board, (iii) the CCU, (iv) the LLOS board, (v) the mobile APP, and

finally (vi) the powered knee actuator.

Figure 40: Diagram depicting the different blocks of the HITL control strategy developed in SmartOs’

architecture.

The code developed for the HITL controller unified the codes previously described in Chapters 4.2.4

101



(regression model developed for MC estimation) and 5.2.2 (general torque controller for a fixed torque

profile) and combined them with a CMA-ES optimizer. The regression model algorithm was consistent with

the fluxogram presented in Figure 12 with the exception of one crucial addition: the transmission of the

estimated MC to the LLOS board where the HITL controller is executed after each estimation is completed

(every 10 seconds).

As seen in Figure 40, the code developed in the LLOS board was divided into three blocks: (i) the

CMA-ES optimizer in orange; (ii) the mid-level controller in green; and (iii) the low-level controller in blue.

This strategy is a version of the torque controller presented in Chapter 5.2.2, where the torque profile is

continuously adjusted by the CMA-ES algorithm. Therefore, the mid- and low-level stages of this controller

are identical to the torque controller previously integrated into SmartOs’ architecture. The following section

further explains the CMA-ES optimization stage of the controller.

CMA-ES optimizer

Figure 41 presents the code fluxogram of the CMA-ES optimizer, where IT and TI represent the

interaction torque and reference torque integral, respectively. This algorithm was based on the Algorithm

3 presented in Chapter 6.2.2.

Figure 41: Code fluxogram of the CMA-ES optimizer developed in the LLOS board.

However, some adjustments had to be made in order to combine the optimization process with the

MC estimation happening on the system’s CCU. The purpose of this code block was to generate multiple

combinations of peak torque magnitudes and study each torque profile’s effect on the person’s exertion.

The person’s exertion was evaluated through an objective function computed through the weighted sum

of three parameters: (i) the estimated MC; (ii) the generated torque profile’s integral (TI); and (iii) the
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user’s interaction torque (IT ). The objective function (OF ) value at each CMA-ES iteration is computed

using Equation 23, where ωOF
1 , ωOF

2 , and ωOF
3 are the objective function weights for each parameter.

OF = ωOF
1 ×MC + ωOF

2 × TI + ωOF
3 × IT (23)

The code starts with the initialization of the CMA-ES algorithm and the parameters of the natural cubic

spline that was developed to compute the knee torque profile in Chapter 5.2.1. This initialization is done

prior to the start of the system actuation and is followed by the acquirement of the initial torque profile

(profile presented in Figure 39 with peak torque magnitudes of 17.5 N.m and -17.5 N.m), allowing for the

control kickoff.

Every time a new MC estimation is received, the optimizer’s cost function is updated and a new

torque profile is generated and applied to the DC motor. This is repeated for λ iterations, and, when

each generation is over (each set of λ repetitions) the covariance matrix distribution is updated and the

optimizer parameters are updated by using Equations 9 to 13.

When a termination condition is met, the optimization is finalized and the optimal magnitudes of

the peak torques are calculated. Afterward, these values can be saved and the optimal torque profile is

continuously applied to assist the person. Therefore, this optimization process is individual-specific and

only needs to be performed once per individual.

SmartOs mobile APP

Afterward, the mobile APP that serves as an interface with the SmartOs’ system was also modified to

allow the activation of the HITL control strategy, by adding a ”Human-In-The-Loop” option in the

assistance strategy settings of the APP. Since the HITL assistance is dependent on the MC estimated by

the regression model, when the “Human-In-The-Loop” option is chosen in the APP, the “MC Estimation”

button is also toggled automatically, which, according to the changes presented in the Chapter 4.2.4,

also forces the communication with the InertiaLab’s sensors through the WMSS board. Figure 42

presents the modification made to the APP, as well as the additional settings that are activated when the

HITL control is chosen.

103



Figure 42: Interface option added to SmartOs’ APP that enabled the start of HITL control and its relation to the

previous adjustments.

6.3 Validation

6.3.1 Bench tests

To ensure the correct execution of the HITL controller some preliminary tests were performed and

the algorithm’s timings were analyzed. This validation process was done by analyzing the time taken to

execute each function of the CMA-ES optimizer. To do this, an output pin of the LLOS board was activated

every time each function was called and deactivated when it ended. The timings of the algorithm were

then obtained by inspecting this pin in an oscilloscope. The results were organized in a time diagram to

verify any time constraints in the code.

Furthermore, an additional bench test was performed to tune the CMA-ES objective function’s

weights, the parameters ωOF
1 , ωOF

2 , and ωOF
3 of Equation 23. This was done by conducting various

HITL optimizations, with different sets of weights (from 0.5 to 2.0 each), and evaluating the optimal

torque profile generated and the variation of the objective function and the three optimized variables over

the optimization time.
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6.3.2 Human experiments

After verifying the viability of the HITL controller and tuning the CMA-ES objective function to match its

application needs, a human experimental validation was performed to assess the effectiveness of the HITL

strategy. For this purpose, a torque profile was first optimized in real-time using the CMA-ES algorithm,

for one participant. The next day, the participant walked with the optimized torque controller, with a zero-

torque controller already existent in the SmartOs’ architecture (that mimics the functioning of a passive

actuator), and walked without wearing the knee exoskeleton. The efficacy of the optimized solution was

evaluated by measuring the estimated MC and the interaction torque of the participant during these three

conditions.

Participants

This experimental validation was performed by one volunteer who gave its informed consent to the

protocol. This participant was healthy, had no history of locomotion or balance impairments, and did not

suffer from any recent musculoskeletal injury. The participant was a 23-year-old female, with a body mass

and height of 65 kg and 1.62 m, respectively, and was moderately experienced in wearing the SmartOs’

knee module. This protocol was conducted under the ethical procedures of the Ethics Committee in Life

and Health Sciences (CEICVS 006/2020), following the Helsinki Declaration and the Oviedo Convention.

Experimental protocol

This protocol was split into two days. On the first day, the participant went through the HITL

optimization process, used to assess the optimal torque profile of a torque controller, specific to that

individual. On the next day, three conditions were tested and compared: (i) no-exoskeleton; (ii)

zero-torque mode; and (iii) optimized torque control.

On the first day, the participant was first equipped with four InertiaLab’s IMUs in the right ankle, right

wrist, left waist, and chest. Afterward, the participant equipped the knee module of SmartOs, which was

well secured to their right leg with three straps at the upper and lower leg and one belt at the participant’s

waist. Then, the SmartOs architecture’s subsystems were all connected, namely the IMUs, the WMSS

board, the LLOS board, the CCU, and the active-actuated knee module. The system was then plugged

into the SmartOs’ battery. Figure 43 depicts the participant wearing the described equipment.

Then, the HITL controller’s optimization started. The participant first stood still for 5 seconds to

calibrate the IMUs and then started walking at 1.5 km/h on a treadmill. This process lasted until a CMA-

ES termination condition was verified. The optimizer ended up undergoing the 20 maximum generations,
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Figure 43: Equipment worn by the participant during the HITL controller’s validation.

on a total of 120 iterations (20×6), and lasted, therefore, 20 minutes since each iteration took 10 seconds

to complete.

On the second day, the participant was first equipped with the InertiaLab’s sensors. Then, she walked

on the treadmill for 5 minutes at 1.5 km/h, after concluding the required 5 seconds for IMUs calibration.

In this first phase, the participant was not assisted by the SmartOs’ knee module, thus only her MC was

evaluated.

After walking without the exoskeleton, the participant was finally equipped with the SmartOs’ device,

and the whole system was connected and turned on as previously described. The participant walked

again on the treadmill for 5 minutes, at 1.5 km/h, with the SmartOs’ assistance in the zero-torque mode.

This control strategy was already implemented in the architecture to make the active actuator mimic the

functioning of a passive actuator (i.e., it is the person who controls the device). To conclude the protocol,

the participant then walked at 1.5 km/h, for a total of 5 minutes, with the device controlled by the optimized

assistance profile that was identified on the previous day. Both these experiments were preceded by the

5-second IMUs calibration.
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Data collection and analysis

The experimental validation was fully performed at the Biomedical Robotic Devices Laboratory

(BirdLab) facility, at the University of Minho. The data acquired during the two days was composed of: (i)

the MC estimated by a regression model; (ii) the 3D acceleration of the right ankle, right wrist, left waist,

and chest; (iii) the SmartOs’ right knee angle; (iv) the human-robot interaction torque; (v) the SmartOs’

motor torque; and (vi) the CMA-ES algorithm objective function. The data was collected and saved into

text files in real-time, during the protocol, at a frequency of 10 milliseconds.

The data processing and analysis were performed in MATLAB (2022b, The Mathworks, Natick, MA,

U.S.A). Regarding the first day’s data, i.e. the CMA-ES optimizer data, the torque magnitudes of the torque

profile’s peaks were first collected and organized per iteration. Then the estimated MCs, the interaction

torques cumulative sums, the integrals of the reference torques, and the objective function values were

also organized per each CMA-ES iteration, and associated with the correspondent torque’s magnitudes

on a table. The processing of the second day’s data consisted of organizing the collected data in a single

table and transforming it to present the time in minutes.

6.4 Results and discussion

6.4.1 Bench tests

Figure 44 presents the time diagram of the CMA-ES optimizer’s code implemented in the LLOS board.

The diagram depicts how much time each CMA-ES function takes to be completely executed, and shows

the timings analysis from the time a new MC estimation is received at the LLOS board (every 10 seconds),

to the time that a new CMA-ES generation is started. As explained before, in Chapter 6.2.3, the algorithm

only checks for termination after theλ iterations of a single generation are completed, and, if no termination

condition is verified the algorithm establishes a new generation by computing new λ iterations. Therefore,

the diagram depicts the worst-case scenario of the algorithm, regarding its execution time, since it shows

the condition where a generation has finished and a new one is computed.

The results show that each execution of the algorithm, which is induced by a new MC, takes a

maximum of 3.546 milliseconds. This is a positive result since it is a value well below the 10-second

requirement, ensuring that each CMA-ES iteration is fully completed before a new MC is received.

Furthermore, despite the maximum running time of the algorithm being above 1 millisecond, the

frequency of the low-level controller, the CMA-ES algorithm does not interfere with this controller’s stage

on account of both codes being executed on different threads, therefore, running in parallel.
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Figure 44: Time diagram depicting the time taken by the SmartOs system to execute the different HITL control

algorithm’s functions.

Table 25 presents the optimal CMA-ES objective function’s weights. The selected weight for the

estimated MC (ωOF
1 ) and the interaction torque’s cumulative sum (ωOF

3 ) was 1 and the weight for the

reference torque’s integral (ωOF
2 ) was 0.5. These values were manually obtained by performing various

HITL optimizations, during treadmill walking at 1.5 km/h with the SmartOs’ powered knee module and

evaluating the CMA-ES behavior during the optimization.

Table 25: Best objective function weights

Weight ωOF
1 ωOF

2 ωOF
3

Value 1 0.5 1

The results show that the same importance was given to the estimated MC and interaction torque,

regarding their impact on the CMA-ES objective function. The minimization of these two physiological

parameters in an equal manner was imperative for good CMA-ES performance since both signals have an

analogous impact on the user’s exertion.

On the other hand, the torque profile’s integral was given a smaller influence on the objective function’s

calculation. Despite its secondary role in the optimization, the presence of this variable in the optimization

was imperative in guaranteeing a symmetric knee trajectory during the flexion and extension movements.

However, a larger value of the ωOF
2 weight resulted in a failure to optimize the more critical physiological

values that better relate to the users’ exertion: the MC and interaction torque.
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6.4.2 Human experiments

In this section, the results regarding the human experimental validation of the HITL controller are

presented. Firstly, the results regarding the HITL optimization (first day of the experiment) are introduced.

Later, are presented the results respecting the comparison of the optimized torque controller with the

exoskeleton’s zero-torque mode and walking without the SmartOs’ device (second day of the experiment).

Human-in-the-loop optimization

Figure 45 presents the peak torque magnitudes for the various torque profiles generated in real-time

during the HITL optimization process, which took a total of 20 minutes (120 CMA-ES iterations). Figure

45a presents all positive and negative peak combinations. On the other hand, Figure 45b shows the

variation of both peaks’ magnitude over the optimization time represented by the CMA-ES 120 iterations.

(a) Positive and negative peak combinations generated

at the various iterations

(b) Variation of the positive and negative peaks (in

absolute) through the optimization process

Figure 45: Flexion (positive) and Extension (negative) torque magnitude values for the peaks of the various

torque profiles tested during optimization.

From Figure 45a, it was observed that no torque magnitude peak reached the selected maximum or

minimum value: 20 N.m and 15 N.m, for the positive peak, and -15 N.m and -20 N.m for the negative

peak. Additionally, most of the peak values were between the |17 N.m| and |18 N.m|. Furthermore,

Figure 45 shows that the variation of the peak values was larger at the start of the optimization, and at this

period both higher and lower peak values were tested. As the optimizer was running, both positive and

negative peaks were getting closer and closer to the final solution and started fluctuating less and less.

This was expected since as time passes the optimizer gets ’smarter’ and nearer to the optimal solution.
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Figure 46 depicts the variation of the objective function and its three parameters (MC, interaction

torque, and reference torque’s integral) over the optimization time represented by the optimizer’s

iterations. The objective function was calculated by Equation 23, using the weights obtained during the

bench tests.

Figure 46: Evolution of the CMA-ES objective function and respective variables.

Figure 46 shows that both the interaction torque’s cumulative sum and the reference torque’s integral

generally decrease with time. As previously explained, these two variables are related to some extent, as

decreasing the reference’s torque integral guarantees that the flexion and extension movement performed

by the DC motor will be symmetric, and, therefore, the user will not need to ’add’ extra torque to the

system. However, the two curves were not perfectly proportional, and at some points, a small torque’s

integral generated a significant interaction torque. This can be explained by the motor failures identified

in Chapter 5.4.2 that result in outlier interaction torque values.

Additionally, it was observed that the MC varies significantly at the start of the optimization process

and gets more stable and constant during the second optimization half. This could be explained by the

high torque variability at the start of the experiment, which resulted in abrupt movements performed by the

participant. However, the MC does not significantly decrease during the second half of the optimization

like the other two variables. This could be explained by the fact that the MC estimator solely focused on

the acceleration data of the ankle, wrist, waist, and chest, which did not change significantly during the

optimization second half, as the torque profile was getting closer to the optimal solution and its variability
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was smaller. This caused the objective function to focus on the minimization of the interaction torque’s

cumulative sum, as seen by the similarity between these two curves, during the optimization’s second

half.

Figure 47 presents the optimal torque profile obtained by the CMA-ES optimizer after the 120

iterations. The torque magnitude of the positive curve’s peak (flexion movement) was 18 N.m, while the

magnitude of the negative peak (extension movement) was -17.9 N.m.

Figure 47: Optimized torque profile.

Figure 47 shows that the positive and negative curves of the optimal torque profile were quite

balanced as the flexion and extension peaks were almost symmetrical. This was considered satisfactory

as it guaranteed a small value for its integral (0.3 N.m.s). A narrow integral value, as previously

explained, ensures that the SmartOs’ motor fully performs both the flexion and extension movements.

This leads to a much more comfortable gait pattern for the user.

Furthermore, the absolute value of the optimal peaks was roughly 18 N.m, an intermediate value

between the defined maximum (20 N.m) and minimum (15 N.m). This agrees with the objective function

definition, which tries to minimize both MC and interaction torque. Higher torques result in higher ankle

acceleration values, and, therefore, higher estimated MC, and lower torques result in higher interaction

torque since the user is forced to ’add’ the extra torque necessary to perform the flexion and extension

knee movements. Therefore, the objective function had to compromise and find a torque magnitude that

was not too high nor too low.

Assistance comparison

Figure 48 presents a box plot of the participant’s MC during the 5-minute protocol for each of the

tested conditions. The red line at the center of each box plot represents the MC median. The first and
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third quartiles are depicted by the bottom and top lines of the blue box, respectively, and the minimum

and maximum MC by the limits of the whiskers (the black dotted lines outside each box).

Figure 48: Boxplots depicting the MC of the participant during five minutes of walking at 1.5 km/h without the

exoskeleton, and with the exoskeleton in zero-torque mode and with the optimized torque controller.

From the results depicted in Figure 48, it was possible to observe that, on average, the condition

with lower MC was the optimized torque controller (the HITL strategy), demonstrating the efficacy of this

controller. Additionally, it was observed that the condition with higher MC was the zero-torque control,

which achieved MC values up to 2.2 W/kg. The higher MC during the zero-torque condition, compared

to the no-exoskeleton condition, could be explained by the additional weight added to the user’s right

leg, which increased the user’s effort, detected by the regression model due to an increase in the user’s

acceleration. These results are analogous to the conclusions in the literature studies, which obtained

higher MC during the zero-torque conditions, and lower MC during the optimized control (8, 49).

Additionally, the average MC for the no-exoskeleton, the zero-torque, and the optimized torque

conditions were 1.89 W/kg, 1.96 W/kg, and 1.79 W/kg, respectively. Therefore, the HITL-optimized

controller achieved an average MC reduction of 5.3% and 8.7% when compared to the no-exoskeleton

and zero-torque conditions, respectively. This reduction is lower than the results obtained in the

literature (7% (57) up to 48% (53)), which could be explained by the fact that this work focused on the

minimization of two physiological signals in simultaneous, the MC and interaction torque, in opposition

to the literature studies, that only minimized the MC.

Furthermore, compared to the torque tracking controller presented in Chapter 5, which achieved an
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average MC of 1.92 W/kg, the optimized controller accomplished an MC reduction of 6.8%. This

corroborates with the discussion of the previous section, as it explains why the optimized torque

magnitudes for the flexion and extension peaks were not set to the maximum allowed values (20 N.m

and -20 N.m). Higher torque magnitudes result in faster movements of the lower limbs, which result in a

higher estimated MC.

Figure 49 depicts the human-robot interaction torque during the experiment for each of the conditions

where the participant wore the SmartOs (zero-torque mode and optimized torque controllers). Two red

lines were used to represent the maximum and minimum values of the interaction torque measured. The

interaction torque measured between minutes 2 and 2.5 (30-second period) is also presented to depict

the signal during 12 gait cycles.

(a) Zero-torque controller (5 min.) (b) Zero-torque controller (30 sec.)

(c) Optimized torque controller (5 min.) (d) Optimized torque controller (30 sec.)

Figure 49: Interaction torque during five minutes (left) and 30 seconds (right) of walking at 1.5 km/h with a

zero-torque controller (top) and the optimized torque controller (bottom). The red lines represent the maximum

and minimum values of the interaction torque.

Figure 49 shows that the user’s interaction torque was, generally, much superior during the experiment

with the SmartOs’ in zero-torque mode. This could be explained by the fact that, in the zero-torque mode,

the person was in full command of the device and was forced to apply the necessary torque to drive it
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in the desired motion. During the optimized torque strategy, the interaction torque was generally much

lower since the exoskeleton was capable of performing most of the required torque to perform the desired

knee movement. However, during the optimized torque control experiment, significant torque spikes were

measured at random periods of the experiment. These outliers can be explained by the motor failures,

already described in Chapter 5.4.2, that caused the participant to undergo high positive knee interaction

torques to drive the motor to the desired position.

Additionally, the average of the absolute interaction torque was 5.27 N.m and 2.39 N.m for the

zero-torque and the optimized torque conditions, respectively. Therefore, the optimized HITL controller

achieved an interaction torque reduction of 54.6% on average, when compared to the zero-torque control.

Figure 50 presents the knee angle measured by SmartOs during the experiment, for the two controllers

tested (the zero-torque controller and the optimized torque controller). The knee angle measured between

minutes 2 and 2.5 (30-second period) is also presented to depict the signal during 12 gait cycles.

(a) Zero-torque controller (5 min.)
(b) Zero-torque controller (30 sec.)

(c) Optimized torque controller (5 min.) (d) Optimized torque controller (30 sec.)

Figure 50: Knee angle during five minutes (left) and 30 seconds (right) of walking at 1.5 km/h with a

zero-torque controller (top) and the optimized torque controller (bottom).

The results presented in Figure 50 depict that the participant had a more constant gait when using

the zero-torque controller since the movement was entirely controlled by the person. The ROM when
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walking with the zero-torque controller was roughly 55 degrees, while the ROM when walking with the

optimized torque controller was roughly 45 degrees, 10 degrees lower than the first experiment. This

smaller ROM could be explained by the relatively low torque magnitudes of the optimized torque profile

(maximum of 18 N.m and minimum of -17.9 N.m) that resulted in a smaller variation of the knee’s angle.

However, this difference was not prejudicial to the participant’s gait, who could still comfortably walk at

the desired speed. The irregular knee movement at some points of the gait could also be explained by the

DC motor failures since they caused sudden hiatuses to the knee’s trajectory, suspending the movement

momentarily.

6.5 Conclusions

This chapter presented the development of the HITL controller that was presented as the proposed

solution to the problems identified in the state of the art. The controller successfully integrated the

regression model for MC estimation presented in Chapter 4 and the torque tracking controller presented

in Chapter 5 with a CMA-ES optimizer to minimize the exoskeleton user’s MC and interaction torque in

real-time. In conclusion, the HITL controller was successfully implemented into the SmartOs’

architecture and proved to be effective in reducing both the user’s MC and the interaction torque

between the person and the exoskeleton and in guaranteeing a comfortable gait.
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7 Conclusions

WMSDs are currently a major cause of concern among developed countries, affecting millions of

European workers. It is estimated that three out of five workers suffer from these disorders, which have

a higher prevalence in the hip and knee joints of the workers (29% and 33%, respectively). The industrial

activities with a higher risk for WMSDs in the lower limbs are standing for long periods, and carrying and

lifting heavy loads, as these activities comprise task repetitions, forceful exertions, and awkward postures.

Despite the growing automation of industrial processes, humans are still needed to move heavy objects

and perform repetitive tasks in harmful postures. Exoskeletons are portable devices worn by healthy

workers to reduce the physical stress on the user’s muscles and joints. These devices can, therefore,

alleviate workers while they perform tasks that put them at risk for WMSDs, reducing the prevalence of

these disorders.

LLEs have proven to be capable of reducing the user’s physical exertion, however, various limitations to

the employment of these devices can still be detected. One drawback of the current industrial exoskeletons

is the lack of assistance strategies that adapt the device’s movement to the user’s demands in real-time

(online optimization). One possible strategy is the optimization of LLE’s control parameters based on users’

physiological signals, usually the MC, denominated by HITL control. This approach has already proven to

be effective in reducing the user’s MC in laboratory settings, however, it has not yet been implemented in

industrial applications. Additionally, measuring the MC of the user is not trivial, as the standard method for

estimating this signal is through indirect calorimetry, which has countless limitations and is not feasible for

HITL applications in real-world industrial backgrounds. A possible solution is the use of machine or deep

learning models used to estimate the MC of a person based on data obtained from wearable sensors.

In this dissertation, an adaptive torque control was proposed for a knee exoskeleton (SmartOs),

towards the power augmentation of workers during high-exertion tasks. The control employed a HITL

strategy to optimize, in real-time, the torque profile of the LLE with the objective of reducing the user’s

exertion, measured by the MC and the human-robot interaction torque. Instead of estimating the MC

through indirect calorimetry, this dissertation proposed the integration of a regression algorithm in the

HITL control, capable of estimating this physiological signal based on a minimal number of wearable and

non-intrusive sensors.

The first objective of this work was to conduct a literature review of LLEs, HITL controls, and regression

algorithms for MC estimation. These reviews were presented in Chapter 2. The state of the art on industrial

exoskeletons revealed the existence of two main LLE types: (i) devices for power augmentation in load-
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carrying activities; and (ii) chair-like exoskeletons. Regarding the first type, most of the devices were actively

actuated in at least one joint, more commonly the knee. In regards to the control strategies implemented in

the analyzed exoskeletons, the devices were not designed to assist the users in an individualized approach

nor considered the users’ condition when wearing the device. The review of the HITL controllers showed

that various optimization algorithms can be employed, with the most common method being a CMA-ES

optimizer. Additionally, most of the literature studies optimized the users’ MC, estimated by a respirometer

device through indirect calorimetry, and took over 30 minutes of optimization time. The state of the art

on regression models for MC estimation revealed that the studies varied significantly from each other

regarding the activities performed, the model used, and the number, type, and location of the sensors.

From this analysis, it was concluded that some of the best signals to estimate the MC were: (i) the HR; (ii)

the waist, wrist, and ankle acceleration; and (iii) the user’s weight and gender. The KPI for this objective

was the production of the review, and was, therefore, considered concluded.

In Chapter 4, a regression model for MC estimation was developed and integrated into SmartOs’

architecture. The model was able to estimate the MC of a person, in real-time and in 10-second intervals,

based on data acquired from four wearable and non-intrusive inertial sensors (3D acceleration) located at

the chest, left waist, right wrist, and right ankle. This procedure covered various steps: (i) the selection of

a public dataset with relevant data; (ii) the optimization of the data preprocessing method; (iii) the sensors

selection for the MC estimation, without disregarding their feasibility for HITL applications in industrial

contexts; (iv) the development and comparison of various regression models, using the LOOCV technique;

(v) the implementation of the model into the SmartOs’ architecture; and (vi) the validation of the model in a

real-time human experimental. The model was successfully developed and integrated into the exoskeleton

system, with low computational cost and without latency. An offline test showed that the model achieved

an RMSE of 0.45 W/kg and a coefficient of determination (R2) of 0.84, better values than the metrics

established as the KPI of the model (0.8 W/kg and 0.8, respectively). The validation in real-time obtained

an RMSE 46.7% higher than the offline test (0.66 W/kg), however, these results were still lower than

the KPI, and the model was considered effective. Additionally, this work allowed a reduction in the time

required to estimate the steady-state MC from 3 minutes to 10 seconds, when compared to the indirect

calorimetry method. Therefore, considering these results, and the fact that the model only required the

data from four wearable and non-intrusive sensors, the algorithm was considered suitable to be integrated

into a HITL control.

In Chapter 5, a torque tracking control for the knee exoskeleton was developed. This control was able

to drive the LLE’s motor by following a desired knee torque profile, and was composed of three main blocks:

117



(i) a natural cubic interpolator used to generate any desired torque profile; (ii) a mid-level controller used to

estimate the gait cycle phase and generate the reference torque from the torque profile and the estimated

gait cycle phase; and (iii) a low-level controller used to drive the motor in the desired torque trajectory, by

minimizing the difference between the reference torque and the actuator’s real torque. This was followed

by the identification of the ideal torque profile shape for an electric motor, which was composed of one

flexion and one extension curve, with peaks at 55% and 86% of the gait cycle. A conceptual experimental

validation of the torque tracking control showed that the control was able to follow the desired torque profile

and that this torque profile enabled the user to walk comfortably, without constraints. The user’s movement

was considered continuous and regular, and the control allowed a low human-device interaction torque

during the experiment (-4 N.m to 7 N.m). Therefore, the control achieved its established KPI, which was

ensuring a comfortable gait, and was considered adequate to be integrated into the HITL control proposed

in this dissertation.

In Chapter 6, a HITL adaptive torque control was developed, by integrating the regression model for

MC estimation and the torque tracking control with a CMA-ES optimizer. The HITL control was capable of

adapting the torque profile provided to the torque tracking control, in real-time, by minimizing the user’s

exertion. The exertion was measured by the user’s estimated MC (through the regression model) and the

user’s interaction torque. Two control parameters were optimized: the torque magnitude of the flexion

and extension peaks of the knee torque profile. The CMA-ES optimizer was capable of finding an optimal

solution in 20 generations, a total of 20 minutes of optimization time, a value lower than the established

KPI for this control (30 minutes). Finally, a conceptual experimental validation of the HITL control was

performed. The optimized torque control achieved an 8.7% reduction of the user’s MC when compared

to a zero-torque condition, a value slightly lower than the KPI (10%). Furthermore, the control achieved a

54.6% reduction of the user’s interaction torque, which in this case was a value significantly higher than

the KPI (10%). The control was successfully integrated into SmartOs’ architecture, running smoothly and

without any latency, and was considered effective in minimizing the exoskeleton user’s exertion.

The goals proposed for this dissertation (presented in Chapter 1.3) were therefore considered fulfilled.

Furthermore, the work here presented was able to answer the research questions established in Chapter

1.4:

• RQ1: What are the current effects of HITL controls implemented on LLEs?

The answer to this question can be found in Chapter 2. From the state of the art analysis on

HITL controls, it was possible to observe that all controls were effective in optimizing their desired

physiological signal (the optimized signal varied from study to study). Most of the controls adapted
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the control parameters of an exoskeleton based on the user’s MC. These studies achieved MC

reductions from 7% to 48%, obtaining, therefore, almost half of the MC when using optimized

assistance to each user. Studies that minimized the user’s muscle activity achieved reductions of

this signal of 21%. Furthermore, studies that optimized the user’s gait speed were able to reduce

this parameter by 42%. All these results were obtained when comparing the optimized control with

a no-exoskeleton condition, in an experimental protocol.

• RQ2: How accurate can a regression model be in estimating the MC based on a small number of

wearable and non-intrusive sensors?

The answer to this question can be found in Chapter 4. The MC estimating regression model

developed in this dissertation passed through two main validation stages: the offline validation/test,

using the LOOCV method where one random subject was chosen for testing the model; and the real-

time validation, where various participants performed an experimental protocol and the estimation

made by the model was compared to the estimation made through indirect calorimetry. During the

offline validation, the regression model achieved an RMSE and a coefficient of determination (R2)

of 0.31 W/kg and 0.91, respectively. Regarding the offline test, the regression model achieved an

average RMSE of 0.45 W/kg and an R2 of 0.84. As to the real-time experimental validation, the

average RMSE between all participants was 0.66 W/kg, while the average R2 was 0.75.

• RQ3: How much can LLE users’ exertion be reduced by a real-time HITL optimization?

The answer to this question can be found in Chapter 6. The HITL control presented in this

dissertation was used to optimize a torque profile of a knee exoskeleton, in real-time, by

minimizing the user’s exertion, evaluated by a weighted sum of the user’s MC and interaction

torque. The effectiveness of the control was assessed by comparing the user’s exertion when

walking without the exoskeleton, and when walking with the device in a zero-torque mode and

with the optimized torque control. The optimized assistance achieved an MC reduction of 5.3 %

and 8.7% compared to the no-exoskeleton and zero-torque conditions, respectively. Additionally,

the HITL control enabled interaction torque reductions of 54.6% compared to walking with the

exoskeleton in the zero-torque mode.

7.1 Future work

Future work to extend the work developed in this dissertation comprises of: (i) the integration of an HR

monitor sensor into the SmartOs system, to allow the MC estimation by a regression model based not only
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on the 3D acceleration data but also on the HR signal measured in real-time; (ii) the development of a new

regression model capable of estimating the MC during a large set of activities, especially activities with

higher industrial relevance, such as lifting and carrying heavy loads; and (iii) the experimental validation

of the HITL control with more participants.
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A Appendix: Cross-correlation between Ingraham’s and

InertiaLab’s 3D acceleration axes

Tables 26, 27, 28, and 29 present the results of the cross-correlation study performed for

Ingraham’s and InertiaLab’s 3D acceleration axes, for the right wrist, chest, left waist, and right ankle

IMUs, respectively. The best correspondence between the two systems is marked in red.

Table 26: Wrist axis cross-correlation between Ingraham’s and InertiaLab’s data. Legend: IL - ”InertiaLab”

IL’s x-axis IL’s y-axis IL’s z-axis
Inverted

IL’s x-axis

Inverted

IL’s y-axis

Inverted

IL’s z-axis

Ingraham’s x-axis -0.2 140.9 0 399.5 0 86.3

Ingraham’s y-axis -0.6 394 -0.1 1109.6 -0.2 240.6

Ingraham’s z-axis 145.8 0 32.4 0 52.4 0

Table 27: Chest axis cross-correlation between Ingraham’s and InertiaLab’s data. Legend: IL - ”InertiaLab”

IL’s x-axis IL’s y-axis IL’s z-axis
Inverted

IL’s x-axis

Inverted

IL’s y-axis

Inverted

IL’s z-axis

Ingraham’s x-axis 0 0 564.7 4960.3 283.6 0

Ingraham’s y-axis 0 0 119.6 1033.3 60.9 0

Ingraham’s z-axis 802.4 46.6 0 0.1 0 91.4

Table 28: Waist axis cross-correlation between Ingraham’s and InertiaLab’s data. Legend: IL - ”InertiaLab”

IL’s x-axis IL’s y-axis IL’s z-axis
Inverted

IL’s x-axis

Inverted

IL’s y-axis

Inverted

IL’s z-axis

Ingraham’s x-axis 0 262.8 690.2 5224 2.5 0

Ingraham’s y-axis 0 44.2 107.8 797 0.6 0

Ingraham’s z-axis 0 41.8 101.7 753.3 0.6 0
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Table 29: Ankle axis cross-correlation between Ingraham’s and InertiaLab’s data. Legend: IL - ”InertiaLab”

IL’s x-axis IL’s y-axis IL’s z-axis
Inverted

IL’s x-axis

Inverted

IL’s y-axis

Inverted

IL’s z-axis

Ingraham’s x-axis 0 698.7 1734.8 6475.4 47.1 0

Ingraham’s y-axis 10.7 126.8 168.5 503.4 93.7 20.7

Ingraham’s z-axis 0 180.9 369.4 1317 22 0.5
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B Appendix: 3D acceleration acquired during the MC

estimation validation

Figures 51, 52, 54, 56, 58, and 60 present the acceleration values, along each axis, of Participants

1, 2 (1st and 2nd trials), 3, 4, and 5, respectively, respective to the signals that were used to estimate

the MC (acceleration of the chest, right wrist, left waist, and right ankle). Figures 53, 55, 57, 59, and 61

present the acceleration of the other locations (right waist, back waist, and right knee), along each axis,

of Participants 2 (1st and 2nd trials), 3, 4, and 5, respectively.

(a) Chest (b) Right wrist

(c) Left waist (d) Right ankle

Figure 51: Raw 3D acceleration signals measured by the InertiaLab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 1.
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(a) Chest (b) Right wrist

(c) Left waist (d) Right ankle

Figure 52: Raw 3D acceleration signals measured by the InertiaLab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 2 (Trial 1).

(a) Right waist (b) Back waist (c) Right knee

Figure 53: 3D Acceleration signals measured by the InertiaLab’s IMUs that were not used to predict the MC

(right waist, back waist, and right knee), for Participant 2 (Trial 1).
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(a) Chest (b) Right wrist

(c) Left waist (d) Right ankle

Figure 54: Raw 3D acceleration signals measured by the InertiaLab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 2 (Trial 2).

(a) Right waist (b) Back waist (c) Right knee

Figure 55: 3D Acceleration signals measured by the InertiaLab’s IMUs that were not used to predict the MC

(right waist, back waist, and right knee), for Participant 2 (Trial 2).
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(a) Chest (b) Right wrist

(c) Left waist (d) Right ankle

Figure 56: Raw 3D acceleration signals measured by the InertiaLab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 3.

(a) Right waist (b) Back waist (c) Right knee

Figure 57: 3D Acceleration signals measured by the InertiaLab’s IMUs that were not used to predict the MC

(right waist, back waist, and right knee), for Participant 3.
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(a) Chest (b) Right wrist

(c) Left waist (d) Right ankle

Figure 58: Raw 3D acceleration signals measured by the InertiaLab’s IMUs that were used to predict the MC

(chest, right wrist, left waist, and right ankle), for Participant 4.

(a) Right waist (b) Back waist (c) Right knee

Figure 59: 3D Acceleration signals measured by the InertiaLab’s IMUs that were not used to predict the MC

(right waist, back waist, and right knee), for Participant 4.
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(a) Chest (b) Right wrist

(c) Left waist (d) Right ankle

Figure 60: Raw 3D acceleration signals measured by the InertiaLab’s IMUs that were used to predict the

MC(chest, right wrist, left waist, and right ankle), for Participant 5.

(a) Right waist (b) Back waist (c) Right knee

Figure 61: 3D Acceleration signals measured by the InertiaLab’s IMUs that were not used to predict the MC

(right waist, back waist, and right knee), for Participant 5.

138


	Introduction
	Motivation
	Problem statement
	Dissertation goals
	Research questions
	Contributions to knowledge
	Manuscript outline

	Review on exoskeletons for assisting workers and human-in-the-loop controls
	State of the art on industrial lower limb exoskeletons
	Introduction
	Methods
	Results
	Discussion

	State of the art on human-in-the-loop controls
	Introduction
	Methods
	Results
	Discussion

	State of the art on metabolic cost estimation models
	Introduction
	Methods
	Results
	Discussion

	General conclusions

	System requirements and overview for assisted working
	Industrial assistance requirements
	SmartOs system
	Proposed solution

	Metabolic cost estimation
	Introduction
	Methods
	Dataset selection
	Data preprocessing
	Regression Models
	Model integration in SmartOs' architecture

	Validation
	Offline
	Bench tests
	Human experiments

	Results and discussion
	Offline validation
	Offline testing
	Bench tests
	Human experiments
	Conclusions


	Torque tracking control
	Introduction
	Methods
	Torque profile generation
	Torque controller implementation

	Validation
	Bench tests
	Human experiments

	Results and discussion
	Bench tests
	Human experiments

	Conclusions

	Human-in-the-loop control
	Introduction
	Covariance Matrix Adaptation – Evolutionary Strategy

	Methods
	Knee torque profile
	CMA-ES optimizer
	HITL control implementation

	Validation
	Bench tests
	Human experiments

	Results and discussion
	Bench tests
	Human experiments

	Conclusions

	Conclusions
	Future work

	References
	Appendix: Cross-correlation between Ingraham's and InertiaLab's 3D acceleration axes
	Appendix: 3D acceleration acquired during the MC estimation validation

