
Electronic Notes in Volume 3

Theoretical Informatics ENTICS Proceedings of

And Computer Science https://entics.episciences.org MFPS 2023

A Complete V-Equational System for Graded λ-Calculus

Fredrik Dahlqvista,1 Renato Nevesb,2

a Queen Mary University of London and University College London, United Kingdom
b University of Minho & INESC-TEC, Portugal

Abstract

Modern programming frequently requires generalised notions of program equivalence based on a metric or a similar structure.
Previous work addressed this challenge by introducing the notion of a V-equation, i.e. an equation labelled by an element
of a quantale V, which covers inter alia (ultra-)metric, classical, and fuzzy (in)equations. It also introduced a V-equational
system for the linear variant of λ-calculus where any given resource must be used exactly once.
In this paper we drop the (often too strict) linearity constraint by adding graded modal types which allow multiple uses of
a resource in a controlled manner. We show that such a control, whilst providing more expressivity to the programmer, also
interacts more richly with V-equations than the linear or Cartesian cases. Our main result is the introduction of a sound and
complete V-equational system for a λ-calculus with graded modal types interpreted by what we call a Lipschitz exponential
comonad. We also show how to build such comonads canonically via a universal construction, and use our results to derive
graded metric equational systems (and corresponding models) for programs with timed and probabilistic behaviour.

Keywords: λ-calculus, graded modal type, quantitative equational theory, enriched category theory.

1 Introduction

This paper tackles the challenge of reasoning about program equivalence in computational paradigms with
an intrinsic quantitative nature, such as timed and probabilistic computation. This usually calls for notions
of program equivalence based on a quantity (often a metric), in lieu of the sharp, binary ones relating
classical programs. For example, instead of checking whether two programs terminate exactly at the same
time one might be more interested in checking whether they terminate with a small difference between
their execution times. Similarly, on the probabilistic side, it makes sense to consider that two Bayesian
inference algorithms are equivalent if they agree up to some small (total variation) error ε when sampling
from the same target posterior distribution. In order to reason in this way, [13] introduced the notion of
a V-equation, i.e. an equation labelled by an element of a quantale V, that serves as an abstract notion
of ‘quantitative equality’. This covers, for example, (ultra-)metric and fuzzy (in)equations, among others.
Additionally [13] presented a V-equational system for the linear version of λ-calculus which imposes that
any given resource must be used exactly once.

The aim of this work is to overcome this linearity constraint whilst retaining the ability to reason
quantitatively about program equivalence. We do so by adding graded modal types [23,19,44] (a way of
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permitting multiple uses of a given resource) to the aforementioned V-equational framework of linear λ-
calculus [13]. The result is a compromise between standard, non-linear λ-calculus which is to some degree
incompatible with quantitative reasoning (see the negative results of [33, §6]) and linear λ-calculus which
can be combined with quantitative reasoning [13] but is cumbersome for many non-linear applications.

Let us illustrate this compromise with a simple example that involves metric equations [40] and timed
computation [13]. Consider a ground type X and a signature {waitn : X → X | n ∈ N} of wait calls –
intuitively, a term waitn(x) reads as “add a latency of n seconds to computation x”. As discussed in [13],
a series of metric equations arise naturally from this computational paradigm. For example,

λx. wait1(x) =1 λx. wait2(x) (1)

states that when fed the same argument these λ-terms yield computations whose execution times differ
by at most one second. Now, as a useful principle that underpins compositionality we would like that for
all λ-terms u the application function v 7→ u v satisfies the implication v =q w ⇒ u v =q uw, i.e. it is
non-expansive w.r.t. distances between programs. This is impossible in the Cartesian setting, because u
may contain multiple ocurrences of a variable (corresponding to multiple uses of a given resource). Let
u for example be λf. λy. f (f y). Then u (λx. wait1(x)) corresponds to an execution time of two seconds
and u (λx. wait2(x)) to four seconds, a two-second difference that violates the implication for (1). The
graded setting explored in this paper serves as middleground between the linear and Cartesian cases: it
increases distances proportionally to the number of times a resource is usable and at the same time forbids
u from using a resource more times than stipulated. Specifically for the case just presented one can mark
λx. wait1(x) (resp. λx. wait2(x)) to be usable precisely twice, via a ‘promotion construct’ !2(−), and
according to our graded equational system deduce the metric equation,

!2
(
λx. wait1(x)

)
=1+1 !2

(
λx. wait2(x)

)

We then use the graded typing system to ensure u uses the received argument precisely twice. We will
see that this ensures the non-expansiveness of the application function – actually of the more general case
(u, v) 7→ u v – amongst other benefits.
Contributions and outline. We present a sound and complete V-equational system for a graded λ-
calculus. The corresponding interpretation is based on symmetric monoidal closed categories enriched
over ‘generalised metric spaces’ and equipped with a Lipschitz exponential comonad, a natural extension
of the concept of graded exponential comonad [19,30] to the setting of V-equations. Furthermore, we show
how to canonically build Lipschitz exponential comonads over symmetric monoidal closed categories that
satisfy mild conditions. The construction is inspired by [41], and based on the notion of a cofree graded
commutative comonoid together with a certain kind of enriched limit.

§2 introduces a graded λ-calculus and an equational system that characterises term equivalence. This
calculus fundamentally differs from previous ones [7,19,44] in that the substitution rule in its standard
format is derivable – this is key to our completeness result. §2 also presents an interpretation of the
calculus via symmetric monoidal closed (a.k.a. autonomous) categories together with graded exponential
comonads [19,30]. It then proves soundness of the aforementioned equational system w.r.t. this interpre-
tation. §3 extends §2 to the V-equational setting. Specifically, it equips our graded λ-calculus with a
V-equational system and shows how to interpret it via autonomous categories enriched over generalised
metric spaces together with Lipschitz exponential comonads. It also shows that the V-equational system is
sound and complete w.r.t. this interpretation (Theorem 3.13). This result is highly generic and covers met-
ric equations, classical (in)equations and ultra-metric and fuzzy variants. To the best of our knowledge
this completeness result even for the basic case of classical equations is new. §4 details the aforemen-
tioned canonical construction of Lipschitz exponential comonads and §5 uses it as basis to provide metric
higher-order models of both timed and probabilistic computation. In the former case the model that we
canonically obtain is based on the category of metric spaces and non-expansive maps with the underlying
Lipschitz comonad being that of dilations [30]. In the latter case the model is based on the category
of Banach spaces and short linear maps with the underlying Lipschitz comonad arising from a process
of symmetrisation well-known in linear algebra [6,8]. We assume basic knowledge of (enriched) category
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theory.
Related work. The need for quantitative notions of program equivalence has been explored in several
concrete computational paradigms. This is the case for example of [47], [29], and [9,10] which introduce
metric reasoning mechanisms for differential privacy, quantum, and probabilistic computation respectively.
Other works take a more general perspective. For example on the side of universal algebra there has been
great progress on the closely related topic of quantitative algebra, with focus typically on metric equations
and inequations, see for example [39,40,48,2]. In fact, one case with a particularly interesting connection to
ours is [11]: it explores a notion of quantitative equality with graded modalities and studies a corresponding
algebraic semantics via Lawvere’s doctrines. Our target is, however, λ-calculus. This sets us apart from
these approaches, and in this regard positions us closer to the quantitative approaches targetting λ-
calculi such as [20] and [21] which use the notion of a quantale to introduce quantitative counterparts
of applicative (bi)similarity and rewriting systems respectively. Another example is [46] which studies
quantitative semantics of simply-typed λ-calculi based on a generalisation of logical relations.

2 A graded λ-calculus and its interpretation

2.1 The calculus

We start by presenting our graded λ-calculus. In a nutshell, it is a graded extension of the linear-non-linear
λ-calculus in [4,5] and can be seen as a term assignment system for a graded version of intuitionistic linear
logic. Aside from the use of grades, the main difference with [4,5] is the use of a shuffling mechanism [50]
that allows to refer to a λ-term’s denotation unambiguously (more details below).
Types. As usual with graded modal types [23,19,44], we fix a semiring R = (R, 0, 1,+, ·) of ‘resource
quantities’. We then fix a set G of ground types and consider the following grammar of types:

A ::= X | I | A⊗ A | A ⊸ A | !r A (X ∈ G, r ∈ R).

Elements of R will be called grades. The grade r associated with a modal type !r A intuitively represents
how much of a resource we possess. For example, in the case of R being the semiring of natural numbers
r may be regarded as the number of times a resource can be used before depletion.
Contexts and shuffles. We use Greek uppercase letters Γ,∆, E, . . . to denote typing contexts, i.e. lists
of typed variables x1 : A1, . . . , xn : An such that each xi occurs at most once. As already mentioned, we
will also use the notion of a shuffle: a permutation of typed variables in a context sequence Γ1, . . . ,Γn such
that for all i ≤ n the relative order of the variables in Γi is preserved [50]. For example, if Γ1 = x : A, y : B
and Γ2 = z : C then z : C, x : A, y : B is a shuffle but y : B, x : A, z : C is not, because we changed the order
in which x and y appear in Γ1. We denote by Sf(Γ1; . . . ; Γn) the set of shuffles on Γ1, . . . ,Γn. Shuffles
will be used to build a graded λ-calculus where the exchange rule is admissible and at the same time each
judgement Γ✄ v : A has a unique derivation (Theorem 2.3). This will allow us to refer to a judgement’s
denotation JΓ✄ v : AK unambiguously.
Terms. Fix a set Σ of sorted operation symbols f : A1, . . . ,An → A with n ≥ 1. The term formation rules
of the graded calculus are listed in Figure 1. By convention all contexts involved in the premisses of any
of the listed rules are mutually disjoint. This entails for instance that in (⊗e) neither x nor y can occur in
Γ and analogously for (!n+m). The rules above the dotted line are standard and in correspondence to the
natural deduction rules of exponential-free intuitionistic linear logic; we omit here their explanation. As
for the others, the promotion rule (!i) allows the use of a term ‘r-times’ by intuitively binding all variables
xi : !si Ai in its context to terms vi whose type !r·si Ai is graded by the ‘r-multiple’ of si. The dereliction
rule (!e) connects the modal typing system to the linear one, in particular it makes explicit that terms with
linear types must be used exactly once. This is essential e.g. for using terms whose type is linear multiples
times. Take for example the semiring of natural numbers and a sorted operation symbol f : A → A. A
call to f that is usable precisely ‘r-times’ is given by the judgement y : !r A✄ pr(r,[1]) y frx. f(drx) : !r A.

Finally rules (!0) and (!n+m) correspond respectively to graded versions of weakening and contraction.
They can be seen intuitively as discard and copy operations where in the latter case variables x and y are
bound to the object v being copied.
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Remark 2.1 When we instantiate R to the trivial semiring ({∞},∞,∞,+, ·), the rules in Figure 1 are
the ones presented in [4] modulo the shuffling mechanism.

Γi ✄ vi : Ai f : A1, . . . ,An → A ∈ Σ E ∈ Sf(Γ1; . . . ; Γn)

E ✄ f(v1, . . . , vn) : A
(ax)

x : A✄ x : A
(hp)

−✄ ∗ : I
(Ii)

Γ✄ v : I ∆✄ w : A E ∈ Sf(Γ;∆)

E ✄ v to ∗ . w : A
(Ie)

Γ✄ v : A ∆✄w : B E ∈ Sf(Γ;∆)

E ✄ v ⊗w : A⊗ B
(⊗i)

Γ✄ v : A⊗ B ∆, x : A, y : B✄ w : C E ∈ Sf(Γ;∆)

E ✄ pm v to x⊗ y. w : C
(⊗e)

Γ, x : A✄ v : B

Γ✄ λx : A. v : A ⊸ B
(⊸i)

Γ✄ v : A ⊸ B ∆✄w : A E ∈ Sf(Γ;∆)

E ✄ v w : B
(⊸e)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γi ✄ vi : !r·si Ai x1 : !s1 A1, . . . , xn : !sn An ✄ u : A E ∈ Sf(Γ1; . . . ; Γn)

E ✄ pr(r,[s1,...,sn]) v1, . . . , vn fr x1, . . . , xn. u : !r A
(!i)

Γ✄ v : !1 A
Γ✄ dr v : A

(!e)

Γ✄ v : !0 A ∆✄ u : B E ∈ Sf(Γ;∆)

E ✄ ds v. u : B
(!0)

Γ✄ v : !n+mA ∆, x : !n A, y : !mA✄ u : B E ∈ Sf(Γ;∆)

E ✄ cp(n,m) v to x, y. u : B
(!n+m)

Fig. 1. Term formation rules of graded λ-calculus.

Properties. Our calculus has several desirable properties (Theorem 2.3 and Lemma 2.4), including
the aforementioned fact that all judgements have a unique derivation. We start by presenting auxiliary
notations. Given a context Γ we will use te(Γ) to denote Γ with all types erased. Additionally, for contexts
Γ and Γ′ we will use notation Γ≃π Γ

′ to state that Γ is a permutation of Γ′. We will also use an analogous
notation for non-repetitive lists of untyped variables te(Γ). We will often abbreviate a judgement Γ✄v : A
into Γ ✄ v or even just v if no ambiguities arise. Finally, we will often denote a list of terms v1, . . . , vn
simply by v and analogously for lists of variables.

Proposition 2.2 Let us consider two lists of contexts Γ1, . . . ,Γn and Γ′
1, . . . ,Γ

′
n, contexts E and E′, and

suppose that E ∈ Sf(Γ1; . . . ; Γn), E
′ ∈ Sf(Γ′

1; . . . ; Γ
′
n). Then the following clauses hold:

(i) if te(Γi)≃π te(Γ′
i) for all i ≤ n then te(E)≃π te(E′);

(ii) if Γi ≃π Γ′
i for all i ≤ n then E ≃π E′;

(iii) if E ≃π E′ and te(Γi)≃π te(Γ′
i) for some i ≤ n then Γi ≃π Γ′

i;

(iv) if E = E′ and te(Γi)≃π te(Γ′
i) for some i ≤ n then Γi = Γ′

i.

Theorem 2.3 Graded λ-calculus has the following properties:

(i) for all judgements Γ✄ v and Γ′
✄ v we have te(Γ)≃π te(Γ′);

(ii) additionally if Γ✄ v : A, Γ′
✄ v : A′, and Γ≃π Γ′ then A must be equal to A′;

(iii) all judgements Γ✄ v : A have a unique derivation.

Proof. The first clause follows straightforwardly from induction over the derivation system (Figure 1) and
the first clause of Proposition 2.2. The second clause follows from induction over the derivation system,
the first clause, the second and third clauses of Proposition 2.2, the grade annotations in term constructs,
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and the type annotation in the λ-construct. The third clause follows from induction over the derivation
system, the second clause, the shuffling mechanism, and the fourth clause of Proposition 2.2. ✷

Substitution is defined in the expected way and as usual uses α-equivalence to avoid capturing free
variables. In our setting such captures arise from the rules (⊸i), (⊗e), (!i), and (!n+m).

Lemma 2.4 (Exchange and Substitution) For every judgement Γ, x : A, y : B,∆✄v : C we can derive
Γ, y : B, x : A,∆✄v : C. For all judgements Γ, x : A✄v : B and ∆✄w : A we can derive Γ,∆✄v[w/x] : B.

Proof. As usual the exchange property follows from induction over the derivation system in Figure 1.
The substitution property follows from the exchange property, the fact that x occurs at most once in the
term v, and from induction over the judgement derivation Γ, x : A✄ v : B. ✷

The substitution property proved in Lemma 2.4 generalises to iterated substitution. More specifically,
given Γ, x1 : A1, . . . , xn : An ✄ v : B and ∆i ✄ wi : Ai (i ≤ n) with all contexts involved pairwise disjoint
one easily derives Γ,∆1, . . . ,∆n ✄ v[w1/x1] . . . [wn/xn] : B. Additionally it is straightforward to prove
that, by virtue of all contexts being pairwise disjoint, the order in which the sequence of substitutions
occurs is irrelevant. For this reason we will often abbreviate v[w1/x1] . . . [wn/xn] simply to v[w/x] or
v[w1/x1, . . . , wn/xn].

Remark 2.5 The promotion rule (!i) of our graded calculus differs from the promotion rule of previous
calculi with graded modalities [7,19]. Let us explain this distinction and justify it. Let s denote a list of
grades s1, . . . , sn and r · s denote the list of grades r · s1, . . . , r · sn. If we write !s Γ to say that the type of
every variable xi in Γ is of the form !si Ai, then for every judgement !s Γ✄v : A with te(Γ) = x1, . . . , xn we
can derive !r·s Γ✄ pr(r,s) x fr y. v[y/x] : !r A – we abbreviate the latter term simply to !r v. The following
rule is then admissible in our calculus:

!s Γ✄ v : A
!r·s Γ✄ !r v : !r A

A rule with the same structural format is added natively to the calculi in [7,19] and is the counterpart to
our promotion rule (!i). The former however breaks the substitution property stated in Lemma 2.4 (details
available in [4, page 10]). This would hinder the development of our equational system and associated
completeness result and justifies the slightly more complicated rule (!i).

Equational system. Figure 2 presents the equational schema of graded λ-calculus. As usual, we omit
the typing information of the equations-in-context listed in Figure 2 which can be recovered uniquely up to
permutations. The symbols (:) and (++) denote usual operations on lists namely cons and concatenation.
Note as well the division of the equational schema into different sections referring to specific categorical
machinery. This is to attach a semantic intuition to the equations and to foreshadow the categorical
structures that will be used later on to interpret graded λ-calculus. The equations concerning the monoidal
structure and the closed structure were already discussed elsewhere (e.g. [4,13]). The equations concerning
commuting conversions enforce the fact that certain expressions differing in scope such as (ds v. u) ⊗ w
and ds v. (u ⊗w) are intended to have the same meaning.

Next, in the axiomatisation of the comonadic structure, the first and second equations are respectively
β and η equations and embody the counit laws associated to the underlying graded comonad. The third
equation states that the inner promotion (on the left-hand side) can be pushed-forward to w but with the
factor r1 discarded as a result from not being bound to variable a anymore. This equation embodies the
associativity law of the underlying graded comonad. Observe that for these three equations to be well-
defined the reduct (R, 1, · ) in the semiring R needs to be a monoid (which we assumed previously). The
fourth equation tells that the order in which terms v appear in a promotion pr(r,s) v frx. u is irrelevant,
which fact embodies the symmetry of the graded comonad.

The discard (i.e. weakening) and copy (i.e. contraction) operations suggest a (graded) commutative
comonoidal structure, which is reflected in the four corresponding equations in Figure 2. This time,
these equations force the reduct (R, 0, +) in the semiring R to be a commutative monoid (which indeed
we also assumed previously). In the axiomatisation of the interaction between the underlying comonoid
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and comonad, the first two equations can be seen as a mechanism for shifting term complexity between
the discard and promotion expressions (this is noticeable by looking at the grade annotations in the
promotions, when present). They may equally well be regarded respectively as β and η-equations whose
corresponding reduction simplifies the promotion expression. Semantically they reflect the naturality of
the discard operation, that the latter is a graded version of a coalgebra morphism, and that the comonad’s
comultiplication is a comonoid morphism (we formally detail this later on). Note as well that these
equations force 0 to be an absorbing element of the monoid operation (·) in the semiring R (which indeed
we assumed previously). The last two equations follow a reasoning analogous to the previous two, and
force (·) to distribute over (+) both on the left and the right (which we also assumed). The equations
described thus entail that R has a semiring structure as previously postulated.

Remark 2.6 This equational schema is a graded generalisation of the one presented in [4]. In fact, for
the particular case of the singleton semiring R = {{∞},∞,∞,+, ·} our equations collapse to those in [4]
except for the equation about the comonad’s symmetry which is absent from op. cit.

2.2 The interpretation

In this subsection we present an interpretation of the graded calculus detailed above. The interpretation
uses the categorical machinery suggested in [19,30,44] to interpret previous graded calculi. We also prove
that the equational schema in Figure 2 is sound w.r.t. this interpretation.

We start by recalling preliminary categorical notions and some conventions concerning symmetric
monoidal closed (i.e. autonomous) categories. Given one such category C and for a list of C-objects
X1, . . . ,Xn we write X1⊗· · ·⊗Xn for the n-tensor (. . . (X1⊗X2)⊗ . . . )⊗Xn and similarly for morphisms.
For all C-objects X,Y,Z, γ : X ⊗ Y → Y ⊗ X denotes the symmetry morphism, λ : I ⊗ X → X the
left unitor, app : (X ⊸ Y ) ⊗ X → Y the application morphism, and α : X ⊗ (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z
the left associator. For all C-morphisms f : X ⊗ Y → Z we denote the corresponding curried version
by f : X → (Y ⊸ Z). We will frequently omit subscripts in natural transformations. For a monoidal
functor F : C → C we denote by φ : I → FI and φX,Y : FX ⊗ FY → F (X ⊗ Y ) the corresponding
monoidal operations. Similarly given C-objects X1, . . . ,Xn we denote by φX1,...,Xn : FX1 ⊗ · · · ⊗ FXn →
F (X1 ⊗ · · · ⊗Xn) the morphism defined recursively on the size of n by:

φ− = φ φX = id φX1,...,Xn,Xn+1 = φ(X1⊗···⊗Xn),Xn+1
· (φX1,...,Xn ⊗ id).

In the presence of several monoidal functors F,G, we denote their respective monoidal operations by
φF , φG.

We now set the ground for the notion of a graded exponential comonad, explored for example
in [19,30,44] and standardly used for interpreting graded modal types. Note first that a semiring
R = (R, 0, 1,+, ·) has two (interacting) monoidal structures: (R, 0,+) (which is commutative) and (R, 1, ·)
(which need not be). The category [C,C] of endofunctors and natural transformations also has two monoidal
structures, specifically ([C,C], I,⊗) (where I designates to constant functor to the unit) and ([C,C], Id, ◦).
The category Mon[C,C] (resp. SymMon[C,C]) of monoidal (resp. symmetric monoidal) endofunctors and
monoidal natural transformations inherits these two monoidal structures from [C,C]. The semantics of
our graded λ-calculus relies on a ‘representation’ of R in C using these two structures, as detailed below.

Definition 2.7 An R-graded comonad over a (not necessarily monoidal) category C is an oplax monoidal
functor D : (R, 1, ·) → ([C,C], Id, ◦). Similarly, an R-graded monoidal comonad is an oplax monoidal
functor D : (R, 1, ·) → (Mon[C,C], Id, ◦), and an R-graded symmetric monoidal comonad is an oplax
monoidal functor D : (R, 1, ·) → (SymMon[C,C], Id, ◦). Concretely, an R-graded comonad is a triple
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Monoidal structure Closed structure

pm v ⊗ w to x⊗ y. u = u[v/x,w/y]

pm v to x⊗ y. u[x⊗ y/z] = u[v/z]

∗ to ∗ . v = v

v to ∗ . w[∗/z] = w[v/z]

(λx : A. v) w = v[w/x]

λx : A. v x = v

Symmetric comonadic structure

dr pr(1,s) v fr x. u = u[v/x]

pr(r,[1]) z fr x. drx = z

pr(r1,r2:r) (pr(r1·r2,s) x fr y. v),z fr a,a. w = pr(r1,(r2·s)++r) x,z fr c,a. w[pr(r2,s) c fr y. v/a]

pr(r,s1++[r1,r2]++s2) v1, w1, w2,v2 fr x1, y1, y2,x2. u = pr(r,s1++[r2,r1]++s2) v1, w2, w1,v2 fr x1, y2, y1,x2. u

Commutative comonoid structure

cp(0,n) v tox, y. ds x. u = u[v/y]

cp(n,0) v tox, y. ds y. u = u[v/x]

cp(n+m,o) v tox, y. cp(n,m) x to a, b. u = cp(n,m+o) v toa, c. cp(m,o) c to b, y. u

cp(n,m) v tox, y. u = cp(m,n) v to y, x. u

Interaction between comonoid and comonad

ds pr(0,s) v frx. w. u = ds v1. . . . ds vn. u

pr(r,0:s) v,v frx,x. dsx. u = ds v. pr(r,s) v frx. u

cp(n,m) pr(n+m,[s1,...,sk])
v frx. w to y, z. u = cp(n·s1,m·s1) v1 toa1, b1. . . . cp(n·sk,m·sk)

vk toak, bk.

u[pr(n,[s1,...,sk]) a frx . w/y, pr(m,[s1,...,sk])
b frx . w/z]

pr(r,(n+m):s) v,v fr z,z. cp(n,m) z tox, y. u = cp(r·n,r·m) v toa, b. pr(r,n:m:s)a, b,v frx, y,z. u

Commuting conversions

u[v to ∗ . w/z] = v to ∗ . u[w/z]

u[pm v to x⊗ y. w/z] = pm v to x⊗ y. u[w/z]

u[ds v.w/z] = ds v. u[w/z]

u[cp(n,m) v to x, y. w/z] = cp(n,m) v to x, y. u[w/z]

Fig. 2. Equational schema of graded λ-calculus.

(D(−) : R → [C,C], ǫ : D1 → Id, δm,n : Dm·n → DmDn) that makes the following diagrams commute

Ds

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

δs,1 //

δ1,s
��

DsD1

Dsǫ
��

D1Ds ǫDs

//Ds

Ds1·s2·s3
δs1,s2·s3 //

δs1·s2,s3
��

Ds1Ds2·s3

Ds1δ
s2,s3

��

Ds1·s2Ds3 δs1,s2Ds3

//Ds1Ds2Ds3

(2)

and similarly for an R-graded monoidal and symmetric monoidal comonad.

Definition 2.8 An R-graded exponential comonad is an R-graded symmetric monoidal comonad D :
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(R, 1, ·) → (SymMon[C,C], Id, ◦) that satisfies the following additional properties:

(i) D is an oplax symmetric monoidal functor D : (R, 0,+) → (SymMon[C,C], I,⊗). In other words, we
have monoidal natural transformations e : D0 → I and dm,n : Dm+n → Dm⊗Dn making the analogues
of (2) for the monoidal structure ([C,C], I,⊗) commute. Note that since (R, 0,+) is commutative and
D is symmetric the diagram below commutes as well.

Dm+n

dm,n

��

Dn+m

dn,m

��

Dm ⊗Dn γ
//Dn ⊗Dm

This equips every C-object with the structure of a graded commutative comonoid [18].

(ii) The two oplax monoidal structures of D interact as specified by the diagrams below (where the

transformations φDn and φDs
−,− are available by virtue of the typing of D).

Dn·0

e

��

δn,0
//DnD0

Dne
��

I
φDn

//DnI

D0·s
δ0,s //

e
��

D0Ds

eDs

��

I I

D(n+m)·s
δn+m,s

//

dn·s,m·s

��

Dn+mDs

dn,m

Ds

��

Dn·s ⊗Dm·s δn,s⊗ δm,s
//DnDs ⊗DmDs

Ds·(n+m)
δs,(n+m)

//

d(s·n)+(s·m)

��

DsDn+m

Dsdn,m

��

Ds·n ⊗Ds·m δs,n⊗ δs,m
//DsDn ⊗DsDm

φDs
Dn,Dm

//Ds(Dn ⊗Dm)

We now show how to interpret graded λ-calculus in an autonomous category C equipped with a graded
exponential comonad D. For every ground type X ∈ G we fix an interpretation JXK as a C-object and
interpret the type structure inductively in the usual way. Modal types are interpreted via the underlying
graded comonad, specifically we set J!r AK = DrJAK. Given a non-empty context Γ = Γ′, x : A, its
interpretation is defined by JΓ′, x : AK = JΓ′K⊗ JAK if Γ′ is non-empty and JΓ′, x : AK = JAK otherwise. The
empty context is interpreted as J−K = I where I is the unit of ⊗ in C. We will also need some ‘housekeeping’
morphisms to handle interactions between context interpretation and the symmetric monoidal structure
of C. Given contexts Γ1, . . . ,Γn we denote by spΓ1;...;Γn

: JΓ1, . . . ,ΓnK → JΓ1K ⊗ · · · ⊗ JΓnK the morphism
that splits JΓ1, . . . ,ΓnK into JΓ1K⊗ · · ·⊗ JΓnK, and by jnΓ1;...;Γn

the corresponding inverse. Given a context
Γ, x : A, y : B,∆ we denote by exchΓ,x:A,y:B,∆ : JΓ, x : A, y : B,∆K → JΓ, y : B, x : A,∆K the morphism
corresponding to the permutation of the variable x : A with y : B. Whenever convenient we will drop
variable names in the subscripts of sp, jn, and exch. Given a context E ∈ Sf(Γ1; . . . ; Γn) the morphism
shE : JEK → JΓ1, . . . ,ΓnK denotes the corresponding shuffling morphism. For every sorted operation
f : A1, . . . ,An → A ∈ Σ we set JfK : JA1K⊗ · · · ⊗ JAnK → JAK as a C-morphism. Finally we use the rules in
Figure 3 to interpret judgements Γ ✄ v : A as C-morphisms via induction over the judgement derivation
system in Figure 1.

The following lemma is standard and like in analogous contexts useful for proving the soundness
theorem presented below.

Lemma 2.9 (Exchange and Substitution) For all judgements Γ, x : A, y : B,∆✄v : C, Γ, x : A✄v : B,
and ∆✄ w : A, the following equations hold.

JΓ, x : A, y : B,∆✄ v : CK = JΓ, y : B, x : A,∆✄ v : CK · exchΓ,A,B,∆

JΓ,∆✄ v[w/x] : BK = JΓ, x : A✄ v : BK · jnΓ;A · (id⊗J∆✄w : AK) · spΓ;∆
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JΓi ✄ vi : AiK = hi f : A1, . . . ,An → A ∈ Σ E ∈ Sf(Γ1; . . . ; Γn)

JE ✄ f(v1, . . . , vn) : AK = JfK · (h1 ⊗ · · · ⊗ hn) · spΓ1;...;Γn
· shE Jx : A✄ x : AK = idJAK

J−✄ ∗ : IK = idJIK

JΓ✄ v : A⊗ BK = g J∆, x : A, y : B✄ w : CK = h E ∈ Sf(Γ;∆)

JE ✄ pm v to x⊗ y. w : CK = h · jn∆;A;B ·α · γ ·(g ⊗ id) · spΓ;∆ · shE

JΓ✄ v : AK = g J∆✄ w : BK = h E ∈ Sf(Γ;∆)

JE ✄ v ⊗ w : A⊗ BK = (g ⊗ h) · spΓ;∆ · shE

JΓ✄ v : IK = g J∆✄ w : AK = h E ∈ Sf(Γ;∆)

JE ✄ v to ∗ . w : AK = h · λ · (g ⊗ id) · spΓ;∆ · shE

JΓ, x : A✄ v : BK = h

JΓ✄ λx : A. v : A ⊸ BK = (h · jnΓ;A)

JΓ✄ v : A ⊸ BK = g J∆✄ w : AK = h E ∈ Sf(Γ;∆)

JE ✄ v w : BK = app · (g ⊗ h) · spΓ;∆ · shE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

JΓ✄ v : !1 AK = h

JΓ✄ dr v : AK = ǫJAK · h

JΓ✄ v : !0 AK = g J∆✄w : BK = h E ∈ Sf(Γ;∆)

JE ✄ ds v. w : BK = h · λ · (eJAK ⊗ id) · (g ⊗ id) · spΓ;∆ · shE

JΓ✄ v : !n+m AK = g J∆, x : !nA, y : !mA✄ u : BK = h E ∈ Sf(Γ;∆)

JE ✄ cp(n,m) v to x, y. u : BK = h · jn∆;A;A ·α · γ ·(dn,mJAK ⊗ id) · (g ⊗ id) · spΓ;∆ · shE

JΓi ✄ vi : !r·si AiK = gi Jx1 : !s1 A1, . . . , xn : !sn An ✄ u : AK = h E ∈ Sf(Γ1; . . . ; Γn)

JE ✄ pr(r,s) v fr x. u : !r AK = Drh ·Dr jnA1;...;An
·φDr

JA1K,...,JAnK · (δ
r,s1
JA1K ⊗ · · · ⊗ δr,snJAnK) · (g1 ⊗ · · · ⊗ gn) · spΓ1;...;Γn

· shE

Fig. 3. Judgement interpretation.

Theorem 2.10 (Soundness) The equations presented in Figure 2 are sound w.r.t. judgement interpre-
tation. More specifically if Γ✄v = w : A is one of the equations in Figure 2 then JΓ✄v : AK = JΓ✄w : AK.

3 A complete V-equational system for graded λ-calculus

We now present a V-equational system for graded λ-calculus and prove its soundness and completeness.

3.1 The V-equational system

We start by recalling from [13] the conditions imposed on V to obtain a well-behaved framework of V-
equations. We will then extend this framework to the graded seting. Let V denote a commutative and
unital quantale, ⊗ : V ×V → V the corresponding binary operation, and k the unit [45]. Consider now the
two following definitions concerning ordered structures [22,25] (they will allow us to work with specified
subsets of V-equations chosen e.g. for computational reasons [13]).

Definition 3.1 Take a complete lattice L. For every x, y ∈ L we say that y is way-below x (in symbols,
y ≪ x) if for every subset X ⊆ L whenever x ≤

∨
X there exists a finite subset A ⊆ X such that y ≤

∨
A.

The lattice L is called continuous iff for every x ∈ L,

x =
∨

{y | y ∈ L and y ≪ x}

Definition 3.2 Let L be a complete lattice. A basis B of L is a subset B ⊆ L such that for every x ∈ L
the set B ∩ {y | y ∈ L and y ≪ x} is directed and has x as the least upper bound.

We assume that the underlying lattice of V is continuous and has a basis B ∋ k closed under finite joins
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and multiplication. As alluded above, the continuity condition will allow us to work only with V-equations
whose label is in B. We also assume that V is integral, i.e. that the unit k is the top element of V, a
common assumption in quantale theory [3] that facilitates some of our results.

Example 3.3 The Boolean quantale (({0 ≤ 1},∨),⊗ := ∧) is finite and thus continuous [22]. Since it
is continuous, {0, 1} itself is a basis for the quantale that satisfies the conditions above. For the metric
quantale (([0,∞],∧),⊗ := +) (note that the order on this quantale is the opposite of the usual order on
[0,∞]), the way-below relation corresponds to the strictly greater relation with ∞ > ∞, and a basis for the
underlying lattice that satisfies the conditions above is the set of extended non-negative rational numbers.
Other examples of quantales that satisfy the conditions above can be found in [13].

A V-equation-in-context is an expression Γ✄ v =q w : A where q ∈ B (the basis of V), and Γ✄ v : A,
Γ✄ w : A are graded λ-terms. If V is the metric quantale we obtain metric equations-in-context and if V
is the Boolean quantale we obtain inequations-in-context (where v =1 w corresponds to v ≤ w). In this
V-equational setting a classical equation-in-context v = w translates to v =k w ∧ w =k v. For example in
the metric case v = w ≡ v =0 w ∧ w =0 v and in the Boolean case v = w ≡ v ≤ w ∧w ≤ v.

We can now move to the graded setting.

Definition 3.4 A scalar multiplication of a semiring R on a quantale V is a function • : R×V → V such
that for each k ∈ R, the map k • − : V → V preserves joins in V.

The definition entails in particular that for all v, v′ ∈ V if v ≥ v′ then k • v ≥ k • v′.

Definition 3.5 [Graded Vλ-theories] Consider a tuple (G,Σ) consisting of a set G of ground types and
a set Σ of sorted operation symbols. A graded Vλ-theory ((G,Σ), Ax) is a triple such that Ax is a set of
V-equations-in-context between λ-terms built from (G,Σ).

The elements of Ax are called the axioms of the theory. Let Th(Ax) be the smallest V-indexed binary
relation (the V-equations) that contains Ax, the equational schema presented in Figure 2, and that is closed
under the rules listed in Figure 4. We call the elements of Th(Ax) the theorems of the theory. Intuitively
the rules in Figure 4 above the first dotted line can be seen as a V-generalisation of an equivalence relation
(see [13] for a more detailed explanation). The other rules correspond to a V-generalisation of compatibility.
The rule concerning promotion is slightly different from the others in that it involves a k-factor (k • −)
to reflect the fact that u (resp. u′) becomes usable k-times. Finally, note that we can consider symmetric
graded Vλ-theories by adding to the mix the rule,

v =q w
w =q v

This is desirable for example in the (ultra-)metric case but makes no sense if one wishes to work with
inequations (graded inequational λ-theories collapse to graded equational ones under this rule).

3.2 Interpretation of V-equations, soundness, and completeness

In this subsection we recall the interpretation of V-equations in the setting of linear λ-calculus [13] and
extend it to the graded case. The main idea is that we suitably enrich the interpretation structure
in Definition 2.8 (an autonomous category equipped with a graded exponential comonad) so that the
corresponding hom-sets become equipped with a ‘generalised metric structure’. More technically the basis
of enrichment is that of V-categories [35,51,27,3], a concept which we recall below. We prove soundness
and completeness of the previous V-equational system w.r.t. this interpretation.

Definition 3.6 A V-category is a pair (X, a) where X is a set and a : X × X → V is a function that
satisfies k ≤ a(x, x) and a(x, y)⊗a(y, z) ≤ a(x, z) for all x, y, z ∈ X. For two V-categories (X, a) and (Y, b),
a V-functor f : (X, a) → (Y, b) is a function f : X → Y that satisfies the inequality a(x, y) ≤ b(f(x), f(y))
for all x, y ∈ X.
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v =⊤ v (refl)
v =q1 w w =q2 u

v =q1⊗q2 u
(trans)

v =q1 w q2 ≤ q1
v =q2 w (weak)

∀q2 ≪ q1. v =q2 w
v =q1 w

(arch)
∀i ≤ n. v =qi w

v =∨qi w
(join)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∀i ≤ n. vi =qi wi

f(v1, . . . , vn) =⊗qi f(w1, . . . , wn)

v =q1 w v′ =q2 w′

pm v to x⊗ y. v′ =q1⊗q2 pm w to x⊗ y. w′

v =q1 w v′ =q2 w
′

v to ∗ . v′ =q1⊗q2 w to ∗ . w′

v =q1 w v′ =q2 w′

v ⊗ v′ =q1⊗q2 w ⊗ w′

v =q w

λx : A. v =q λx : A. w

v =q1 w v′ =q2 w′

v v′ =q1⊗q2 ww′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v =q v
′

dr v =q dr v
′

v =q1 v′ w =q2 w
′

cp(n,m)v to x, y. w =q1⊗q2 cp(n,m)v
′ to x, y. w′

v =q1 v′ w =q2 w
′

ds v. w =q1⊗q2 ds v
′. w′

Γ✄ v =q w : A ∆ ∈ perm(Γ)

∆✄ v =q w : A

∀i ≤ n. vi =qi v
′
i u =q′ u

′

pr(r,s) v fr x. u =⊗qi⊗(r•q′) pr(r,s) v
′ fr x. u′

v =q1 w v′ =q2 w
′

v[v′/x] =q1⊗q2 w[w
′/x]

Fig. 4. V-congruence rules.

V-categories and V-functors form a category which we denote by V-Cat. A V-category (X, a) is called
symmetric if a(x, y) = a(y, x) for all x, y ∈ X. We denote by V-Catsym the full subcategory of V-Cat whose
objects are symmetric. Every V-category carries a natural order defined by x ≤ y whenever k ≤ a(x, y).
A V-category is called separated if its natural order is anti-symmetric. We denote by V-Catsep the full
subcategory of V-Cat whose objects are separated.

Example 3.7 For V the Boolean quantale, V-Catsep is the category Pos of partially ordered sets and
monotone maps, and V-Catsym,sep is the category Set of sets and functions. For V the metric quantale,
V-Catsym,sep is the category Met of metric spaces and non-expansive maps. For more examples see [13].

We will take advantage of the following useful facts about V-categories. The inclusion functor
V-Catsep →֒ V-Cat has a left adjoint [27]. It is constructed first by defining the equivalence relation x ∼ y
whenever x ≤ y and y ≤ x (where ≤ is the natural order introduced earlier). Then this relation induces the
separated V-category (X/∼, ã) where ã is defined as ã([x], [y]) = a(x, y) for every [x], [y] ∈ X/∼. Finally
the left adjoint of the inclusion functor V-Catsep →֒ V-Cat sends every V-category (X, a) to (X/∼, ã). The
category V-Cat is autonomous with the tensor (X, a) ⊗ (Y, b) := (X × Y, a ⊗ b) where a ⊗ b is defined as
(a⊗ b)((x, y), (x′, y′)) = a(x, x′)⊗ b(y, y′) and the set of V-functors V-Cat((X, a), (Y, b)) equipped with the
map,

(f, g) 7→
∧

x∈X

b(f(x), g(x))

V-Catsym, V-Catsep, and V-Catsym,sep inherit the autonomous structure of V-Cat whenever V is integral [13].

Definition 3.8 A V-Cat-enriched autonomous category C is an autonomous and V-Cat-enriched category
C such that the bifunctor ⊗ : C× C → C is a V-Cat-functor and the adjunction (− ⊗X) ⊣ (X ⊸ −) is a
V-Cat-adjunction. We obtain analogous notions of enriched autonomous category by replacing V-Cat (as
basis of enrichment) with V-Catsep, V-Catsym, or V-Catsym,sep.

Example 3.9 The categories Pos, Met, and Set are instances of Definition 3.8.

We now turn our attention to the graded case, more specifically on how to suitably enrich the underlying
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graded exponential comonad. An obvious way of doing so would be to state that for every r ∈ R the
functor Dr : C → C is V-Cat-enriched. This however turns out to be too strict to soundly interpret the
V-compatibility rule concerning promotion (Figure 4). Instead we adopt a more relaxed variant which
formally resembles the well-known notion of Lipschitz-continuity from calculus.

Definition 3.10 An R-Lipschitz exponential comonad (for a scalar multiplication • : R × V → V) is an
R-graded exponential comonad such that the inequality,

r • a(f, g) ≤ a(Drf,Drg)

holds for all C-morphisms f, g : X → Y and r ∈ R.

Definition 3.11 [Models of graded Vλ-theories] Consider a graded Vλ-theory ((G,Σ), Ax) and a V-Catsep-
autonomous category C equipped with an R-Lipschitz exponential comonad. Suppose that for each X ∈ G
we have an interpretation JXK as a C-object and analogously for the operation symbols. This interpretation
structure is a model of the theory if all axioms are satisfied by the interpretation, i.e. if v =q w is an axiom
of the theory then a(JvK, JwK) ≥ q.

In the case of symmetric graded Vλ-theories the corresponding notion of a model is obtained by
replacing the basis of enrichment (i.e. V-Catsep) by V-Catsym,sep.

We can now prove that the V-equational system of graded λ-calculus is sound and complete w.r.t.
Definition 3.11.

Theorem 3.12 (Soundness) Consider a (symmetric) Vλ-theory T and a model M of T over C. If
v =q w is a theorem of T then a(JvK, JwK) ≥ q.

Proof. The fact that the equational schema listed in Figure 2 is sound follows from Theorem 2.10 and
the definition of a V-category (Definition 3.6). The proof then follows by induction over the rules listed
in Figure 4. We only focus on those rules that concern graded modal types (the other ones were already
proved in [13]). The case of deriliction follows directly from the fact that for all X ∈ |C| the morphism
ǫX : D1X → X lives in C and C is V-Cat-enriched. The rules that concern copying and discarding follow
from an analogous reasoning. The rule that concerns promotion also follows similarly to the above except
that we use the two following properties: first, for all q, q′ ∈ V and r ∈ R if q ≥ q′ then r • q ≥ r • q′;
second, the fact that the graded comonad is Lipschitz. In conjunction both properties entail the implication
a(JuK, Ju′K) ≥ q′ ⇒ a(DrJuK,DrJu

′K) ≥ r • q′. ✷

The completeness result is based on the idea of a Lindenbaum-Tarski algebra: it follows from building
the syntactic category Syn(T ) of T , showing that it is a model of T , and then showing that if a(JvK, JwK) ≥
q in Syn(T ) the V-equation v =q w is a theorem of T . In order to build Syn(T ) and to show that it is
indeed a model of T , we resort to the notion of a multicategory and associated constructions [34,36,26,38].
More specifically, we will first generate a syntactic multicategory SynM (T ) from T and then show that
the former induces an autonomous Syn(T ) with the necessary requisites to be a model of T . The reason
we involve multicategories is that some equations we need to face are much more easily proved in this
framework, an observation already made in analogous contexts [34,4]. For the same purpose, we also use
a bijective correspondence between graded comonads and graded co-Kleisli triples on a multicategory.

Theorem 3.13 (Soundness & Completeness) For a (symmetric) graded Vλ-theory T , a V-equation
Γ✄ v =q w : A is a theorem of T iff it is satisfied by all models of the theory.

4 A canonical construction of Lipschitz exponential comonads

This section presents a canonical construction of Lipschitz exponential comonads on V-Cat-autonomous
categories that satisfy certain conditions. The construction is inspired by [41], which shows how to build
(non-graded) exponential comonads via the notion of a (co)free commutative (co)monoid. In order to
describe the connection to op. cit. at a suitable level of abstraction, we start with a brief overview of this
construction in the form of abstract categorical results. We will then provide a more direct construction.
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Let Monπ(C) be the category of commutative monoids in a symmetric monoidal category C. A crucial
observation is that a comonoid in C is the same thing as a monoid in Cop [41] – thus the category of
commutative comonoids can be seen as Monπ(C

op)op. The other relevant key observation is that the
forgetful functor Monπ(C) → C is right adjoint if conditions concerning the existence and preservation of
a certain limit are met (cf. [41]). By duality this induces a forgetful functor Monπ(C

op)op → C which is
furthermore left adjoint. Such an adjoint situation induces a comonad on C which can be shown to be
exponential (see [41]). Now, we are interested in extending these ideas to the graded setting with R as
the semiring of natural numbers. To this effect we recall next the notion of a strict action.

Definition 4.1 Let M be a monoidal category and C be an arbitrary category. A strict action is a functor
⊛ : M× C → C that satisfies the following equations for all M-objects m,n and C-objects X:

X = I ⊛X m⊛ (n⊛X) = (m⊗ n)⊛X

Consider then both a strict action ⊛ : M × A → A, where M is a discrete category, and an adjoint
situation L ⊣ R : A → B. It is well-known that both constructions yield an M-graded monad on B with
Tn(X) = R(n⊛ LX) (see details in [18]). This is the basis to extend [41] to a graded setting.

Specifically let N-Monπ(C) be the category of (N,+, 0)-graded commutative monoids in C. Following
an analogous reasoning to the previous paragraphs, one may regard (N-Monπ(C

op))op as the category of
(N,+, 0)-graded commutative comonoids in C. There is also a forgetful functor (−)1 : N-Monπ(C) → C
which given a graded monoid only keeps the 1-component of the underlying carrier. Then under mild
conditions, also pertaining to the existence and preservation of a certain limit limD (details below), this
functor is right adjoint. And thus in particular (−)1 : (N-Monπ(C

op))op → C is left adjoint. Finally via
a few routine calculations one can show the existence of a strict action ⊛ : (N, · , 1) × N-Monπ(C) →
N-Monπ(C) defined by,

(k, ((Xn)n∈N, e, fm,n : Xm ⊗Xn → Xm+n)) 7→ ((Xn·k)n∈N, e, fm·k,n·k : Xm·k ⊗Xn·k → X(m+n)·k)

Together with the previous adjoint situation this yields an (N, · , 1)-graded comonad on C. By unfolding
the respective definitions one can show that this comonad is that of symmetric powers described in a
very recent publication [37] and stated to be exponential. Due to space constraints we describe only the
functorial component. Subsequently we will show that this comonad is Lipschitz under the condition that
the aforementioned limit of D is V-Cat-enriched.

As an instructive first approximation of the N-Lipschitz exponential comonad we intend to describe,
consider the map,

D : N → [C,C], n 7→ Id⊗ . . .⊗ Id
︸ ︷︷ ︸

ntimes

. (3)

The assignment D almost defines a canonical (N, ·, 1)-graded exponential comonad.

Theorem 4.2 The assignment D of (3) satisfies all the conditions of Definition 2.8 except for symmetry
in condition (i) and the last diagram of condition (ii).

In order to construct an exponential comonad on C one needs to remedy the lack of symmetry of D.
To do this, one can consider the sub-N-graded comonad of D which only keeps the symmetric elements in
the tensor products DnX = X⊗n. For this we follow the second step of the construction in [41]. Every
element σ in the permutation group Sym (n) on n elements defines a natural transformation Dn → Dn

which we also denote by σ. We now define E : N → [C,C] by mapping n ∈ N to the limit En of the
diagram (4) defined by all these natural transformations. Each En is defined on morphisms in the obvious
way: if f : X → Y is a C-morphism then since Dnf ·σ = σ ·Dnf , the universal property of EnY guarantees
the existence of a unique C-morphism Enf that makes Diagram (5) commute.
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En
ǫn //Dn

σ∈Sym(n)
//

τ∈Sym(n)
//

... Dn (4)

EnX
ǫn
X //

Enf
��

DnX
σ∈Sym(n)

//

τ∈Sym(n)
//

...

Dnf
��

DnX

Dnf
��

EnY ǫn
Y

//DnY
σ∈Sym(n)

//

τ∈Sym(n)
//

... DnY

(5)

Theorem 4.3 Suppose that for every C-object X, (X ⊗−) preserves the limits (4). Then the assignment
E defined by the limits (4) induces a sub-N-graded comonad of D which is furthermore an N-graded
exponential comonad.

We will now show that the graded comonad E is additionally Lipschitz. First we define the following
scalar multiplication.

Proposition 4.4 For any commutative quantale V, the map • : N× V → V defined by,

n • q = q ⊗ . . .⊗ q
︸ ︷︷ ︸

n times

if n 6= 0 0 • q = k

is a scalar multiplication in the sense of Definition 3.4.

Proof. To see that n • − preserves arbitrary joins we compute,

n •
(∨

X
)

,
(∨

X
)

⊗ · · · ⊗
(∨

X
)

=
∨

(X ⊗ · · · ⊗X) {⊗ preserves joins}

=
∨

{x1 ⊗ · · · ⊗ xn | x1, . . . , xn ∈ X}

=
∨

{x⊗ · · · ⊗ x | x ∈ X} {⋆}

,
∨

n •X

where the step marked with (⋆) follows from the fact that the inequation below holds.

x1 ⊗ · · · ⊗ xn ≤
(∨

{x1, . . . , xn}
)

⊗ · · · ⊗
(∨

{x1, . . . , xn}
)

(x1, . . . , xn ∈ X)

✷

Next, let C be a V-Cat-autonomous category and the underlying diagram of (4) for a C-object X be
denoted by D . Also assume that for every two cones f, g : A → X⊗n for D the equation a(f, g) = a(f ′, g′)
holds where f ′, g′ : A → En(X) are the corresponding mediating morphisms. More compactly this amounts
to the statement that C has the V-Cat-limit of D weighted by the functor ! (constant on the V-Cat-object
1). This condition guarantees that E is N-Lipschitz.

Theorem 4.5 Consider a V-Cat-autonomous category C such that it has the V-Cat-limit of D weighted
by ! and additionally assume that for every C-object X the functor (X ⊗−) preserves this limit, then E is
an N-Lipschitz exponential comonad.
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Proof. Consider two C-morphisms f, g : X → Y . We reason,

n • a(f, g)

, a(f, g)⊗ . . .⊗ a(f, g)
︸ ︷︷ ︸

n times

≤ a(f⊗n, g⊗n) {⊗ in C is V-Cat-enriched}

, a(Dnf,Dng)

≤ a(Dnf · ǫnX ,Dng · ǫ
n
X) {C is V-Cat-enriched}

= a(Enf,Eng) {limit of D is V-Cat-enriched}

✷

5 Applications to timed and probabilistic computation

5.1 Timed computation and dilations

We now revisit the example of wait calls from §1 and equip it with a concrete model by applying the
canonical construction of N-Lipschitz exponential comonads detailed in §4. Recall that the example is
based on a ground type X and a signature {waitn : X → X | n ∈ N} of wait calls. Consider then the
following metric axioms proposed in [13]:

wait0(x) =0 x waitn(waitm(x)) =0 waitn+m(x)

ǫ = |m− n|

waitn(x) =ǫ waitm(x) (6)

In order to apply the construction in §4, we need first of all a Met-enriched autonomous category. For this
case we choose Met itself (cf. Example 3.9). Next we show that the tensor ⊗ in Met preserves all limits;
actually we prove the following more general claim.

Proposition 5.1 Let V be a quantale whose operation ⊗ preserves arbitrary meets and let us consider
the respective category V-Cat. For every V-category X the functor (−⊗X) : V-Cat → V-Cat preserves all
limits. The same property holds for the cases V-Catsep, V-Catsym, and V-Catsym,sep.

Corollary 5.2 For all categories C mentioned in Example 3.9 (which includes Met) and C-objects X the
functor (−⊗X) : C → C preserves all limits.

Finally, it is straightforward to prove that Met has the V-Cat-limit of D weighted by ! and therefore
all pre-requisites of the construction are satisfied. By unfolding the respective definitions we deduce
that En(X) is the metric space whose elements are n-copies (x, . . . , x) of an element x ∈ X and whose
metric is the restriction of the metric in X⊗n. The counit is the identity and comultiplication amounts
to rebracketing. The operation dm,n amounts to rebracketing as well. It is then easy to build a model for
the metric theory of wait calls that was previously presented: fix a metric space A, interpret the ground
type X as N⊗A and the operation symbol waitn : X → X as the non-expansive map JwaitnK : N⊗A →
N ⊗ A, (i, a) 7→ (i + n, a). It only remains to prove that the axioms in (6) are satisfied by the proposed
interpretation, but this can be shown via a few routine calculations.

We end this subsection by relating the comonad that we canonically obtained to the comonad of
dilations presented in [30]. The latter’s main idea is that of distance dilation: given a metric space (X, d)
we obtain a new one Diln(X, d) := (X,n • d) by scaling up distances via multiplication, more concretely
(n • d)(x, y) = n • d(x, y) for n ∈ N and x, y ∈ X. It is easy to see that En

∼= Diln and moreover that
the underlying comonadic operations agree. It is also easy to see that the copy, discard, and monoidal
operations agree as well. This yields the following result.

Corollary 5.3 The Met-autonomous category Met of metric spaces and non-expansive maps equipped with
the comonad of dilations yields a model of the metric theory of wait calls (6).
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5.2 Probabilistic computation

[13, Example 28] presents a metric equational system to reason about the total variation distance between
distributions constructed as probabilistic programs, specifically individual steps in non-standard random
walks. It is however cumbersome to reason about distances between random walks consisting of n steps
when they are expressed in a purely linear language. This is because a probabilistic term like normal(0, 1)
operationally corresponds to a single sample which cannot be copied. Thus, to write a program using n
normal deviates we need to call n i.i.d. samples from normal(0, 1) ⊗ . . .⊗ normal(0, 1)

︸ ︷︷ ︸

n times

which is inconvenient

and unclear (especially for large values of n), but also difficult to maintain and generalise. Using a graded
system, we can not only assume a clean and parametric access to such i.i.d. samples but also to more
complex sampling schemes (details below). Furthermore, we have a convenient way of manipulating such
sequences of samples via the promotion rule, and to feed them into n-ary functions through the copy (i.e.
contraction) rule. All of this whilst maintaining the ability to reason about distances between programs.

Let us illustrate our previous remarks with some simple examples. We start by briefly presenting
a toy probabilistic language (more details can be found in [13]). We consider only two ground types
real and real+ (in particular, we will view the integers 0 and 1 as reals). The graded modal type
!n real can then be thought of as the type of n real samples. We also consider a signature of operations
consisting of the real numbers {r : I → real | r ∈ Q}, the addition and multiplication operations
+, ∗ : real, real → real, and finally three collections of built-in samplers which we detail next. The first
collection consists of samplers returning k samples from an urn containing m balls labelled 0 and n balls
labelled 1 with replacement (i.e. we return the ball to the urn after reading its value). We denote the
samplers of this class replace(k,m, n) : !k real. The second collection samples from the same urn model
but without replacement. We denote these samplers no replace(k,m, n) : !k real (and of course require
that k ≤ m+ n). The third class iid normal(k;µ, σ) : real, real+ → !k real will simply sample k i.i.d.
normal deviates.

We proceed by providing a concrete graded λ-model for the language. First we fix the category Ban of
Banach spaces and linear contractions as ourMet-enriched autonomous category (see [31,12,15,13] for more
details about this style of semantics). Specifically Ban is autonomous when equipped with the projective
tensor product ⊗̂π and the internal hom ⊸ defined as the space of bounded linear maps equipped with the
sup-norm [49]. It is also straightforward to prove that Ban has the Met-limit of D weighted by !. Then in
order to apply the construction in §4 we use the following result.

Proposition 5.4 For every Banach space W and every n ∈ N, the functor (−⊗W ) : Ban → Ban preserves
the limit of diagram (4) which defines En in terms of all the permutations σ ∈ Sym(n).

Proof. The proof is inspired by an analogous one in [12] and hinges on the fact that the contraction
ǫn : En(V ) → V ⊗n is split mono. To prove the latter, let us consider the symmetrisation operator
1
n!

∑

σ∈Sym(n) σ : V ⊗n → V ⊗n [6,8] – it is a contraction because the properties of norms entail,

∥
∥
∥
∥
∥
∥

1

n!

∑

σ∈Sym(n)

σ

∥
∥
∥
∥
∥
∥

≤
1

n!

∑

σ∈Sym(n)

‖σ‖ =
1

n!

∑

σ∈Sym(n)

1 = 1

It is then straightforward to show that this operator restricts on the codomain to a linear map ∂n : V ⊗n →
En(V ) by taking advantage of the fact that Sym(n) is a group. Moreover En(V ) inherits its norm from
V ⊗n which yields ‖∂n‖ = ‖ 1

n!

∑

σ∈Sym(n) σ‖. Thus ∂n is a linear contraction as well. Next, in order to

prove that ∂n is a retraction of ǫn consider the following facts. By construction we have σ · ǫn = ǫn for all

symmetries σ ∈ Sym(n) which gives rise to the equation
(

1
n!

∑

σ∈Sym(n) σ
)

·ǫn = ∂n ·ǫn = id · ǫn. Moreover

ǫn is an inclusion. Therefore for every vector v ∈ En(V ) we obtain,

∂n(ǫn(v)) = 1
n!

∑

σ∈Sym(n) σ(ǫ
n(v)) = ǫn(v) = v
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The final step is to prove that every cone f : U → V ⊗n ⊗̂π W factorises uniquely through ǫn ⊗ id. By
composition we obtain a linear contraction (∂n ⊗ id) · f : U → En(V ) ⊗̂π W . Let us show that it factorises
f through ǫn ⊗ id. Consider a vector u ∈ U . By construction we know that f(u) = σ ⊗ id (f(u)) for all
permutations σ on n. This entails,

f(u)

=
1

n!

∑

σ∈Sym(n)

σ ⊗ id (f(u))

=
1

n!




∑

σ∈Sym(n)

σ



⊗ id (f(u)) {Addition distributes over (−⊗ id)}

=




1

n!

∑

σ∈Sym(n)

σ



⊗ id (f(u)) {Scaling distributes over (−⊗ id)}

= ∂n ⊗ id (f(u))

We thus obtain the chain of equalities (ǫn ⊗ id) · (∂n ⊗ id)(f(u)) = (ǫn ⊗ id)(f(u)) = f(u). Finally unicity
follows from the fact that ǫn is split mono. ✷

This yields a canonical N-Lipschitz exponential comonad on Ban, and we can interpret J!n realK ,
EnJrealK = En(MR) where MR is the Banach space of finite measures on R. Note that the elements of
J!n realK are invariant under all permutations in Sym(n), but need not in general be i.i.d. distributions.
For example Jreplace(k,m, n)K corresponds to the i.i.d. case as it is given by the k-fold tensor of the
distribution Bern(n/(n+m)), but Jno replace(k,m, n)K is permutation-invariant without being i.i.d. Quite
a lot is know about permutation-invariant distributions like these, usually known as finite exchangeable
sequences in the probabilistic literature. In particular, [17] shows that the following metric axiom is sound.

replace(k,m, n) =4k/(m+n) no replace(k,m, n) (7)

The denotation of iid normal(k;µ, σ) is the linear, norm-1 operator defined by the Markov kernel
R × R+ → (MR)⊗n → M(Rn), (µ, σ) 7→ Normal(µ, σ)⊗n. There is no known closed-form expression
for the total variation distance between Gaussian distributions. However, upper bounds are known. In
particular, following [16, Prop. 1.2], we know that the metric axiom below is sound.

iid normal(k;µ1, σ1) =φ(µ1,σ1,µ2,σ2) iid normal(k;µ2, σ2) (8)

where φ(µ1, σ1, µ2, σ2) =
1
2

√

k
(
σ2
2−σ2

1+(µ1−µ2)2

σ2
1

− log
(
σ2
2

σ2
1

))

.

Now based on these axioms, and the metric equational rules of Fig. 4 we can easily bound the total
variation distance between the final position of two complex k-steps random walks of the type used in
Monte-Carlo simulations (e.g. to value options [28]). For example, consider first the random walk on
R where at each step the sign of the jump is determined by a sample from replace(k,m, n) and its
magnitude by a sample from iid normal(k;µ1, σ1). Suppose we want to bound the distance of this
walk with one whose sign is sampled from no replace(k,m, n) and magnitude from iid normal(k;µ2, σ2)
instead. Working directly at the level of the semantics, this would be a highly non-trivial task, however if
we express these walks as programs in our graded system we can straightforwardly compute such a bound.
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The walks can be programmed as follows:

walk1 , prk,[1,1] replace(k,m, n), iid normal(k;µ1, σ1) fr x, y. (2 ∗ dr(x)− 1) ∗ dr(y) : !kreal

walk2 , prk,[1,1] no replace(k,m, n), iid normal(k;µ2, σ2) fr x, y. (2 ∗ dr(x)− 1) ∗ dr(y) : !kreal

endpoint(w) , cp(1,...,1) w to x1, . . . , xn. dr(x1) + . . . + dr(xn) : real.

Using the metric axioms (7)-(8) and Fig. 4, the bound can be straightforwardly checked to be
endpoint(walk1) =4k/(m+n)+φ(µ1,σ1,µ2,σ2) endpoint(walk2). The higher-order features of the language
would allow us to write the program above more modularly by introducing an iterator and still reason
quantitatively about it. We chose the shorter, less modular presentation above in the interest of brevity.

6 Conclusions and future work

We presented a sound and complete V-equational system for a graded λ-calculus via the notion of a
Lipschitz exponential comonad. We showed how to build such comonads canonically via a universal con-
struction and applied our results to both timed and probabilistic computation. There are multiple research
lines which we intend to explore next. First, we believe that the construction of Lipschitz exponential
comonads is interesting per se and that it deserves further exploration from a more categorical perspec-
tive. For example, we are interested in knowing whether the adjunction involved is monoidal and whether
it arises from the development of general results about graded (co)equational theories over (enriched)
monoidal categories. Second, our results were applied to the setting of metric equations only but they go
beyond that – in particular, we would like to explore as well the inequational, ultra-metric, and fuzzy cases
due to their increasing relevance in the literature. Third, whilst we presented relatively straightforward
metric equational theories and corresponding models for timed and probabilistic computation, we are also
interested in knowing whether the same can be done for hybrid [42,24] and quantum [43,14] computation,
two rapidly emerging paradigms with an intrinsically quantitative nature. Finally we are also interested
in knowing if there is any formal connection with previous work on the notion of comonadic lax extension
and the relational semantics involving modal types [32,1]
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